1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
63
64 #include <trace/events/task.h>
65 #include "internal.h"
66
67 #include <trace/events/sched.h>
68
69 int suid_dumpable = 0;
70
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73
__register_binfmt(struct linux_binfmt * fmt,int insert)74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76 BUG_ON(!fmt);
77 if (WARN_ON(!fmt->load_binary))
78 return;
79 write_lock(&binfmt_lock);
80 insert ? list_add(&fmt->lh, &formats) :
81 list_add_tail(&fmt->lh, &formats);
82 write_unlock(&binfmt_lock);
83 }
84
85 EXPORT_SYMBOL(__register_binfmt);
86
unregister_binfmt(struct linux_binfmt * fmt)87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89 write_lock(&binfmt_lock);
90 list_del(&fmt->lh);
91 write_unlock(&binfmt_lock);
92 }
93
94 EXPORT_SYMBOL(unregister_binfmt);
95
put_binfmt(struct linux_binfmt * fmt)96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98 module_put(fmt->module);
99 }
100
101 #ifdef CONFIG_USELIB
102 /*
103 * Note that a shared library must be both readable and executable due to
104 * security reasons.
105 *
106 * Also note that we take the address to load from from the file itself.
107 */
SYSCALL_DEFINE1(uselib,const char __user *,library)108 SYSCALL_DEFINE1(uselib, const char __user *, library)
109 {
110 struct linux_binfmt *fmt;
111 struct file *file;
112 struct filename *tmp = getname(library);
113 int error = PTR_ERR(tmp);
114 static const struct open_flags uselib_flags = {
115 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
116 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
117 .intent = LOOKUP_OPEN,
118 .lookup_flags = LOOKUP_FOLLOW,
119 };
120
121 if (IS_ERR(tmp))
122 goto out;
123
124 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
125 putname(tmp);
126 error = PTR_ERR(file);
127 if (IS_ERR(file))
128 goto out;
129
130 error = -EINVAL;
131 if (!S_ISREG(file_inode(file)->i_mode))
132 goto exit;
133
134 error = -EACCES;
135 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
136 goto exit;
137
138 fsnotify_open(file);
139
140 error = -ENOEXEC;
141
142 read_lock(&binfmt_lock);
143 list_for_each_entry(fmt, &formats, lh) {
144 if (!fmt->load_shlib)
145 continue;
146 if (!try_module_get(fmt->module))
147 continue;
148 read_unlock(&binfmt_lock);
149 error = fmt->load_shlib(file);
150 read_lock(&binfmt_lock);
151 put_binfmt(fmt);
152 if (error != -ENOEXEC)
153 break;
154 }
155 read_unlock(&binfmt_lock);
156 exit:
157 fput(file);
158 out:
159 return error;
160 }
161 #endif /* #ifdef CONFIG_USELIB */
162
163 #ifdef CONFIG_MMU
164 /*
165 * The nascent bprm->mm is not visible until exec_mmap() but it can
166 * use a lot of memory, account these pages in current->mm temporary
167 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
168 * change the counter back via acct_arg_size(0).
169 */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)170 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
171 {
172 struct mm_struct *mm = current->mm;
173 long diff = (long)(pages - bprm->vma_pages);
174
175 if (!mm || !diff)
176 return;
177
178 bprm->vma_pages = pages;
179 add_mm_counter(mm, MM_ANONPAGES, diff);
180 }
181
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)182 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
183 int write)
184 {
185 struct page *page;
186 int ret;
187
188 #ifdef CONFIG_STACK_GROWSUP
189 if (write) {
190 ret = expand_downwards(bprm->vma, pos);
191 if (ret < 0)
192 return NULL;
193 }
194 #endif
195 ret = get_user_pages(current, bprm->mm, pos,
196 1, write, 1, &page, NULL);
197 if (ret <= 0)
198 return NULL;
199
200 if (write) {
201 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
202 unsigned long ptr_size, limit;
203
204 /*
205 * Since the stack will hold pointers to the strings, we
206 * must account for them as well.
207 *
208 * The size calculation is the entire vma while each arg page is
209 * built, so each time we get here it's calculating how far it
210 * is currently (rather than each call being just the newly
211 * added size from the arg page). As a result, we need to
212 * always add the entire size of the pointers, so that on the
213 * last call to get_arg_page() we'll actually have the entire
214 * correct size.
215 */
216 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
217 if (ptr_size > ULONG_MAX - size)
218 goto fail;
219 size += ptr_size;
220
221 acct_arg_size(bprm, size / PAGE_SIZE);
222
223 /*
224 * We've historically supported up to 32 pages (ARG_MAX)
225 * of argument strings even with small stacks
226 */
227 if (size <= ARG_MAX)
228 return page;
229
230 /*
231 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
232 * (whichever is smaller) for the argv+env strings.
233 * This ensures that:
234 * - the remaining binfmt code will not run out of stack space,
235 * - the program will have a reasonable amount of stack left
236 * to work from.
237 */
238 limit = _STK_LIM / 4 * 3;
239 limit = min(limit, rlimit(RLIMIT_STACK) / 4);
240 if (size > limit)
241 goto fail;
242 }
243
244 return page;
245
246 fail:
247 put_page(page);
248 return NULL;
249 }
250
put_arg_page(struct page * page)251 static void put_arg_page(struct page *page)
252 {
253 put_page(page);
254 }
255
free_arg_page(struct linux_binprm * bprm,int i)256 static void free_arg_page(struct linux_binprm *bprm, int i)
257 {
258 }
259
free_arg_pages(struct linux_binprm * bprm)260 static void free_arg_pages(struct linux_binprm *bprm)
261 {
262 }
263
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)264 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
265 struct page *page)
266 {
267 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
268 }
269
__bprm_mm_init(struct linux_binprm * bprm)270 static int __bprm_mm_init(struct linux_binprm *bprm)
271 {
272 int err;
273 struct vm_area_struct *vma = NULL;
274 struct mm_struct *mm = bprm->mm;
275
276 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
277 if (!vma)
278 return -ENOMEM;
279
280 down_write(&mm->mmap_sem);
281 vma->vm_mm = mm;
282
283 /*
284 * Place the stack at the largest stack address the architecture
285 * supports. Later, we'll move this to an appropriate place. We don't
286 * use STACK_TOP because that can depend on attributes which aren't
287 * configured yet.
288 */
289 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
290 vma->vm_end = STACK_TOP_MAX;
291 vma->vm_start = vma->vm_end - PAGE_SIZE;
292 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
293 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
294 INIT_LIST_HEAD(&vma->anon_vma_chain);
295
296 err = insert_vm_struct(mm, vma);
297 if (err)
298 goto err;
299
300 mm->stack_vm = mm->total_vm = 1;
301 up_write(&mm->mmap_sem);
302 bprm->p = vma->vm_end - sizeof(void *);
303 return 0;
304 err:
305 up_write(&mm->mmap_sem);
306 bprm->vma = NULL;
307 kmem_cache_free(vm_area_cachep, vma);
308 return err;
309 }
310
valid_arg_len(struct linux_binprm * bprm,long len)311 static bool valid_arg_len(struct linux_binprm *bprm, long len)
312 {
313 return len <= MAX_ARG_STRLEN;
314 }
315
316 #else
317
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)318 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
319 {
320 }
321
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)322 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
323 int write)
324 {
325 struct page *page;
326
327 page = bprm->page[pos / PAGE_SIZE];
328 if (!page && write) {
329 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
330 if (!page)
331 return NULL;
332 bprm->page[pos / PAGE_SIZE] = page;
333 }
334
335 return page;
336 }
337
put_arg_page(struct page * page)338 static void put_arg_page(struct page *page)
339 {
340 }
341
free_arg_page(struct linux_binprm * bprm,int i)342 static void free_arg_page(struct linux_binprm *bprm, int i)
343 {
344 if (bprm->page[i]) {
345 __free_page(bprm->page[i]);
346 bprm->page[i] = NULL;
347 }
348 }
349
free_arg_pages(struct linux_binprm * bprm)350 static void free_arg_pages(struct linux_binprm *bprm)
351 {
352 int i;
353
354 for (i = 0; i < MAX_ARG_PAGES; i++)
355 free_arg_page(bprm, i);
356 }
357
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)358 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
359 struct page *page)
360 {
361 }
362
__bprm_mm_init(struct linux_binprm * bprm)363 static int __bprm_mm_init(struct linux_binprm *bprm)
364 {
365 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
366 return 0;
367 }
368
valid_arg_len(struct linux_binprm * bprm,long len)369 static bool valid_arg_len(struct linux_binprm *bprm, long len)
370 {
371 return len <= bprm->p;
372 }
373
374 #endif /* CONFIG_MMU */
375
376 /*
377 * Create a new mm_struct and populate it with a temporary stack
378 * vm_area_struct. We don't have enough context at this point to set the stack
379 * flags, permissions, and offset, so we use temporary values. We'll update
380 * them later in setup_arg_pages().
381 */
bprm_mm_init(struct linux_binprm * bprm)382 static int bprm_mm_init(struct linux_binprm *bprm)
383 {
384 int err;
385 struct mm_struct *mm = NULL;
386
387 bprm->mm = mm = mm_alloc();
388 err = -ENOMEM;
389 if (!mm)
390 goto err;
391
392 err = __bprm_mm_init(bprm);
393 if (err)
394 goto err;
395
396 return 0;
397
398 err:
399 if (mm) {
400 bprm->mm = NULL;
401 mmdrop(mm);
402 }
403
404 return err;
405 }
406
407 struct user_arg_ptr {
408 #ifdef CONFIG_COMPAT
409 bool is_compat;
410 #endif
411 union {
412 const char __user *const __user *native;
413 #ifdef CONFIG_COMPAT
414 const compat_uptr_t __user *compat;
415 #endif
416 } ptr;
417 };
418
get_user_arg_ptr(struct user_arg_ptr argv,int nr)419 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
420 {
421 const char __user *native;
422
423 #ifdef CONFIG_COMPAT
424 if (unlikely(argv.is_compat)) {
425 compat_uptr_t compat;
426
427 if (get_user(compat, argv.ptr.compat + nr))
428 return ERR_PTR(-EFAULT);
429
430 return compat_ptr(compat);
431 }
432 #endif
433
434 if (get_user(native, argv.ptr.native + nr))
435 return ERR_PTR(-EFAULT);
436
437 return native;
438 }
439
440 /*
441 * count() counts the number of strings in array ARGV.
442 */
count(struct user_arg_ptr argv,int max)443 static int count(struct user_arg_ptr argv, int max)
444 {
445 int i = 0;
446
447 if (argv.ptr.native != NULL) {
448 for (;;) {
449 const char __user *p = get_user_arg_ptr(argv, i);
450
451 if (!p)
452 break;
453
454 if (IS_ERR(p))
455 return -EFAULT;
456
457 if (i >= max)
458 return -E2BIG;
459 ++i;
460
461 if (fatal_signal_pending(current))
462 return -ERESTARTNOHAND;
463 cond_resched();
464 }
465 }
466 return i;
467 }
468
469 /*
470 * 'copy_strings()' copies argument/environment strings from the old
471 * processes's memory to the new process's stack. The call to get_user_pages()
472 * ensures the destination page is created and not swapped out.
473 */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)474 static int copy_strings(int argc, struct user_arg_ptr argv,
475 struct linux_binprm *bprm)
476 {
477 struct page *kmapped_page = NULL;
478 char *kaddr = NULL;
479 unsigned long kpos = 0;
480 int ret;
481
482 while (argc-- > 0) {
483 const char __user *str;
484 int len;
485 unsigned long pos;
486
487 ret = -EFAULT;
488 str = get_user_arg_ptr(argv, argc);
489 if (IS_ERR(str))
490 goto out;
491
492 len = strnlen_user(str, MAX_ARG_STRLEN);
493 if (!len)
494 goto out;
495
496 ret = -E2BIG;
497 if (!valid_arg_len(bprm, len))
498 goto out;
499
500 /* We're going to work our way backwords. */
501 pos = bprm->p;
502 str += len;
503 bprm->p -= len;
504
505 while (len > 0) {
506 int offset, bytes_to_copy;
507
508 if (fatal_signal_pending(current)) {
509 ret = -ERESTARTNOHAND;
510 goto out;
511 }
512 cond_resched();
513
514 offset = pos % PAGE_SIZE;
515 if (offset == 0)
516 offset = PAGE_SIZE;
517
518 bytes_to_copy = offset;
519 if (bytes_to_copy > len)
520 bytes_to_copy = len;
521
522 offset -= bytes_to_copy;
523 pos -= bytes_to_copy;
524 str -= bytes_to_copy;
525 len -= bytes_to_copy;
526
527 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
528 struct page *page;
529
530 page = get_arg_page(bprm, pos, 1);
531 if (!page) {
532 ret = -E2BIG;
533 goto out;
534 }
535
536 if (kmapped_page) {
537 flush_kernel_dcache_page(kmapped_page);
538 kunmap(kmapped_page);
539 put_arg_page(kmapped_page);
540 }
541 kmapped_page = page;
542 kaddr = kmap(kmapped_page);
543 kpos = pos & PAGE_MASK;
544 flush_arg_page(bprm, kpos, kmapped_page);
545 }
546 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
547 ret = -EFAULT;
548 goto out;
549 }
550 }
551 }
552 ret = 0;
553 out:
554 if (kmapped_page) {
555 flush_kernel_dcache_page(kmapped_page);
556 kunmap(kmapped_page);
557 put_arg_page(kmapped_page);
558 }
559 return ret;
560 }
561
562 /*
563 * Like copy_strings, but get argv and its values from kernel memory.
564 */
copy_strings_kernel(int argc,const char * const * __argv,struct linux_binprm * bprm)565 int copy_strings_kernel(int argc, const char *const *__argv,
566 struct linux_binprm *bprm)
567 {
568 int r;
569 mm_segment_t oldfs = get_fs();
570 struct user_arg_ptr argv = {
571 .ptr.native = (const char __user *const __user *)__argv,
572 };
573
574 set_fs(KERNEL_DS);
575 r = copy_strings(argc, argv, bprm);
576 set_fs(oldfs);
577
578 return r;
579 }
580 EXPORT_SYMBOL(copy_strings_kernel);
581
582 #ifdef CONFIG_MMU
583
584 /*
585 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
586 * the binfmt code determines where the new stack should reside, we shift it to
587 * its final location. The process proceeds as follows:
588 *
589 * 1) Use shift to calculate the new vma endpoints.
590 * 2) Extend vma to cover both the old and new ranges. This ensures the
591 * arguments passed to subsequent functions are consistent.
592 * 3) Move vma's page tables to the new range.
593 * 4) Free up any cleared pgd range.
594 * 5) Shrink the vma to cover only the new range.
595 */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)596 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
597 {
598 struct mm_struct *mm = vma->vm_mm;
599 unsigned long old_start = vma->vm_start;
600 unsigned long old_end = vma->vm_end;
601 unsigned long length = old_end - old_start;
602 unsigned long new_start = old_start - shift;
603 unsigned long new_end = old_end - shift;
604 struct mmu_gather tlb;
605
606 BUG_ON(new_start > new_end);
607
608 /*
609 * ensure there are no vmas between where we want to go
610 * and where we are
611 */
612 if (vma != find_vma(mm, new_start))
613 return -EFAULT;
614
615 /*
616 * cover the whole range: [new_start, old_end)
617 */
618 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
619 return -ENOMEM;
620
621 /*
622 * move the page tables downwards, on failure we rely on
623 * process cleanup to remove whatever mess we made.
624 */
625 if (length != move_page_tables(vma, old_start,
626 vma, new_start, length, false))
627 return -ENOMEM;
628
629 lru_add_drain();
630 tlb_gather_mmu(&tlb, mm, old_start, old_end);
631 if (new_end > old_start) {
632 /*
633 * when the old and new regions overlap clear from new_end.
634 */
635 free_pgd_range(&tlb, new_end, old_end, new_end,
636 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
637 } else {
638 /*
639 * otherwise, clean from old_start; this is done to not touch
640 * the address space in [new_end, old_start) some architectures
641 * have constraints on va-space that make this illegal (IA64) -
642 * for the others its just a little faster.
643 */
644 free_pgd_range(&tlb, old_start, old_end, new_end,
645 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
646 }
647 tlb_finish_mmu(&tlb, old_start, old_end);
648
649 /*
650 * Shrink the vma to just the new range. Always succeeds.
651 */
652 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
653
654 return 0;
655 }
656
657 /*
658 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
659 * the stack is optionally relocated, and some extra space is added.
660 */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)661 int setup_arg_pages(struct linux_binprm *bprm,
662 unsigned long stack_top,
663 int executable_stack)
664 {
665 unsigned long ret;
666 unsigned long stack_shift;
667 struct mm_struct *mm = current->mm;
668 struct vm_area_struct *vma = bprm->vma;
669 struct vm_area_struct *prev = NULL;
670 unsigned long vm_flags;
671 unsigned long stack_base;
672 unsigned long stack_size;
673 unsigned long stack_expand;
674 unsigned long rlim_stack;
675
676 #ifdef CONFIG_STACK_GROWSUP
677 /* Limit stack size */
678 stack_base = rlimit_max(RLIMIT_STACK);
679 if (stack_base > STACK_SIZE_MAX)
680 stack_base = STACK_SIZE_MAX;
681
682 /* Add space for stack randomization. */
683 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
684
685 /* Make sure we didn't let the argument array grow too large. */
686 if (vma->vm_end - vma->vm_start > stack_base)
687 return -ENOMEM;
688
689 stack_base = PAGE_ALIGN(stack_top - stack_base);
690
691 stack_shift = vma->vm_start - stack_base;
692 mm->arg_start = bprm->p - stack_shift;
693 bprm->p = vma->vm_end - stack_shift;
694 #else
695 stack_top = arch_align_stack(stack_top);
696 stack_top = PAGE_ALIGN(stack_top);
697
698 if (unlikely(stack_top < mmap_min_addr) ||
699 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
700 return -ENOMEM;
701
702 stack_shift = vma->vm_end - stack_top;
703
704 bprm->p -= stack_shift;
705 mm->arg_start = bprm->p;
706 #endif
707
708 if (bprm->loader)
709 bprm->loader -= stack_shift;
710 bprm->exec -= stack_shift;
711
712 down_write(&mm->mmap_sem);
713 vm_flags = VM_STACK_FLAGS;
714
715 /*
716 * Adjust stack execute permissions; explicitly enable for
717 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
718 * (arch default) otherwise.
719 */
720 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
721 vm_flags |= VM_EXEC;
722 else if (executable_stack == EXSTACK_DISABLE_X)
723 vm_flags &= ~VM_EXEC;
724 vm_flags |= mm->def_flags;
725 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
726
727 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
728 vm_flags);
729 if (ret)
730 goto out_unlock;
731 BUG_ON(prev != vma);
732
733 /* Move stack pages down in memory. */
734 if (stack_shift) {
735 ret = shift_arg_pages(vma, stack_shift);
736 if (ret)
737 goto out_unlock;
738 }
739
740 /* mprotect_fixup is overkill to remove the temporary stack flags */
741 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
742
743 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
744 stack_size = vma->vm_end - vma->vm_start;
745 /*
746 * Align this down to a page boundary as expand_stack
747 * will align it up.
748 */
749 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
750 #ifdef CONFIG_STACK_GROWSUP
751 if (stack_size + stack_expand > rlim_stack)
752 stack_base = vma->vm_start + rlim_stack;
753 else
754 stack_base = vma->vm_end + stack_expand;
755 #else
756 if (stack_size + stack_expand > rlim_stack)
757 stack_base = vma->vm_end - rlim_stack;
758 else
759 stack_base = vma->vm_start - stack_expand;
760 #endif
761 current->mm->start_stack = bprm->p;
762 ret = expand_stack(vma, stack_base);
763 if (ret)
764 ret = -EFAULT;
765
766 out_unlock:
767 up_write(&mm->mmap_sem);
768 return ret;
769 }
770 EXPORT_SYMBOL(setup_arg_pages);
771
772 #endif /* CONFIG_MMU */
773
do_open_exec(struct filename * name)774 static struct file *do_open_exec(struct filename *name)
775 {
776 struct file *file;
777 int err;
778 static const struct open_flags open_exec_flags = {
779 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
780 .acc_mode = MAY_EXEC | MAY_OPEN,
781 .intent = LOOKUP_OPEN,
782 .lookup_flags = LOOKUP_FOLLOW,
783 };
784
785 file = do_filp_open(AT_FDCWD, name, &open_exec_flags);
786 if (IS_ERR(file))
787 goto out;
788
789 err = -EACCES;
790 if (!S_ISREG(file_inode(file)->i_mode))
791 goto exit;
792
793 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
794 goto exit;
795
796 fsnotify_open(file);
797
798 err = deny_write_access(file);
799 if (err)
800 goto exit;
801
802 out:
803 return file;
804
805 exit:
806 fput(file);
807 return ERR_PTR(err);
808 }
809
open_exec(const char * name)810 struct file *open_exec(const char *name)
811 {
812 struct filename tmp = { .name = name };
813 return do_open_exec(&tmp);
814 }
815 EXPORT_SYMBOL(open_exec);
816
kernel_read(struct file * file,loff_t offset,char * addr,unsigned long count)817 int kernel_read(struct file *file, loff_t offset,
818 char *addr, unsigned long count)
819 {
820 mm_segment_t old_fs;
821 loff_t pos = offset;
822 int result;
823
824 old_fs = get_fs();
825 set_fs(get_ds());
826 /* The cast to a user pointer is valid due to the set_fs() */
827 result = vfs_read(file, (void __user *)addr, count, &pos);
828 set_fs(old_fs);
829 return result;
830 }
831
832 EXPORT_SYMBOL(kernel_read);
833
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)834 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
835 {
836 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
837 if (res > 0)
838 flush_icache_range(addr, addr + len);
839 return res;
840 }
841 EXPORT_SYMBOL(read_code);
842
exec_mmap(struct mm_struct * mm)843 static int exec_mmap(struct mm_struct *mm)
844 {
845 struct task_struct *tsk;
846 struct mm_struct *old_mm, *active_mm;
847
848 /* Notify parent that we're no longer interested in the old VM */
849 tsk = current;
850 old_mm = current->mm;
851 mm_release(tsk, old_mm);
852
853 if (old_mm) {
854 sync_mm_rss(old_mm);
855 /*
856 * Make sure that if there is a core dump in progress
857 * for the old mm, we get out and die instead of going
858 * through with the exec. We must hold mmap_sem around
859 * checking core_state and changing tsk->mm.
860 */
861 down_read(&old_mm->mmap_sem);
862 if (unlikely(old_mm->core_state)) {
863 up_read(&old_mm->mmap_sem);
864 return -EINTR;
865 }
866 }
867 task_lock(tsk);
868 active_mm = tsk->active_mm;
869 tsk->mm = mm;
870 tsk->active_mm = mm;
871 activate_mm(active_mm, mm);
872 tsk->mm->vmacache_seqnum = 0;
873 vmacache_flush(tsk);
874 task_unlock(tsk);
875 if (old_mm) {
876 up_read(&old_mm->mmap_sem);
877 BUG_ON(active_mm != old_mm);
878 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
879 mm_update_next_owner(old_mm);
880 mmput(old_mm);
881 return 0;
882 }
883 mmdrop(active_mm);
884 return 0;
885 }
886
887 /*
888 * This function makes sure the current process has its own signal table,
889 * so that flush_signal_handlers can later reset the handlers without
890 * disturbing other processes. (Other processes might share the signal
891 * table via the CLONE_SIGHAND option to clone().)
892 */
de_thread(struct task_struct * tsk)893 static int de_thread(struct task_struct *tsk)
894 {
895 struct signal_struct *sig = tsk->signal;
896 struct sighand_struct *oldsighand = tsk->sighand;
897 spinlock_t *lock = &oldsighand->siglock;
898
899 if (thread_group_empty(tsk))
900 goto no_thread_group;
901
902 /*
903 * Kill all other threads in the thread group.
904 */
905 spin_lock_irq(lock);
906 if (signal_group_exit(sig)) {
907 /*
908 * Another group action in progress, just
909 * return so that the signal is processed.
910 */
911 spin_unlock_irq(lock);
912 return -EAGAIN;
913 }
914
915 sig->group_exit_task = tsk;
916 sig->notify_count = zap_other_threads(tsk);
917 if (!thread_group_leader(tsk))
918 sig->notify_count--;
919
920 while (sig->notify_count) {
921 __set_current_state(TASK_KILLABLE);
922 spin_unlock_irq(lock);
923 schedule();
924 if (unlikely(__fatal_signal_pending(tsk)))
925 goto killed;
926 spin_lock_irq(lock);
927 }
928 spin_unlock_irq(lock);
929
930 /*
931 * At this point all other threads have exited, all we have to
932 * do is to wait for the thread group leader to become inactive,
933 * and to assume its PID:
934 */
935 if (!thread_group_leader(tsk)) {
936 struct task_struct *leader = tsk->group_leader;
937
938 sig->notify_count = -1; /* for exit_notify() */
939 for (;;) {
940 threadgroup_change_begin(tsk);
941 write_lock_irq(&tasklist_lock);
942 if (likely(leader->exit_state))
943 break;
944 __set_current_state(TASK_KILLABLE);
945 write_unlock_irq(&tasklist_lock);
946 threadgroup_change_end(tsk);
947 schedule();
948 if (unlikely(__fatal_signal_pending(tsk)))
949 goto killed;
950 }
951
952 /*
953 * The only record we have of the real-time age of a
954 * process, regardless of execs it's done, is start_time.
955 * All the past CPU time is accumulated in signal_struct
956 * from sister threads now dead. But in this non-leader
957 * exec, nothing survives from the original leader thread,
958 * whose birth marks the true age of this process now.
959 * When we take on its identity by switching to its PID, we
960 * also take its birthdate (always earlier than our own).
961 */
962 tsk->start_time = leader->start_time;
963 tsk->real_start_time = leader->real_start_time;
964
965 BUG_ON(!same_thread_group(leader, tsk));
966 BUG_ON(has_group_leader_pid(tsk));
967 /*
968 * An exec() starts a new thread group with the
969 * TGID of the previous thread group. Rehash the
970 * two threads with a switched PID, and release
971 * the former thread group leader:
972 */
973
974 /* Become a process group leader with the old leader's pid.
975 * The old leader becomes a thread of the this thread group.
976 * Note: The old leader also uses this pid until release_task
977 * is called. Odd but simple and correct.
978 */
979 tsk->pid = leader->pid;
980 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
981 transfer_pid(leader, tsk, PIDTYPE_PGID);
982 transfer_pid(leader, tsk, PIDTYPE_SID);
983
984 list_replace_rcu(&leader->tasks, &tsk->tasks);
985 list_replace_init(&leader->sibling, &tsk->sibling);
986
987 tsk->group_leader = tsk;
988 leader->group_leader = tsk;
989
990 tsk->exit_signal = SIGCHLD;
991 leader->exit_signal = -1;
992
993 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
994 leader->exit_state = EXIT_DEAD;
995
996 /*
997 * We are going to release_task()->ptrace_unlink() silently,
998 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
999 * the tracer wont't block again waiting for this thread.
1000 */
1001 if (unlikely(leader->ptrace))
1002 __wake_up_parent(leader, leader->parent);
1003 write_unlock_irq(&tasklist_lock);
1004 threadgroup_change_end(tsk);
1005
1006 release_task(leader);
1007 }
1008
1009 sig->group_exit_task = NULL;
1010 sig->notify_count = 0;
1011
1012 no_thread_group:
1013 /* we have changed execution domain */
1014 tsk->exit_signal = SIGCHLD;
1015
1016 exit_itimers(sig);
1017 flush_itimer_signals();
1018
1019 if (atomic_read(&oldsighand->count) != 1) {
1020 struct sighand_struct *newsighand;
1021 /*
1022 * This ->sighand is shared with the CLONE_SIGHAND
1023 * but not CLONE_THREAD task, switch to the new one.
1024 */
1025 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1026 if (!newsighand)
1027 return -ENOMEM;
1028
1029 atomic_set(&newsighand->count, 1);
1030 memcpy(newsighand->action, oldsighand->action,
1031 sizeof(newsighand->action));
1032
1033 write_lock_irq(&tasklist_lock);
1034 spin_lock(&oldsighand->siglock);
1035 rcu_assign_pointer(tsk->sighand, newsighand);
1036 spin_unlock(&oldsighand->siglock);
1037 write_unlock_irq(&tasklist_lock);
1038
1039 __cleanup_sighand(oldsighand);
1040 }
1041
1042 BUG_ON(!thread_group_leader(tsk));
1043 return 0;
1044
1045 killed:
1046 /* protects against exit_notify() and __exit_signal() */
1047 read_lock(&tasklist_lock);
1048 sig->group_exit_task = NULL;
1049 sig->notify_count = 0;
1050 read_unlock(&tasklist_lock);
1051 return -EAGAIN;
1052 }
1053
get_task_comm(char * buf,struct task_struct * tsk)1054 char *get_task_comm(char *buf, struct task_struct *tsk)
1055 {
1056 /* buf must be at least sizeof(tsk->comm) in size */
1057 task_lock(tsk);
1058 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1059 task_unlock(tsk);
1060 return buf;
1061 }
1062 EXPORT_SYMBOL_GPL(get_task_comm);
1063
1064 /*
1065 * These functions flushes out all traces of the currently running executable
1066 * so that a new one can be started
1067 */
1068
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1069 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1070 {
1071 task_lock(tsk);
1072 trace_task_rename(tsk, buf);
1073 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1074 task_unlock(tsk);
1075 perf_event_comm(tsk, exec);
1076 }
1077
flush_old_exec(struct linux_binprm * bprm)1078 int flush_old_exec(struct linux_binprm * bprm)
1079 {
1080 int retval;
1081
1082 /*
1083 * Make sure we have a private signal table and that
1084 * we are unassociated from the previous thread group.
1085 */
1086 retval = de_thread(current);
1087 if (retval)
1088 goto out;
1089
1090 set_mm_exe_file(bprm->mm, bprm->file);
1091 /*
1092 * Release all of the old mmap stuff
1093 */
1094 acct_arg_size(bprm, 0);
1095 retval = exec_mmap(bprm->mm);
1096 if (retval)
1097 goto out;
1098
1099 bprm->mm = NULL; /* We're using it now */
1100
1101 set_fs(USER_DS);
1102 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1103 PF_NOFREEZE | PF_NO_SETAFFINITY);
1104 flush_thread();
1105 current->personality &= ~bprm->per_clear;
1106
1107 /*
1108 * We have to apply CLOEXEC before we change whether the process is
1109 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1110 * trying to access the should-be-closed file descriptors of a process
1111 * undergoing exec(2).
1112 */
1113 do_close_on_exec(current->files);
1114 return 0;
1115
1116 out:
1117 return retval;
1118 }
1119 EXPORT_SYMBOL(flush_old_exec);
1120
would_dump(struct linux_binprm * bprm,struct file * file)1121 void would_dump(struct linux_binprm *bprm, struct file *file)
1122 {
1123 if (inode_permission2(file->f_path.mnt, file_inode(file), MAY_READ) < 0)
1124 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1125 }
1126 EXPORT_SYMBOL(would_dump);
1127
setup_new_exec(struct linux_binprm * bprm)1128 void setup_new_exec(struct linux_binprm * bprm)
1129 {
1130 arch_pick_mmap_layout(current->mm);
1131
1132 /* This is the point of no return */
1133 current->sas_ss_sp = current->sas_ss_size = 0;
1134
1135 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1136 set_dumpable(current->mm, SUID_DUMP_USER);
1137 else
1138 set_dumpable(current->mm, suid_dumpable);
1139
1140 perf_event_exec();
1141 __set_task_comm(current, kbasename(bprm->filename), true);
1142
1143 /* Set the new mm task size. We have to do that late because it may
1144 * depend on TIF_32BIT which is only updated in flush_thread() on
1145 * some architectures like powerpc
1146 */
1147 current->mm->task_size = TASK_SIZE;
1148
1149 /* install the new credentials */
1150 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1151 !gid_eq(bprm->cred->gid, current_egid())) {
1152 current->pdeath_signal = 0;
1153 } else {
1154 would_dump(bprm, bprm->file);
1155 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1156 set_dumpable(current->mm, suid_dumpable);
1157 }
1158
1159 /* An exec changes our domain. We are no longer part of the thread
1160 group */
1161 current->self_exec_id++;
1162 flush_signal_handlers(current, 0);
1163 }
1164 EXPORT_SYMBOL(setup_new_exec);
1165
1166 /*
1167 * Prepare credentials and lock ->cred_guard_mutex.
1168 * install_exec_creds() commits the new creds and drops the lock.
1169 * Or, if exec fails before, free_bprm() should release ->cred and
1170 * and unlock.
1171 */
prepare_bprm_creds(struct linux_binprm * bprm)1172 int prepare_bprm_creds(struct linux_binprm *bprm)
1173 {
1174 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1175 return -ERESTARTNOINTR;
1176
1177 bprm->cred = prepare_exec_creds();
1178 if (likely(bprm->cred))
1179 return 0;
1180
1181 mutex_unlock(¤t->signal->cred_guard_mutex);
1182 return -ENOMEM;
1183 }
1184
free_bprm(struct linux_binprm * bprm)1185 static void free_bprm(struct linux_binprm *bprm)
1186 {
1187 free_arg_pages(bprm);
1188 if (bprm->cred) {
1189 mutex_unlock(¤t->signal->cred_guard_mutex);
1190 abort_creds(bprm->cred);
1191 }
1192 if (bprm->file) {
1193 allow_write_access(bprm->file);
1194 fput(bprm->file);
1195 }
1196 /* If a binfmt changed the interp, free it. */
1197 if (bprm->interp != bprm->filename)
1198 kfree(bprm->interp);
1199 kfree(bprm);
1200 }
1201
bprm_change_interp(char * interp,struct linux_binprm * bprm)1202 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1203 {
1204 /* If a binfmt changed the interp, free it first. */
1205 if (bprm->interp != bprm->filename)
1206 kfree(bprm->interp);
1207 bprm->interp = kstrdup(interp, GFP_KERNEL);
1208 if (!bprm->interp)
1209 return -ENOMEM;
1210 return 0;
1211 }
1212 EXPORT_SYMBOL(bprm_change_interp);
1213
1214 /*
1215 * install the new credentials for this executable
1216 */
install_exec_creds(struct linux_binprm * bprm)1217 void install_exec_creds(struct linux_binprm *bprm)
1218 {
1219 security_bprm_committing_creds(bprm);
1220
1221 commit_creds(bprm->cred);
1222 bprm->cred = NULL;
1223
1224 /*
1225 * Disable monitoring for regular users
1226 * when executing setuid binaries. Must
1227 * wait until new credentials are committed
1228 * by commit_creds() above
1229 */
1230 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1231 perf_event_exit_task(current);
1232 /*
1233 * cred_guard_mutex must be held at least to this point to prevent
1234 * ptrace_attach() from altering our determination of the task's
1235 * credentials; any time after this it may be unlocked.
1236 */
1237 security_bprm_committed_creds(bprm);
1238 mutex_unlock(¤t->signal->cred_guard_mutex);
1239 }
1240 EXPORT_SYMBOL(install_exec_creds);
1241
1242 /*
1243 * determine how safe it is to execute the proposed program
1244 * - the caller must hold ->cred_guard_mutex to protect against
1245 * PTRACE_ATTACH or seccomp thread-sync
1246 */
check_unsafe_exec(struct linux_binprm * bprm)1247 static void check_unsafe_exec(struct linux_binprm *bprm)
1248 {
1249 struct task_struct *p = current, *t;
1250 unsigned n_fs;
1251
1252 if (p->ptrace) {
1253 if (p->ptrace & PT_PTRACE_CAP)
1254 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1255 else
1256 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1257 }
1258
1259 /*
1260 * This isn't strictly necessary, but it makes it harder for LSMs to
1261 * mess up.
1262 */
1263 if (task_no_new_privs(current))
1264 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1265
1266 t = p;
1267 n_fs = 1;
1268 spin_lock(&p->fs->lock);
1269 rcu_read_lock();
1270 while_each_thread(p, t) {
1271 if (t->fs == p->fs)
1272 n_fs++;
1273 }
1274 rcu_read_unlock();
1275
1276 if (p->fs->users > n_fs)
1277 bprm->unsafe |= LSM_UNSAFE_SHARE;
1278 else
1279 p->fs->in_exec = 1;
1280 spin_unlock(&p->fs->lock);
1281 }
1282
bprm_fill_uid(struct linux_binprm * bprm)1283 static void bprm_fill_uid(struct linux_binprm *bprm)
1284 {
1285 struct inode *inode;
1286 unsigned int mode;
1287 kuid_t uid;
1288 kgid_t gid;
1289
1290 /* clear any previous set[ug]id data from a previous binary */
1291 bprm->cred->euid = current_euid();
1292 bprm->cred->egid = current_egid();
1293
1294 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1295 return;
1296
1297 if (task_no_new_privs(current))
1298 return;
1299
1300 inode = file_inode(bprm->file);
1301 mode = READ_ONCE(inode->i_mode);
1302 if (!(mode & (S_ISUID|S_ISGID)))
1303 return;
1304
1305 /* Be careful if suid/sgid is set */
1306 mutex_lock(&inode->i_mutex);
1307
1308 /* reload atomically mode/uid/gid now that lock held */
1309 mode = inode->i_mode;
1310 uid = inode->i_uid;
1311 gid = inode->i_gid;
1312 mutex_unlock(&inode->i_mutex);
1313
1314 /* We ignore suid/sgid if there are no mappings for them in the ns */
1315 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1316 !kgid_has_mapping(bprm->cred->user_ns, gid))
1317 return;
1318
1319 if (mode & S_ISUID) {
1320 bprm->per_clear |= PER_CLEAR_ON_SETID;
1321 bprm->cred->euid = uid;
1322 }
1323
1324 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1325 bprm->per_clear |= PER_CLEAR_ON_SETID;
1326 bprm->cred->egid = gid;
1327 }
1328 }
1329
1330 /*
1331 * Fill the binprm structure from the inode.
1332 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1333 *
1334 * This may be called multiple times for binary chains (scripts for example).
1335 */
prepare_binprm(struct linux_binprm * bprm)1336 int prepare_binprm(struct linux_binprm *bprm)
1337 {
1338 int retval;
1339
1340 bprm_fill_uid(bprm);
1341
1342 /* fill in binprm security blob */
1343 retval = security_bprm_set_creds(bprm);
1344 if (retval)
1345 return retval;
1346 bprm->cred_prepared = 1;
1347
1348 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1349 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1350 }
1351
1352 EXPORT_SYMBOL(prepare_binprm);
1353
1354 /*
1355 * Arguments are '\0' separated strings found at the location bprm->p
1356 * points to; chop off the first by relocating brpm->p to right after
1357 * the first '\0' encountered.
1358 */
remove_arg_zero(struct linux_binprm * bprm)1359 int remove_arg_zero(struct linux_binprm *bprm)
1360 {
1361 int ret = 0;
1362 unsigned long offset;
1363 char *kaddr;
1364 struct page *page;
1365
1366 if (!bprm->argc)
1367 return 0;
1368
1369 do {
1370 offset = bprm->p & ~PAGE_MASK;
1371 page = get_arg_page(bprm, bprm->p, 0);
1372 if (!page) {
1373 ret = -EFAULT;
1374 goto out;
1375 }
1376 kaddr = kmap_atomic(page);
1377
1378 for (; offset < PAGE_SIZE && kaddr[offset];
1379 offset++, bprm->p++)
1380 ;
1381
1382 kunmap_atomic(kaddr);
1383 put_arg_page(page);
1384
1385 if (offset == PAGE_SIZE)
1386 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1387 } while (offset == PAGE_SIZE);
1388
1389 bprm->p++;
1390 bprm->argc--;
1391 ret = 0;
1392
1393 out:
1394 return ret;
1395 }
1396 EXPORT_SYMBOL(remove_arg_zero);
1397
1398 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1399 /*
1400 * cycle the list of binary formats handler, until one recognizes the image
1401 */
search_binary_handler(struct linux_binprm * bprm)1402 int search_binary_handler(struct linux_binprm *bprm)
1403 {
1404 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1405 struct linux_binfmt *fmt;
1406 int retval;
1407
1408 /* This allows 4 levels of binfmt rewrites before failing hard. */
1409 if (bprm->recursion_depth > 5)
1410 return -ELOOP;
1411
1412 retval = security_bprm_check(bprm);
1413 if (retval)
1414 return retval;
1415
1416 retval = -ENOENT;
1417 retry:
1418 read_lock(&binfmt_lock);
1419 list_for_each_entry(fmt, &formats, lh) {
1420 if (!try_module_get(fmt->module))
1421 continue;
1422 read_unlock(&binfmt_lock);
1423 bprm->recursion_depth++;
1424 retval = fmt->load_binary(bprm);
1425 read_lock(&binfmt_lock);
1426 put_binfmt(fmt);
1427 bprm->recursion_depth--;
1428 if (retval < 0 && !bprm->mm) {
1429 /* we got to flush_old_exec() and failed after it */
1430 read_unlock(&binfmt_lock);
1431 force_sigsegv(SIGSEGV, current);
1432 return retval;
1433 }
1434 if (retval != -ENOEXEC || !bprm->file) {
1435 read_unlock(&binfmt_lock);
1436 return retval;
1437 }
1438 }
1439 read_unlock(&binfmt_lock);
1440
1441 if (need_retry) {
1442 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1443 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1444 return retval;
1445 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1446 return retval;
1447 need_retry = false;
1448 goto retry;
1449 }
1450
1451 return retval;
1452 }
1453 EXPORT_SYMBOL(search_binary_handler);
1454
exec_binprm(struct linux_binprm * bprm)1455 static int exec_binprm(struct linux_binprm *bprm)
1456 {
1457 pid_t old_pid, old_vpid;
1458 int ret;
1459
1460 /* Need to fetch pid before load_binary changes it */
1461 old_pid = current->pid;
1462 rcu_read_lock();
1463 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1464 rcu_read_unlock();
1465
1466 ret = search_binary_handler(bprm);
1467 if (ret >= 0) {
1468 audit_bprm(bprm);
1469 trace_sched_process_exec(current, old_pid, bprm);
1470 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1471 proc_exec_connector(current);
1472 }
1473
1474 return ret;
1475 }
1476
1477 /*
1478 * sys_execve() executes a new program.
1479 */
do_execve_common(struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp)1480 static int do_execve_common(struct filename *filename,
1481 struct user_arg_ptr argv,
1482 struct user_arg_ptr envp)
1483 {
1484 struct linux_binprm *bprm;
1485 struct file *file;
1486 struct files_struct *displaced;
1487 int retval;
1488
1489 if (IS_ERR(filename))
1490 return PTR_ERR(filename);
1491
1492 /*
1493 * We move the actual failure in case of RLIMIT_NPROC excess from
1494 * set*uid() to execve() because too many poorly written programs
1495 * don't check setuid() return code. Here we additionally recheck
1496 * whether NPROC limit is still exceeded.
1497 */
1498 if ((current->flags & PF_NPROC_EXCEEDED) &&
1499 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) {
1500 retval = -EAGAIN;
1501 goto out_ret;
1502 }
1503
1504 /* We're below the limit (still or again), so we don't want to make
1505 * further execve() calls fail. */
1506 current->flags &= ~PF_NPROC_EXCEEDED;
1507
1508 retval = unshare_files(&displaced);
1509 if (retval)
1510 goto out_ret;
1511
1512 retval = -ENOMEM;
1513 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1514 if (!bprm)
1515 goto out_files;
1516
1517 retval = prepare_bprm_creds(bprm);
1518 if (retval)
1519 goto out_free;
1520
1521 check_unsafe_exec(bprm);
1522 current->in_execve = 1;
1523
1524 file = do_open_exec(filename);
1525 retval = PTR_ERR(file);
1526 if (IS_ERR(file))
1527 goto out_unmark;
1528
1529 sched_exec();
1530
1531 bprm->file = file;
1532 bprm->filename = bprm->interp = filename->name;
1533
1534 retval = bprm_mm_init(bprm);
1535 if (retval)
1536 goto out_unmark;
1537
1538 bprm->argc = count(argv, MAX_ARG_STRINGS);
1539 if ((retval = bprm->argc) < 0)
1540 goto out;
1541
1542 bprm->envc = count(envp, MAX_ARG_STRINGS);
1543 if ((retval = bprm->envc) < 0)
1544 goto out;
1545
1546 retval = prepare_binprm(bprm);
1547 if (retval < 0)
1548 goto out;
1549
1550 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1551 if (retval < 0)
1552 goto out;
1553
1554 bprm->exec = bprm->p;
1555 retval = copy_strings(bprm->envc, envp, bprm);
1556 if (retval < 0)
1557 goto out;
1558
1559 retval = copy_strings(bprm->argc, argv, bprm);
1560 if (retval < 0)
1561 goto out;
1562
1563 retval = exec_binprm(bprm);
1564 if (retval < 0)
1565 goto out;
1566
1567 /* execve succeeded */
1568 current->fs->in_exec = 0;
1569 current->in_execve = 0;
1570 acct_update_integrals(current);
1571 task_numa_free(current);
1572 free_bprm(bprm);
1573 putname(filename);
1574 if (displaced)
1575 put_files_struct(displaced);
1576 return retval;
1577
1578 out:
1579 if (bprm->mm) {
1580 acct_arg_size(bprm, 0);
1581 mmput(bprm->mm);
1582 }
1583
1584 out_unmark:
1585 current->fs->in_exec = 0;
1586 current->in_execve = 0;
1587
1588 out_free:
1589 free_bprm(bprm);
1590
1591 out_files:
1592 if (displaced)
1593 reset_files_struct(displaced);
1594 out_ret:
1595 putname(filename);
1596 return retval;
1597 }
1598
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)1599 int do_execve(struct filename *filename,
1600 const char __user *const __user *__argv,
1601 const char __user *const __user *__envp)
1602 {
1603 struct user_arg_ptr argv = { .ptr.native = __argv };
1604 struct user_arg_ptr envp = { .ptr.native = __envp };
1605 return do_execve_common(filename, argv, envp);
1606 }
1607
1608 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)1609 static int compat_do_execve(struct filename *filename,
1610 const compat_uptr_t __user *__argv,
1611 const compat_uptr_t __user *__envp)
1612 {
1613 struct user_arg_ptr argv = {
1614 .is_compat = true,
1615 .ptr.compat = __argv,
1616 };
1617 struct user_arg_ptr envp = {
1618 .is_compat = true,
1619 .ptr.compat = __envp,
1620 };
1621 return do_execve_common(filename, argv, envp);
1622 }
1623 #endif
1624
set_binfmt(struct linux_binfmt * new)1625 void set_binfmt(struct linux_binfmt *new)
1626 {
1627 struct mm_struct *mm = current->mm;
1628
1629 if (mm->binfmt)
1630 module_put(mm->binfmt->module);
1631
1632 mm->binfmt = new;
1633 if (new)
1634 __module_get(new->module);
1635 }
1636 EXPORT_SYMBOL(set_binfmt);
1637
1638 /*
1639 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1640 */
set_dumpable(struct mm_struct * mm,int value)1641 void set_dumpable(struct mm_struct *mm, int value)
1642 {
1643 unsigned long old, new;
1644
1645 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1646 return;
1647
1648 do {
1649 old = ACCESS_ONCE(mm->flags);
1650 new = (old & ~MMF_DUMPABLE_MASK) | value;
1651 } while (cmpxchg(&mm->flags, old, new) != old);
1652 }
1653
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)1654 SYSCALL_DEFINE3(execve,
1655 const char __user *, filename,
1656 const char __user *const __user *, argv,
1657 const char __user *const __user *, envp)
1658 {
1659 return do_execve(getname(filename), argv, envp);
1660 }
1661 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)1662 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1663 const compat_uptr_t __user *, argv,
1664 const compat_uptr_t __user *, envp)
1665 {
1666 return compat_do_execve(getname(filename), argv, envp);
1667 }
1668 #endif
1669