1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <crypto/hash.h>
27 #include <linux/writeback.h>
28
29 #define __FS_HAS_ENCRYPTION IS_ENABLED(CONFIG_F2FS_FS_ENCRYPTION)
30 #include <linux/fscrypt.h>
31
32 #ifdef CONFIG_F2FS_CHECK_FS
33 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
34 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
35 #else
36 #define f2fs_bug_on(sbi, condition) \
37 do { \
38 if (unlikely(condition)) { \
39 WARN_ON(1); \
40 set_sbi_flag(sbi, SBI_NEED_FSCK); \
41 } \
42 } while (0)
43 #endif
44
45 #ifdef CONFIG_F2FS_FAULT_INJECTION
46 enum {
47 FAULT_KMALLOC,
48 FAULT_PAGE_ALLOC,
49 FAULT_PAGE_GET,
50 FAULT_ALLOC_BIO,
51 FAULT_ALLOC_NID,
52 FAULT_ORPHAN,
53 FAULT_BLOCK,
54 FAULT_DIR_DEPTH,
55 FAULT_EVICT_INODE,
56 FAULT_TRUNCATE,
57 FAULT_IO,
58 FAULT_CHECKPOINT,
59 FAULT_MAX,
60 };
61
62 struct f2fs_fault_info {
63 atomic_t inject_ops;
64 unsigned int inject_rate;
65 unsigned int inject_type;
66 };
67
68 extern char *fault_name[FAULT_MAX];
69 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
70 #endif
71
72 /*
73 * For mount options
74 */
75 #define F2FS_MOUNT_BG_GC 0x00000001
76 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
77 #define F2FS_MOUNT_DISCARD 0x00000004
78 #define F2FS_MOUNT_NOHEAP 0x00000008
79 #define F2FS_MOUNT_XATTR_USER 0x00000010
80 #define F2FS_MOUNT_POSIX_ACL 0x00000020
81 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
82 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
83 #define F2FS_MOUNT_INLINE_DATA 0x00000100
84 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
85 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
86 #define F2FS_MOUNT_NOBARRIER 0x00000800
87 #define F2FS_MOUNT_FASTBOOT 0x00001000
88 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
89 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
90 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
91 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
92 #define F2FS_MOUNT_ADAPTIVE 0x00020000
93 #define F2FS_MOUNT_LFS 0x00040000
94 #define F2FS_MOUNT_USRQUOTA 0x00080000
95 #define F2FS_MOUNT_GRPQUOTA 0x00100000
96 #define F2FS_MOUNT_PRJQUOTA 0x00200000
97 #define F2FS_MOUNT_QUOTA 0x00400000
98 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
99
100 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
101 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
102 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
103
104 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
105 typecheck(unsigned long long, b) && \
106 ((long long)((a) - (b)) > 0))
107
108 typedef u32 block_t; /*
109 * should not change u32, since it is the on-disk block
110 * address format, __le32.
111 */
112 typedef u32 nid_t;
113
114 struct f2fs_mount_info {
115 unsigned int opt;
116 };
117
118 #define F2FS_FEATURE_ENCRYPT 0x0001
119 #define F2FS_FEATURE_BLKZONED 0x0002
120 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
121 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
122 #define F2FS_FEATURE_PRJQUOTA 0x0010
123 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
124 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
125 #define F2FS_FEATURE_QUOTA_INO 0x0080
126
127 #define F2FS_HAS_FEATURE(sb, mask) \
128 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
129 #define F2FS_SET_FEATURE(sb, mask) \
130 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
131 #define F2FS_CLEAR_FEATURE(sb, mask) \
132 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
133
134 /* bio stuffs */
135 #define REQ_OP_READ READ
136 #define REQ_OP_WRITE WRITE
137 #define bio_op(bio) ((bio)->bi_rw & 1)
138
bio_set_op_attrs(struct bio * bio,unsigned op,unsigned op_flags)139 static inline void bio_set_op_attrs(struct bio *bio, unsigned op,
140 unsigned op_flags)
141 {
142 bio->bi_rw = op | op_flags;
143 }
144
wbc_to_write_flags(struct writeback_control * wbc)145 static inline int wbc_to_write_flags(struct writeback_control *wbc)
146 {
147 if (wbc->sync_mode == WB_SYNC_ALL)
148 return REQ_SYNC;
149 return 0;
150 }
151
inode_lock(struct inode * inode)152 static inline void inode_lock(struct inode *inode)
153 {
154 mutex_lock(&inode->i_mutex);
155 }
156
inode_trylock(struct inode * inode)157 static inline int inode_trylock(struct inode *inode)
158 {
159 return mutex_trylock(&inode->i_mutex);
160 }
161
inode_unlock(struct inode * inode)162 static inline void inode_unlock(struct inode *inode)
163 {
164 mutex_unlock(&inode->i_mutex);
165 }
166
167 #define rb_entry_safe(ptr, type, member) \
168 ({ typeof(ptr) ____ptr = (ptr); \
169 ____ptr ? rb_entry(____ptr, type, member) : NULL; \
170 })
171
172 #define list_last_entry(ptr, type, member) \
173 list_entry((ptr)->prev, type, member)
174
175 #define list_first_entry(ptr, type, member) \
176 list_entry((ptr)->next, type, member)
177
178 /**
179 * wq_has_sleeper - check if there are any waiting processes
180 * @wq: wait queue head
181 *
182 * Returns true if wq has waiting processes
183 *
184 * Please refer to the comment for waitqueue_active.
185 */
wq_has_sleeper(wait_queue_head_t * wq)186 static inline bool wq_has_sleeper(wait_queue_head_t *wq)
187 {
188 /*
189 * We need to be sure we are in sync with the
190 * add_wait_queue modifications to the wait queue.
191 *
192 * This memory barrier should be paired with one on the
193 * waiting side.
194 */
195 smp_mb();
196 return waitqueue_active(wq);
197 }
198
file_dentry(const struct file * file)199 static inline struct dentry *file_dentry(const struct file *file)
200 {
201 return file->f_path.dentry;
202 }
203
204 /**
205 * current_time - Return FS time
206 * @inode: inode.
207 *
208 * Return the current time truncated to the time granularity supported by
209 * the fs.
210 *
211 * Note that inode and inode->sb cannot be NULL.
212 * Otherwise, the function warns and returns time without truncation.
213 */
current_time(struct inode * inode)214 static inline struct timespec current_time(struct inode *inode)
215 {
216 struct timespec now = current_kernel_time();
217
218 if (unlikely(!inode->i_sb)) {
219 WARN(1, "current_time() called with uninitialized super_block in the inode");
220 return now;
221 }
222
223 return timespec_trunc(now, inode->i_sb->s_time_gran);
224 }
225
226 /*
227 * For checkpoint manager
228 */
229 enum {
230 NAT_BITMAP,
231 SIT_BITMAP
232 };
233
234 #define CP_UMOUNT 0x00000001
235 #define CP_FASTBOOT 0x00000002
236 #define CP_SYNC 0x00000004
237 #define CP_RECOVERY 0x00000008
238 #define CP_DISCARD 0x00000010
239 #define CP_TRIMMED 0x00000020
240
241 #define DEF_BATCHED_TRIM_SECTIONS 2048
242 #define BATCHED_TRIM_SEGMENTS(sbi) \
243 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
244 #define BATCHED_TRIM_BLOCKS(sbi) \
245 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
246 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
247 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
248 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
249 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
250 #define DEF_CP_INTERVAL 60 /* 60 secs */
251 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
252
253 struct cp_control {
254 int reason;
255 __u64 trim_start;
256 __u64 trim_end;
257 __u64 trim_minlen;
258 };
259
260 /*
261 * For CP/NAT/SIT/SSA readahead
262 */
263 enum {
264 META_CP,
265 META_NAT,
266 META_SIT,
267 META_SSA,
268 META_POR,
269 };
270
271 /* for the list of ino */
272 enum {
273 ORPHAN_INO, /* for orphan ino list */
274 APPEND_INO, /* for append ino list */
275 UPDATE_INO, /* for update ino list */
276 FLUSH_INO, /* for multiple device flushing */
277 MAX_INO_ENTRY, /* max. list */
278 };
279
280 struct ino_entry {
281 struct list_head list; /* list head */
282 nid_t ino; /* inode number */
283 unsigned int dirty_device; /* dirty device bitmap */
284 };
285
286 /* for the list of inodes to be GCed */
287 struct inode_entry {
288 struct list_head list; /* list head */
289 struct inode *inode; /* vfs inode pointer */
290 };
291
292 /* for the bitmap indicate blocks to be discarded */
293 struct discard_entry {
294 struct list_head list; /* list head */
295 block_t start_blkaddr; /* start blockaddr of current segment */
296 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
297 };
298
299 /* default discard granularity of inner discard thread, unit: block count */
300 #define DEFAULT_DISCARD_GRANULARITY 16
301
302 /* max discard pend list number */
303 #define MAX_PLIST_NUM 512
304 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
305 (MAX_PLIST_NUM - 1) : (blk_num - 1))
306
307 enum {
308 D_PREP,
309 D_SUBMIT,
310 D_DONE,
311 };
312
313 struct discard_info {
314 block_t lstart; /* logical start address */
315 block_t len; /* length */
316 block_t start; /* actual start address in dev */
317 };
318
319 struct discard_cmd {
320 struct rb_node rb_node; /* rb node located in rb-tree */
321 union {
322 struct {
323 block_t lstart; /* logical start address */
324 block_t len; /* length */
325 block_t start; /* actual start address in dev */
326 };
327 struct discard_info di; /* discard info */
328
329 };
330 struct list_head list; /* command list */
331 struct completion wait; /* compleation */
332 struct block_device *bdev; /* bdev */
333 unsigned short ref; /* reference count */
334 unsigned char state; /* state */
335 int error; /* bio error */
336 };
337
338 enum {
339 DPOLICY_BG,
340 DPOLICY_FORCE,
341 DPOLICY_FSTRIM,
342 DPOLICY_UMOUNT,
343 MAX_DPOLICY,
344 };
345
346 struct discard_policy {
347 int type; /* type of discard */
348 unsigned int min_interval; /* used for candidates exist */
349 unsigned int max_interval; /* used for candidates not exist */
350 unsigned int max_requests; /* # of discards issued per round */
351 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
352 bool io_aware; /* issue discard in idle time */
353 bool sync; /* submit discard with REQ_SYNC flag */
354 unsigned int granularity; /* discard granularity */
355 };
356
357 struct discard_cmd_control {
358 struct task_struct *f2fs_issue_discard; /* discard thread */
359 struct list_head entry_list; /* 4KB discard entry list */
360 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
361 unsigned char pend_list_tag[MAX_PLIST_NUM];/* tag for pending entries */
362 struct list_head wait_list; /* store on-flushing entries */
363 struct list_head fstrim_list; /* in-flight discard from fstrim */
364 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
365 unsigned int discard_wake; /* to wake up discard thread */
366 struct mutex cmd_lock;
367 unsigned int nr_discards; /* # of discards in the list */
368 unsigned int max_discards; /* max. discards to be issued */
369 unsigned int discard_granularity; /* discard granularity */
370 unsigned int undiscard_blks; /* # of undiscard blocks */
371 atomic_t issued_discard; /* # of issued discard */
372 atomic_t issing_discard; /* # of issing discard */
373 atomic_t discard_cmd_cnt; /* # of cached cmd count */
374 struct rb_root root; /* root of discard rb-tree */
375 };
376
377 /* for the list of fsync inodes, used only during recovery */
378 struct fsync_inode_entry {
379 struct list_head list; /* list head */
380 struct inode *inode; /* vfs inode pointer */
381 block_t blkaddr; /* block address locating the last fsync */
382 block_t last_dentry; /* block address locating the last dentry */
383 };
384
385 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
386 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
387
388 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
389 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
390 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
391 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
392
393 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
394 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
395
update_nats_in_cursum(struct f2fs_journal * journal,int i)396 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
397 {
398 int before = nats_in_cursum(journal);
399
400 journal->n_nats = cpu_to_le16(before + i);
401 return before;
402 }
403
update_sits_in_cursum(struct f2fs_journal * journal,int i)404 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
405 {
406 int before = sits_in_cursum(journal);
407
408 journal->n_sits = cpu_to_le16(before + i);
409 return before;
410 }
411
__has_cursum_space(struct f2fs_journal * journal,int size,int type)412 static inline bool __has_cursum_space(struct f2fs_journal *journal,
413 int size, int type)
414 {
415 if (type == NAT_JOURNAL)
416 return size <= MAX_NAT_JENTRIES(journal);
417 return size <= MAX_SIT_JENTRIES(journal);
418 }
419
420 /*
421 * ioctl commands
422 */
423 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
424 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
425 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
426
427 #define F2FS_IOCTL_MAGIC 0xf5
428 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
429 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
430 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
431 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
432 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
433 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
434 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
435 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
436 struct f2fs_defragment)
437 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
438 struct f2fs_move_range)
439 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
440 struct f2fs_flush_device)
441 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
442 struct f2fs_gc_range)
443 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
444
445 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
446 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
447 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
448
449 /*
450 * should be same as XFS_IOC_GOINGDOWN.
451 * Flags for going down operation used by FS_IOC_GOINGDOWN
452 */
453 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
454 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
455 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
456 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
457 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
458
459 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
460 /*
461 * ioctl commands in 32 bit emulation
462 */
463 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
464 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
465 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
466 #endif
467
468 struct f2fs_gc_range {
469 u32 sync;
470 u64 start;
471 u64 len;
472 };
473
474 struct f2fs_defragment {
475 u64 start;
476 u64 len;
477 };
478
479 struct f2fs_move_range {
480 u32 dst_fd; /* destination fd */
481 u64 pos_in; /* start position in src_fd */
482 u64 pos_out; /* start position in dst_fd */
483 u64 len; /* size to move */
484 };
485
486 struct f2fs_flush_device {
487 u32 dev_num; /* device number to flush */
488 u32 segments; /* # of segments to flush */
489 };
490
491 /* for inline stuff */
492 #define DEF_INLINE_RESERVED_SIZE 1
493 #define DEF_MIN_INLINE_SIZE 1
494 static inline int get_extra_isize(struct inode *inode);
495 static inline int get_inline_xattr_addrs(struct inode *inode);
496 #define F2FS_INLINE_XATTR_ADDRS(inode) get_inline_xattr_addrs(inode)
497 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
498 (CUR_ADDRS_PER_INODE(inode) - \
499 F2FS_INLINE_XATTR_ADDRS(inode) - \
500 DEF_INLINE_RESERVED_SIZE))
501
502 /* for inline dir */
503 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
504 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
505 BITS_PER_BYTE + 1))
506 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \
507 BITS_PER_BYTE - 1) / BITS_PER_BYTE)
508 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
509 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
510 NR_INLINE_DENTRY(inode) + \
511 INLINE_DENTRY_BITMAP_SIZE(inode)))
512
513 /*
514 * For INODE and NODE manager
515 */
516 /* for directory operations */
517 struct f2fs_dentry_ptr {
518 struct inode *inode;
519 void *bitmap;
520 struct f2fs_dir_entry *dentry;
521 __u8 (*filename)[F2FS_SLOT_LEN];
522 int max;
523 int nr_bitmap;
524 };
525
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)526 static inline void make_dentry_ptr_block(struct inode *inode,
527 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
528 {
529 d->inode = inode;
530 d->max = NR_DENTRY_IN_BLOCK;
531 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
532 d->bitmap = &t->dentry_bitmap;
533 d->dentry = t->dentry;
534 d->filename = t->filename;
535 }
536
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)537 static inline void make_dentry_ptr_inline(struct inode *inode,
538 struct f2fs_dentry_ptr *d, void *t)
539 {
540 int entry_cnt = NR_INLINE_DENTRY(inode);
541 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
542 int reserved_size = INLINE_RESERVED_SIZE(inode);
543
544 d->inode = inode;
545 d->max = entry_cnt;
546 d->nr_bitmap = bitmap_size;
547 d->bitmap = t;
548 d->dentry = t + bitmap_size + reserved_size;
549 d->filename = t + bitmap_size + reserved_size +
550 SIZE_OF_DIR_ENTRY * entry_cnt;
551 }
552
553 /*
554 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
555 * as its node offset to distinguish from index node blocks.
556 * But some bits are used to mark the node block.
557 */
558 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
559 >> OFFSET_BIT_SHIFT)
560 enum {
561 ALLOC_NODE, /* allocate a new node page if needed */
562 LOOKUP_NODE, /* look up a node without readahead */
563 LOOKUP_NODE_RA, /*
564 * look up a node with readahead called
565 * by get_data_block.
566 */
567 };
568
569 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
570
571 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
572
573 /* vector size for gang look-up from extent cache that consists of radix tree */
574 #define EXT_TREE_VEC_SIZE 64
575
576 /* for in-memory extent cache entry */
577 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
578
579 /* number of extent info in extent cache we try to shrink */
580 #define EXTENT_CACHE_SHRINK_NUMBER 128
581
582 struct rb_entry {
583 struct rb_node rb_node; /* rb node located in rb-tree */
584 unsigned int ofs; /* start offset of the entry */
585 unsigned int len; /* length of the entry */
586 };
587
588 struct extent_info {
589 unsigned int fofs; /* start offset in a file */
590 unsigned int len; /* length of the extent */
591 u32 blk; /* start block address of the extent */
592 };
593
594 struct extent_node {
595 struct rb_node rb_node;
596 union {
597 struct {
598 unsigned int fofs;
599 unsigned int len;
600 u32 blk;
601 };
602 struct extent_info ei; /* extent info */
603
604 };
605 struct list_head list; /* node in global extent list of sbi */
606 struct extent_tree *et; /* extent tree pointer */
607 };
608
609 struct extent_tree {
610 nid_t ino; /* inode number */
611 struct rb_root root; /* root of extent info rb-tree */
612 struct extent_node *cached_en; /* recently accessed extent node */
613 struct extent_info largest; /* largested extent info */
614 struct list_head list; /* to be used by sbi->zombie_list */
615 rwlock_t lock; /* protect extent info rb-tree */
616 atomic_t node_cnt; /* # of extent node in rb-tree*/
617 };
618
619 /*
620 * This structure is taken from ext4_map_blocks.
621 *
622 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
623 */
624 #define F2FS_MAP_NEW (1 << BH_New)
625 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
626 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
627 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
628 F2FS_MAP_UNWRITTEN)
629
630 struct f2fs_map_blocks {
631 block_t m_pblk;
632 block_t m_lblk;
633 unsigned int m_len;
634 unsigned int m_flags;
635 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
636 };
637
638 /* for flag in get_data_block */
639 enum {
640 F2FS_GET_BLOCK_DEFAULT,
641 F2FS_GET_BLOCK_FIEMAP,
642 F2FS_GET_BLOCK_BMAP,
643 F2FS_GET_BLOCK_PRE_DIO,
644 F2FS_GET_BLOCK_PRE_AIO,
645 };
646
647 /*
648 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
649 */
650 #define FADVISE_COLD_BIT 0x01
651 #define FADVISE_LOST_PINO_BIT 0x02
652 #define FADVISE_ENCRYPT_BIT 0x04
653 #define FADVISE_ENC_NAME_BIT 0x08
654 #define FADVISE_KEEP_SIZE_BIT 0x10
655
656 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
657 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
658 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
659 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
660 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
661 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
662 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
663 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
664 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
665 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
666 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
667 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
668 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
669
670 #define DEF_DIR_LEVEL 0
671
672 struct f2fs_inode_info {
673 struct inode vfs_inode; /* serve a vfs inode */
674 unsigned long i_flags; /* keep an inode flags for ioctl */
675 unsigned char i_advise; /* use to give file attribute hints */
676 unsigned char i_dir_level; /* use for dentry level for large dir */
677 unsigned int i_current_depth; /* use only in directory structure */
678 unsigned int i_pino; /* parent inode number */
679 umode_t i_acl_mode; /* keep file acl mode temporarily */
680
681 /* Use below internally in f2fs*/
682 unsigned long flags; /* use to pass per-file flags */
683 struct rw_semaphore i_sem; /* protect fi info */
684 atomic_t dirty_pages; /* # of dirty pages */
685 f2fs_hash_t chash; /* hash value of given file name */
686 unsigned int clevel; /* maximum level of given file name */
687 struct task_struct *task; /* lookup and create consistency */
688 struct task_struct *cp_task; /* separate cp/wb IO stats*/
689 nid_t i_xattr_nid; /* node id that contains xattrs */
690 loff_t last_disk_size; /* lastly written file size */
691
692 #ifdef CONFIG_QUOTA
693 /* quota space reservation, managed internally by quota code */
694 qsize_t i_reserved_quota;
695 #endif
696 struct list_head dirty_list; /* dirty list for dirs and files */
697 struct list_head gdirty_list; /* linked in global dirty list */
698 struct list_head inmem_ilist; /* list for inmem inodes */
699 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
700 struct task_struct *inmem_task; /* store inmemory task */
701 struct mutex inmem_lock; /* lock for inmemory pages */
702 struct extent_tree *extent_tree; /* cached extent_tree entry */
703 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
704 struct rw_semaphore i_mmap_sem;
705 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
706
707 int i_extra_isize; /* size of extra space located in i_addr */
708 kprojid_t i_projid; /* id for project quota */
709 int i_inline_xattr_size; /* inline xattr size */
710 };
711
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)712 static inline void get_extent_info(struct extent_info *ext,
713 struct f2fs_extent *i_ext)
714 {
715 ext->fofs = le32_to_cpu(i_ext->fofs);
716 ext->blk = le32_to_cpu(i_ext->blk);
717 ext->len = le32_to_cpu(i_ext->len);
718 }
719
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)720 static inline void set_raw_extent(struct extent_info *ext,
721 struct f2fs_extent *i_ext)
722 {
723 i_ext->fofs = cpu_to_le32(ext->fofs);
724 i_ext->blk = cpu_to_le32(ext->blk);
725 i_ext->len = cpu_to_le32(ext->len);
726 }
727
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)728 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
729 u32 blk, unsigned int len)
730 {
731 ei->fofs = fofs;
732 ei->blk = blk;
733 ei->len = len;
734 }
735
__is_discard_mergeable(struct discard_info * back,struct discard_info * front)736 static inline bool __is_discard_mergeable(struct discard_info *back,
737 struct discard_info *front)
738 {
739 return back->lstart + back->len == front->lstart;
740 }
741
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back)742 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
743 struct discard_info *back)
744 {
745 return __is_discard_mergeable(back, cur);
746 }
747
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front)748 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
749 struct discard_info *front)
750 {
751 return __is_discard_mergeable(cur, front);
752 }
753
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)754 static inline bool __is_extent_mergeable(struct extent_info *back,
755 struct extent_info *front)
756 {
757 return (back->fofs + back->len == front->fofs &&
758 back->blk + back->len == front->blk);
759 }
760
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)761 static inline bool __is_back_mergeable(struct extent_info *cur,
762 struct extent_info *back)
763 {
764 return __is_extent_mergeable(back, cur);
765 }
766
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)767 static inline bool __is_front_mergeable(struct extent_info *cur,
768 struct extent_info *front)
769 {
770 return __is_extent_mergeable(cur, front);
771 }
772
773 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct inode * inode,struct extent_tree * et,struct extent_node * en)774 static inline void __try_update_largest_extent(struct inode *inode,
775 struct extent_tree *et, struct extent_node *en)
776 {
777 if (en->ei.len > et->largest.len) {
778 et->largest = en->ei;
779 f2fs_mark_inode_dirty_sync(inode, true);
780 }
781 }
782
783 /*
784 * For free nid management
785 */
786 enum nid_state {
787 FREE_NID, /* newly added to free nid list */
788 PREALLOC_NID, /* it is preallocated */
789 MAX_NID_STATE,
790 };
791
792 struct f2fs_nm_info {
793 block_t nat_blkaddr; /* base disk address of NAT */
794 nid_t max_nid; /* maximum possible node ids */
795 nid_t available_nids; /* # of available node ids */
796 nid_t next_scan_nid; /* the next nid to be scanned */
797 unsigned int ram_thresh; /* control the memory footprint */
798 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
799 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
800
801 /* NAT cache management */
802 struct radix_tree_root nat_root;/* root of the nat entry cache */
803 struct radix_tree_root nat_set_root;/* root of the nat set cache */
804 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
805 struct list_head nat_entries; /* cached nat entry list (clean) */
806 unsigned int nat_cnt; /* the # of cached nat entries */
807 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
808 unsigned int nat_blocks; /* # of nat blocks */
809
810 /* free node ids management */
811 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
812 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
813 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
814 spinlock_t nid_list_lock; /* protect nid lists ops */
815 struct mutex build_lock; /* lock for build free nids */
816 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
817 unsigned char *nat_block_bitmap;
818 unsigned short *free_nid_count; /* free nid count of NAT block */
819
820 /* for checkpoint */
821 char *nat_bitmap; /* NAT bitmap pointer */
822
823 unsigned int nat_bits_blocks; /* # of nat bits blocks */
824 unsigned char *nat_bits; /* NAT bits blocks */
825 unsigned char *full_nat_bits; /* full NAT pages */
826 unsigned char *empty_nat_bits; /* empty NAT pages */
827 #ifdef CONFIG_F2FS_CHECK_FS
828 char *nat_bitmap_mir; /* NAT bitmap mirror */
829 #endif
830 int bitmap_size; /* bitmap size */
831 };
832
833 /*
834 * this structure is used as one of function parameters.
835 * all the information are dedicated to a given direct node block determined
836 * by the data offset in a file.
837 */
838 struct dnode_of_data {
839 struct inode *inode; /* vfs inode pointer */
840 struct page *inode_page; /* its inode page, NULL is possible */
841 struct page *node_page; /* cached direct node page */
842 nid_t nid; /* node id of the direct node block */
843 unsigned int ofs_in_node; /* data offset in the node page */
844 bool inode_page_locked; /* inode page is locked or not */
845 bool node_changed; /* is node block changed */
846 char cur_level; /* level of hole node page */
847 char max_level; /* level of current page located */
848 block_t data_blkaddr; /* block address of the node block */
849 };
850
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)851 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
852 struct page *ipage, struct page *npage, nid_t nid)
853 {
854 memset(dn, 0, sizeof(*dn));
855 dn->inode = inode;
856 dn->inode_page = ipage;
857 dn->node_page = npage;
858 dn->nid = nid;
859 }
860
861 /*
862 * For SIT manager
863 *
864 * By default, there are 6 active log areas across the whole main area.
865 * When considering hot and cold data separation to reduce cleaning overhead,
866 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
867 * respectively.
868 * In the current design, you should not change the numbers intentionally.
869 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
870 * logs individually according to the underlying devices. (default: 6)
871 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
872 * data and 8 for node logs.
873 */
874 #define NR_CURSEG_DATA_TYPE (3)
875 #define NR_CURSEG_NODE_TYPE (3)
876 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
877
878 enum {
879 CURSEG_HOT_DATA = 0, /* directory entry blocks */
880 CURSEG_WARM_DATA, /* data blocks */
881 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
882 CURSEG_HOT_NODE, /* direct node blocks of directory files */
883 CURSEG_WARM_NODE, /* direct node blocks of normal files */
884 CURSEG_COLD_NODE, /* indirect node blocks */
885 NO_CHECK_TYPE,
886 };
887
888 struct flush_cmd {
889 struct completion wait;
890 struct llist_node llnode;
891 nid_t ino;
892 int ret;
893 };
894
895 struct flush_cmd_control {
896 struct task_struct *f2fs_issue_flush; /* flush thread */
897 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
898 atomic_t issued_flush; /* # of issued flushes */
899 atomic_t issing_flush; /* # of issing flushes */
900 struct llist_head issue_list; /* list for command issue */
901 struct llist_node *dispatch_list; /* list for command dispatch */
902 };
903
904 struct f2fs_sm_info {
905 struct sit_info *sit_info; /* whole segment information */
906 struct free_segmap_info *free_info; /* free segment information */
907 struct dirty_seglist_info *dirty_info; /* dirty segment information */
908 struct curseg_info *curseg_array; /* active segment information */
909
910 struct rw_semaphore curseg_lock; /* for preventing curseg change */
911
912 block_t seg0_blkaddr; /* block address of 0'th segment */
913 block_t main_blkaddr; /* start block address of main area */
914 block_t ssa_blkaddr; /* start block address of SSA area */
915
916 unsigned int segment_count; /* total # of segments */
917 unsigned int main_segments; /* # of segments in main area */
918 unsigned int reserved_segments; /* # of reserved segments */
919 unsigned int ovp_segments; /* # of overprovision segments */
920
921 /* a threshold to reclaim prefree segments */
922 unsigned int rec_prefree_segments;
923
924 /* for batched trimming */
925 unsigned int trim_sections; /* # of sections to trim */
926
927 struct list_head sit_entry_set; /* sit entry set list */
928
929 unsigned int ipu_policy; /* in-place-update policy */
930 unsigned int min_ipu_util; /* in-place-update threshold */
931 unsigned int min_fsync_blocks; /* threshold for fsync */
932 unsigned int min_hot_blocks; /* threshold for hot block allocation */
933 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
934
935 /* for flush command control */
936 struct flush_cmd_control *fcc_info;
937
938 /* for discard command control */
939 struct discard_cmd_control *dcc_info;
940 };
941
942 /*
943 * For superblock
944 */
945 /*
946 * COUNT_TYPE for monitoring
947 *
948 * f2fs monitors the number of several block types such as on-writeback,
949 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
950 */
951 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
952 enum count_type {
953 F2FS_DIRTY_DENTS,
954 F2FS_DIRTY_DATA,
955 F2FS_DIRTY_QDATA,
956 F2FS_DIRTY_NODES,
957 F2FS_DIRTY_META,
958 F2FS_INMEM_PAGES,
959 F2FS_DIRTY_IMETA,
960 F2FS_WB_CP_DATA,
961 F2FS_WB_DATA,
962 NR_COUNT_TYPE,
963 };
964
965 /*
966 * The below are the page types of bios used in submit_bio().
967 * The available types are:
968 * DATA User data pages. It operates as async mode.
969 * NODE Node pages. It operates as async mode.
970 * META FS metadata pages such as SIT, NAT, CP.
971 * NR_PAGE_TYPE The number of page types.
972 * META_FLUSH Make sure the previous pages are written
973 * with waiting the bio's completion
974 * ... Only can be used with META.
975 */
976 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
977 enum page_type {
978 DATA,
979 NODE,
980 META,
981 NR_PAGE_TYPE,
982 META_FLUSH,
983 INMEM, /* the below types are used by tracepoints only. */
984 INMEM_DROP,
985 INMEM_INVALIDATE,
986 INMEM_REVOKE,
987 IPU,
988 OPU,
989 };
990
991 enum temp_type {
992 HOT = 0, /* must be zero for meta bio */
993 WARM,
994 COLD,
995 NR_TEMP_TYPE,
996 };
997
998 enum need_lock_type {
999 LOCK_REQ = 0,
1000 LOCK_DONE,
1001 LOCK_RETRY,
1002 };
1003
1004 enum cp_reason_type {
1005 CP_NO_NEEDED,
1006 CP_NON_REGULAR,
1007 CP_HARDLINK,
1008 CP_SB_NEED_CP,
1009 CP_WRONG_PINO,
1010 CP_NO_SPC_ROLL,
1011 CP_NODE_NEED_CP,
1012 CP_FASTBOOT_MODE,
1013 CP_SPEC_LOG_NUM,
1014 };
1015
1016 enum iostat_type {
1017 APP_DIRECT_IO, /* app direct IOs */
1018 APP_BUFFERED_IO, /* app buffered IOs */
1019 APP_WRITE_IO, /* app write IOs */
1020 APP_MAPPED_IO, /* app mapped IOs */
1021 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1022 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1023 FS_META_IO, /* meta IOs from kworker/reclaimer */
1024 FS_GC_DATA_IO, /* data IOs from forground gc */
1025 FS_GC_NODE_IO, /* node IOs from forground gc */
1026 FS_CP_DATA_IO, /* data IOs from checkpoint */
1027 FS_CP_NODE_IO, /* node IOs from checkpoint */
1028 FS_CP_META_IO, /* meta IOs from checkpoint */
1029 FS_DISCARD, /* discard */
1030 NR_IO_TYPE,
1031 };
1032
1033 struct f2fs_io_info {
1034 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1035 nid_t ino; /* inode number */
1036 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1037 enum temp_type temp; /* contains HOT/WARM/COLD */
1038 int op; /* contains REQ_OP_ */
1039 int op_flags; /* req_flag_bits */
1040 block_t new_blkaddr; /* new block address to be written */
1041 block_t old_blkaddr; /* old block address before Cow */
1042 struct page *page; /* page to be written */
1043 struct page *encrypted_page; /* encrypted page */
1044 struct list_head list; /* serialize IOs */
1045 bool submitted; /* indicate IO submission */
1046 int need_lock; /* indicate we need to lock cp_rwsem */
1047 bool in_list; /* indicate fio is in io_list */
1048 enum iostat_type io_type; /* io type */
1049 };
1050
1051 #define is_read_io(rw) ((rw) == READ)
1052 struct f2fs_bio_info {
1053 struct f2fs_sb_info *sbi; /* f2fs superblock */
1054 struct bio *bio; /* bios to merge */
1055 sector_t last_block_in_bio; /* last block number */
1056 struct f2fs_io_info fio; /* store buffered io info. */
1057 struct rw_semaphore io_rwsem; /* blocking op for bio */
1058 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1059 struct list_head io_list; /* track fios */
1060 };
1061
1062 #define FDEV(i) (sbi->devs[i])
1063 #define RDEV(i) (raw_super->devs[i])
1064 struct f2fs_dev_info {
1065 struct block_device *bdev;
1066 char path[MAX_PATH_LEN];
1067 unsigned int total_segments;
1068 block_t start_blk;
1069 block_t end_blk;
1070 #ifdef CONFIG_BLK_DEV_ZONED
1071 unsigned int nr_blkz; /* Total number of zones */
1072 u8 *blkz_type; /* Array of zones type */
1073 #endif
1074 };
1075
1076 enum inode_type {
1077 DIR_INODE, /* for dirty dir inode */
1078 FILE_INODE, /* for dirty regular/symlink inode */
1079 DIRTY_META, /* for all dirtied inode metadata */
1080 ATOMIC_FILE, /* for all atomic files */
1081 NR_INODE_TYPE,
1082 };
1083
1084 /* for inner inode cache management */
1085 struct inode_management {
1086 struct radix_tree_root ino_root; /* ino entry array */
1087 spinlock_t ino_lock; /* for ino entry lock */
1088 struct list_head ino_list; /* inode list head */
1089 unsigned long ino_num; /* number of entries */
1090 };
1091
1092 /* For s_flag in struct f2fs_sb_info */
1093 enum {
1094 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1095 SBI_IS_CLOSE, /* specify unmounting */
1096 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1097 SBI_POR_DOING, /* recovery is doing or not */
1098 SBI_NEED_SB_WRITE, /* need to recover superblock */
1099 SBI_NEED_CP, /* need to checkpoint */
1100 };
1101
1102 enum {
1103 CP_TIME,
1104 REQ_TIME,
1105 MAX_TIME,
1106 };
1107
1108 #ifdef CONFIG_QUOTA
1109 #define F2FS_MAXQUOTAS 2
1110 #endif
1111
1112 struct f2fs_sb_info {
1113 struct super_block *sb; /* pointer to VFS super block */
1114 struct proc_dir_entry *s_proc; /* proc entry */
1115 struct f2fs_super_block *raw_super; /* raw super block pointer */
1116 int valid_super_block; /* valid super block no */
1117 unsigned long s_flag; /* flags for sbi */
1118
1119 #ifdef CONFIG_BLK_DEV_ZONED
1120 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1121 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1122 #endif
1123
1124 /* for node-related operations */
1125 struct f2fs_nm_info *nm_info; /* node manager */
1126 struct inode *node_inode; /* cache node blocks */
1127
1128 /* for segment-related operations */
1129 struct f2fs_sm_info *sm_info; /* segment manager */
1130
1131 /* for bio operations */
1132 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1133 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1134 /* bio ordering for NODE/DATA */
1135 int write_io_size_bits; /* Write IO size bits */
1136 mempool_t *write_io_dummy; /* Dummy pages */
1137
1138 /* for checkpoint */
1139 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1140 int cur_cp_pack; /* remain current cp pack */
1141 spinlock_t cp_lock; /* for flag in ckpt */
1142 struct inode *meta_inode; /* cache meta blocks */
1143 struct mutex cp_mutex; /* checkpoint procedure lock */
1144 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1145 struct rw_semaphore node_write; /* locking node writes */
1146 struct rw_semaphore node_change; /* locking node change */
1147 wait_queue_head_t cp_wait;
1148 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1149 long interval_time[MAX_TIME]; /* to store thresholds */
1150
1151 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1152
1153 /* for orphan inode, use 0'th array */
1154 unsigned int max_orphans; /* max orphan inodes */
1155
1156 /* for inode management */
1157 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1158 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1159
1160 /* for extent tree cache */
1161 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1162 struct mutex extent_tree_lock; /* locking extent radix tree */
1163 struct list_head extent_list; /* lru list for shrinker */
1164 spinlock_t extent_lock; /* locking extent lru list */
1165 atomic_t total_ext_tree; /* extent tree count */
1166 struct list_head zombie_list; /* extent zombie tree list */
1167 atomic_t total_zombie_tree; /* extent zombie tree count */
1168 atomic_t total_ext_node; /* extent info count */
1169
1170 /* basic filesystem units */
1171 unsigned int log_sectors_per_block; /* log2 sectors per block */
1172 unsigned int log_blocksize; /* log2 block size */
1173 unsigned int blocksize; /* block size */
1174 unsigned int root_ino_num; /* root inode number*/
1175 unsigned int node_ino_num; /* node inode number*/
1176 unsigned int meta_ino_num; /* meta inode number*/
1177 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1178 unsigned int blocks_per_seg; /* blocks per segment */
1179 unsigned int segs_per_sec; /* segments per section */
1180 unsigned int secs_per_zone; /* sections per zone */
1181 unsigned int total_sections; /* total section count */
1182 unsigned int total_node_count; /* total node block count */
1183 unsigned int total_valid_node_count; /* valid node block count */
1184 loff_t max_file_blocks; /* max block index of file */
1185 int active_logs; /* # of active logs */
1186 int dir_level; /* directory level */
1187 int inline_xattr_size; /* inline xattr size */
1188 unsigned int trigger_ssr_threshold; /* threshold to trigger ssr */
1189
1190 block_t user_block_count; /* # of user blocks */
1191 block_t total_valid_block_count; /* # of valid blocks */
1192 block_t discard_blks; /* discard command candidats */
1193 block_t last_valid_block_count; /* for recovery */
1194 block_t reserved_blocks; /* configurable reserved blocks */
1195 block_t current_reserved_blocks; /* current reserved blocks */
1196
1197 u32 s_next_generation; /* for NFS support */
1198
1199 /* # of pages, see count_type */
1200 atomic_t nr_pages[NR_COUNT_TYPE];
1201 /* # of allocated blocks */
1202 struct percpu_counter alloc_valid_block_count;
1203
1204 /* writeback control */
1205 atomic_t wb_sync_req; /* count # of WB_SYNC threads */
1206
1207 /* valid inode count */
1208 struct percpu_counter total_valid_inode_count;
1209
1210 struct f2fs_mount_info mount_opt; /* mount options */
1211
1212 /* for cleaning operations */
1213 struct mutex gc_mutex; /* mutex for GC */
1214 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1215 unsigned int cur_victim_sec; /* current victim section num */
1216
1217 /* threshold for converting bg victims for fg */
1218 u64 fggc_threshold;
1219
1220 /* maximum # of trials to find a victim segment for SSR and GC */
1221 unsigned int max_victim_search;
1222
1223 /*
1224 * for stat information.
1225 * one is for the LFS mode, and the other is for the SSR mode.
1226 */
1227 #ifdef CONFIG_F2FS_STAT_FS
1228 struct f2fs_stat_info *stat_info; /* FS status information */
1229 unsigned int segment_count[2]; /* # of allocated segments */
1230 unsigned int block_count[2]; /* # of allocated blocks */
1231 atomic_t inplace_count; /* # of inplace update */
1232 atomic64_t total_hit_ext; /* # of lookup extent cache */
1233 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1234 atomic64_t read_hit_largest; /* # of hit largest extent node */
1235 atomic64_t read_hit_cached; /* # of hit cached extent node */
1236 atomic_t inline_xattr; /* # of inline_xattr inodes */
1237 atomic_t inline_inode; /* # of inline_data inodes */
1238 atomic_t inline_dir; /* # of inline_dentry inodes */
1239 atomic_t aw_cnt; /* # of atomic writes */
1240 atomic_t vw_cnt; /* # of volatile writes */
1241 atomic_t max_aw_cnt; /* max # of atomic writes */
1242 atomic_t max_vw_cnt; /* max # of volatile writes */
1243 int bg_gc; /* background gc calls */
1244 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1245 #endif
1246 spinlock_t stat_lock; /* lock for stat operations */
1247
1248 /* For app/fs IO statistics */
1249 spinlock_t iostat_lock;
1250 unsigned long long write_iostat[NR_IO_TYPE];
1251 bool iostat_enable;
1252
1253 /* For sysfs suppport */
1254 struct kobject s_kobj;
1255 struct completion s_kobj_unregister;
1256
1257 /* For shrinker support */
1258 struct list_head s_list;
1259 int s_ndevs; /* number of devices */
1260 struct f2fs_dev_info *devs; /* for device list */
1261 unsigned int dirty_device; /* for checkpoint data flush */
1262 spinlock_t dev_lock; /* protect dirty_device */
1263 struct mutex umount_mutex;
1264 unsigned int shrinker_run_no;
1265
1266 /* For write statistics */
1267 u64 sectors_written_start;
1268 u64 kbytes_written;
1269
1270 /* Reference to checksum algorithm driver via cryptoapi */
1271 struct crypto_shash *s_chksum_driver;
1272
1273 /* Precomputed FS UUID checksum for seeding other checksums */
1274 __u32 s_chksum_seed;
1275
1276 /* For fault injection */
1277 #ifdef CONFIG_F2FS_FAULT_INJECTION
1278 struct f2fs_fault_info fault_info;
1279 #endif
1280
1281 #ifdef CONFIG_QUOTA
1282 /* Names of quota files with journalled quota */
1283 char *s_qf_names[F2FS_MAXQUOTAS];
1284 int s_jquota_fmt; /* Format of quota to use */
1285 #endif
1286 };
1287
1288 #ifdef CONFIG_F2FS_FAULT_INJECTION
1289 #define f2fs_show_injection_info(type) \
1290 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
1291 KERN_INFO, fault_name[type], \
1292 __func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1293 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1294 {
1295 struct f2fs_fault_info *ffi = &sbi->fault_info;
1296
1297 if (!ffi->inject_rate)
1298 return false;
1299
1300 if (!IS_FAULT_SET(ffi, type))
1301 return false;
1302
1303 atomic_inc(&ffi->inject_ops);
1304 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1305 atomic_set(&ffi->inject_ops, 0);
1306 return true;
1307 }
1308 return false;
1309 }
1310 #endif
1311
1312 /* For write statistics. Suppose sector size is 512 bytes,
1313 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1314 */
1315 #define BD_PART_WRITTEN(s) \
1316 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \
1317 (s)->sectors_written_start) >> 1)
1318
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1319 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1320 {
1321 sbi->last_time[type] = jiffies;
1322 }
1323
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1324 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1325 {
1326 unsigned long interval = sbi->interval_time[type] * HZ;
1327
1328 return time_after(jiffies, sbi->last_time[type] + interval);
1329 }
1330
is_idle(struct f2fs_sb_info * sbi)1331 static inline bool is_idle(struct f2fs_sb_info *sbi)
1332 {
1333 struct block_device *bdev = sbi->sb->s_bdev;
1334 struct request_queue *q = bdev_get_queue(bdev);
1335 struct request_list *rl = &q->root_rl;
1336
1337 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1338 return 0;
1339
1340 return f2fs_time_over(sbi, REQ_TIME);
1341 }
1342
1343 /*
1344 * Inline functions
1345 */
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1346 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1347 unsigned int length)
1348 {
1349 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1350 u32 *ctx = (u32 *)shash_desc_ctx(shash);
1351 int err;
1352
1353 shash->tfm = sbi->s_chksum_driver;
1354 shash->flags = 0;
1355 *ctx = F2FS_SUPER_MAGIC;
1356
1357 err = crypto_shash_update(shash, address, length);
1358 BUG_ON(err);
1359
1360 return *ctx;
1361 }
1362
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1363 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1364 void *buf, size_t buf_size)
1365 {
1366 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1367 }
1368
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1369 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1370 const void *address, unsigned int length)
1371 {
1372 struct {
1373 struct shash_desc shash;
1374 char ctx[4];
1375 } desc;
1376 int err;
1377
1378 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1379
1380 desc.shash.tfm = sbi->s_chksum_driver;
1381 desc.shash.flags = 0;
1382 *(u32 *)desc.ctx = crc;
1383
1384 err = crypto_shash_update(&desc.shash, address, length);
1385 BUG_ON(err);
1386
1387 return *(u32 *)desc.ctx;
1388 }
1389
F2FS_I(struct inode * inode)1390 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1391 {
1392 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1393 }
1394
F2FS_SB(struct super_block * sb)1395 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1396 {
1397 return sb->s_fs_info;
1398 }
1399
F2FS_I_SB(struct inode * inode)1400 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1401 {
1402 return F2FS_SB(inode->i_sb);
1403 }
1404
F2FS_M_SB(struct address_space * mapping)1405 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1406 {
1407 return F2FS_I_SB(mapping->host);
1408 }
1409
F2FS_P_SB(struct page * page)1410 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1411 {
1412 return F2FS_M_SB(page->mapping);
1413 }
1414
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1415 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1416 {
1417 return (struct f2fs_super_block *)(sbi->raw_super);
1418 }
1419
F2FS_CKPT(struct f2fs_sb_info * sbi)1420 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1421 {
1422 return (struct f2fs_checkpoint *)(sbi->ckpt);
1423 }
1424
F2FS_NODE(struct page * page)1425 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1426 {
1427 return (struct f2fs_node *)page_address(page);
1428 }
1429
F2FS_INODE(struct page * page)1430 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1431 {
1432 return &((struct f2fs_node *)page_address(page))->i;
1433 }
1434
NM_I(struct f2fs_sb_info * sbi)1435 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1436 {
1437 return (struct f2fs_nm_info *)(sbi->nm_info);
1438 }
1439
SM_I(struct f2fs_sb_info * sbi)1440 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1441 {
1442 return (struct f2fs_sm_info *)(sbi->sm_info);
1443 }
1444
SIT_I(struct f2fs_sb_info * sbi)1445 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1446 {
1447 return (struct sit_info *)(SM_I(sbi)->sit_info);
1448 }
1449
FREE_I(struct f2fs_sb_info * sbi)1450 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1451 {
1452 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1453 }
1454
DIRTY_I(struct f2fs_sb_info * sbi)1455 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1456 {
1457 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1458 }
1459
META_MAPPING(struct f2fs_sb_info * sbi)1460 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1461 {
1462 return sbi->meta_inode->i_mapping;
1463 }
1464
NODE_MAPPING(struct f2fs_sb_info * sbi)1465 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1466 {
1467 return sbi->node_inode->i_mapping;
1468 }
1469
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1470 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1471 {
1472 return test_bit(type, &sbi->s_flag);
1473 }
1474
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1475 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1476 {
1477 set_bit(type, &sbi->s_flag);
1478 }
1479
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1480 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1481 {
1482 clear_bit(type, &sbi->s_flag);
1483 }
1484
cur_cp_version(struct f2fs_checkpoint * cp)1485 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1486 {
1487 return le64_to_cpu(cp->checkpoint_ver);
1488 }
1489
f2fs_qf_ino(struct super_block * sb,int type)1490 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
1491 {
1492 if (type < F2FS_MAX_QUOTAS)
1493 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
1494 return 0;
1495 }
1496
cur_cp_crc(struct f2fs_checkpoint * cp)1497 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1498 {
1499 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1500 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1501 }
1502
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1503 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1504 {
1505 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1506
1507 return ckpt_flags & f;
1508 }
1509
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1510 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1511 {
1512 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1513 }
1514
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1515 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1516 {
1517 unsigned int ckpt_flags;
1518
1519 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1520 ckpt_flags |= f;
1521 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1522 }
1523
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1524 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1525 {
1526 unsigned long flags;
1527
1528 spin_lock_irqsave(&sbi->cp_lock, flags);
1529 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1530 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1531 }
1532
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)1533 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1534 {
1535 unsigned int ckpt_flags;
1536
1537 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1538 ckpt_flags &= (~f);
1539 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1540 }
1541
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)1542 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1543 {
1544 unsigned long flags;
1545
1546 spin_lock_irqsave(&sbi->cp_lock, flags);
1547 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1548 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1549 }
1550
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)1551 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1552 {
1553 unsigned long flags;
1554
1555 set_sbi_flag(sbi, SBI_NEED_FSCK);
1556
1557 if (lock)
1558 spin_lock_irqsave(&sbi->cp_lock, flags);
1559 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1560 kfree(NM_I(sbi)->nat_bits);
1561 NM_I(sbi)->nat_bits = NULL;
1562 if (lock)
1563 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1564 }
1565
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)1566 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1567 struct cp_control *cpc)
1568 {
1569 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1570
1571 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1572 }
1573
f2fs_lock_op(struct f2fs_sb_info * sbi)1574 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1575 {
1576 down_read(&sbi->cp_rwsem);
1577 }
1578
f2fs_trylock_op(struct f2fs_sb_info * sbi)1579 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1580 {
1581 return down_read_trylock(&sbi->cp_rwsem);
1582 }
1583
f2fs_unlock_op(struct f2fs_sb_info * sbi)1584 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1585 {
1586 up_read(&sbi->cp_rwsem);
1587 }
1588
f2fs_lock_all(struct f2fs_sb_info * sbi)1589 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1590 {
1591 down_write(&sbi->cp_rwsem);
1592 }
1593
f2fs_unlock_all(struct f2fs_sb_info * sbi)1594 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1595 {
1596 up_write(&sbi->cp_rwsem);
1597 }
1598
__get_cp_reason(struct f2fs_sb_info * sbi)1599 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1600 {
1601 int reason = CP_SYNC;
1602
1603 if (test_opt(sbi, FASTBOOT))
1604 reason = CP_FASTBOOT;
1605 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1606 reason = CP_UMOUNT;
1607 return reason;
1608 }
1609
__remain_node_summaries(int reason)1610 static inline bool __remain_node_summaries(int reason)
1611 {
1612 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1613 }
1614
__exist_node_summaries(struct f2fs_sb_info * sbi)1615 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1616 {
1617 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1618 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1619 }
1620
1621 /*
1622 * Check whether the given nid is within node id range.
1623 */
check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)1624 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1625 {
1626 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1627 return -EINVAL;
1628 if (unlikely(nid >= NM_I(sbi)->max_nid))
1629 return -EINVAL;
1630 return 0;
1631 }
1632
1633 /*
1634 * Check whether the inode has blocks or not
1635 */
F2FS_HAS_BLOCKS(struct inode * inode)1636 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1637 {
1638 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1639
1640 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1641 }
1642
f2fs_has_xattr_block(unsigned int ofs)1643 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1644 {
1645 return ofs == XATTR_NODE_OFFSET;
1646 }
1647
1648 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)1649 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1650 struct inode *inode, blkcnt_t *count)
1651 {
1652 blkcnt_t diff = 0, release = 0;
1653 block_t avail_user_block_count;
1654 int ret;
1655
1656 ret = dquot_reserve_block(inode, *count);
1657 if (ret)
1658 return ret;
1659
1660 #ifdef CONFIG_F2FS_FAULT_INJECTION
1661 if (time_to_inject(sbi, FAULT_BLOCK)) {
1662 f2fs_show_injection_info(FAULT_BLOCK);
1663 release = *count;
1664 goto enospc;
1665 }
1666 #endif
1667 /*
1668 * let's increase this in prior to actual block count change in order
1669 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1670 */
1671 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1672
1673 spin_lock(&sbi->stat_lock);
1674 sbi->total_valid_block_count += (block_t)(*count);
1675 avail_user_block_count = sbi->user_block_count -
1676 sbi->current_reserved_blocks;
1677 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1678 diff = sbi->total_valid_block_count - avail_user_block_count;
1679 *count -= diff;
1680 release = diff;
1681 sbi->total_valid_block_count = avail_user_block_count;
1682 if (!*count) {
1683 spin_unlock(&sbi->stat_lock);
1684 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1685 goto enospc;
1686 }
1687 }
1688 spin_unlock(&sbi->stat_lock);
1689
1690 if (release)
1691 dquot_release_reservation_block(inode, release);
1692 f2fs_i_blocks_write(inode, *count, true, true);
1693 return 0;
1694
1695 enospc:
1696 dquot_release_reservation_block(inode, release);
1697 return -ENOSPC;
1698 }
1699
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)1700 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1701 struct inode *inode,
1702 block_t count)
1703 {
1704 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1705
1706 spin_lock(&sbi->stat_lock);
1707 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1708 f2fs_bug_on(sbi, inode->i_blocks < sectors);
1709 sbi->total_valid_block_count -= (block_t)count;
1710 if (sbi->reserved_blocks &&
1711 sbi->current_reserved_blocks < sbi->reserved_blocks)
1712 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
1713 sbi->current_reserved_blocks + count);
1714 spin_unlock(&sbi->stat_lock);
1715 f2fs_i_blocks_write(inode, count, false, true);
1716 }
1717
inc_page_count(struct f2fs_sb_info * sbi,int count_type)1718 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1719 {
1720 atomic_inc(&sbi->nr_pages[count_type]);
1721
1722 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1723 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1724 return;
1725
1726 set_sbi_flag(sbi, SBI_IS_DIRTY);
1727 }
1728
inode_inc_dirty_pages(struct inode * inode)1729 static inline void inode_inc_dirty_pages(struct inode *inode)
1730 {
1731 atomic_inc(&F2FS_I(inode)->dirty_pages);
1732 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1733 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1734 if (IS_NOQUOTA(inode))
1735 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1736 }
1737
dec_page_count(struct f2fs_sb_info * sbi,int count_type)1738 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1739 {
1740 atomic_dec(&sbi->nr_pages[count_type]);
1741 }
1742
inode_dec_dirty_pages(struct inode * inode)1743 static inline void inode_dec_dirty_pages(struct inode *inode)
1744 {
1745 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1746 !S_ISLNK(inode->i_mode))
1747 return;
1748
1749 atomic_dec(&F2FS_I(inode)->dirty_pages);
1750 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1751 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1752 if (IS_NOQUOTA(inode))
1753 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
1754 }
1755
get_pages(struct f2fs_sb_info * sbi,int count_type)1756 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1757 {
1758 return atomic_read(&sbi->nr_pages[count_type]);
1759 }
1760
get_dirty_pages(struct inode * inode)1761 static inline int get_dirty_pages(struct inode *inode)
1762 {
1763 return atomic_read(&F2FS_I(inode)->dirty_pages);
1764 }
1765
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)1766 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1767 {
1768 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1769 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1770 sbi->log_blocks_per_seg;
1771
1772 return segs / sbi->segs_per_sec;
1773 }
1774
valid_user_blocks(struct f2fs_sb_info * sbi)1775 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1776 {
1777 return sbi->total_valid_block_count;
1778 }
1779
discard_blocks(struct f2fs_sb_info * sbi)1780 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1781 {
1782 return sbi->discard_blks;
1783 }
1784
__bitmap_size(struct f2fs_sb_info * sbi,int flag)1785 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1786 {
1787 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1788
1789 /* return NAT or SIT bitmap */
1790 if (flag == NAT_BITMAP)
1791 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1792 else if (flag == SIT_BITMAP)
1793 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1794
1795 return 0;
1796 }
1797
__cp_payload(struct f2fs_sb_info * sbi)1798 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1799 {
1800 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1801 }
1802
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)1803 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1804 {
1805 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1806 int offset;
1807
1808 if (__cp_payload(sbi) > 0) {
1809 if (flag == NAT_BITMAP)
1810 return &ckpt->sit_nat_version_bitmap;
1811 else
1812 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1813 } else {
1814 offset = (flag == NAT_BITMAP) ?
1815 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1816 return &ckpt->sit_nat_version_bitmap + offset;
1817 }
1818 }
1819
__start_cp_addr(struct f2fs_sb_info * sbi)1820 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1821 {
1822 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1823
1824 if (sbi->cur_cp_pack == 2)
1825 start_addr += sbi->blocks_per_seg;
1826 return start_addr;
1827 }
1828
__start_cp_next_addr(struct f2fs_sb_info * sbi)1829 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1830 {
1831 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1832
1833 if (sbi->cur_cp_pack == 1)
1834 start_addr += sbi->blocks_per_seg;
1835 return start_addr;
1836 }
1837
__set_cp_next_pack(struct f2fs_sb_info * sbi)1838 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1839 {
1840 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1841 }
1842
__start_sum_addr(struct f2fs_sb_info * sbi)1843 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1844 {
1845 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1846 }
1847
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)1848 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1849 struct inode *inode, bool is_inode)
1850 {
1851 block_t valid_block_count;
1852 unsigned int valid_node_count;
1853 bool quota = inode && !is_inode;
1854
1855 if (quota) {
1856 int ret = dquot_reserve_block(inode, 1);
1857 if (ret)
1858 return ret;
1859 }
1860
1861 #ifdef CONFIG_F2FS_FAULT_INJECTION
1862 if (time_to_inject(sbi, FAULT_BLOCK)) {
1863 f2fs_show_injection_info(FAULT_BLOCK);
1864 goto enospc;
1865 }
1866 #endif
1867
1868 spin_lock(&sbi->stat_lock);
1869
1870 valid_block_count = sbi->total_valid_block_count + 1;
1871 if (unlikely(valid_block_count + sbi->current_reserved_blocks >
1872 sbi->user_block_count)) {
1873 spin_unlock(&sbi->stat_lock);
1874 goto enospc;
1875 }
1876
1877 valid_node_count = sbi->total_valid_node_count + 1;
1878 if (unlikely(valid_node_count > sbi->total_node_count)) {
1879 spin_unlock(&sbi->stat_lock);
1880 goto enospc;
1881 }
1882
1883 sbi->total_valid_node_count++;
1884 sbi->total_valid_block_count++;
1885 spin_unlock(&sbi->stat_lock);
1886
1887 if (inode) {
1888 if (is_inode)
1889 f2fs_mark_inode_dirty_sync(inode, true);
1890 else
1891 f2fs_i_blocks_write(inode, 1, true, true);
1892 }
1893
1894 percpu_counter_inc(&sbi->alloc_valid_block_count);
1895 return 0;
1896
1897 enospc:
1898 if (quota)
1899 dquot_release_reservation_block(inode, 1);
1900 return -ENOSPC;
1901 }
1902
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)1903 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1904 struct inode *inode, bool is_inode)
1905 {
1906 spin_lock(&sbi->stat_lock);
1907
1908 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1909 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1910 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1911
1912 sbi->total_valid_node_count--;
1913 sbi->total_valid_block_count--;
1914 if (sbi->reserved_blocks &&
1915 sbi->current_reserved_blocks < sbi->reserved_blocks)
1916 sbi->current_reserved_blocks++;
1917
1918 spin_unlock(&sbi->stat_lock);
1919
1920 if (!is_inode)
1921 f2fs_i_blocks_write(inode, 1, false, true);
1922 }
1923
valid_node_count(struct f2fs_sb_info * sbi)1924 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1925 {
1926 return sbi->total_valid_node_count;
1927 }
1928
inc_valid_inode_count(struct f2fs_sb_info * sbi)1929 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1930 {
1931 percpu_counter_inc(&sbi->total_valid_inode_count);
1932 }
1933
dec_valid_inode_count(struct f2fs_sb_info * sbi)1934 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1935 {
1936 percpu_counter_dec(&sbi->total_valid_inode_count);
1937 }
1938
valid_inode_count(struct f2fs_sb_info * sbi)1939 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1940 {
1941 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1942 }
1943
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)1944 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1945 pgoff_t index, bool for_write)
1946 {
1947 #ifdef CONFIG_F2FS_FAULT_INJECTION
1948 struct page *page = find_lock_page(mapping, index);
1949
1950 if (page)
1951 return page;
1952
1953 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1954 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1955 return NULL;
1956 }
1957 #endif
1958 if (!for_write)
1959 return grab_cache_page(mapping, index);
1960 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1961 }
1962
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)1963 static inline struct page *f2fs_pagecache_get_page(
1964 struct address_space *mapping, pgoff_t index,
1965 int fgp_flags, gfp_t gfp_mask)
1966 {
1967 #ifdef CONFIG_F2FS_FAULT_INJECTION
1968 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
1969 f2fs_show_injection_info(FAULT_PAGE_GET);
1970 return NULL;
1971 }
1972 #endif
1973 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
1974 }
1975
f2fs_copy_page(struct page * src,struct page * dst)1976 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1977 {
1978 char *src_kaddr = kmap(src);
1979 char *dst_kaddr = kmap(dst);
1980
1981 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1982 kunmap(dst);
1983 kunmap(src);
1984 }
1985
f2fs_put_page(struct page * page,int unlock)1986 static inline void f2fs_put_page(struct page *page, int unlock)
1987 {
1988 if (!page)
1989 return;
1990
1991 if (unlock) {
1992 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1993 unlock_page(page);
1994 }
1995 put_page(page);
1996 }
1997
f2fs_put_dnode(struct dnode_of_data * dn)1998 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1999 {
2000 if (dn->node_page)
2001 f2fs_put_page(dn->node_page, 1);
2002 if (dn->inode_page && dn->node_page != dn->inode_page)
2003 f2fs_put_page(dn->inode_page, 0);
2004 dn->node_page = NULL;
2005 dn->inode_page = NULL;
2006 }
2007
f2fs_kmem_cache_create(const char * name,size_t size)2008 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2009 size_t size)
2010 {
2011 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2012 }
2013
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)2014 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2015 gfp_t flags)
2016 {
2017 void *entry;
2018
2019 entry = kmem_cache_alloc(cachep, flags);
2020 if (!entry)
2021 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2022 return entry;
2023 }
2024
f2fs_bio_alloc(struct f2fs_sb_info * sbi,int npages,bool no_fail)2025 static inline struct bio *f2fs_bio_alloc(struct f2fs_sb_info *sbi,
2026 int npages, bool no_fail)
2027 {
2028 struct bio *bio;
2029
2030 if (no_fail) {
2031 /* No failure on bio allocation */
2032 bio = bio_alloc(GFP_NOIO, npages);
2033 if (!bio)
2034 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
2035 return bio;
2036 }
2037 #ifdef CONFIG_F2FS_FAULT_INJECTION
2038 if (time_to_inject(sbi, FAULT_ALLOC_BIO)) {
2039 f2fs_show_injection_info(FAULT_ALLOC_BIO);
2040 return NULL;
2041 }
2042 #endif
2043 return bio_alloc(GFP_KERNEL, npages);
2044 }
2045
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2046 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2047 unsigned long index, void *item)
2048 {
2049 while (radix_tree_insert(root, index, item))
2050 cond_resched();
2051 }
2052
2053 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2054
IS_INODE(struct page * page)2055 static inline bool IS_INODE(struct page *page)
2056 {
2057 struct f2fs_node *p = F2FS_NODE(page);
2058
2059 return RAW_IS_INODE(p);
2060 }
2061
offset_in_addr(struct f2fs_inode * i)2062 static inline int offset_in_addr(struct f2fs_inode *i)
2063 {
2064 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2065 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2066 }
2067
blkaddr_in_node(struct f2fs_node * node)2068 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2069 {
2070 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2071 }
2072
2073 static inline int f2fs_has_extra_attr(struct inode *inode);
datablock_addr(struct inode * inode,struct page * node_page,unsigned int offset)2074 static inline block_t datablock_addr(struct inode *inode,
2075 struct page *node_page, unsigned int offset)
2076 {
2077 struct f2fs_node *raw_node;
2078 __le32 *addr_array;
2079 int base = 0;
2080 bool is_inode = IS_INODE(node_page);
2081
2082 raw_node = F2FS_NODE(node_page);
2083
2084 /* from GC path only */
2085 if (!inode) {
2086 if (is_inode)
2087 base = offset_in_addr(&raw_node->i);
2088 } else if (f2fs_has_extra_attr(inode) && is_inode) {
2089 base = get_extra_isize(inode);
2090 }
2091
2092 addr_array = blkaddr_in_node(raw_node);
2093 return le32_to_cpu(addr_array[base + offset]);
2094 }
2095
f2fs_test_bit(unsigned int nr,char * addr)2096 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2097 {
2098 int mask;
2099
2100 addr += (nr >> 3);
2101 mask = 1 << (7 - (nr & 0x07));
2102 return mask & *addr;
2103 }
2104
f2fs_set_bit(unsigned int nr,char * addr)2105 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2106 {
2107 int mask;
2108
2109 addr += (nr >> 3);
2110 mask = 1 << (7 - (nr & 0x07));
2111 *addr |= mask;
2112 }
2113
f2fs_clear_bit(unsigned int nr,char * addr)2114 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2115 {
2116 int mask;
2117
2118 addr += (nr >> 3);
2119 mask = 1 << (7 - (nr & 0x07));
2120 *addr &= ~mask;
2121 }
2122
f2fs_test_and_set_bit(unsigned int nr,char * addr)2123 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2124 {
2125 int mask;
2126 int ret;
2127
2128 addr += (nr >> 3);
2129 mask = 1 << (7 - (nr & 0x07));
2130 ret = mask & *addr;
2131 *addr |= mask;
2132 return ret;
2133 }
2134
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2135 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2136 {
2137 int mask;
2138 int ret;
2139
2140 addr += (nr >> 3);
2141 mask = 1 << (7 - (nr & 0x07));
2142 ret = mask & *addr;
2143 *addr &= ~mask;
2144 return ret;
2145 }
2146
f2fs_change_bit(unsigned int nr,char * addr)2147 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2148 {
2149 int mask;
2150
2151 addr += (nr >> 3);
2152 mask = 1 << (7 - (nr & 0x07));
2153 *addr ^= mask;
2154 }
2155
2156 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
2157 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
2158 #define F2FS_FL_INHERITED (FS_PROJINHERIT_FL)
2159
f2fs_mask_flags(umode_t mode,__u32 flags)2160 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2161 {
2162 if (S_ISDIR(mode))
2163 return flags;
2164 else if (S_ISREG(mode))
2165 return flags & F2FS_REG_FLMASK;
2166 else
2167 return flags & F2FS_OTHER_FLMASK;
2168 }
2169
2170 /* used for f2fs_inode_info->flags */
2171 enum {
2172 FI_NEW_INODE, /* indicate newly allocated inode */
2173 FI_DIRTY_INODE, /* indicate inode is dirty or not */
2174 FI_AUTO_RECOVER, /* indicate inode is recoverable */
2175 FI_DIRTY_DIR, /* indicate directory has dirty pages */
2176 FI_INC_LINK, /* need to increment i_nlink */
2177 FI_ACL_MODE, /* indicate acl mode */
2178 FI_NO_ALLOC, /* should not allocate any blocks */
2179 FI_FREE_NID, /* free allocated nide */
2180 FI_NO_EXTENT, /* not to use the extent cache */
2181 FI_INLINE_XATTR, /* used for inline xattr */
2182 FI_INLINE_DATA, /* used for inline data*/
2183 FI_INLINE_DENTRY, /* used for inline dentry */
2184 FI_APPEND_WRITE, /* inode has appended data */
2185 FI_UPDATE_WRITE, /* inode has in-place-update data */
2186 FI_NEED_IPU, /* used for ipu per file */
2187 FI_ATOMIC_FILE, /* indicate atomic file */
2188 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
2189 FI_VOLATILE_FILE, /* indicate volatile file */
2190 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
2191 FI_DROP_CACHE, /* drop dirty page cache */
2192 FI_DATA_EXIST, /* indicate data exists */
2193 FI_INLINE_DOTS, /* indicate inline dot dentries */
2194 FI_DO_DEFRAG, /* indicate defragment is running */
2195 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
2196 FI_HOT_DATA, /* indicate file is hot */
2197 FI_EXTRA_ATTR, /* indicate file has extra attribute */
2198 FI_PROJ_INHERIT, /* indicate file inherits projectid */
2199 };
2200
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2201 static inline void __mark_inode_dirty_flag(struct inode *inode,
2202 int flag, bool set)
2203 {
2204 switch (flag) {
2205 case FI_INLINE_XATTR:
2206 case FI_INLINE_DATA:
2207 case FI_INLINE_DENTRY:
2208 if (set)
2209 return;
2210 case FI_DATA_EXIST:
2211 case FI_INLINE_DOTS:
2212 f2fs_mark_inode_dirty_sync(inode, true);
2213 }
2214 }
2215
set_inode_flag(struct inode * inode,int flag)2216 static inline void set_inode_flag(struct inode *inode, int flag)
2217 {
2218 if (!test_bit(flag, &F2FS_I(inode)->flags))
2219 set_bit(flag, &F2FS_I(inode)->flags);
2220 __mark_inode_dirty_flag(inode, flag, true);
2221 }
2222
is_inode_flag_set(struct inode * inode,int flag)2223 static inline int is_inode_flag_set(struct inode *inode, int flag)
2224 {
2225 return test_bit(flag, &F2FS_I(inode)->flags);
2226 }
2227
clear_inode_flag(struct inode * inode,int flag)2228 static inline void clear_inode_flag(struct inode *inode, int flag)
2229 {
2230 if (test_bit(flag, &F2FS_I(inode)->flags))
2231 clear_bit(flag, &F2FS_I(inode)->flags);
2232 __mark_inode_dirty_flag(inode, flag, false);
2233 }
2234
set_acl_inode(struct inode * inode,umode_t mode)2235 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2236 {
2237 F2FS_I(inode)->i_acl_mode = mode;
2238 set_inode_flag(inode, FI_ACL_MODE);
2239 f2fs_mark_inode_dirty_sync(inode, false);
2240 }
2241
f2fs_i_links_write(struct inode * inode,bool inc)2242 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2243 {
2244 if (inc)
2245 inc_nlink(inode);
2246 else
2247 drop_nlink(inode);
2248 f2fs_mark_inode_dirty_sync(inode, true);
2249 }
2250
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)2251 static inline void f2fs_i_blocks_write(struct inode *inode,
2252 block_t diff, bool add, bool claim)
2253 {
2254 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2255 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2256
2257 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2258 if (add) {
2259 if (claim)
2260 dquot_claim_block(inode, diff);
2261 else
2262 dquot_alloc_block_nofail(inode, diff);
2263 } else {
2264 dquot_free_block(inode, diff);
2265 }
2266
2267 f2fs_mark_inode_dirty_sync(inode, true);
2268 if (clean || recover)
2269 set_inode_flag(inode, FI_AUTO_RECOVER);
2270 }
2271
f2fs_i_size_write(struct inode * inode,loff_t i_size)2272 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2273 {
2274 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2275 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2276
2277 if (i_size_read(inode) == i_size)
2278 return;
2279
2280 i_size_write(inode, i_size);
2281 f2fs_mark_inode_dirty_sync(inode, true);
2282 if (clean || recover)
2283 set_inode_flag(inode, FI_AUTO_RECOVER);
2284 }
2285
f2fs_i_depth_write(struct inode * inode,unsigned int depth)2286 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2287 {
2288 F2FS_I(inode)->i_current_depth = depth;
2289 f2fs_mark_inode_dirty_sync(inode, true);
2290 }
2291
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)2292 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2293 {
2294 F2FS_I(inode)->i_xattr_nid = xnid;
2295 f2fs_mark_inode_dirty_sync(inode, true);
2296 }
2297
f2fs_i_pino_write(struct inode * inode,nid_t pino)2298 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2299 {
2300 F2FS_I(inode)->i_pino = pino;
2301 f2fs_mark_inode_dirty_sync(inode, true);
2302 }
2303
get_inline_info(struct inode * inode,struct f2fs_inode * ri)2304 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2305 {
2306 struct f2fs_inode_info *fi = F2FS_I(inode);
2307
2308 if (ri->i_inline & F2FS_INLINE_XATTR)
2309 set_bit(FI_INLINE_XATTR, &fi->flags);
2310 if (ri->i_inline & F2FS_INLINE_DATA)
2311 set_bit(FI_INLINE_DATA, &fi->flags);
2312 if (ri->i_inline & F2FS_INLINE_DENTRY)
2313 set_bit(FI_INLINE_DENTRY, &fi->flags);
2314 if (ri->i_inline & F2FS_DATA_EXIST)
2315 set_bit(FI_DATA_EXIST, &fi->flags);
2316 if (ri->i_inline & F2FS_INLINE_DOTS)
2317 set_bit(FI_INLINE_DOTS, &fi->flags);
2318 if (ri->i_inline & F2FS_EXTRA_ATTR)
2319 set_bit(FI_EXTRA_ATTR, &fi->flags);
2320 }
2321
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)2322 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2323 {
2324 ri->i_inline = 0;
2325
2326 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2327 ri->i_inline |= F2FS_INLINE_XATTR;
2328 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2329 ri->i_inline |= F2FS_INLINE_DATA;
2330 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2331 ri->i_inline |= F2FS_INLINE_DENTRY;
2332 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2333 ri->i_inline |= F2FS_DATA_EXIST;
2334 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2335 ri->i_inline |= F2FS_INLINE_DOTS;
2336 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2337 ri->i_inline |= F2FS_EXTRA_ATTR;
2338 }
2339
f2fs_has_extra_attr(struct inode * inode)2340 static inline int f2fs_has_extra_attr(struct inode *inode)
2341 {
2342 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2343 }
2344
f2fs_has_inline_xattr(struct inode * inode)2345 static inline int f2fs_has_inline_xattr(struct inode *inode)
2346 {
2347 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2348 }
2349
addrs_per_inode(struct inode * inode)2350 static inline unsigned int addrs_per_inode(struct inode *inode)
2351 {
2352 return CUR_ADDRS_PER_INODE(inode) - F2FS_INLINE_XATTR_ADDRS(inode);
2353 }
2354
inline_xattr_addr(struct inode * inode,struct page * page)2355 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
2356 {
2357 struct f2fs_inode *ri = F2FS_INODE(page);
2358
2359 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2360 F2FS_INLINE_XATTR_ADDRS(inode)]);
2361 }
2362
inline_xattr_size(struct inode * inode)2363 static inline int inline_xattr_size(struct inode *inode)
2364 {
2365 return get_inline_xattr_addrs(inode) * sizeof(__le32);
2366 }
2367
f2fs_has_inline_data(struct inode * inode)2368 static inline int f2fs_has_inline_data(struct inode *inode)
2369 {
2370 return is_inode_flag_set(inode, FI_INLINE_DATA);
2371 }
2372
f2fs_exist_data(struct inode * inode)2373 static inline int f2fs_exist_data(struct inode *inode)
2374 {
2375 return is_inode_flag_set(inode, FI_DATA_EXIST);
2376 }
2377
f2fs_has_inline_dots(struct inode * inode)2378 static inline int f2fs_has_inline_dots(struct inode *inode)
2379 {
2380 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2381 }
2382
f2fs_is_atomic_file(struct inode * inode)2383 static inline bool f2fs_is_atomic_file(struct inode *inode)
2384 {
2385 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2386 }
2387
f2fs_is_commit_atomic_write(struct inode * inode)2388 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2389 {
2390 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2391 }
2392
f2fs_is_volatile_file(struct inode * inode)2393 static inline bool f2fs_is_volatile_file(struct inode *inode)
2394 {
2395 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2396 }
2397
f2fs_is_first_block_written(struct inode * inode)2398 static inline bool f2fs_is_first_block_written(struct inode *inode)
2399 {
2400 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2401 }
2402
f2fs_is_drop_cache(struct inode * inode)2403 static inline bool f2fs_is_drop_cache(struct inode *inode)
2404 {
2405 return is_inode_flag_set(inode, FI_DROP_CACHE);
2406 }
2407
inline_data_addr(struct inode * inode,struct page * page)2408 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2409 {
2410 struct f2fs_inode *ri = F2FS_INODE(page);
2411 int extra_size = get_extra_isize(inode);
2412
2413 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2414 }
2415
f2fs_has_inline_dentry(struct inode * inode)2416 static inline int f2fs_has_inline_dentry(struct inode *inode)
2417 {
2418 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2419 }
2420
f2fs_dentry_kunmap(struct inode * dir,struct page * page)2421 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2422 {
2423 if (!f2fs_has_inline_dentry(dir))
2424 kunmap(page);
2425 }
2426
is_file(struct inode * inode,int type)2427 static inline int is_file(struct inode *inode, int type)
2428 {
2429 return F2FS_I(inode)->i_advise & type;
2430 }
2431
set_file(struct inode * inode,int type)2432 static inline void set_file(struct inode *inode, int type)
2433 {
2434 F2FS_I(inode)->i_advise |= type;
2435 f2fs_mark_inode_dirty_sync(inode, true);
2436 }
2437
clear_file(struct inode * inode,int type)2438 static inline void clear_file(struct inode *inode, int type)
2439 {
2440 F2FS_I(inode)->i_advise &= ~type;
2441 f2fs_mark_inode_dirty_sync(inode, true);
2442 }
2443
f2fs_skip_inode_update(struct inode * inode,int dsync)2444 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2445 {
2446 bool ret;
2447
2448 if (dsync) {
2449 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2450
2451 spin_lock(&sbi->inode_lock[DIRTY_META]);
2452 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2453 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2454 return ret;
2455 }
2456 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2457 file_keep_isize(inode) ||
2458 i_size_read(inode) & PAGE_MASK)
2459 return false;
2460
2461 down_read(&F2FS_I(inode)->i_sem);
2462 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
2463 up_read(&F2FS_I(inode)->i_sem);
2464
2465 return ret;
2466 }
2467
2468 #define sb_rdonly f2fs_readonly
f2fs_readonly(struct super_block * sb)2469 static inline int f2fs_readonly(struct super_block *sb)
2470 {
2471 return sb->s_flags & MS_RDONLY;
2472 }
2473
f2fs_cp_error(struct f2fs_sb_info * sbi)2474 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2475 {
2476 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2477 }
2478
is_dot_dotdot(const struct qstr * str)2479 static inline bool is_dot_dotdot(const struct qstr *str)
2480 {
2481 if (str->len == 1 && str->name[0] == '.')
2482 return true;
2483
2484 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2485 return true;
2486
2487 return false;
2488 }
2489
f2fs_may_extent_tree(struct inode * inode)2490 static inline bool f2fs_may_extent_tree(struct inode *inode)
2491 {
2492 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2493 is_inode_flag_set(inode, FI_NO_EXTENT))
2494 return false;
2495
2496 return S_ISREG(inode->i_mode);
2497 }
2498
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)2499 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2500 size_t size, gfp_t flags)
2501 {
2502 #ifdef CONFIG_F2FS_FAULT_INJECTION
2503 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2504 f2fs_show_injection_info(FAULT_KMALLOC);
2505 return NULL;
2506 }
2507 #endif
2508 return kmalloc(size, flags);
2509 }
2510
kvmalloc(size_t size,gfp_t flags)2511 static inline void *kvmalloc(size_t size, gfp_t flags)
2512 {
2513 void *ret;
2514
2515 ret = kmalloc(size, flags | __GFP_NOWARN);
2516 if (!ret)
2517 ret = __vmalloc(size, flags, PAGE_KERNEL);
2518 return ret;
2519 }
2520
kvzalloc(size_t size,gfp_t flags)2521 static inline void *kvzalloc(size_t size, gfp_t flags)
2522 {
2523 void *ret;
2524
2525 ret = kzalloc(size, flags | __GFP_NOWARN);
2526 if (!ret)
2527 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
2528 return ret;
2529 }
2530
get_extra_isize(struct inode * inode)2531 static inline int get_extra_isize(struct inode *inode)
2532 {
2533 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2534 }
2535
2536 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb);
get_inline_xattr_addrs(struct inode * inode)2537 static inline int get_inline_xattr_addrs(struct inode *inode)
2538 {
2539 return F2FS_I(inode)->i_inline_xattr_size;
2540 }
2541
2542 #define get_inode_mode(i) \
2543 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2544 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2545
2546 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
2547 (offsetof(struct f2fs_inode, i_extra_end) - \
2548 offsetof(struct f2fs_inode, i_extra_isize)) \
2549
2550 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2551 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
2552 ((offsetof(typeof(*f2fs_inode), field) + \
2553 sizeof((f2fs_inode)->field)) \
2554 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \
2555
f2fs_reset_iostat(struct f2fs_sb_info * sbi)2556 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2557 {
2558 int i;
2559
2560 spin_lock(&sbi->iostat_lock);
2561 for (i = 0; i < NR_IO_TYPE; i++)
2562 sbi->write_iostat[i] = 0;
2563 spin_unlock(&sbi->iostat_lock);
2564 }
2565
f2fs_update_iostat(struct f2fs_sb_info * sbi,enum iostat_type type,unsigned long long io_bytes)2566 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2567 enum iostat_type type, unsigned long long io_bytes)
2568 {
2569 if (!sbi->iostat_enable)
2570 return;
2571 spin_lock(&sbi->iostat_lock);
2572 sbi->write_iostat[type] += io_bytes;
2573
2574 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2575 sbi->write_iostat[APP_BUFFERED_IO] =
2576 sbi->write_iostat[APP_WRITE_IO] -
2577 sbi->write_iostat[APP_DIRECT_IO];
2578 spin_unlock(&sbi->iostat_lock);
2579 }
2580
2581 /*
2582 * file.c
2583 */
2584 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2585 void truncate_data_blocks(struct dnode_of_data *dn);
2586 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2587 int f2fs_truncate(struct inode *inode);
2588 int f2fs_getattr(struct vfsmount *mnt, struct dentry *dentry,
2589 struct kstat *stat);
2590 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2591 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2592 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2593 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2594 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2595
2596 /*
2597 * inode.c
2598 */
2599 void f2fs_set_inode_flags(struct inode *inode);
2600 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2601 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2602 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2603 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2604 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2605 int update_inode(struct inode *inode, struct page *node_page);
2606 int update_inode_page(struct inode *inode);
2607 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2608 void f2fs_evict_inode(struct inode *inode);
2609 void handle_failed_inode(struct inode *inode);
2610
2611 /*
2612 * namei.c
2613 */
2614 struct dentry *f2fs_get_parent(struct dentry *child);
2615
2616 /*
2617 * dir.c
2618 */
2619 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2620 unsigned char get_de_type(struct f2fs_dir_entry *de);
2621 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2622 f2fs_hash_t namehash, int *max_slots,
2623 struct f2fs_dentry_ptr *d);
2624 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2625 unsigned int start_pos, struct fscrypt_str *fstr);
2626 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2627 struct f2fs_dentry_ptr *d);
2628 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2629 const struct qstr *new_name,
2630 const struct qstr *orig_name, struct page *dpage);
2631 void update_parent_metadata(struct inode *dir, struct inode *inode,
2632 unsigned int current_depth);
2633 int room_for_filename(const void *bitmap, int slots, int max_slots);
2634 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2635 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2636 struct fscrypt_name *fname, struct page **res_page);
2637 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2638 const struct qstr *child, struct page **res_page);
2639 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2640 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2641 struct page **page);
2642 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2643 struct page *page, struct inode *inode);
2644 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2645 const struct qstr *name, f2fs_hash_t name_hash,
2646 unsigned int bit_pos);
2647 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2648 const struct qstr *orig_name,
2649 struct inode *inode, nid_t ino, umode_t mode);
2650 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2651 struct inode *inode, nid_t ino, umode_t mode);
2652 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2653 struct inode *inode, nid_t ino, umode_t mode);
2654 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2655 struct inode *dir, struct inode *inode);
2656 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2657 bool f2fs_empty_dir(struct inode *dir);
2658
f2fs_add_link(struct dentry * dentry,struct inode * inode)2659 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2660 {
2661 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2662 inode, inode->i_ino, inode->i_mode);
2663 }
2664
2665 /*
2666 * super.c
2667 */
2668 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2669 void f2fs_inode_synced(struct inode *inode);
2670 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
2671 void f2fs_quota_off_umount(struct super_block *sb);
2672 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2673 int f2fs_sync_fs(struct super_block *sb, int sync);
2674 extern __printf(3, 4)
2675 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2676 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2677
2678 /*
2679 * hash.c
2680 */
2681 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2682 struct fscrypt_name *fname);
2683
2684 /*
2685 * node.c
2686 */
2687 struct dnode_of_data;
2688 struct node_info;
2689
2690 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2691 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2692 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2693 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2694 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2695 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2696 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2697 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2698 int truncate_xattr_node(struct inode *inode);
2699 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2700 int remove_inode_page(struct inode *inode);
2701 struct page *new_inode_page(struct inode *inode);
2702 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2703 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2704 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2705 struct page *get_node_page_ra(struct page *parent, int start);
2706 void move_node_page(struct page *node_page, int gc_type);
2707 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2708 struct writeback_control *wbc, bool atomic);
2709 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2710 bool do_balance, enum iostat_type io_type);
2711 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2712 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2713 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2714 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2715 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2716 void recover_inline_xattr(struct inode *inode, struct page *page);
2717 int recover_xattr_data(struct inode *inode, struct page *page,
2718 block_t blkaddr);
2719 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2720 int restore_node_summary(struct f2fs_sb_info *sbi,
2721 unsigned int segno, struct f2fs_summary_block *sum);
2722 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2723 int build_node_manager(struct f2fs_sb_info *sbi);
2724 void destroy_node_manager(struct f2fs_sb_info *sbi);
2725 int __init create_node_manager_caches(void);
2726 void destroy_node_manager_caches(void);
2727
2728 /*
2729 * segment.c
2730 */
2731 bool need_SSR(struct f2fs_sb_info *sbi);
2732 void register_inmem_page(struct inode *inode, struct page *page);
2733 void drop_inmem_pages_all(struct f2fs_sb_info *sbi);
2734 void drop_inmem_pages(struct inode *inode);
2735 void drop_inmem_page(struct inode *inode, struct page *page);
2736 int commit_inmem_pages(struct inode *inode);
2737 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2738 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2739 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
2740 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2741 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
2742 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2743 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2744 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2745 void init_discard_policy(struct discard_policy *dpolicy, int discard_type,
2746 unsigned int granularity);
2747 void stop_discard_thread(struct f2fs_sb_info *sbi);
2748 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2749 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2750 void release_discard_addrs(struct f2fs_sb_info *sbi);
2751 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2752 void allocate_new_segments(struct f2fs_sb_info *sbi);
2753 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2754 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2755 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2756 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2757 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2758 enum iostat_type io_type);
2759 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2760 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2761 int rewrite_data_page(struct f2fs_io_info *fio);
2762 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2763 block_t old_blkaddr, block_t new_blkaddr,
2764 bool recover_curseg, bool recover_newaddr);
2765 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2766 block_t old_addr, block_t new_addr,
2767 unsigned char version, bool recover_curseg,
2768 bool recover_newaddr);
2769 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2770 block_t old_blkaddr, block_t *new_blkaddr,
2771 struct f2fs_summary *sum, int type,
2772 struct f2fs_io_info *fio, bool add_list);
2773 void f2fs_wait_on_page_writeback(struct page *page,
2774 enum page_type type, bool ordered);
2775 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2776 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2777 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2778 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2779 unsigned int val, int alloc);
2780 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2781 int build_segment_manager(struct f2fs_sb_info *sbi);
2782 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2783 int __init create_segment_manager_caches(void);
2784 void destroy_segment_manager_caches(void);
2785
2786 /*
2787 * checkpoint.c
2788 */
2789 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2790 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2791 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2792 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2793 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2794 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2795 int type, bool sync);
2796 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2797 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2798 long nr_to_write, enum iostat_type io_type);
2799 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2800 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2801 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2802 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2803 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2804 unsigned int devidx, int type);
2805 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
2806 unsigned int devidx, int type);
2807 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2808 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2809 void release_orphan_inode(struct f2fs_sb_info *sbi);
2810 void add_orphan_inode(struct inode *inode);
2811 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2812 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2813 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2814 void update_dirty_page(struct inode *inode, struct page *page);
2815 void remove_dirty_inode(struct inode *inode);
2816 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2817 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2818 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2819 int __init create_checkpoint_caches(void);
2820 void destroy_checkpoint_caches(void);
2821
2822 /*
2823 * data.c
2824 */
2825 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2826 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2827 struct inode *inode, nid_t ino, pgoff_t idx,
2828 enum page_type type);
2829 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2830 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2831 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2832 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2833 block_t blk_addr, struct bio *bio);
2834 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2835 void set_data_blkaddr(struct dnode_of_data *dn);
2836 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2837 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2838 int reserve_new_block(struct dnode_of_data *dn);
2839 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2840 int f2fs_preallocate_blocks(struct inode *inode, loff_t pos,
2841 size_t count, bool dio);
2842 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2843 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2844 int op_flags, bool for_write);
2845 struct page *find_data_page(struct inode *inode, pgoff_t index);
2846 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2847 bool for_write);
2848 struct page *get_new_data_page(struct inode *inode,
2849 struct page *ipage, pgoff_t index, bool new_i_size);
2850 int do_write_data_page(struct f2fs_io_info *fio);
2851 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2852 int create, int flag);
2853 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2854 u64 start, u64 len);
2855 void f2fs_set_page_dirty_nobuffers(struct page *page);
2856 int __f2fs_write_data_pages(struct address_space *mapping,
2857 struct writeback_control *wbc,
2858 enum iostat_type io_type);
2859 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2860 unsigned int length);
2861 int f2fs_release_page(struct page *page, gfp_t wait);
2862 #ifdef CONFIG_MIGRATION
2863 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2864 struct page *page, enum migrate_mode mode);
2865 #endif
2866
2867 /*
2868 * gc.c
2869 */
2870 int start_gc_thread(struct f2fs_sb_info *sbi);
2871 void stop_gc_thread(struct f2fs_sb_info *sbi);
2872 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2873 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2874 unsigned int segno);
2875 void build_gc_manager(struct f2fs_sb_info *sbi);
2876
2877 /*
2878 * recovery.c
2879 */
2880 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2881 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2882
2883 /*
2884 * debug.c
2885 */
2886 #ifdef CONFIG_F2FS_STAT_FS
2887 struct f2fs_stat_info {
2888 struct list_head stat_list;
2889 struct f2fs_sb_info *sbi;
2890 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2891 int main_area_segs, main_area_sections, main_area_zones;
2892 unsigned long long hit_largest, hit_cached, hit_rbtree;
2893 unsigned long long hit_total, total_ext;
2894 int ext_tree, zombie_tree, ext_node;
2895 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
2896 int ndirty_data, ndirty_qdata;
2897 int inmem_pages;
2898 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
2899 int nats, dirty_nats, sits, dirty_sits;
2900 int free_nids, avail_nids, alloc_nids;
2901 int total_count, utilization;
2902 int bg_gc, nr_wb_cp_data, nr_wb_data;
2903 int nr_flushing, nr_flushed, flush_list_empty;
2904 int nr_discarding, nr_discarded;
2905 int nr_discard_cmd;
2906 unsigned int undiscard_blks;
2907 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2908 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2909 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2910 unsigned int bimodal, avg_vblocks;
2911 int util_free, util_valid, util_invalid;
2912 int rsvd_segs, overp_segs;
2913 int dirty_count, node_pages, meta_pages;
2914 int prefree_count, call_count, cp_count, bg_cp_count;
2915 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2916 int bg_node_segs, bg_data_segs;
2917 int tot_blks, data_blks, node_blks;
2918 int bg_data_blks, bg_node_blks;
2919 int curseg[NR_CURSEG_TYPE];
2920 int cursec[NR_CURSEG_TYPE];
2921 int curzone[NR_CURSEG_TYPE];
2922
2923 unsigned int segment_count[2];
2924 unsigned int block_count[2];
2925 unsigned int inplace_count;
2926 unsigned long long base_mem, cache_mem, page_mem;
2927 };
2928
F2FS_STAT(struct f2fs_sb_info * sbi)2929 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2930 {
2931 return (struct f2fs_stat_info *)sbi->stat_info;
2932 }
2933
2934 #define stat_inc_cp_count(si) ((si)->cp_count++)
2935 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2936 #define stat_inc_call_count(si) ((si)->call_count++)
2937 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2938 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2939 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2940 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2941 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2942 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2943 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2944 #define stat_inc_inline_xattr(inode) \
2945 do { \
2946 if (f2fs_has_inline_xattr(inode)) \
2947 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2948 } while (0)
2949 #define stat_dec_inline_xattr(inode) \
2950 do { \
2951 if (f2fs_has_inline_xattr(inode)) \
2952 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2953 } while (0)
2954 #define stat_inc_inline_inode(inode) \
2955 do { \
2956 if (f2fs_has_inline_data(inode)) \
2957 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2958 } while (0)
2959 #define stat_dec_inline_inode(inode) \
2960 do { \
2961 if (f2fs_has_inline_data(inode)) \
2962 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2963 } while (0)
2964 #define stat_inc_inline_dir(inode) \
2965 do { \
2966 if (f2fs_has_inline_dentry(inode)) \
2967 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2968 } while (0)
2969 #define stat_dec_inline_dir(inode) \
2970 do { \
2971 if (f2fs_has_inline_dentry(inode)) \
2972 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2973 } while (0)
2974 #define stat_inc_seg_type(sbi, curseg) \
2975 ((sbi)->segment_count[(curseg)->alloc_type]++)
2976 #define stat_inc_block_count(sbi, curseg) \
2977 ((sbi)->block_count[(curseg)->alloc_type]++)
2978 #define stat_inc_inplace_blocks(sbi) \
2979 (atomic_inc(&(sbi)->inplace_count))
2980 #define stat_inc_atomic_write(inode) \
2981 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2982 #define stat_dec_atomic_write(inode) \
2983 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2984 #define stat_update_max_atomic_write(inode) \
2985 do { \
2986 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
2987 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
2988 if (cur > max) \
2989 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
2990 } while (0)
2991 #define stat_inc_volatile_write(inode) \
2992 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2993 #define stat_dec_volatile_write(inode) \
2994 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2995 #define stat_update_max_volatile_write(inode) \
2996 do { \
2997 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
2998 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
2999 if (cur > max) \
3000 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
3001 } while (0)
3002 #define stat_inc_seg_count(sbi, type, gc_type) \
3003 do { \
3004 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3005 si->tot_segs++; \
3006 if ((type) == SUM_TYPE_DATA) { \
3007 si->data_segs++; \
3008 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
3009 } else { \
3010 si->node_segs++; \
3011 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
3012 } \
3013 } while (0)
3014
3015 #define stat_inc_tot_blk_count(si, blks) \
3016 ((si)->tot_blks += (blks))
3017
3018 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
3019 do { \
3020 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3021 stat_inc_tot_blk_count(si, blks); \
3022 si->data_blks += (blks); \
3023 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3024 } while (0)
3025
3026 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
3027 do { \
3028 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3029 stat_inc_tot_blk_count(si, blks); \
3030 si->node_blks += (blks); \
3031 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
3032 } while (0)
3033
3034 int f2fs_build_stats(struct f2fs_sb_info *sbi);
3035 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
3036 int __init f2fs_create_root_stats(void);
3037 void f2fs_destroy_root_stats(void);
3038 #else
3039 #define stat_inc_cp_count(si) do { } while (0)
3040 #define stat_inc_bg_cp_count(si) do { } while (0)
3041 #define stat_inc_call_count(si) do { } while (0)
3042 #define stat_inc_bggc_count(si) do { } while (0)
3043 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
3044 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
3045 #define stat_inc_total_hit(sb) do { } while (0)
3046 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
3047 #define stat_inc_largest_node_hit(sbi) do { } while (0)
3048 #define stat_inc_cached_node_hit(sbi) do { } while (0)
3049 #define stat_inc_inline_xattr(inode) do { } while (0)
3050 #define stat_dec_inline_xattr(inode) do { } while (0)
3051 #define stat_inc_inline_inode(inode) do { } while (0)
3052 #define stat_dec_inline_inode(inode) do { } while (0)
3053 #define stat_inc_inline_dir(inode) do { } while (0)
3054 #define stat_dec_inline_dir(inode) do { } while (0)
3055 #define stat_inc_atomic_write(inode) do { } while (0)
3056 #define stat_dec_atomic_write(inode) do { } while (0)
3057 #define stat_update_max_atomic_write(inode) do { } while (0)
3058 #define stat_inc_volatile_write(inode) do { } while (0)
3059 #define stat_dec_volatile_write(inode) do { } while (0)
3060 #define stat_update_max_volatile_write(inode) do { } while (0)
3061 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
3062 #define stat_inc_block_count(sbi, curseg) do { } while (0)
3063 #define stat_inc_inplace_blocks(sbi) do { } while (0)
3064 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
3065 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
3066 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
3067 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
3068
f2fs_build_stats(struct f2fs_sb_info * sbi)3069 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)3070 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)3071 static inline int __init f2fs_create_root_stats(void) { return 0; }
f2fs_destroy_root_stats(void)3072 static inline void f2fs_destroy_root_stats(void) { }
3073 #endif
3074
3075 extern const struct file_operations f2fs_dir_operations;
3076 extern const struct file_operations f2fs_file_operations;
3077 extern const struct inode_operations f2fs_file_inode_operations;
3078 extern const struct address_space_operations f2fs_dblock_aops;
3079 extern const struct address_space_operations f2fs_node_aops;
3080 extern const struct address_space_operations f2fs_meta_aops;
3081 extern const struct inode_operations f2fs_dir_inode_operations;
3082 extern const struct inode_operations f2fs_symlink_inode_operations;
3083 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
3084 extern const struct inode_operations f2fs_special_inode_operations;
3085 extern struct kmem_cache *inode_entry_slab;
3086
3087 /*
3088 * inline.c
3089 */
3090 bool f2fs_may_inline_data(struct inode *inode);
3091 bool f2fs_may_inline_dentry(struct inode *inode);
3092 void read_inline_data(struct page *page, struct page *ipage);
3093 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
3094 int f2fs_read_inline_data(struct inode *inode, struct page *page);
3095 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
3096 int f2fs_convert_inline_inode(struct inode *inode);
3097 int f2fs_write_inline_data(struct inode *inode, struct page *page);
3098 bool recover_inline_data(struct inode *inode, struct page *npage);
3099 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
3100 struct fscrypt_name *fname, struct page **res_page);
3101 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
3102 struct page *ipage);
3103 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
3104 const struct qstr *orig_name,
3105 struct inode *inode, nid_t ino, umode_t mode);
3106 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
3107 struct inode *dir, struct inode *inode);
3108 bool f2fs_empty_inline_dir(struct inode *dir);
3109 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
3110 struct fscrypt_str *fstr);
3111 int f2fs_inline_data_fiemap(struct inode *inode,
3112 struct fiemap_extent_info *fieinfo,
3113 __u64 start, __u64 len);
3114
3115 /*
3116 * shrinker.c
3117 */
3118 unsigned long f2fs_shrink_count(struct shrinker *shrink,
3119 struct shrink_control *sc);
3120 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
3121 struct shrink_control *sc);
3122 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
3123 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
3124
3125 /*
3126 * extent_cache.c
3127 */
3128 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
3129 struct rb_entry *cached_re, unsigned int ofs);
3130 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
3131 struct rb_root *root, struct rb_node **parent,
3132 unsigned int ofs);
3133 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
3134 struct rb_entry *cached_re, unsigned int ofs,
3135 struct rb_entry **prev_entry, struct rb_entry **next_entry,
3136 struct rb_node ***insert_p, struct rb_node **insert_parent,
3137 bool force);
3138 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
3139 struct rb_root *root);
3140 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
3141 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
3142 void f2fs_drop_extent_tree(struct inode *inode);
3143 unsigned int f2fs_destroy_extent_node(struct inode *inode);
3144 void f2fs_destroy_extent_tree(struct inode *inode);
3145 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3146 struct extent_info *ei);
3147 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3148 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3149 pgoff_t fofs, block_t blkaddr, unsigned int len);
3150 void init_extent_cache_info(struct f2fs_sb_info *sbi);
3151 int __init create_extent_cache(void);
3152 void destroy_extent_cache(void);
3153
3154 /*
3155 * sysfs.c
3156 */
3157 int __init f2fs_init_sysfs(void);
3158 void f2fs_exit_sysfs(void);
3159 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3160 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3161
3162 /*
3163 * crypto support
3164 */
f2fs_encrypted_inode(struct inode * inode)3165 static inline bool f2fs_encrypted_inode(struct inode *inode)
3166 {
3167 return file_is_encrypt(inode);
3168 }
3169
f2fs_encrypted_file(struct inode * inode)3170 static inline bool f2fs_encrypted_file(struct inode *inode)
3171 {
3172 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3173 }
3174
f2fs_set_encrypted_inode(struct inode * inode)3175 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3176 {
3177 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3178 file_set_encrypt(inode);
3179 inode->i_flags |= S_ENCRYPTED;
3180 #endif
3181 }
3182
f2fs_bio_encrypted(struct bio * bio)3183 static inline bool f2fs_bio_encrypted(struct bio *bio)
3184 {
3185 return bio->bi_private != NULL;
3186 }
3187
f2fs_sb_has_crypto(struct super_block * sb)3188 static inline int f2fs_sb_has_crypto(struct super_block *sb)
3189 {
3190 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
3191 }
3192
f2fs_sb_mounted_blkzoned(struct super_block * sb)3193 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
3194 {
3195 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
3196 }
3197
f2fs_sb_has_extra_attr(struct super_block * sb)3198 static inline int f2fs_sb_has_extra_attr(struct super_block *sb)
3199 {
3200 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR);
3201 }
3202
f2fs_sb_has_project_quota(struct super_block * sb)3203 static inline int f2fs_sb_has_project_quota(struct super_block *sb)
3204 {
3205 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA);
3206 }
3207
f2fs_sb_has_inode_chksum(struct super_block * sb)3208 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb)
3209 {
3210 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM);
3211 }
3212
f2fs_sb_has_flexible_inline_xattr(struct super_block * sb)3213 static inline int f2fs_sb_has_flexible_inline_xattr(struct super_block *sb)
3214 {
3215 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_FLEXIBLE_INLINE_XATTR);
3216 }
3217
f2fs_sb_has_quota_ino(struct super_block * sb)3218 static inline int f2fs_sb_has_quota_ino(struct super_block *sb)
3219 {
3220 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_QUOTA_INO);
3221 }
3222
3223 #ifdef CONFIG_BLK_DEV_ZONED
get_blkz_type(struct f2fs_sb_info * sbi,struct block_device * bdev,block_t blkaddr)3224 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3225 struct block_device *bdev, block_t blkaddr)
3226 {
3227 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3228 int i;
3229
3230 for (i = 0; i < sbi->s_ndevs; i++)
3231 if (FDEV(i).bdev == bdev)
3232 return FDEV(i).blkz_type[zno];
3233 return -EINVAL;
3234 }
3235 #endif
3236
f2fs_discard_en(struct f2fs_sb_info * sbi)3237 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3238 {
3239 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3240
3241 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
3242 }
3243
set_opt_mode(struct f2fs_sb_info * sbi,unsigned int mt)3244 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3245 {
3246 clear_opt(sbi, ADAPTIVE);
3247 clear_opt(sbi, LFS);
3248
3249 switch (mt) {
3250 case F2FS_MOUNT_ADAPTIVE:
3251 set_opt(sbi, ADAPTIVE);
3252 break;
3253 case F2FS_MOUNT_LFS:
3254 set_opt(sbi, LFS);
3255 break;
3256 }
3257 }
3258
f2fs_may_encrypt(struct inode * inode)3259 static inline bool f2fs_may_encrypt(struct inode *inode)
3260 {
3261 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3262 umode_t mode = inode->i_mode;
3263
3264 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3265 #else
3266 return 0;
3267 #endif
3268 }
3269
3270 #endif
3271