• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
63 
64 #include <trace/events/task.h>
65 #include "internal.h"
66 
67 #include <trace/events/sched.h>
68 
69 int suid_dumpable = 0;
70 
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73 
__register_binfmt(struct linux_binfmt * fmt,int insert)74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76 	BUG_ON(!fmt);
77 	if (WARN_ON(!fmt->load_binary))
78 		return;
79 	write_lock(&binfmt_lock);
80 	insert ? list_add(&fmt->lh, &formats) :
81 		 list_add_tail(&fmt->lh, &formats);
82 	write_unlock(&binfmt_lock);
83 }
84 
85 EXPORT_SYMBOL(__register_binfmt);
86 
unregister_binfmt(struct linux_binfmt * fmt)87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89 	write_lock(&binfmt_lock);
90 	list_del(&fmt->lh);
91 	write_unlock(&binfmt_lock);
92 }
93 
94 EXPORT_SYMBOL(unregister_binfmt);
95 
put_binfmt(struct linux_binfmt * fmt)96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98 	module_put(fmt->module);
99 }
100 
101 #ifdef CONFIG_USELIB
102 /*
103  * Note that a shared library must be both readable and executable due to
104  * security reasons.
105  *
106  * Also note that we take the address to load from from the file itself.
107  */
SYSCALL_DEFINE1(uselib,const char __user *,library)108 SYSCALL_DEFINE1(uselib, const char __user *, library)
109 {
110 	struct linux_binfmt *fmt;
111 	struct file *file;
112 	struct filename *tmp = getname(library);
113 	int error = PTR_ERR(tmp);
114 	static const struct open_flags uselib_flags = {
115 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
116 		.acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
117 		.intent = LOOKUP_OPEN,
118 		.lookup_flags = LOOKUP_FOLLOW,
119 	};
120 
121 	if (IS_ERR(tmp))
122 		goto out;
123 
124 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
125 	putname(tmp);
126 	error = PTR_ERR(file);
127 	if (IS_ERR(file))
128 		goto out;
129 
130 	error = -EINVAL;
131 	if (!S_ISREG(file_inode(file)->i_mode))
132 		goto exit;
133 
134 	error = -EACCES;
135 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
136 		goto exit;
137 
138 	fsnotify_open(file);
139 
140 	error = -ENOEXEC;
141 
142 	read_lock(&binfmt_lock);
143 	list_for_each_entry(fmt, &formats, lh) {
144 		if (!fmt->load_shlib)
145 			continue;
146 		if (!try_module_get(fmt->module))
147 			continue;
148 		read_unlock(&binfmt_lock);
149 		error = fmt->load_shlib(file);
150 		read_lock(&binfmt_lock);
151 		put_binfmt(fmt);
152 		if (error != -ENOEXEC)
153 			break;
154 	}
155 	read_unlock(&binfmt_lock);
156 exit:
157 	fput(file);
158 out:
159   	return error;
160 }
161 #endif /* #ifdef CONFIG_USELIB */
162 
163 #ifdef CONFIG_MMU
164 /*
165  * The nascent bprm->mm is not visible until exec_mmap() but it can
166  * use a lot of memory, account these pages in current->mm temporary
167  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
168  * change the counter back via acct_arg_size(0).
169  */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)170 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
171 {
172 	struct mm_struct *mm = current->mm;
173 	long diff = (long)(pages - bprm->vma_pages);
174 
175 	if (!mm || !diff)
176 		return;
177 
178 	bprm->vma_pages = pages;
179 	add_mm_counter(mm, MM_ANONPAGES, diff);
180 }
181 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)182 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
183 		int write)
184 {
185 	struct page *page;
186 	int ret;
187 
188 #ifdef CONFIG_STACK_GROWSUP
189 	if (write) {
190 		ret = expand_downwards(bprm->vma, pos);
191 		if (ret < 0)
192 			return NULL;
193 	}
194 #endif
195 	ret = get_user_pages(current, bprm->mm, pos,
196 			1, write, 1, &page, NULL);
197 	if (ret <= 0)
198 		return NULL;
199 
200 	if (write) {
201 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
202 		unsigned long ptr_size, limit;
203 
204 		/*
205 		 * Since the stack will hold pointers to the strings, we
206 		 * must account for them as well.
207 		 *
208 		 * The size calculation is the entire vma while each arg page is
209 		 * built, so each time we get here it's calculating how far it
210 		 * is currently (rather than each call being just the newly
211 		 * added size from the arg page).  As a result, we need to
212 		 * always add the entire size of the pointers, so that on the
213 		 * last call to get_arg_page() we'll actually have the entire
214 		 * correct size.
215 		 */
216 		ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
217 		if (ptr_size > ULONG_MAX - size)
218 			goto fail;
219 		size += ptr_size;
220 
221 		acct_arg_size(bprm, size / PAGE_SIZE);
222 
223 		/*
224 		 * We've historically supported up to 32 pages (ARG_MAX)
225 		 * of argument strings even with small stacks
226 		 */
227 		if (size <= ARG_MAX)
228 			return page;
229 
230 		/*
231 		 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
232 		 * (whichever is smaller) for the argv+env strings.
233 		 * This ensures that:
234 		 *  - the remaining binfmt code will not run out of stack space,
235 		 *  - the program will have a reasonable amount of stack left
236 		 *    to work from.
237 		 */
238 		limit = _STK_LIM / 4 * 3;
239 		limit = min(limit, rlimit(RLIMIT_STACK) / 4);
240 		if (size > limit)
241 			goto fail;
242 	}
243 
244 	return page;
245 
246 fail:
247 	put_page(page);
248 	return NULL;
249 }
250 
put_arg_page(struct page * page)251 static void put_arg_page(struct page *page)
252 {
253 	put_page(page);
254 }
255 
free_arg_page(struct linux_binprm * bprm,int i)256 static void free_arg_page(struct linux_binprm *bprm, int i)
257 {
258 }
259 
free_arg_pages(struct linux_binprm * bprm)260 static void free_arg_pages(struct linux_binprm *bprm)
261 {
262 }
263 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)264 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
265 		struct page *page)
266 {
267 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
268 }
269 
__bprm_mm_init(struct linux_binprm * bprm)270 static int __bprm_mm_init(struct linux_binprm *bprm)
271 {
272 	int err;
273 	struct vm_area_struct *vma = NULL;
274 	struct mm_struct *mm = bprm->mm;
275 
276 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
277 	if (!vma)
278 		return -ENOMEM;
279 
280 	down_write(&mm->mmap_sem);
281 	vma->vm_mm = mm;
282 
283 	/*
284 	 * Place the stack at the largest stack address the architecture
285 	 * supports. Later, we'll move this to an appropriate place. We don't
286 	 * use STACK_TOP because that can depend on attributes which aren't
287 	 * configured yet.
288 	 */
289 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
290 	vma->vm_end = STACK_TOP_MAX;
291 	vma->vm_start = vma->vm_end - PAGE_SIZE;
292 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
293 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
294 	INIT_LIST_HEAD(&vma->anon_vma_chain);
295 
296 	err = insert_vm_struct(mm, vma);
297 	if (err)
298 		goto err;
299 
300 	mm->stack_vm = mm->total_vm = 1;
301 	up_write(&mm->mmap_sem);
302 	bprm->p = vma->vm_end - sizeof(void *);
303 	return 0;
304 err:
305 	up_write(&mm->mmap_sem);
306 	bprm->vma = NULL;
307 	kmem_cache_free(vm_area_cachep, vma);
308 	return err;
309 }
310 
valid_arg_len(struct linux_binprm * bprm,long len)311 static bool valid_arg_len(struct linux_binprm *bprm, long len)
312 {
313 	return len <= MAX_ARG_STRLEN;
314 }
315 
316 #else
317 
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)318 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
319 {
320 }
321 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)322 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
323 		int write)
324 {
325 	struct page *page;
326 
327 	page = bprm->page[pos / PAGE_SIZE];
328 	if (!page && write) {
329 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
330 		if (!page)
331 			return NULL;
332 		bprm->page[pos / PAGE_SIZE] = page;
333 	}
334 
335 	return page;
336 }
337 
put_arg_page(struct page * page)338 static void put_arg_page(struct page *page)
339 {
340 }
341 
free_arg_page(struct linux_binprm * bprm,int i)342 static void free_arg_page(struct linux_binprm *bprm, int i)
343 {
344 	if (bprm->page[i]) {
345 		__free_page(bprm->page[i]);
346 		bprm->page[i] = NULL;
347 	}
348 }
349 
free_arg_pages(struct linux_binprm * bprm)350 static void free_arg_pages(struct linux_binprm *bprm)
351 {
352 	int i;
353 
354 	for (i = 0; i < MAX_ARG_PAGES; i++)
355 		free_arg_page(bprm, i);
356 }
357 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)358 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
359 		struct page *page)
360 {
361 }
362 
__bprm_mm_init(struct linux_binprm * bprm)363 static int __bprm_mm_init(struct linux_binprm *bprm)
364 {
365 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
366 	return 0;
367 }
368 
valid_arg_len(struct linux_binprm * bprm,long len)369 static bool valid_arg_len(struct linux_binprm *bprm, long len)
370 {
371 	return len <= bprm->p;
372 }
373 
374 #endif /* CONFIG_MMU */
375 
376 /*
377  * Create a new mm_struct and populate it with a temporary stack
378  * vm_area_struct.  We don't have enough context at this point to set the stack
379  * flags, permissions, and offset, so we use temporary values.  We'll update
380  * them later in setup_arg_pages().
381  */
bprm_mm_init(struct linux_binprm * bprm)382 static int bprm_mm_init(struct linux_binprm *bprm)
383 {
384 	int err;
385 	struct mm_struct *mm = NULL;
386 
387 	bprm->mm = mm = mm_alloc();
388 	err = -ENOMEM;
389 	if (!mm)
390 		goto err;
391 
392 	err = __bprm_mm_init(bprm);
393 	if (err)
394 		goto err;
395 
396 	return 0;
397 
398 err:
399 	if (mm) {
400 		bprm->mm = NULL;
401 		mmdrop(mm);
402 	}
403 
404 	return err;
405 }
406 
407 struct user_arg_ptr {
408 #ifdef CONFIG_COMPAT
409 	bool is_compat;
410 #endif
411 	union {
412 		const char __user *const __user *native;
413 #ifdef CONFIG_COMPAT
414 		const compat_uptr_t __user *compat;
415 #endif
416 	} ptr;
417 };
418 
get_user_arg_ptr(struct user_arg_ptr argv,int nr)419 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
420 {
421 	const char __user *native;
422 
423 #ifdef CONFIG_COMPAT
424 	if (unlikely(argv.is_compat)) {
425 		compat_uptr_t compat;
426 
427 		if (get_user(compat, argv.ptr.compat + nr))
428 			return ERR_PTR(-EFAULT);
429 
430 		return compat_ptr(compat);
431 	}
432 #endif
433 
434 	if (get_user(native, argv.ptr.native + nr))
435 		return ERR_PTR(-EFAULT);
436 
437 	return native;
438 }
439 
440 /*
441  * count() counts the number of strings in array ARGV.
442  */
count(struct user_arg_ptr argv,int max)443 static int count(struct user_arg_ptr argv, int max)
444 {
445 	int i = 0;
446 
447 	if (argv.ptr.native != NULL) {
448 		for (;;) {
449 			const char __user *p = get_user_arg_ptr(argv, i);
450 
451 			if (!p)
452 				break;
453 
454 			if (IS_ERR(p))
455 				return -EFAULT;
456 
457 			if (i >= max)
458 				return -E2BIG;
459 			++i;
460 
461 			if (fatal_signal_pending(current))
462 				return -ERESTARTNOHAND;
463 			cond_resched();
464 		}
465 	}
466 	return i;
467 }
468 
469 /*
470  * 'copy_strings()' copies argument/environment strings from the old
471  * processes's memory to the new process's stack.  The call to get_user_pages()
472  * ensures the destination page is created and not swapped out.
473  */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)474 static int copy_strings(int argc, struct user_arg_ptr argv,
475 			struct linux_binprm *bprm)
476 {
477 	struct page *kmapped_page = NULL;
478 	char *kaddr = NULL;
479 	unsigned long kpos = 0;
480 	int ret;
481 
482 	while (argc-- > 0) {
483 		const char __user *str;
484 		int len;
485 		unsigned long pos;
486 
487 		ret = -EFAULT;
488 		str = get_user_arg_ptr(argv, argc);
489 		if (IS_ERR(str))
490 			goto out;
491 
492 		len = strnlen_user(str, MAX_ARG_STRLEN);
493 		if (!len)
494 			goto out;
495 
496 		ret = -E2BIG;
497 		if (!valid_arg_len(bprm, len))
498 			goto out;
499 
500 		/* We're going to work our way backwords. */
501 		pos = bprm->p;
502 		str += len;
503 		bprm->p -= len;
504 
505 		while (len > 0) {
506 			int offset, bytes_to_copy;
507 
508 			if (fatal_signal_pending(current)) {
509 				ret = -ERESTARTNOHAND;
510 				goto out;
511 			}
512 			cond_resched();
513 
514 			offset = pos % PAGE_SIZE;
515 			if (offset == 0)
516 				offset = PAGE_SIZE;
517 
518 			bytes_to_copy = offset;
519 			if (bytes_to_copy > len)
520 				bytes_to_copy = len;
521 
522 			offset -= bytes_to_copy;
523 			pos -= bytes_to_copy;
524 			str -= bytes_to_copy;
525 			len -= bytes_to_copy;
526 
527 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
528 				struct page *page;
529 
530 				page = get_arg_page(bprm, pos, 1);
531 				if (!page) {
532 					ret = -E2BIG;
533 					goto out;
534 				}
535 
536 				if (kmapped_page) {
537 					flush_kernel_dcache_page(kmapped_page);
538 					kunmap(kmapped_page);
539 					put_arg_page(kmapped_page);
540 				}
541 				kmapped_page = page;
542 				kaddr = kmap(kmapped_page);
543 				kpos = pos & PAGE_MASK;
544 				flush_arg_page(bprm, kpos, kmapped_page);
545 			}
546 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
547 				ret = -EFAULT;
548 				goto out;
549 			}
550 		}
551 	}
552 	ret = 0;
553 out:
554 	if (kmapped_page) {
555 		flush_kernel_dcache_page(kmapped_page);
556 		kunmap(kmapped_page);
557 		put_arg_page(kmapped_page);
558 	}
559 	return ret;
560 }
561 
562 /*
563  * Like copy_strings, but get argv and its values from kernel memory.
564  */
copy_strings_kernel(int argc,const char * const * __argv,struct linux_binprm * bprm)565 int copy_strings_kernel(int argc, const char *const *__argv,
566 			struct linux_binprm *bprm)
567 {
568 	int r;
569 	mm_segment_t oldfs = get_fs();
570 	struct user_arg_ptr argv = {
571 		.ptr.native = (const char __user *const  __user *)__argv,
572 	};
573 
574 	set_fs(KERNEL_DS);
575 	r = copy_strings(argc, argv, bprm);
576 	set_fs(oldfs);
577 
578 	return r;
579 }
580 EXPORT_SYMBOL(copy_strings_kernel);
581 
582 #ifdef CONFIG_MMU
583 
584 /*
585  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
586  * the binfmt code determines where the new stack should reside, we shift it to
587  * its final location.  The process proceeds as follows:
588  *
589  * 1) Use shift to calculate the new vma endpoints.
590  * 2) Extend vma to cover both the old and new ranges.  This ensures the
591  *    arguments passed to subsequent functions are consistent.
592  * 3) Move vma's page tables to the new range.
593  * 4) Free up any cleared pgd range.
594  * 5) Shrink the vma to cover only the new range.
595  */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)596 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
597 {
598 	struct mm_struct *mm = vma->vm_mm;
599 	unsigned long old_start = vma->vm_start;
600 	unsigned long old_end = vma->vm_end;
601 	unsigned long length = old_end - old_start;
602 	unsigned long new_start = old_start - shift;
603 	unsigned long new_end = old_end - shift;
604 	struct mmu_gather tlb;
605 
606 	BUG_ON(new_start > new_end);
607 
608 	/*
609 	 * ensure there are no vmas between where we want to go
610 	 * and where we are
611 	 */
612 	if (vma != find_vma(mm, new_start))
613 		return -EFAULT;
614 
615 	/*
616 	 * cover the whole range: [new_start, old_end)
617 	 */
618 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
619 		return -ENOMEM;
620 
621 	/*
622 	 * move the page tables downwards, on failure we rely on
623 	 * process cleanup to remove whatever mess we made.
624 	 */
625 	if (length != move_page_tables(vma, old_start,
626 				       vma, new_start, length, false))
627 		return -ENOMEM;
628 
629 	lru_add_drain();
630 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
631 	if (new_end > old_start) {
632 		/*
633 		 * when the old and new regions overlap clear from new_end.
634 		 */
635 		free_pgd_range(&tlb, new_end, old_end, new_end,
636 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
637 	} else {
638 		/*
639 		 * otherwise, clean from old_start; this is done to not touch
640 		 * the address space in [new_end, old_start) some architectures
641 		 * have constraints on va-space that make this illegal (IA64) -
642 		 * for the others its just a little faster.
643 		 */
644 		free_pgd_range(&tlb, old_start, old_end, new_end,
645 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
646 	}
647 	tlb_finish_mmu(&tlb, old_start, old_end);
648 
649 	/*
650 	 * Shrink the vma to just the new range.  Always succeeds.
651 	 */
652 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
653 
654 	return 0;
655 }
656 
657 /*
658  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
659  * the stack is optionally relocated, and some extra space is added.
660  */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)661 int setup_arg_pages(struct linux_binprm *bprm,
662 		    unsigned long stack_top,
663 		    int executable_stack)
664 {
665 	unsigned long ret;
666 	unsigned long stack_shift;
667 	struct mm_struct *mm = current->mm;
668 	struct vm_area_struct *vma = bprm->vma;
669 	struct vm_area_struct *prev = NULL;
670 	unsigned long vm_flags;
671 	unsigned long stack_base;
672 	unsigned long stack_size;
673 	unsigned long stack_expand;
674 	unsigned long rlim_stack;
675 
676 #ifdef CONFIG_STACK_GROWSUP
677 	/* Limit stack size */
678 	stack_base = rlimit_max(RLIMIT_STACK);
679 	if (stack_base > STACK_SIZE_MAX)
680 		stack_base = STACK_SIZE_MAX;
681 
682 	/* Add space for stack randomization. */
683 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
684 
685 	/* Make sure we didn't let the argument array grow too large. */
686 	if (vma->vm_end - vma->vm_start > stack_base)
687 		return -ENOMEM;
688 
689 	stack_base = PAGE_ALIGN(stack_top - stack_base);
690 
691 	stack_shift = vma->vm_start - stack_base;
692 	mm->arg_start = bprm->p - stack_shift;
693 	bprm->p = vma->vm_end - stack_shift;
694 #else
695 	stack_top = arch_align_stack(stack_top);
696 	stack_top = PAGE_ALIGN(stack_top);
697 
698 	if (unlikely(stack_top < mmap_min_addr) ||
699 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
700 		return -ENOMEM;
701 
702 	stack_shift = vma->vm_end - stack_top;
703 
704 	bprm->p -= stack_shift;
705 	mm->arg_start = bprm->p;
706 #endif
707 
708 	if (bprm->loader)
709 		bprm->loader -= stack_shift;
710 	bprm->exec -= stack_shift;
711 
712 	down_write(&mm->mmap_sem);
713 	vm_flags = VM_STACK_FLAGS;
714 
715 	/*
716 	 * Adjust stack execute permissions; explicitly enable for
717 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
718 	 * (arch default) otherwise.
719 	 */
720 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
721 		vm_flags |= VM_EXEC;
722 	else if (executable_stack == EXSTACK_DISABLE_X)
723 		vm_flags &= ~VM_EXEC;
724 	vm_flags |= mm->def_flags;
725 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
726 
727 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
728 			vm_flags);
729 	if (ret)
730 		goto out_unlock;
731 	BUG_ON(prev != vma);
732 
733 	/* Move stack pages down in memory. */
734 	if (stack_shift) {
735 		ret = shift_arg_pages(vma, stack_shift);
736 		if (ret)
737 			goto out_unlock;
738 	}
739 
740 	/* mprotect_fixup is overkill to remove the temporary stack flags */
741 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
742 
743 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
744 	stack_size = vma->vm_end - vma->vm_start;
745 	/*
746 	 * Align this down to a page boundary as expand_stack
747 	 * will align it up.
748 	 */
749 	rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
750 #ifdef CONFIG_STACK_GROWSUP
751 	if (stack_size + stack_expand > rlim_stack)
752 		stack_base = vma->vm_start + rlim_stack;
753 	else
754 		stack_base = vma->vm_end + stack_expand;
755 #else
756 	if (stack_size + stack_expand > rlim_stack)
757 		stack_base = vma->vm_end - rlim_stack;
758 	else
759 		stack_base = vma->vm_start - stack_expand;
760 #endif
761 	current->mm->start_stack = bprm->p;
762 	ret = expand_stack(vma, stack_base);
763 	if (ret)
764 		ret = -EFAULT;
765 
766 out_unlock:
767 	up_write(&mm->mmap_sem);
768 	return ret;
769 }
770 EXPORT_SYMBOL(setup_arg_pages);
771 
772 #endif /* CONFIG_MMU */
773 
do_open_exec(struct filename * name)774 static struct file *do_open_exec(struct filename *name)
775 {
776 	struct file *file;
777 	int err;
778 	static const struct open_flags open_exec_flags = {
779 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
780 		.acc_mode = MAY_EXEC | MAY_OPEN,
781 		.intent = LOOKUP_OPEN,
782 		.lookup_flags = LOOKUP_FOLLOW,
783 	};
784 
785 	file = do_filp_open(AT_FDCWD, name, &open_exec_flags);
786 	if (IS_ERR(file))
787 		goto out;
788 
789 	err = -EACCES;
790 	if (!S_ISREG(file_inode(file)->i_mode))
791 		goto exit;
792 
793 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
794 		goto exit;
795 
796 	fsnotify_open(file);
797 
798 	err = deny_write_access(file);
799 	if (err)
800 		goto exit;
801 
802 out:
803 	return file;
804 
805 exit:
806 	fput(file);
807 	return ERR_PTR(err);
808 }
809 
open_exec(const char * name)810 struct file *open_exec(const char *name)
811 {
812 	struct filename tmp = { .name = name };
813 	return do_open_exec(&tmp);
814 }
815 EXPORT_SYMBOL(open_exec);
816 
kernel_read(struct file * file,loff_t offset,char * addr,unsigned long count)817 int kernel_read(struct file *file, loff_t offset,
818 		char *addr, unsigned long count)
819 {
820 	mm_segment_t old_fs;
821 	loff_t pos = offset;
822 	int result;
823 
824 	old_fs = get_fs();
825 	set_fs(get_ds());
826 	/* The cast to a user pointer is valid due to the set_fs() */
827 	result = vfs_read(file, (void __user *)addr, count, &pos);
828 	set_fs(old_fs);
829 	return result;
830 }
831 
832 EXPORT_SYMBOL(kernel_read);
833 
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)834 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
835 {
836 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
837 	if (res > 0)
838 		flush_icache_range(addr, addr + len);
839 	return res;
840 }
841 EXPORT_SYMBOL(read_code);
842 
exec_mmap(struct mm_struct * mm)843 static int exec_mmap(struct mm_struct *mm)
844 {
845 	struct task_struct *tsk;
846 	struct mm_struct *old_mm, *active_mm;
847 
848 	/* Notify parent that we're no longer interested in the old VM */
849 	tsk = current;
850 	old_mm = current->mm;
851 	mm_release(tsk, old_mm);
852 
853 	if (old_mm) {
854 		sync_mm_rss(old_mm);
855 		/*
856 		 * Make sure that if there is a core dump in progress
857 		 * for the old mm, we get out and die instead of going
858 		 * through with the exec.  We must hold mmap_sem around
859 		 * checking core_state and changing tsk->mm.
860 		 */
861 		down_read(&old_mm->mmap_sem);
862 		if (unlikely(old_mm->core_state)) {
863 			up_read(&old_mm->mmap_sem);
864 			return -EINTR;
865 		}
866 	}
867 	task_lock(tsk);
868 	active_mm = tsk->active_mm;
869 	tsk->mm = mm;
870 	tsk->active_mm = mm;
871 	activate_mm(active_mm, mm);
872 	tsk->mm->vmacache_seqnum = 0;
873 	vmacache_flush(tsk);
874 	task_unlock(tsk);
875 	if (old_mm) {
876 		up_read(&old_mm->mmap_sem);
877 		BUG_ON(active_mm != old_mm);
878 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
879 		mm_update_next_owner(old_mm);
880 		mmput(old_mm);
881 		return 0;
882 	}
883 	mmdrop(active_mm);
884 	return 0;
885 }
886 
887 /*
888  * This function makes sure the current process has its own signal table,
889  * so that flush_signal_handlers can later reset the handlers without
890  * disturbing other processes.  (Other processes might share the signal
891  * table via the CLONE_SIGHAND option to clone().)
892  */
de_thread(struct task_struct * tsk)893 static int de_thread(struct task_struct *tsk)
894 {
895 	struct signal_struct *sig = tsk->signal;
896 	struct sighand_struct *oldsighand = tsk->sighand;
897 	spinlock_t *lock = &oldsighand->siglock;
898 
899 	if (thread_group_empty(tsk))
900 		goto no_thread_group;
901 
902 	/*
903 	 * Kill all other threads in the thread group.
904 	 */
905 	spin_lock_irq(lock);
906 	if (signal_group_exit(sig)) {
907 		/*
908 		 * Another group action in progress, just
909 		 * return so that the signal is processed.
910 		 */
911 		spin_unlock_irq(lock);
912 		return -EAGAIN;
913 	}
914 
915 	sig->group_exit_task = tsk;
916 	sig->notify_count = zap_other_threads(tsk);
917 	if (!thread_group_leader(tsk))
918 		sig->notify_count--;
919 
920 	while (sig->notify_count) {
921 		__set_current_state(TASK_KILLABLE);
922 		spin_unlock_irq(lock);
923 		schedule();
924 		if (unlikely(__fatal_signal_pending(tsk)))
925 			goto killed;
926 		spin_lock_irq(lock);
927 	}
928 	spin_unlock_irq(lock);
929 
930 	/*
931 	 * At this point all other threads have exited, all we have to
932 	 * do is to wait for the thread group leader to become inactive,
933 	 * and to assume its PID:
934 	 */
935 	if (!thread_group_leader(tsk)) {
936 		struct task_struct *leader = tsk->group_leader;
937 
938 		sig->notify_count = -1;	/* for exit_notify() */
939 		for (;;) {
940 			threadgroup_change_begin(tsk);
941 			write_lock_irq(&tasklist_lock);
942 			if (likely(leader->exit_state))
943 				break;
944 			__set_current_state(TASK_KILLABLE);
945 			write_unlock_irq(&tasklist_lock);
946 			threadgroup_change_end(tsk);
947 			schedule();
948 			if (unlikely(__fatal_signal_pending(tsk)))
949 				goto killed;
950 		}
951 
952 		/*
953 		 * The only record we have of the real-time age of a
954 		 * process, regardless of execs it's done, is start_time.
955 		 * All the past CPU time is accumulated in signal_struct
956 		 * from sister threads now dead.  But in this non-leader
957 		 * exec, nothing survives from the original leader thread,
958 		 * whose birth marks the true age of this process now.
959 		 * When we take on its identity by switching to its PID, we
960 		 * also take its birthdate (always earlier than our own).
961 		 */
962 		tsk->start_time = leader->start_time;
963 		tsk->real_start_time = leader->real_start_time;
964 
965 		BUG_ON(!same_thread_group(leader, tsk));
966 		BUG_ON(has_group_leader_pid(tsk));
967 		/*
968 		 * An exec() starts a new thread group with the
969 		 * TGID of the previous thread group. Rehash the
970 		 * two threads with a switched PID, and release
971 		 * the former thread group leader:
972 		 */
973 
974 		/* Become a process group leader with the old leader's pid.
975 		 * The old leader becomes a thread of the this thread group.
976 		 * Note: The old leader also uses this pid until release_task
977 		 *       is called.  Odd but simple and correct.
978 		 */
979 		tsk->pid = leader->pid;
980 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
981 		transfer_pid(leader, tsk, PIDTYPE_PGID);
982 		transfer_pid(leader, tsk, PIDTYPE_SID);
983 
984 		list_replace_rcu(&leader->tasks, &tsk->tasks);
985 		list_replace_init(&leader->sibling, &tsk->sibling);
986 
987 		tsk->group_leader = tsk;
988 		leader->group_leader = tsk;
989 
990 		tsk->exit_signal = SIGCHLD;
991 		leader->exit_signal = -1;
992 
993 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
994 		leader->exit_state = EXIT_DEAD;
995 
996 		/*
997 		 * We are going to release_task()->ptrace_unlink() silently,
998 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
999 		 * the tracer wont't block again waiting for this thread.
1000 		 */
1001 		if (unlikely(leader->ptrace))
1002 			__wake_up_parent(leader, leader->parent);
1003 		write_unlock_irq(&tasklist_lock);
1004 		threadgroup_change_end(tsk);
1005 
1006 		release_task(leader);
1007 	}
1008 
1009 	sig->group_exit_task = NULL;
1010 	sig->notify_count = 0;
1011 
1012 no_thread_group:
1013 	/* we have changed execution domain */
1014 	tsk->exit_signal = SIGCHLD;
1015 
1016 	exit_itimers(sig);
1017 	flush_itimer_signals();
1018 
1019 	if (atomic_read(&oldsighand->count) != 1) {
1020 		struct sighand_struct *newsighand;
1021 		/*
1022 		 * This ->sighand is shared with the CLONE_SIGHAND
1023 		 * but not CLONE_THREAD task, switch to the new one.
1024 		 */
1025 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1026 		if (!newsighand)
1027 			return -ENOMEM;
1028 
1029 		atomic_set(&newsighand->count, 1);
1030 		memcpy(newsighand->action, oldsighand->action,
1031 		       sizeof(newsighand->action));
1032 
1033 		write_lock_irq(&tasklist_lock);
1034 		spin_lock(&oldsighand->siglock);
1035 		rcu_assign_pointer(tsk->sighand, newsighand);
1036 		spin_unlock(&oldsighand->siglock);
1037 		write_unlock_irq(&tasklist_lock);
1038 
1039 		__cleanup_sighand(oldsighand);
1040 	}
1041 
1042 	BUG_ON(!thread_group_leader(tsk));
1043 	return 0;
1044 
1045 killed:
1046 	/* protects against exit_notify() and __exit_signal() */
1047 	read_lock(&tasklist_lock);
1048 	sig->group_exit_task = NULL;
1049 	sig->notify_count = 0;
1050 	read_unlock(&tasklist_lock);
1051 	return -EAGAIN;
1052 }
1053 
get_task_comm(char * buf,struct task_struct * tsk)1054 char *get_task_comm(char *buf, struct task_struct *tsk)
1055 {
1056 	/* buf must be at least sizeof(tsk->comm) in size */
1057 	task_lock(tsk);
1058 	strncpy(buf, tsk->comm, sizeof(tsk->comm));
1059 	task_unlock(tsk);
1060 	return buf;
1061 }
1062 EXPORT_SYMBOL_GPL(get_task_comm);
1063 
1064 /*
1065  * These functions flushes out all traces of the currently running executable
1066  * so that a new one can be started
1067  */
1068 
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1069 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1070 {
1071 	task_lock(tsk);
1072 	trace_task_rename(tsk, buf);
1073 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1074 	task_unlock(tsk);
1075 	perf_event_comm(tsk, exec);
1076 }
1077 
flush_old_exec(struct linux_binprm * bprm)1078 int flush_old_exec(struct linux_binprm * bprm)
1079 {
1080 	int retval;
1081 
1082 	/*
1083 	 * Make sure we have a private signal table and that
1084 	 * we are unassociated from the previous thread group.
1085 	 */
1086 	retval = de_thread(current);
1087 	if (retval)
1088 		goto out;
1089 
1090 	set_mm_exe_file(bprm->mm, bprm->file);
1091 	/*
1092 	 * Release all of the old mmap stuff
1093 	 */
1094 	acct_arg_size(bprm, 0);
1095 	retval = exec_mmap(bprm->mm);
1096 	if (retval)
1097 		goto out;
1098 
1099 	bprm->mm = NULL;		/* We're using it now */
1100 
1101 	set_fs(USER_DS);
1102 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1103 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1104 	flush_thread();
1105 	current->personality &= ~bprm->per_clear;
1106 
1107 	/*
1108 	 * We have to apply CLOEXEC before we change whether the process is
1109 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1110 	 * trying to access the should-be-closed file descriptors of a process
1111 	 * undergoing exec(2).
1112 	 */
1113 	do_close_on_exec(current->files);
1114 	return 0;
1115 
1116 out:
1117 	return retval;
1118 }
1119 EXPORT_SYMBOL(flush_old_exec);
1120 
would_dump(struct linux_binprm * bprm,struct file * file)1121 void would_dump(struct linux_binprm *bprm, struct file *file)
1122 {
1123 	if (inode_permission2(file->f_path.mnt, file_inode(file), MAY_READ) < 0)
1124 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1125 }
1126 EXPORT_SYMBOL(would_dump);
1127 
setup_new_exec(struct linux_binprm * bprm)1128 void setup_new_exec(struct linux_binprm * bprm)
1129 {
1130 	arch_pick_mmap_layout(current->mm);
1131 
1132 	/* This is the point of no return */
1133 	current->sas_ss_sp = current->sas_ss_size = 0;
1134 
1135 	if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1136 		set_dumpable(current->mm, SUID_DUMP_USER);
1137 	else
1138 		set_dumpable(current->mm, suid_dumpable);
1139 
1140 	perf_event_exec();
1141 	__set_task_comm(current, kbasename(bprm->filename), true);
1142 
1143 	/* Set the new mm task size. We have to do that late because it may
1144 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1145 	 * some architectures like powerpc
1146 	 */
1147 	current->mm->task_size = TASK_SIZE;
1148 
1149 	/* install the new credentials */
1150 	if (!uid_eq(bprm->cred->uid, current_euid()) ||
1151 	    !gid_eq(bprm->cred->gid, current_egid())) {
1152 		current->pdeath_signal = 0;
1153 	} else {
1154 		would_dump(bprm, bprm->file);
1155 		if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1156 			set_dumpable(current->mm, suid_dumpable);
1157 	}
1158 
1159 	/* An exec changes our domain. We are no longer part of the thread
1160 	   group */
1161 	current->self_exec_id++;
1162 	flush_signal_handlers(current, 0);
1163 }
1164 EXPORT_SYMBOL(setup_new_exec);
1165 
1166 /*
1167  * Prepare credentials and lock ->cred_guard_mutex.
1168  * install_exec_creds() commits the new creds and drops the lock.
1169  * Or, if exec fails before, free_bprm() should release ->cred and
1170  * and unlock.
1171  */
prepare_bprm_creds(struct linux_binprm * bprm)1172 int prepare_bprm_creds(struct linux_binprm *bprm)
1173 {
1174 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1175 		return -ERESTARTNOINTR;
1176 
1177 	bprm->cred = prepare_exec_creds();
1178 	if (likely(bprm->cred))
1179 		return 0;
1180 
1181 	mutex_unlock(&current->signal->cred_guard_mutex);
1182 	return -ENOMEM;
1183 }
1184 
free_bprm(struct linux_binprm * bprm)1185 static void free_bprm(struct linux_binprm *bprm)
1186 {
1187 	free_arg_pages(bprm);
1188 	if (bprm->cred) {
1189 		mutex_unlock(&current->signal->cred_guard_mutex);
1190 		abort_creds(bprm->cred);
1191 	}
1192 	if (bprm->file) {
1193 		allow_write_access(bprm->file);
1194 		fput(bprm->file);
1195 	}
1196 	/* If a binfmt changed the interp, free it. */
1197 	if (bprm->interp != bprm->filename)
1198 		kfree(bprm->interp);
1199 	kfree(bprm);
1200 }
1201 
bprm_change_interp(char * interp,struct linux_binprm * bprm)1202 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1203 {
1204 	/* If a binfmt changed the interp, free it first. */
1205 	if (bprm->interp != bprm->filename)
1206 		kfree(bprm->interp);
1207 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1208 	if (!bprm->interp)
1209 		return -ENOMEM;
1210 	return 0;
1211 }
1212 EXPORT_SYMBOL(bprm_change_interp);
1213 
1214 /*
1215  * install the new credentials for this executable
1216  */
install_exec_creds(struct linux_binprm * bprm)1217 void install_exec_creds(struct linux_binprm *bprm)
1218 {
1219 	security_bprm_committing_creds(bprm);
1220 
1221 	commit_creds(bprm->cred);
1222 	bprm->cred = NULL;
1223 
1224 	/*
1225 	 * Disable monitoring for regular users
1226 	 * when executing setuid binaries. Must
1227 	 * wait until new credentials are committed
1228 	 * by commit_creds() above
1229 	 */
1230 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1231 		perf_event_exit_task(current);
1232 	/*
1233 	 * cred_guard_mutex must be held at least to this point to prevent
1234 	 * ptrace_attach() from altering our determination of the task's
1235 	 * credentials; any time after this it may be unlocked.
1236 	 */
1237 	security_bprm_committed_creds(bprm);
1238 	mutex_unlock(&current->signal->cred_guard_mutex);
1239 }
1240 EXPORT_SYMBOL(install_exec_creds);
1241 
1242 /*
1243  * determine how safe it is to execute the proposed program
1244  * - the caller must hold ->cred_guard_mutex to protect against
1245  *   PTRACE_ATTACH or seccomp thread-sync
1246  */
check_unsafe_exec(struct linux_binprm * bprm)1247 static void check_unsafe_exec(struct linux_binprm *bprm)
1248 {
1249 	struct task_struct *p = current, *t;
1250 	unsigned n_fs;
1251 
1252 	if (p->ptrace) {
1253 		if (p->ptrace & PT_PTRACE_CAP)
1254 			bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1255 		else
1256 			bprm->unsafe |= LSM_UNSAFE_PTRACE;
1257 	}
1258 
1259 	/*
1260 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1261 	 * mess up.
1262 	 */
1263 	if (task_no_new_privs(current))
1264 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1265 
1266 	t = p;
1267 	n_fs = 1;
1268 	spin_lock(&p->fs->lock);
1269 	rcu_read_lock();
1270 	while_each_thread(p, t) {
1271 		if (t->fs == p->fs)
1272 			n_fs++;
1273 	}
1274 	rcu_read_unlock();
1275 
1276 	if (p->fs->users > n_fs)
1277 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1278 	else
1279 		p->fs->in_exec = 1;
1280 	spin_unlock(&p->fs->lock);
1281 }
1282 
bprm_fill_uid(struct linux_binprm * bprm)1283 static void bprm_fill_uid(struct linux_binprm *bprm)
1284 {
1285 	struct inode *inode;
1286 	unsigned int mode;
1287 	kuid_t uid;
1288 	kgid_t gid;
1289 
1290 	/* clear any previous set[ug]id data from a previous binary */
1291 	bprm->cred->euid = current_euid();
1292 	bprm->cred->egid = current_egid();
1293 
1294 	if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1295 		return;
1296 
1297 	if (task_no_new_privs(current))
1298 		return;
1299 
1300 	inode = file_inode(bprm->file);
1301 	mode = READ_ONCE(inode->i_mode);
1302 	if (!(mode & (S_ISUID|S_ISGID)))
1303 		return;
1304 
1305 	/* Be careful if suid/sgid is set */
1306 	mutex_lock(&inode->i_mutex);
1307 
1308 	/* reload atomically mode/uid/gid now that lock held */
1309 	mode = inode->i_mode;
1310 	uid = inode->i_uid;
1311 	gid = inode->i_gid;
1312 	mutex_unlock(&inode->i_mutex);
1313 
1314 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1315 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1316 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1317 		return;
1318 
1319 	if (mode & S_ISUID) {
1320 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1321 		bprm->cred->euid = uid;
1322 	}
1323 
1324 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1325 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1326 		bprm->cred->egid = gid;
1327 	}
1328 }
1329 
1330 /*
1331  * Fill the binprm structure from the inode.
1332  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1333  *
1334  * This may be called multiple times for binary chains (scripts for example).
1335  */
prepare_binprm(struct linux_binprm * bprm)1336 int prepare_binprm(struct linux_binprm *bprm)
1337 {
1338 	int retval;
1339 
1340 	bprm_fill_uid(bprm);
1341 
1342 	/* fill in binprm security blob */
1343 	retval = security_bprm_set_creds(bprm);
1344 	if (retval)
1345 		return retval;
1346 	bprm->cred_prepared = 1;
1347 
1348 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1349 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1350 }
1351 
1352 EXPORT_SYMBOL(prepare_binprm);
1353 
1354 /*
1355  * Arguments are '\0' separated strings found at the location bprm->p
1356  * points to; chop off the first by relocating brpm->p to right after
1357  * the first '\0' encountered.
1358  */
remove_arg_zero(struct linux_binprm * bprm)1359 int remove_arg_zero(struct linux_binprm *bprm)
1360 {
1361 	int ret = 0;
1362 	unsigned long offset;
1363 	char *kaddr;
1364 	struct page *page;
1365 
1366 	if (!bprm->argc)
1367 		return 0;
1368 
1369 	do {
1370 		offset = bprm->p & ~PAGE_MASK;
1371 		page = get_arg_page(bprm, bprm->p, 0);
1372 		if (!page) {
1373 			ret = -EFAULT;
1374 			goto out;
1375 		}
1376 		kaddr = kmap_atomic(page);
1377 
1378 		for (; offset < PAGE_SIZE && kaddr[offset];
1379 				offset++, bprm->p++)
1380 			;
1381 
1382 		kunmap_atomic(kaddr);
1383 		put_arg_page(page);
1384 
1385 		if (offset == PAGE_SIZE)
1386 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1387 	} while (offset == PAGE_SIZE);
1388 
1389 	bprm->p++;
1390 	bprm->argc--;
1391 	ret = 0;
1392 
1393 out:
1394 	return ret;
1395 }
1396 EXPORT_SYMBOL(remove_arg_zero);
1397 
1398 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1399 /*
1400  * cycle the list of binary formats handler, until one recognizes the image
1401  */
search_binary_handler(struct linux_binprm * bprm)1402 int search_binary_handler(struct linux_binprm *bprm)
1403 {
1404 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1405 	struct linux_binfmt *fmt;
1406 	int retval;
1407 
1408 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1409 	if (bprm->recursion_depth > 5)
1410 		return -ELOOP;
1411 
1412 	retval = security_bprm_check(bprm);
1413 	if (retval)
1414 		return retval;
1415 
1416 	retval = -ENOENT;
1417  retry:
1418 	read_lock(&binfmt_lock);
1419 	list_for_each_entry(fmt, &formats, lh) {
1420 		if (!try_module_get(fmt->module))
1421 			continue;
1422 		read_unlock(&binfmt_lock);
1423 		bprm->recursion_depth++;
1424 		retval = fmt->load_binary(bprm);
1425 		read_lock(&binfmt_lock);
1426 		put_binfmt(fmt);
1427 		bprm->recursion_depth--;
1428 		if (retval < 0 && !bprm->mm) {
1429 			/* we got to flush_old_exec() and failed after it */
1430 			read_unlock(&binfmt_lock);
1431 			force_sigsegv(SIGSEGV, current);
1432 			return retval;
1433 		}
1434 		if (retval != -ENOEXEC || !bprm->file) {
1435 			read_unlock(&binfmt_lock);
1436 			return retval;
1437 		}
1438 	}
1439 	read_unlock(&binfmt_lock);
1440 
1441 	if (need_retry) {
1442 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1443 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1444 			return retval;
1445 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1446 			return retval;
1447 		need_retry = false;
1448 		goto retry;
1449 	}
1450 
1451 	return retval;
1452 }
1453 EXPORT_SYMBOL(search_binary_handler);
1454 
exec_binprm(struct linux_binprm * bprm)1455 static int exec_binprm(struct linux_binprm *bprm)
1456 {
1457 	pid_t old_pid, old_vpid;
1458 	int ret;
1459 
1460 	/* Need to fetch pid before load_binary changes it */
1461 	old_pid = current->pid;
1462 	rcu_read_lock();
1463 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1464 	rcu_read_unlock();
1465 
1466 	ret = search_binary_handler(bprm);
1467 	if (ret >= 0) {
1468 		audit_bprm(bprm);
1469 		trace_sched_process_exec(current, old_pid, bprm);
1470 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1471 		proc_exec_connector(current);
1472 	}
1473 
1474 	return ret;
1475 }
1476 
1477 /*
1478  * sys_execve() executes a new program.
1479  */
do_execve_common(struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp)1480 static int do_execve_common(struct filename *filename,
1481 				struct user_arg_ptr argv,
1482 				struct user_arg_ptr envp)
1483 {
1484 	struct linux_binprm *bprm;
1485 	struct file *file;
1486 	struct files_struct *displaced;
1487 	int retval;
1488 
1489 	if (IS_ERR(filename))
1490 		return PTR_ERR(filename);
1491 
1492 	/*
1493 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1494 	 * set*uid() to execve() because too many poorly written programs
1495 	 * don't check setuid() return code.  Here we additionally recheck
1496 	 * whether NPROC limit is still exceeded.
1497 	 */
1498 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1499 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1500 		retval = -EAGAIN;
1501 		goto out_ret;
1502 	}
1503 
1504 	/* We're below the limit (still or again), so we don't want to make
1505 	 * further execve() calls fail. */
1506 	current->flags &= ~PF_NPROC_EXCEEDED;
1507 
1508 	retval = unshare_files(&displaced);
1509 	if (retval)
1510 		goto out_ret;
1511 
1512 	retval = -ENOMEM;
1513 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1514 	if (!bprm)
1515 		goto out_files;
1516 
1517 	retval = prepare_bprm_creds(bprm);
1518 	if (retval)
1519 		goto out_free;
1520 
1521 	check_unsafe_exec(bprm);
1522 	current->in_execve = 1;
1523 
1524 	file = do_open_exec(filename);
1525 	retval = PTR_ERR(file);
1526 	if (IS_ERR(file))
1527 		goto out_unmark;
1528 
1529 	sched_exec();
1530 
1531 	bprm->file = file;
1532 	bprm->filename = bprm->interp = filename->name;
1533 
1534 	retval = bprm_mm_init(bprm);
1535 	if (retval)
1536 		goto out_unmark;
1537 
1538 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1539 	if ((retval = bprm->argc) < 0)
1540 		goto out;
1541 
1542 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1543 	if ((retval = bprm->envc) < 0)
1544 		goto out;
1545 
1546 	retval = prepare_binprm(bprm);
1547 	if (retval < 0)
1548 		goto out;
1549 
1550 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1551 	if (retval < 0)
1552 		goto out;
1553 
1554 	bprm->exec = bprm->p;
1555 	retval = copy_strings(bprm->envc, envp, bprm);
1556 	if (retval < 0)
1557 		goto out;
1558 
1559 	retval = copy_strings(bprm->argc, argv, bprm);
1560 	if (retval < 0)
1561 		goto out;
1562 
1563 	retval = exec_binprm(bprm);
1564 	if (retval < 0)
1565 		goto out;
1566 
1567 	/* execve succeeded */
1568 	current->fs->in_exec = 0;
1569 	current->in_execve = 0;
1570 	acct_update_integrals(current);
1571 	task_numa_free(current);
1572 	free_bprm(bprm);
1573 	putname(filename);
1574 	if (displaced)
1575 		put_files_struct(displaced);
1576 	return retval;
1577 
1578 out:
1579 	if (bprm->mm) {
1580 		acct_arg_size(bprm, 0);
1581 		mmput(bprm->mm);
1582 	}
1583 
1584 out_unmark:
1585 	current->fs->in_exec = 0;
1586 	current->in_execve = 0;
1587 
1588 out_free:
1589 	free_bprm(bprm);
1590 
1591 out_files:
1592 	if (displaced)
1593 		reset_files_struct(displaced);
1594 out_ret:
1595 	putname(filename);
1596 	return retval;
1597 }
1598 
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)1599 int do_execve(struct filename *filename,
1600 	const char __user *const __user *__argv,
1601 	const char __user *const __user *__envp)
1602 {
1603 	struct user_arg_ptr argv = { .ptr.native = __argv };
1604 	struct user_arg_ptr envp = { .ptr.native = __envp };
1605 	return do_execve_common(filename, argv, envp);
1606 }
1607 
1608 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)1609 static int compat_do_execve(struct filename *filename,
1610 	const compat_uptr_t __user *__argv,
1611 	const compat_uptr_t __user *__envp)
1612 {
1613 	struct user_arg_ptr argv = {
1614 		.is_compat = true,
1615 		.ptr.compat = __argv,
1616 	};
1617 	struct user_arg_ptr envp = {
1618 		.is_compat = true,
1619 		.ptr.compat = __envp,
1620 	};
1621 	return do_execve_common(filename, argv, envp);
1622 }
1623 #endif
1624 
set_binfmt(struct linux_binfmt * new)1625 void set_binfmt(struct linux_binfmt *new)
1626 {
1627 	struct mm_struct *mm = current->mm;
1628 
1629 	if (mm->binfmt)
1630 		module_put(mm->binfmt->module);
1631 
1632 	mm->binfmt = new;
1633 	if (new)
1634 		__module_get(new->module);
1635 }
1636 EXPORT_SYMBOL(set_binfmt);
1637 
1638 /*
1639  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1640  */
set_dumpable(struct mm_struct * mm,int value)1641 void set_dumpable(struct mm_struct *mm, int value)
1642 {
1643 	unsigned long old, new;
1644 
1645 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1646 		return;
1647 
1648 	do {
1649 		old = ACCESS_ONCE(mm->flags);
1650 		new = (old & ~MMF_DUMPABLE_MASK) | value;
1651 	} while (cmpxchg(&mm->flags, old, new) != old);
1652 }
1653 
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)1654 SYSCALL_DEFINE3(execve,
1655 		const char __user *, filename,
1656 		const char __user *const __user *, argv,
1657 		const char __user *const __user *, envp)
1658 {
1659 	return do_execve(getname(filename), argv, envp);
1660 }
1661 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)1662 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1663 	const compat_uptr_t __user *, argv,
1664 	const compat_uptr_t __user *, envp)
1665 {
1666 	return compat_do_execve(getname(filename), argv, envp);
1667 }
1668 #endif
1669