1 /*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/regmap.h>
24
25 #include "internal.h"
26
27 /*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33 #undef LOG_DEVICE
34
35 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
36 unsigned int mask, unsigned int val,
37 bool *change);
38
39 static int _regmap_bus_reg_read(void *context, unsigned int reg,
40 unsigned int *val);
41 static int _regmap_bus_read(void *context, unsigned int reg,
42 unsigned int *val);
43 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
44 unsigned int val);
45 static int _regmap_bus_reg_write(void *context, unsigned int reg,
46 unsigned int val);
47 static int _regmap_bus_raw_write(void *context, unsigned int reg,
48 unsigned int val);
49
regmap_reg_in_ranges(unsigned int reg,const struct regmap_range * ranges,unsigned int nranges)50 bool regmap_reg_in_ranges(unsigned int reg,
51 const struct regmap_range *ranges,
52 unsigned int nranges)
53 {
54 const struct regmap_range *r;
55 int i;
56
57 for (i = 0, r = ranges; i < nranges; i++, r++)
58 if (regmap_reg_in_range(reg, r))
59 return true;
60 return false;
61 }
62 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
63
regmap_check_range_table(struct regmap * map,unsigned int reg,const struct regmap_access_table * table)64 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
65 const struct regmap_access_table *table)
66 {
67 /* Check "no ranges" first */
68 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
69 return false;
70
71 /* In case zero "yes ranges" are supplied, any reg is OK */
72 if (!table->n_yes_ranges)
73 return true;
74
75 return regmap_reg_in_ranges(reg, table->yes_ranges,
76 table->n_yes_ranges);
77 }
78 EXPORT_SYMBOL_GPL(regmap_check_range_table);
79
regmap_writeable(struct regmap * map,unsigned int reg)80 bool regmap_writeable(struct regmap *map, unsigned int reg)
81 {
82 if (map->max_register && reg > map->max_register)
83 return false;
84
85 if (map->writeable_reg)
86 return map->writeable_reg(map->dev, reg);
87
88 if (map->wr_table)
89 return regmap_check_range_table(map, reg, map->wr_table);
90
91 return true;
92 }
93
regmap_readable(struct regmap * map,unsigned int reg)94 bool regmap_readable(struct regmap *map, unsigned int reg)
95 {
96 if (map->max_register && reg > map->max_register)
97 return false;
98
99 if (map->format.format_write)
100 return false;
101
102 if (map->readable_reg)
103 return map->readable_reg(map->dev, reg);
104
105 if (map->rd_table)
106 return regmap_check_range_table(map, reg, map->rd_table);
107
108 return true;
109 }
110
regmap_volatile(struct regmap * map,unsigned int reg)111 bool regmap_volatile(struct regmap *map, unsigned int reg)
112 {
113 if (!map->format.format_write && !regmap_readable(map, reg))
114 return false;
115
116 if (map->volatile_reg)
117 return map->volatile_reg(map->dev, reg);
118
119 if (map->volatile_table)
120 return regmap_check_range_table(map, reg, map->volatile_table);
121
122 if (map->cache_ops)
123 return false;
124 else
125 return true;
126 }
127
regmap_precious(struct regmap * map,unsigned int reg)128 bool regmap_precious(struct regmap *map, unsigned int reg)
129 {
130 if (!regmap_readable(map, reg))
131 return false;
132
133 if (map->precious_reg)
134 return map->precious_reg(map->dev, reg);
135
136 if (map->precious_table)
137 return regmap_check_range_table(map, reg, map->precious_table);
138
139 return false;
140 }
141
regmap_volatile_range(struct regmap * map,unsigned int reg,size_t num)142 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
143 size_t num)
144 {
145 unsigned int i;
146
147 for (i = 0; i < num; i++)
148 if (!regmap_volatile(map, reg + i))
149 return false;
150
151 return true;
152 }
153
regmap_format_2_6_write(struct regmap * map,unsigned int reg,unsigned int val)154 static void regmap_format_2_6_write(struct regmap *map,
155 unsigned int reg, unsigned int val)
156 {
157 u8 *out = map->work_buf;
158
159 *out = (reg << 6) | val;
160 }
161
regmap_format_4_12_write(struct regmap * map,unsigned int reg,unsigned int val)162 static void regmap_format_4_12_write(struct regmap *map,
163 unsigned int reg, unsigned int val)
164 {
165 __be16 *out = map->work_buf;
166 *out = cpu_to_be16((reg << 12) | val);
167 }
168
regmap_format_7_9_write(struct regmap * map,unsigned int reg,unsigned int val)169 static void regmap_format_7_9_write(struct regmap *map,
170 unsigned int reg, unsigned int val)
171 {
172 __be16 *out = map->work_buf;
173 *out = cpu_to_be16((reg << 9) | val);
174 }
175
regmap_format_10_14_write(struct regmap * map,unsigned int reg,unsigned int val)176 static void regmap_format_10_14_write(struct regmap *map,
177 unsigned int reg, unsigned int val)
178 {
179 u8 *out = map->work_buf;
180
181 out[2] = val;
182 out[1] = (val >> 8) | (reg << 6);
183 out[0] = reg >> 2;
184 }
185
regmap_format_8(void * buf,unsigned int val,unsigned int shift)186 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
187 {
188 u8 *b = buf;
189
190 b[0] = val << shift;
191 }
192
regmap_format_16_be(void * buf,unsigned int val,unsigned int shift)193 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
194 {
195 __be16 *b = buf;
196
197 b[0] = cpu_to_be16(val << shift);
198 }
199
regmap_format_16_le(void * buf,unsigned int val,unsigned int shift)200 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
201 {
202 __le16 *b = buf;
203
204 b[0] = cpu_to_le16(val << shift);
205 }
206
regmap_format_16_native(void * buf,unsigned int val,unsigned int shift)207 static void regmap_format_16_native(void *buf, unsigned int val,
208 unsigned int shift)
209 {
210 *(u16 *)buf = val << shift;
211 }
212
regmap_format_24(void * buf,unsigned int val,unsigned int shift)213 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
214 {
215 u8 *b = buf;
216
217 val <<= shift;
218
219 b[0] = val >> 16;
220 b[1] = val >> 8;
221 b[2] = val;
222 }
223
regmap_format_32_be(void * buf,unsigned int val,unsigned int shift)224 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
225 {
226 __be32 *b = buf;
227
228 b[0] = cpu_to_be32(val << shift);
229 }
230
regmap_format_32_le(void * buf,unsigned int val,unsigned int shift)231 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
232 {
233 __le32 *b = buf;
234
235 b[0] = cpu_to_le32(val << shift);
236 }
237
regmap_format_32_native(void * buf,unsigned int val,unsigned int shift)238 static void regmap_format_32_native(void *buf, unsigned int val,
239 unsigned int shift)
240 {
241 *(u32 *)buf = val << shift;
242 }
243
regmap_parse_inplace_noop(void * buf)244 static void regmap_parse_inplace_noop(void *buf)
245 {
246 }
247
regmap_parse_8(const void * buf)248 static unsigned int regmap_parse_8(const void *buf)
249 {
250 const u8 *b = buf;
251
252 return b[0];
253 }
254
regmap_parse_16_be(const void * buf)255 static unsigned int regmap_parse_16_be(const void *buf)
256 {
257 const __be16 *b = buf;
258
259 return be16_to_cpu(b[0]);
260 }
261
regmap_parse_16_le(const void * buf)262 static unsigned int regmap_parse_16_le(const void *buf)
263 {
264 const __le16 *b = buf;
265
266 return le16_to_cpu(b[0]);
267 }
268
regmap_parse_16_be_inplace(void * buf)269 static void regmap_parse_16_be_inplace(void *buf)
270 {
271 __be16 *b = buf;
272
273 b[0] = be16_to_cpu(b[0]);
274 }
275
regmap_parse_16_le_inplace(void * buf)276 static void regmap_parse_16_le_inplace(void *buf)
277 {
278 __le16 *b = buf;
279
280 b[0] = le16_to_cpu(b[0]);
281 }
282
regmap_parse_16_native(const void * buf)283 static unsigned int regmap_parse_16_native(const void *buf)
284 {
285 return *(u16 *)buf;
286 }
287
regmap_parse_24(const void * buf)288 static unsigned int regmap_parse_24(const void *buf)
289 {
290 const u8 *b = buf;
291 unsigned int ret = b[2];
292 ret |= ((unsigned int)b[1]) << 8;
293 ret |= ((unsigned int)b[0]) << 16;
294
295 return ret;
296 }
297
regmap_parse_32_be(const void * buf)298 static unsigned int regmap_parse_32_be(const void *buf)
299 {
300 const __be32 *b = buf;
301
302 return be32_to_cpu(b[0]);
303 }
304
regmap_parse_32_le(const void * buf)305 static unsigned int regmap_parse_32_le(const void *buf)
306 {
307 const __le32 *b = buf;
308
309 return le32_to_cpu(b[0]);
310 }
311
regmap_parse_32_be_inplace(void * buf)312 static void regmap_parse_32_be_inplace(void *buf)
313 {
314 __be32 *b = buf;
315
316 b[0] = be32_to_cpu(b[0]);
317 }
318
regmap_parse_32_le_inplace(void * buf)319 static void regmap_parse_32_le_inplace(void *buf)
320 {
321 __le32 *b = buf;
322
323 b[0] = le32_to_cpu(b[0]);
324 }
325
regmap_parse_32_native(const void * buf)326 static unsigned int regmap_parse_32_native(const void *buf)
327 {
328 return *(u32 *)buf;
329 }
330
regmap_lock_mutex(void * __map)331 static void regmap_lock_mutex(void *__map)
332 {
333 struct regmap *map = __map;
334 mutex_lock(&map->mutex);
335 }
336
regmap_unlock_mutex(void * __map)337 static void regmap_unlock_mutex(void *__map)
338 {
339 struct regmap *map = __map;
340 mutex_unlock(&map->mutex);
341 }
342
regmap_lock_spinlock(void * __map)343 static void regmap_lock_spinlock(void *__map)
344 __acquires(&map->spinlock)
345 {
346 struct regmap *map = __map;
347 unsigned long flags;
348
349 spin_lock_irqsave(&map->spinlock, flags);
350 map->spinlock_flags = flags;
351 }
352
regmap_unlock_spinlock(void * __map)353 static void regmap_unlock_spinlock(void *__map)
354 __releases(&map->spinlock)
355 {
356 struct regmap *map = __map;
357 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
358 }
359
dev_get_regmap_release(struct device * dev,void * res)360 static void dev_get_regmap_release(struct device *dev, void *res)
361 {
362 /*
363 * We don't actually have anything to do here; the goal here
364 * is not to manage the regmap but to provide a simple way to
365 * get the regmap back given a struct device.
366 */
367 }
368
_regmap_range_add(struct regmap * map,struct regmap_range_node * data)369 static bool _regmap_range_add(struct regmap *map,
370 struct regmap_range_node *data)
371 {
372 struct rb_root *root = &map->range_tree;
373 struct rb_node **new = &(root->rb_node), *parent = NULL;
374
375 while (*new) {
376 struct regmap_range_node *this =
377 container_of(*new, struct regmap_range_node, node);
378
379 parent = *new;
380 if (data->range_max < this->range_min)
381 new = &((*new)->rb_left);
382 else if (data->range_min > this->range_max)
383 new = &((*new)->rb_right);
384 else
385 return false;
386 }
387
388 rb_link_node(&data->node, parent, new);
389 rb_insert_color(&data->node, root);
390
391 return true;
392 }
393
_regmap_range_lookup(struct regmap * map,unsigned int reg)394 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
395 unsigned int reg)
396 {
397 struct rb_node *node = map->range_tree.rb_node;
398
399 while (node) {
400 struct regmap_range_node *this =
401 container_of(node, struct regmap_range_node, node);
402
403 if (reg < this->range_min)
404 node = node->rb_left;
405 else if (reg > this->range_max)
406 node = node->rb_right;
407 else
408 return this;
409 }
410
411 return NULL;
412 }
413
regmap_range_exit(struct regmap * map)414 static void regmap_range_exit(struct regmap *map)
415 {
416 struct rb_node *next;
417 struct regmap_range_node *range_node;
418
419 next = rb_first(&map->range_tree);
420 while (next) {
421 range_node = rb_entry(next, struct regmap_range_node, node);
422 next = rb_next(&range_node->node);
423 rb_erase(&range_node->node, &map->range_tree);
424 kfree(range_node);
425 }
426
427 kfree(map->selector_work_buf);
428 }
429
regmap_attach_dev(struct device * dev,struct regmap * map,const struct regmap_config * config)430 int regmap_attach_dev(struct device *dev, struct regmap *map,
431 const struct regmap_config *config)
432 {
433 struct regmap **m;
434
435 map->dev = dev;
436
437 regmap_debugfs_init(map, config->name);
438
439 /* Add a devres resource for dev_get_regmap() */
440 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
441 if (!m) {
442 regmap_debugfs_exit(map);
443 return -ENOMEM;
444 }
445 *m = map;
446 devres_add(dev, m);
447
448 return 0;
449 }
450 EXPORT_SYMBOL_GPL(regmap_attach_dev);
451
regmap_get_reg_endian(const struct regmap_bus * bus,const struct regmap_config * config)452 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
453 const struct regmap_config *config)
454 {
455 enum regmap_endian endian;
456
457 /* Retrieve the endianness specification from the regmap config */
458 endian = config->reg_format_endian;
459
460 /* If the regmap config specified a non-default value, use that */
461 if (endian != REGMAP_ENDIAN_DEFAULT)
462 return endian;
463
464 /* Retrieve the endianness specification from the bus config */
465 if (bus && bus->reg_format_endian_default)
466 endian = bus->reg_format_endian_default;
467
468 /* If the bus specified a non-default value, use that */
469 if (endian != REGMAP_ENDIAN_DEFAULT)
470 return endian;
471
472 /* Use this if no other value was found */
473 return REGMAP_ENDIAN_BIG;
474 }
475
regmap_get_val_endian(struct device * dev,const struct regmap_bus * bus,const struct regmap_config * config)476 static enum regmap_endian regmap_get_val_endian(struct device *dev,
477 const struct regmap_bus *bus,
478 const struct regmap_config *config)
479 {
480 struct device_node *np;
481 enum regmap_endian endian;
482
483 /* Retrieve the endianness specification from the regmap config */
484 endian = config->val_format_endian;
485
486 /* If the regmap config specified a non-default value, use that */
487 if (endian != REGMAP_ENDIAN_DEFAULT)
488 return endian;
489
490 /* If the dev and dev->of_node exist try to get endianness from DT */
491 if (dev && dev->of_node) {
492 np = dev->of_node;
493
494 /* Parse the device's DT node for an endianness specification */
495 if (of_property_read_bool(np, "big-endian"))
496 endian = REGMAP_ENDIAN_BIG;
497 else if (of_property_read_bool(np, "little-endian"))
498 endian = REGMAP_ENDIAN_LITTLE;
499
500 /* If the endianness was specified in DT, use that */
501 if (endian != REGMAP_ENDIAN_DEFAULT)
502 return endian;
503 }
504
505 /* Retrieve the endianness specification from the bus config */
506 if (bus && bus->val_format_endian_default)
507 endian = bus->val_format_endian_default;
508
509 /* If the bus specified a non-default value, use that */
510 if (endian != REGMAP_ENDIAN_DEFAULT)
511 return endian;
512
513 /* Use this if no other value was found */
514 return REGMAP_ENDIAN_BIG;
515 }
516
517 /**
518 * regmap_init(): Initialise register map
519 *
520 * @dev: Device that will be interacted with
521 * @bus: Bus-specific callbacks to use with device
522 * @bus_context: Data passed to bus-specific callbacks
523 * @config: Configuration for register map
524 *
525 * The return value will be an ERR_PTR() on error or a valid pointer to
526 * a struct regmap. This function should generally not be called
527 * directly, it should be called by bus-specific init functions.
528 */
regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config)529 struct regmap *regmap_init(struct device *dev,
530 const struct regmap_bus *bus,
531 void *bus_context,
532 const struct regmap_config *config)
533 {
534 struct regmap *map;
535 int ret = -EINVAL;
536 enum regmap_endian reg_endian, val_endian;
537 int i, j;
538
539 if (!config)
540 goto err;
541
542 map = kzalloc(sizeof(*map), GFP_KERNEL);
543 if (map == NULL) {
544 ret = -ENOMEM;
545 goto err;
546 }
547
548 if (config->lock && config->unlock) {
549 map->lock = config->lock;
550 map->unlock = config->unlock;
551 map->lock_arg = config->lock_arg;
552 } else {
553 if ((bus && bus->fast_io) ||
554 config->fast_io) {
555 spin_lock_init(&map->spinlock);
556 map->lock = regmap_lock_spinlock;
557 map->unlock = regmap_unlock_spinlock;
558 } else {
559 mutex_init(&map->mutex);
560 map->lock = regmap_lock_mutex;
561 map->unlock = regmap_unlock_mutex;
562 }
563 map->lock_arg = map;
564 }
565 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
566 map->format.pad_bytes = config->pad_bits / 8;
567 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
568 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
569 config->val_bits + config->pad_bits, 8);
570 map->reg_shift = config->pad_bits % 8;
571 if (config->reg_stride)
572 map->reg_stride = config->reg_stride;
573 else
574 map->reg_stride = 1;
575 map->use_single_rw = config->use_single_rw;
576 map->can_multi_write = config->can_multi_write;
577 map->dev = dev;
578 map->bus = bus;
579 map->bus_context = bus_context;
580 map->max_register = config->max_register;
581 map->wr_table = config->wr_table;
582 map->rd_table = config->rd_table;
583 map->volatile_table = config->volatile_table;
584 map->precious_table = config->precious_table;
585 map->writeable_reg = config->writeable_reg;
586 map->readable_reg = config->readable_reg;
587 map->volatile_reg = config->volatile_reg;
588 map->precious_reg = config->precious_reg;
589 map->cache_type = config->cache_type;
590 map->name = config->name;
591
592 spin_lock_init(&map->async_lock);
593 INIT_LIST_HEAD(&map->async_list);
594 INIT_LIST_HEAD(&map->async_free);
595 init_waitqueue_head(&map->async_waitq);
596
597 if (config->read_flag_mask || config->write_flag_mask) {
598 map->read_flag_mask = config->read_flag_mask;
599 map->write_flag_mask = config->write_flag_mask;
600 } else if (bus) {
601 map->read_flag_mask = bus->read_flag_mask;
602 }
603
604 if (!bus) {
605 map->reg_read = config->reg_read;
606 map->reg_write = config->reg_write;
607
608 map->defer_caching = false;
609 goto skip_format_initialization;
610 } else if (!bus->read || !bus->write) {
611 map->reg_read = _regmap_bus_reg_read;
612 map->reg_write = _regmap_bus_reg_write;
613
614 map->defer_caching = false;
615 goto skip_format_initialization;
616 } else {
617 map->reg_read = _regmap_bus_read;
618 }
619
620 reg_endian = regmap_get_reg_endian(bus, config);
621 val_endian = regmap_get_val_endian(dev, bus, config);
622
623 switch (config->reg_bits + map->reg_shift) {
624 case 2:
625 switch (config->val_bits) {
626 case 6:
627 map->format.format_write = regmap_format_2_6_write;
628 break;
629 default:
630 goto err_map;
631 }
632 break;
633
634 case 4:
635 switch (config->val_bits) {
636 case 12:
637 map->format.format_write = regmap_format_4_12_write;
638 break;
639 default:
640 goto err_map;
641 }
642 break;
643
644 case 7:
645 switch (config->val_bits) {
646 case 9:
647 map->format.format_write = regmap_format_7_9_write;
648 break;
649 default:
650 goto err_map;
651 }
652 break;
653
654 case 10:
655 switch (config->val_bits) {
656 case 14:
657 map->format.format_write = regmap_format_10_14_write;
658 break;
659 default:
660 goto err_map;
661 }
662 break;
663
664 case 8:
665 map->format.format_reg = regmap_format_8;
666 break;
667
668 case 16:
669 switch (reg_endian) {
670 case REGMAP_ENDIAN_BIG:
671 map->format.format_reg = regmap_format_16_be;
672 break;
673 case REGMAP_ENDIAN_NATIVE:
674 map->format.format_reg = regmap_format_16_native;
675 break;
676 default:
677 goto err_map;
678 }
679 break;
680
681 case 24:
682 if (reg_endian != REGMAP_ENDIAN_BIG)
683 goto err_map;
684 map->format.format_reg = regmap_format_24;
685 break;
686
687 case 32:
688 switch (reg_endian) {
689 case REGMAP_ENDIAN_BIG:
690 map->format.format_reg = regmap_format_32_be;
691 break;
692 case REGMAP_ENDIAN_NATIVE:
693 map->format.format_reg = regmap_format_32_native;
694 break;
695 default:
696 goto err_map;
697 }
698 break;
699
700 default:
701 goto err_map;
702 }
703
704 if (val_endian == REGMAP_ENDIAN_NATIVE)
705 map->format.parse_inplace = regmap_parse_inplace_noop;
706
707 switch (config->val_bits) {
708 case 8:
709 map->format.format_val = regmap_format_8;
710 map->format.parse_val = regmap_parse_8;
711 map->format.parse_inplace = regmap_parse_inplace_noop;
712 break;
713 case 16:
714 switch (val_endian) {
715 case REGMAP_ENDIAN_BIG:
716 map->format.format_val = regmap_format_16_be;
717 map->format.parse_val = regmap_parse_16_be;
718 map->format.parse_inplace = regmap_parse_16_be_inplace;
719 break;
720 case REGMAP_ENDIAN_LITTLE:
721 map->format.format_val = regmap_format_16_le;
722 map->format.parse_val = regmap_parse_16_le;
723 map->format.parse_inplace = regmap_parse_16_le_inplace;
724 break;
725 case REGMAP_ENDIAN_NATIVE:
726 map->format.format_val = regmap_format_16_native;
727 map->format.parse_val = regmap_parse_16_native;
728 break;
729 default:
730 goto err_map;
731 }
732 break;
733 case 24:
734 if (val_endian != REGMAP_ENDIAN_BIG)
735 goto err_map;
736 map->format.format_val = regmap_format_24;
737 map->format.parse_val = regmap_parse_24;
738 break;
739 case 32:
740 switch (val_endian) {
741 case REGMAP_ENDIAN_BIG:
742 map->format.format_val = regmap_format_32_be;
743 map->format.parse_val = regmap_parse_32_be;
744 map->format.parse_inplace = regmap_parse_32_be_inplace;
745 break;
746 case REGMAP_ENDIAN_LITTLE:
747 map->format.format_val = regmap_format_32_le;
748 map->format.parse_val = regmap_parse_32_le;
749 map->format.parse_inplace = regmap_parse_32_le_inplace;
750 break;
751 case REGMAP_ENDIAN_NATIVE:
752 map->format.format_val = regmap_format_32_native;
753 map->format.parse_val = regmap_parse_32_native;
754 break;
755 default:
756 goto err_map;
757 }
758 break;
759 }
760
761 if (map->format.format_write) {
762 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
763 (val_endian != REGMAP_ENDIAN_BIG))
764 goto err_map;
765 map->use_single_rw = true;
766 }
767
768 if (!map->format.format_write &&
769 !(map->format.format_reg && map->format.format_val))
770 goto err_map;
771
772 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
773 if (map->work_buf == NULL) {
774 ret = -ENOMEM;
775 goto err_map;
776 }
777
778 if (map->format.format_write) {
779 map->defer_caching = false;
780 map->reg_write = _regmap_bus_formatted_write;
781 } else if (map->format.format_val) {
782 map->defer_caching = true;
783 map->reg_write = _regmap_bus_raw_write;
784 }
785
786 skip_format_initialization:
787
788 map->range_tree = RB_ROOT;
789 for (i = 0; i < config->num_ranges; i++) {
790 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
791 struct regmap_range_node *new;
792
793 /* Sanity check */
794 if (range_cfg->range_max < range_cfg->range_min) {
795 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
796 range_cfg->range_max, range_cfg->range_min);
797 goto err_range;
798 }
799
800 if (range_cfg->range_max > map->max_register) {
801 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
802 range_cfg->range_max, map->max_register);
803 goto err_range;
804 }
805
806 if (range_cfg->selector_reg > map->max_register) {
807 dev_err(map->dev,
808 "Invalid range %d: selector out of map\n", i);
809 goto err_range;
810 }
811
812 if (range_cfg->window_len == 0) {
813 dev_err(map->dev, "Invalid range %d: window_len 0\n",
814 i);
815 goto err_range;
816 }
817
818 /* Make sure, that this register range has no selector
819 or data window within its boundary */
820 for (j = 0; j < config->num_ranges; j++) {
821 unsigned sel_reg = config->ranges[j].selector_reg;
822 unsigned win_min = config->ranges[j].window_start;
823 unsigned win_max = win_min +
824 config->ranges[j].window_len - 1;
825
826 /* Allow data window inside its own virtual range */
827 if (j == i)
828 continue;
829
830 if (range_cfg->range_min <= sel_reg &&
831 sel_reg <= range_cfg->range_max) {
832 dev_err(map->dev,
833 "Range %d: selector for %d in window\n",
834 i, j);
835 goto err_range;
836 }
837
838 if (!(win_max < range_cfg->range_min ||
839 win_min > range_cfg->range_max)) {
840 dev_err(map->dev,
841 "Range %d: window for %d in window\n",
842 i, j);
843 goto err_range;
844 }
845 }
846
847 new = kzalloc(sizeof(*new), GFP_KERNEL);
848 if (new == NULL) {
849 ret = -ENOMEM;
850 goto err_range;
851 }
852
853 new->map = map;
854 new->name = range_cfg->name;
855 new->range_min = range_cfg->range_min;
856 new->range_max = range_cfg->range_max;
857 new->selector_reg = range_cfg->selector_reg;
858 new->selector_mask = range_cfg->selector_mask;
859 new->selector_shift = range_cfg->selector_shift;
860 new->window_start = range_cfg->window_start;
861 new->window_len = range_cfg->window_len;
862
863 if (!_regmap_range_add(map, new)) {
864 dev_err(map->dev, "Failed to add range %d\n", i);
865 kfree(new);
866 goto err_range;
867 }
868
869 if (map->selector_work_buf == NULL) {
870 map->selector_work_buf =
871 kzalloc(map->format.buf_size, GFP_KERNEL);
872 if (map->selector_work_buf == NULL) {
873 ret = -ENOMEM;
874 goto err_range;
875 }
876 }
877 }
878
879 ret = regcache_init(map, config);
880 if (ret != 0)
881 goto err_range;
882
883 if (dev) {
884 ret = regmap_attach_dev(dev, map, config);
885 if (ret != 0)
886 goto err_regcache;
887 }
888
889 return map;
890
891 err_regcache:
892 regcache_exit(map);
893 err_range:
894 regmap_range_exit(map);
895 kfree(map->work_buf);
896 err_map:
897 kfree(map);
898 err:
899 return ERR_PTR(ret);
900 }
901 EXPORT_SYMBOL_GPL(regmap_init);
902
devm_regmap_release(struct device * dev,void * res)903 static void devm_regmap_release(struct device *dev, void *res)
904 {
905 regmap_exit(*(struct regmap **)res);
906 }
907
908 /**
909 * devm_regmap_init(): Initialise managed register map
910 *
911 * @dev: Device that will be interacted with
912 * @bus: Bus-specific callbacks to use with device
913 * @bus_context: Data passed to bus-specific callbacks
914 * @config: Configuration for register map
915 *
916 * The return value will be an ERR_PTR() on error or a valid pointer
917 * to a struct regmap. This function should generally not be called
918 * directly, it should be called by bus-specific init functions. The
919 * map will be automatically freed by the device management code.
920 */
devm_regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config)921 struct regmap *devm_regmap_init(struct device *dev,
922 const struct regmap_bus *bus,
923 void *bus_context,
924 const struct regmap_config *config)
925 {
926 struct regmap **ptr, *regmap;
927
928 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
929 if (!ptr)
930 return ERR_PTR(-ENOMEM);
931
932 regmap = regmap_init(dev, bus, bus_context, config);
933 if (!IS_ERR(regmap)) {
934 *ptr = regmap;
935 devres_add(dev, ptr);
936 } else {
937 devres_free(ptr);
938 }
939
940 return regmap;
941 }
942 EXPORT_SYMBOL_GPL(devm_regmap_init);
943
regmap_field_init(struct regmap_field * rm_field,struct regmap * regmap,struct reg_field reg_field)944 static void regmap_field_init(struct regmap_field *rm_field,
945 struct regmap *regmap, struct reg_field reg_field)
946 {
947 rm_field->regmap = regmap;
948 rm_field->reg = reg_field.reg;
949 rm_field->shift = reg_field.lsb;
950 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
951 rm_field->id_size = reg_field.id_size;
952 rm_field->id_offset = reg_field.id_offset;
953 }
954
955 /**
956 * devm_regmap_field_alloc(): Allocate and initialise a register field
957 * in a register map.
958 *
959 * @dev: Device that will be interacted with
960 * @regmap: regmap bank in which this register field is located.
961 * @reg_field: Register field with in the bank.
962 *
963 * The return value will be an ERR_PTR() on error or a valid pointer
964 * to a struct regmap_field. The regmap_field will be automatically freed
965 * by the device management code.
966 */
devm_regmap_field_alloc(struct device * dev,struct regmap * regmap,struct reg_field reg_field)967 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
968 struct regmap *regmap, struct reg_field reg_field)
969 {
970 struct regmap_field *rm_field = devm_kzalloc(dev,
971 sizeof(*rm_field), GFP_KERNEL);
972 if (!rm_field)
973 return ERR_PTR(-ENOMEM);
974
975 regmap_field_init(rm_field, regmap, reg_field);
976
977 return rm_field;
978
979 }
980 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
981
982 /**
983 * devm_regmap_field_free(): Free register field allocated using
984 * devm_regmap_field_alloc. Usally drivers need not call this function,
985 * as the memory allocated via devm will be freed as per device-driver
986 * life-cyle.
987 *
988 * @dev: Device that will be interacted with
989 * @field: regmap field which should be freed.
990 */
devm_regmap_field_free(struct device * dev,struct regmap_field * field)991 void devm_regmap_field_free(struct device *dev,
992 struct regmap_field *field)
993 {
994 devm_kfree(dev, field);
995 }
996 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
997
998 /**
999 * regmap_field_alloc(): Allocate and initialise a register field
1000 * in a register map.
1001 *
1002 * @regmap: regmap bank in which this register field is located.
1003 * @reg_field: Register field with in the bank.
1004 *
1005 * The return value will be an ERR_PTR() on error or a valid pointer
1006 * to a struct regmap_field. The regmap_field should be freed by the
1007 * user once its finished working with it using regmap_field_free().
1008 */
regmap_field_alloc(struct regmap * regmap,struct reg_field reg_field)1009 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1010 struct reg_field reg_field)
1011 {
1012 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1013
1014 if (!rm_field)
1015 return ERR_PTR(-ENOMEM);
1016
1017 regmap_field_init(rm_field, regmap, reg_field);
1018
1019 return rm_field;
1020 }
1021 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1022
1023 /**
1024 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1025 *
1026 * @field: regmap field which should be freed.
1027 */
regmap_field_free(struct regmap_field * field)1028 void regmap_field_free(struct regmap_field *field)
1029 {
1030 kfree(field);
1031 }
1032 EXPORT_SYMBOL_GPL(regmap_field_free);
1033
1034 /**
1035 * regmap_reinit_cache(): Reinitialise the current register cache
1036 *
1037 * @map: Register map to operate on.
1038 * @config: New configuration. Only the cache data will be used.
1039 *
1040 * Discard any existing register cache for the map and initialize a
1041 * new cache. This can be used to restore the cache to defaults or to
1042 * update the cache configuration to reflect runtime discovery of the
1043 * hardware.
1044 *
1045 * No explicit locking is done here, the user needs to ensure that
1046 * this function will not race with other calls to regmap.
1047 */
regmap_reinit_cache(struct regmap * map,const struct regmap_config * config)1048 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1049 {
1050 regcache_exit(map);
1051 regmap_debugfs_exit(map);
1052
1053 map->max_register = config->max_register;
1054 map->writeable_reg = config->writeable_reg;
1055 map->readable_reg = config->readable_reg;
1056 map->volatile_reg = config->volatile_reg;
1057 map->precious_reg = config->precious_reg;
1058 map->cache_type = config->cache_type;
1059
1060 regmap_debugfs_init(map, config->name);
1061
1062 map->cache_bypass = false;
1063 map->cache_only = false;
1064
1065 return regcache_init(map, config);
1066 }
1067 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1068
1069 /**
1070 * regmap_exit(): Free a previously allocated register map
1071 */
regmap_exit(struct regmap * map)1072 void regmap_exit(struct regmap *map)
1073 {
1074 struct regmap_async *async;
1075
1076 regcache_exit(map);
1077 regmap_debugfs_exit(map);
1078 regmap_range_exit(map);
1079 if (map->bus && map->bus->free_context)
1080 map->bus->free_context(map->bus_context);
1081 kfree(map->work_buf);
1082 while (!list_empty(&map->async_free)) {
1083 async = list_first_entry_or_null(&map->async_free,
1084 struct regmap_async,
1085 list);
1086 list_del(&async->list);
1087 kfree(async->work_buf);
1088 kfree(async);
1089 }
1090 kfree(map);
1091 }
1092 EXPORT_SYMBOL_GPL(regmap_exit);
1093
dev_get_regmap_match(struct device * dev,void * res,void * data)1094 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1095 {
1096 struct regmap **r = res;
1097 if (!r || !*r) {
1098 WARN_ON(!r || !*r);
1099 return 0;
1100 }
1101
1102 /* If the user didn't specify a name match any */
1103 if (data)
1104 return (*r)->name == data;
1105 else
1106 return 1;
1107 }
1108
1109 /**
1110 * dev_get_regmap(): Obtain the regmap (if any) for a device
1111 *
1112 * @dev: Device to retrieve the map for
1113 * @name: Optional name for the register map, usually NULL.
1114 *
1115 * Returns the regmap for the device if one is present, or NULL. If
1116 * name is specified then it must match the name specified when
1117 * registering the device, if it is NULL then the first regmap found
1118 * will be used. Devices with multiple register maps are very rare,
1119 * generic code should normally not need to specify a name.
1120 */
dev_get_regmap(struct device * dev,const char * name)1121 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1122 {
1123 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1124 dev_get_regmap_match, (void *)name);
1125
1126 if (!r)
1127 return NULL;
1128 return *r;
1129 }
1130 EXPORT_SYMBOL_GPL(dev_get_regmap);
1131
1132 /**
1133 * regmap_get_device(): Obtain the device from a regmap
1134 *
1135 * @map: Register map to operate on.
1136 *
1137 * Returns the underlying device that the regmap has been created for.
1138 */
regmap_get_device(struct regmap * map)1139 struct device *regmap_get_device(struct regmap *map)
1140 {
1141 return map->dev;
1142 }
1143 EXPORT_SYMBOL_GPL(regmap_get_device);
1144
_regmap_select_page(struct regmap * map,unsigned int * reg,struct regmap_range_node * range,unsigned int val_num)1145 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1146 struct regmap_range_node *range,
1147 unsigned int val_num)
1148 {
1149 void *orig_work_buf;
1150 unsigned int win_offset;
1151 unsigned int win_page;
1152 bool page_chg;
1153 int ret;
1154
1155 win_offset = (*reg - range->range_min) % range->window_len;
1156 win_page = (*reg - range->range_min) / range->window_len;
1157
1158 if (val_num > 1) {
1159 /* Bulk write shouldn't cross range boundary */
1160 if (*reg + val_num - 1 > range->range_max)
1161 return -EINVAL;
1162
1163 /* ... or single page boundary */
1164 if (val_num > range->window_len - win_offset)
1165 return -EINVAL;
1166 }
1167
1168 /* It is possible to have selector register inside data window.
1169 In that case, selector register is located on every page and
1170 it needs no page switching, when accessed alone. */
1171 if (val_num > 1 ||
1172 range->window_start + win_offset != range->selector_reg) {
1173 /* Use separate work_buf during page switching */
1174 orig_work_buf = map->work_buf;
1175 map->work_buf = map->selector_work_buf;
1176
1177 ret = _regmap_update_bits(map, range->selector_reg,
1178 range->selector_mask,
1179 win_page << range->selector_shift,
1180 &page_chg);
1181
1182 map->work_buf = orig_work_buf;
1183
1184 if (ret != 0)
1185 return ret;
1186 }
1187
1188 *reg = range->window_start + win_offset;
1189
1190 return 0;
1191 }
1192
_regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)1193 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1194 const void *val, size_t val_len)
1195 {
1196 struct regmap_range_node *range;
1197 unsigned long flags;
1198 u8 *u8 = map->work_buf;
1199 void *work_val = map->work_buf + map->format.reg_bytes +
1200 map->format.pad_bytes;
1201 void *buf;
1202 int ret = -ENOTSUPP;
1203 size_t len;
1204 int i;
1205
1206 WARN_ON(!map->bus);
1207
1208 /* Check for unwritable registers before we start */
1209 if (map->writeable_reg)
1210 for (i = 0; i < val_len / map->format.val_bytes; i++)
1211 if (!map->writeable_reg(map->dev,
1212 reg + (i * map->reg_stride)))
1213 return -EINVAL;
1214
1215 if (!map->cache_bypass && map->format.parse_val) {
1216 unsigned int ival;
1217 int val_bytes = map->format.val_bytes;
1218 for (i = 0; i < val_len / val_bytes; i++) {
1219 ival = map->format.parse_val(val + (i * val_bytes));
1220 ret = regcache_write(map, reg + (i * map->reg_stride),
1221 ival);
1222 if (ret) {
1223 dev_err(map->dev,
1224 "Error in caching of register: %x ret: %d\n",
1225 reg + i, ret);
1226 return ret;
1227 }
1228 }
1229 if (map->cache_only) {
1230 map->cache_dirty = true;
1231 return 0;
1232 }
1233 }
1234
1235 range = _regmap_range_lookup(map, reg);
1236 if (range) {
1237 int val_num = val_len / map->format.val_bytes;
1238 int win_offset = (reg - range->range_min) % range->window_len;
1239 int win_residue = range->window_len - win_offset;
1240
1241 /* If the write goes beyond the end of the window split it */
1242 while (val_num > win_residue) {
1243 dev_dbg(map->dev, "Writing window %d/%zu\n",
1244 win_residue, val_len / map->format.val_bytes);
1245 ret = _regmap_raw_write(map, reg, val, win_residue *
1246 map->format.val_bytes);
1247 if (ret != 0)
1248 return ret;
1249
1250 reg += win_residue;
1251 val_num -= win_residue;
1252 val += win_residue * map->format.val_bytes;
1253 val_len -= win_residue * map->format.val_bytes;
1254
1255 win_offset = (reg - range->range_min) %
1256 range->window_len;
1257 win_residue = range->window_len - win_offset;
1258 }
1259
1260 ret = _regmap_select_page(map, ®, range, val_num);
1261 if (ret != 0)
1262 return ret;
1263 }
1264
1265 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1266
1267 u8[0] |= map->write_flag_mask;
1268
1269 /*
1270 * Essentially all I/O mechanisms will be faster with a single
1271 * buffer to write. Since register syncs often generate raw
1272 * writes of single registers optimise that case.
1273 */
1274 if (val != work_val && val_len == map->format.val_bytes) {
1275 memcpy(work_val, val, map->format.val_bytes);
1276 val = work_val;
1277 }
1278
1279 if (map->async && map->bus->async_write) {
1280 struct regmap_async *async;
1281
1282 trace_regmap_async_write_start(map, reg, val_len);
1283
1284 spin_lock_irqsave(&map->async_lock, flags);
1285 async = list_first_entry_or_null(&map->async_free,
1286 struct regmap_async,
1287 list);
1288 if (async)
1289 list_del(&async->list);
1290 spin_unlock_irqrestore(&map->async_lock, flags);
1291
1292 if (!async) {
1293 async = map->bus->async_alloc();
1294 if (!async)
1295 return -ENOMEM;
1296
1297 async->work_buf = kzalloc(map->format.buf_size,
1298 GFP_KERNEL | GFP_DMA);
1299 if (!async->work_buf) {
1300 kfree(async);
1301 return -ENOMEM;
1302 }
1303 }
1304
1305 async->map = map;
1306
1307 /* If the caller supplied the value we can use it safely. */
1308 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1309 map->format.reg_bytes + map->format.val_bytes);
1310
1311 spin_lock_irqsave(&map->async_lock, flags);
1312 list_add_tail(&async->list, &map->async_list);
1313 spin_unlock_irqrestore(&map->async_lock, flags);
1314
1315 if (val != work_val)
1316 ret = map->bus->async_write(map->bus_context,
1317 async->work_buf,
1318 map->format.reg_bytes +
1319 map->format.pad_bytes,
1320 val, val_len, async);
1321 else
1322 ret = map->bus->async_write(map->bus_context,
1323 async->work_buf,
1324 map->format.reg_bytes +
1325 map->format.pad_bytes +
1326 val_len, NULL, 0, async);
1327
1328 if (ret != 0) {
1329 dev_err(map->dev, "Failed to schedule write: %d\n",
1330 ret);
1331
1332 spin_lock_irqsave(&map->async_lock, flags);
1333 list_move(&async->list, &map->async_free);
1334 spin_unlock_irqrestore(&map->async_lock, flags);
1335 }
1336
1337 return ret;
1338 }
1339
1340 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1341
1342 /* If we're doing a single register write we can probably just
1343 * send the work_buf directly, otherwise try to do a gather
1344 * write.
1345 */
1346 if (val == work_val)
1347 ret = map->bus->write(map->bus_context, map->work_buf,
1348 map->format.reg_bytes +
1349 map->format.pad_bytes +
1350 val_len);
1351 else if (map->bus->gather_write)
1352 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1353 map->format.reg_bytes +
1354 map->format.pad_bytes,
1355 val, val_len);
1356
1357 /* If that didn't work fall back on linearising by hand. */
1358 if (ret == -ENOTSUPP) {
1359 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1360 buf = kzalloc(len, GFP_KERNEL);
1361 if (!buf)
1362 return -ENOMEM;
1363
1364 memcpy(buf, map->work_buf, map->format.reg_bytes);
1365 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1366 val, val_len);
1367 ret = map->bus->write(map->bus_context, buf, len);
1368
1369 kfree(buf);
1370 }
1371
1372 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1373
1374 return ret;
1375 }
1376
1377 /**
1378 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1379 *
1380 * @map: Map to check.
1381 */
regmap_can_raw_write(struct regmap * map)1382 bool regmap_can_raw_write(struct regmap *map)
1383 {
1384 return map->bus && map->format.format_val && map->format.format_reg;
1385 }
1386 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1387
_regmap_bus_formatted_write(void * context,unsigned int reg,unsigned int val)1388 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1389 unsigned int val)
1390 {
1391 int ret;
1392 struct regmap_range_node *range;
1393 struct regmap *map = context;
1394
1395 WARN_ON(!map->bus || !map->format.format_write);
1396
1397 range = _regmap_range_lookup(map, reg);
1398 if (range) {
1399 ret = _regmap_select_page(map, ®, range, 1);
1400 if (ret != 0)
1401 return ret;
1402 }
1403
1404 map->format.format_write(map, reg, val);
1405
1406 trace_regmap_hw_write_start(map, reg, 1);
1407
1408 ret = map->bus->write(map->bus_context, map->work_buf,
1409 map->format.buf_size);
1410
1411 trace_regmap_hw_write_done(map, reg, 1);
1412
1413 return ret;
1414 }
1415
_regmap_bus_reg_write(void * context,unsigned int reg,unsigned int val)1416 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1417 unsigned int val)
1418 {
1419 struct regmap *map = context;
1420
1421 return map->bus->reg_write(map->bus_context, reg, val);
1422 }
1423
_regmap_bus_raw_write(void * context,unsigned int reg,unsigned int val)1424 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1425 unsigned int val)
1426 {
1427 struct regmap *map = context;
1428
1429 WARN_ON(!map->bus || !map->format.format_val);
1430
1431 map->format.format_val(map->work_buf + map->format.reg_bytes
1432 + map->format.pad_bytes, val, 0);
1433 return _regmap_raw_write(map, reg,
1434 map->work_buf +
1435 map->format.reg_bytes +
1436 map->format.pad_bytes,
1437 map->format.val_bytes);
1438 }
1439
_regmap_map_get_context(struct regmap * map)1440 static inline void *_regmap_map_get_context(struct regmap *map)
1441 {
1442 return (map->bus) ? map : map->bus_context;
1443 }
1444
_regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1445 int _regmap_write(struct regmap *map, unsigned int reg,
1446 unsigned int val)
1447 {
1448 int ret;
1449 void *context = _regmap_map_get_context(map);
1450
1451 if (!regmap_writeable(map, reg))
1452 return -EIO;
1453
1454 if (!map->cache_bypass && !map->defer_caching) {
1455 ret = regcache_write(map, reg, val);
1456 if (ret != 0)
1457 return ret;
1458 if (map->cache_only) {
1459 map->cache_dirty = true;
1460 return 0;
1461 }
1462 }
1463
1464 #ifdef LOG_DEVICE
1465 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1466 dev_info(map->dev, "%x <= %x\n", reg, val);
1467 #endif
1468
1469 trace_regmap_reg_write(map, reg, val);
1470
1471 return map->reg_write(context, reg, val);
1472 }
1473
1474 /**
1475 * regmap_write(): Write a value to a single register
1476 *
1477 * @map: Register map to write to
1478 * @reg: Register to write to
1479 * @val: Value to be written
1480 *
1481 * A value of zero will be returned on success, a negative errno will
1482 * be returned in error cases.
1483 */
regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1484 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1485 {
1486 int ret;
1487
1488 if (reg % map->reg_stride)
1489 return -EINVAL;
1490
1491 map->lock(map->lock_arg);
1492
1493 ret = _regmap_write(map, reg, val);
1494
1495 map->unlock(map->lock_arg);
1496
1497 return ret;
1498 }
1499 EXPORT_SYMBOL_GPL(regmap_write);
1500
1501 /**
1502 * regmap_write_async(): Write a value to a single register asynchronously
1503 *
1504 * @map: Register map to write to
1505 * @reg: Register to write to
1506 * @val: Value to be written
1507 *
1508 * A value of zero will be returned on success, a negative errno will
1509 * be returned in error cases.
1510 */
regmap_write_async(struct regmap * map,unsigned int reg,unsigned int val)1511 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1512 {
1513 int ret;
1514
1515 if (reg % map->reg_stride)
1516 return -EINVAL;
1517
1518 map->lock(map->lock_arg);
1519
1520 map->async = true;
1521
1522 ret = _regmap_write(map, reg, val);
1523
1524 map->async = false;
1525
1526 map->unlock(map->lock_arg);
1527
1528 return ret;
1529 }
1530 EXPORT_SYMBOL_GPL(regmap_write_async);
1531
1532 /**
1533 * regmap_raw_write(): Write raw values to one or more registers
1534 *
1535 * @map: Register map to write to
1536 * @reg: Initial register to write to
1537 * @val: Block of data to be written, laid out for direct transmission to the
1538 * device
1539 * @val_len: Length of data pointed to by val.
1540 *
1541 * This function is intended to be used for things like firmware
1542 * download where a large block of data needs to be transferred to the
1543 * device. No formatting will be done on the data provided.
1544 *
1545 * A value of zero will be returned on success, a negative errno will
1546 * be returned in error cases.
1547 */
regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)1548 int regmap_raw_write(struct regmap *map, unsigned int reg,
1549 const void *val, size_t val_len)
1550 {
1551 int ret;
1552
1553 if (!regmap_can_raw_write(map))
1554 return -EINVAL;
1555 if (val_len % map->format.val_bytes)
1556 return -EINVAL;
1557
1558 map->lock(map->lock_arg);
1559
1560 ret = _regmap_raw_write(map, reg, val, val_len);
1561
1562 map->unlock(map->lock_arg);
1563
1564 return ret;
1565 }
1566 EXPORT_SYMBOL_GPL(regmap_raw_write);
1567
1568 /**
1569 * regmap_field_write(): Write a value to a single register field
1570 *
1571 * @field: Register field to write to
1572 * @val: Value to be written
1573 *
1574 * A value of zero will be returned on success, a negative errno will
1575 * be returned in error cases.
1576 */
regmap_field_write(struct regmap_field * field,unsigned int val)1577 int regmap_field_write(struct regmap_field *field, unsigned int val)
1578 {
1579 return regmap_update_bits(field->regmap, field->reg,
1580 field->mask, val << field->shift);
1581 }
1582 EXPORT_SYMBOL_GPL(regmap_field_write);
1583
1584 /**
1585 * regmap_field_update_bits(): Perform a read/modify/write cycle
1586 * on the register field
1587 *
1588 * @field: Register field to write to
1589 * @mask: Bitmask to change
1590 * @val: Value to be written
1591 *
1592 * A value of zero will be returned on success, a negative errno will
1593 * be returned in error cases.
1594 */
regmap_field_update_bits(struct regmap_field * field,unsigned int mask,unsigned int val)1595 int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1596 {
1597 mask = (mask << field->shift) & field->mask;
1598
1599 return regmap_update_bits(field->regmap, field->reg,
1600 mask, val << field->shift);
1601 }
1602 EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1603
1604 /**
1605 * regmap_fields_write(): Write a value to a single register field with port ID
1606 *
1607 * @field: Register field to write to
1608 * @id: port ID
1609 * @val: Value to be written
1610 *
1611 * A value of zero will be returned on success, a negative errno will
1612 * be returned in error cases.
1613 */
regmap_fields_write(struct regmap_field * field,unsigned int id,unsigned int val)1614 int regmap_fields_write(struct regmap_field *field, unsigned int id,
1615 unsigned int val)
1616 {
1617 if (id >= field->id_size)
1618 return -EINVAL;
1619
1620 return regmap_update_bits(field->regmap,
1621 field->reg + (field->id_offset * id),
1622 field->mask, val << field->shift);
1623 }
1624 EXPORT_SYMBOL_GPL(regmap_fields_write);
1625
1626 /**
1627 * regmap_fields_update_bits(): Perform a read/modify/write cycle
1628 * on the register field
1629 *
1630 * @field: Register field to write to
1631 * @id: port ID
1632 * @mask: Bitmask to change
1633 * @val: Value to be written
1634 *
1635 * A value of zero will be returned on success, a negative errno will
1636 * be returned in error cases.
1637 */
regmap_fields_update_bits(struct regmap_field * field,unsigned int id,unsigned int mask,unsigned int val)1638 int regmap_fields_update_bits(struct regmap_field *field, unsigned int id,
1639 unsigned int mask, unsigned int val)
1640 {
1641 if (id >= field->id_size)
1642 return -EINVAL;
1643
1644 mask = (mask << field->shift) & field->mask;
1645
1646 return regmap_update_bits(field->regmap,
1647 field->reg + (field->id_offset * id),
1648 mask, val << field->shift);
1649 }
1650 EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1651
1652 /*
1653 * regmap_bulk_write(): Write multiple registers to the device
1654 *
1655 * @map: Register map to write to
1656 * @reg: First register to be write from
1657 * @val: Block of data to be written, in native register size for device
1658 * @val_count: Number of registers to write
1659 *
1660 * This function is intended to be used for writing a large block of
1661 * data to the device either in single transfer or multiple transfer.
1662 *
1663 * A value of zero will be returned on success, a negative errno will
1664 * be returned in error cases.
1665 */
regmap_bulk_write(struct regmap * map,unsigned int reg,const void * val,size_t val_count)1666 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1667 size_t val_count)
1668 {
1669 int ret = 0, i;
1670 size_t val_bytes = map->format.val_bytes;
1671
1672 if (map->bus && !map->format.parse_inplace)
1673 return -EINVAL;
1674 if (reg % map->reg_stride)
1675 return -EINVAL;
1676
1677 /*
1678 * Some devices don't support bulk write, for
1679 * them we have a series of single write operations.
1680 */
1681 if (!map->bus || map->use_single_rw) {
1682 map->lock(map->lock_arg);
1683 for (i = 0; i < val_count; i++) {
1684 unsigned int ival;
1685
1686 switch (val_bytes) {
1687 case 1:
1688 ival = *(u8 *)(val + (i * val_bytes));
1689 break;
1690 case 2:
1691 ival = *(u16 *)(val + (i * val_bytes));
1692 break;
1693 case 4:
1694 ival = *(u32 *)(val + (i * val_bytes));
1695 break;
1696 #ifdef CONFIG_64BIT
1697 case 8:
1698 ival = *(u64 *)(val + (i * val_bytes));
1699 break;
1700 #endif
1701 default:
1702 ret = -EINVAL;
1703 goto out;
1704 }
1705
1706 ret = _regmap_write(map, reg + (i * map->reg_stride),
1707 ival);
1708 if (ret != 0)
1709 goto out;
1710 }
1711 out:
1712 map->unlock(map->lock_arg);
1713 } else {
1714 void *wval;
1715
1716 if (!val_count)
1717 return -EINVAL;
1718
1719 wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1720 if (!wval) {
1721 dev_err(map->dev, "Error in memory allocation\n");
1722 return -ENOMEM;
1723 }
1724 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1725 map->format.parse_inplace(wval + i);
1726
1727 map->lock(map->lock_arg);
1728 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1729 map->unlock(map->lock_arg);
1730
1731 kfree(wval);
1732 }
1733 return ret;
1734 }
1735 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1736
1737 /*
1738 * _regmap_raw_multi_reg_write()
1739 *
1740 * the (register,newvalue) pairs in regs have not been formatted, but
1741 * they are all in the same page and have been changed to being page
1742 * relative. The page register has been written if that was neccessary.
1743 */
_regmap_raw_multi_reg_write(struct regmap * map,const struct reg_default * regs,size_t num_regs)1744 static int _regmap_raw_multi_reg_write(struct regmap *map,
1745 const struct reg_default *regs,
1746 size_t num_regs)
1747 {
1748 int ret;
1749 void *buf;
1750 int i;
1751 u8 *u8;
1752 size_t val_bytes = map->format.val_bytes;
1753 size_t reg_bytes = map->format.reg_bytes;
1754 size_t pad_bytes = map->format.pad_bytes;
1755 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1756 size_t len = pair_size * num_regs;
1757
1758 if (!len)
1759 return -EINVAL;
1760
1761 buf = kzalloc(len, GFP_KERNEL);
1762 if (!buf)
1763 return -ENOMEM;
1764
1765 /* We have to linearise by hand. */
1766
1767 u8 = buf;
1768
1769 for (i = 0; i < num_regs; i++) {
1770 int reg = regs[i].reg;
1771 int val = regs[i].def;
1772 trace_regmap_hw_write_start(map, reg, 1);
1773 map->format.format_reg(u8, reg, map->reg_shift);
1774 u8 += reg_bytes + pad_bytes;
1775 map->format.format_val(u8, val, 0);
1776 u8 += val_bytes;
1777 }
1778 u8 = buf;
1779 *u8 |= map->write_flag_mask;
1780
1781 ret = map->bus->write(map->bus_context, buf, len);
1782
1783 kfree(buf);
1784
1785 for (i = 0; i < num_regs; i++) {
1786 int reg = regs[i].reg;
1787 trace_regmap_hw_write_done(map, reg, 1);
1788 }
1789 return ret;
1790 }
1791
_regmap_register_page(struct regmap * map,unsigned int reg,struct regmap_range_node * range)1792 static unsigned int _regmap_register_page(struct regmap *map,
1793 unsigned int reg,
1794 struct regmap_range_node *range)
1795 {
1796 unsigned int win_page = (reg - range->range_min) / range->window_len;
1797
1798 return win_page;
1799 }
1800
_regmap_range_multi_paged_reg_write(struct regmap * map,struct reg_default * regs,size_t num_regs)1801 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1802 struct reg_default *regs,
1803 size_t num_regs)
1804 {
1805 int ret;
1806 int i, n;
1807 struct reg_default *base;
1808 unsigned int this_page = 0;
1809 /*
1810 * the set of registers are not neccessarily in order, but
1811 * since the order of write must be preserved this algorithm
1812 * chops the set each time the page changes
1813 */
1814 base = regs;
1815 for (i = 0, n = 0; i < num_regs; i++, n++) {
1816 unsigned int reg = regs[i].reg;
1817 struct regmap_range_node *range;
1818
1819 range = _regmap_range_lookup(map, reg);
1820 if (range) {
1821 unsigned int win_page = _regmap_register_page(map, reg,
1822 range);
1823
1824 if (i == 0)
1825 this_page = win_page;
1826 if (win_page != this_page) {
1827 this_page = win_page;
1828 ret = _regmap_raw_multi_reg_write(map, base, n);
1829 if (ret != 0)
1830 return ret;
1831 base += n;
1832 n = 0;
1833 }
1834 ret = _regmap_select_page(map, &base[n].reg, range, 1);
1835 if (ret != 0)
1836 return ret;
1837 }
1838 }
1839 if (n > 0)
1840 return _regmap_raw_multi_reg_write(map, base, n);
1841 return 0;
1842 }
1843
_regmap_multi_reg_write(struct regmap * map,const struct reg_default * regs,size_t num_regs)1844 static int _regmap_multi_reg_write(struct regmap *map,
1845 const struct reg_default *regs,
1846 size_t num_regs)
1847 {
1848 int i;
1849 int ret;
1850
1851 if (!map->can_multi_write) {
1852 for (i = 0; i < num_regs; i++) {
1853 ret = _regmap_write(map, regs[i].reg, regs[i].def);
1854 if (ret != 0)
1855 return ret;
1856 }
1857 return 0;
1858 }
1859
1860 if (!map->format.parse_inplace)
1861 return -EINVAL;
1862
1863 if (map->writeable_reg)
1864 for (i = 0; i < num_regs; i++) {
1865 int reg = regs[i].reg;
1866 if (!map->writeable_reg(map->dev, reg))
1867 return -EINVAL;
1868 if (reg % map->reg_stride)
1869 return -EINVAL;
1870 }
1871
1872 if (!map->cache_bypass) {
1873 for (i = 0; i < num_regs; i++) {
1874 unsigned int val = regs[i].def;
1875 unsigned int reg = regs[i].reg;
1876 ret = regcache_write(map, reg, val);
1877 if (ret) {
1878 dev_err(map->dev,
1879 "Error in caching of register: %x ret: %d\n",
1880 reg, ret);
1881 return ret;
1882 }
1883 }
1884 if (map->cache_only) {
1885 map->cache_dirty = true;
1886 return 0;
1887 }
1888 }
1889
1890 WARN_ON(!map->bus);
1891
1892 for (i = 0; i < num_regs; i++) {
1893 unsigned int reg = regs[i].reg;
1894 struct regmap_range_node *range;
1895 range = _regmap_range_lookup(map, reg);
1896 if (range) {
1897 size_t len = sizeof(struct reg_default)*num_regs;
1898 struct reg_default *base = kmemdup(regs, len,
1899 GFP_KERNEL);
1900 if (!base)
1901 return -ENOMEM;
1902 ret = _regmap_range_multi_paged_reg_write(map, base,
1903 num_regs);
1904 kfree(base);
1905
1906 return ret;
1907 }
1908 }
1909 return _regmap_raw_multi_reg_write(map, regs, num_regs);
1910 }
1911
1912 /*
1913 * regmap_multi_reg_write(): Write multiple registers to the device
1914 *
1915 * where the set of register,value pairs are supplied in any order,
1916 * possibly not all in a single range.
1917 *
1918 * @map: Register map to write to
1919 * @regs: Array of structures containing register,value to be written
1920 * @num_regs: Number of registers to write
1921 *
1922 * The 'normal' block write mode will send ultimately send data on the
1923 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1924 * addressed. However, this alternative block multi write mode will send
1925 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1926 * must of course support the mode.
1927 *
1928 * A value of zero will be returned on success, a negative errno will be
1929 * returned in error cases.
1930 */
regmap_multi_reg_write(struct regmap * map,const struct reg_default * regs,int num_regs)1931 int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1932 int num_regs)
1933 {
1934 int ret;
1935
1936 map->lock(map->lock_arg);
1937
1938 ret = _regmap_multi_reg_write(map, regs, num_regs);
1939
1940 map->unlock(map->lock_arg);
1941
1942 return ret;
1943 }
1944 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1945
1946 /*
1947 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1948 * device but not the cache
1949 *
1950 * where the set of register are supplied in any order
1951 *
1952 * @map: Register map to write to
1953 * @regs: Array of structures containing register,value to be written
1954 * @num_regs: Number of registers to write
1955 *
1956 * This function is intended to be used for writing a large block of data
1957 * atomically to the device in single transfer for those I2C client devices
1958 * that implement this alternative block write mode.
1959 *
1960 * A value of zero will be returned on success, a negative errno will
1961 * be returned in error cases.
1962 */
regmap_multi_reg_write_bypassed(struct regmap * map,const struct reg_default * regs,int num_regs)1963 int regmap_multi_reg_write_bypassed(struct regmap *map,
1964 const struct reg_default *regs,
1965 int num_regs)
1966 {
1967 int ret;
1968 bool bypass;
1969
1970 map->lock(map->lock_arg);
1971
1972 bypass = map->cache_bypass;
1973 map->cache_bypass = true;
1974
1975 ret = _regmap_multi_reg_write(map, regs, num_regs);
1976
1977 map->cache_bypass = bypass;
1978
1979 map->unlock(map->lock_arg);
1980
1981 return ret;
1982 }
1983 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1984
1985 /**
1986 * regmap_raw_write_async(): Write raw values to one or more registers
1987 * asynchronously
1988 *
1989 * @map: Register map to write to
1990 * @reg: Initial register to write to
1991 * @val: Block of data to be written, laid out for direct transmission to the
1992 * device. Must be valid until regmap_async_complete() is called.
1993 * @val_len: Length of data pointed to by val.
1994 *
1995 * This function is intended to be used for things like firmware
1996 * download where a large block of data needs to be transferred to the
1997 * device. No formatting will be done on the data provided.
1998 *
1999 * If supported by the underlying bus the write will be scheduled
2000 * asynchronously, helping maximise I/O speed on higher speed buses
2001 * like SPI. regmap_async_complete() can be called to ensure that all
2002 * asynchrnous writes have been completed.
2003 *
2004 * A value of zero will be returned on success, a negative errno will
2005 * be returned in error cases.
2006 */
regmap_raw_write_async(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2007 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2008 const void *val, size_t val_len)
2009 {
2010 int ret;
2011
2012 if (val_len % map->format.val_bytes)
2013 return -EINVAL;
2014 if (reg % map->reg_stride)
2015 return -EINVAL;
2016
2017 map->lock(map->lock_arg);
2018
2019 map->async = true;
2020
2021 ret = _regmap_raw_write(map, reg, val, val_len);
2022
2023 map->async = false;
2024
2025 map->unlock(map->lock_arg);
2026
2027 return ret;
2028 }
2029 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2030
_regmap_raw_read(struct regmap * map,unsigned int reg,void * val,unsigned int val_len)2031 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2032 unsigned int val_len)
2033 {
2034 struct regmap_range_node *range;
2035 u8 *u8 = map->work_buf;
2036 int ret;
2037
2038 WARN_ON(!map->bus);
2039
2040 range = _regmap_range_lookup(map, reg);
2041 if (range) {
2042 ret = _regmap_select_page(map, ®, range,
2043 val_len / map->format.val_bytes);
2044 if (ret != 0)
2045 return ret;
2046 }
2047
2048 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2049
2050 /*
2051 * Some buses or devices flag reads by setting the high bits in the
2052 * register addresss; since it's always the high bits for all
2053 * current formats we can do this here rather than in
2054 * formatting. This may break if we get interesting formats.
2055 */
2056 u8[0] |= map->read_flag_mask;
2057
2058 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2059
2060 ret = map->bus->read(map->bus_context, map->work_buf,
2061 map->format.reg_bytes + map->format.pad_bytes,
2062 val, val_len);
2063
2064 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2065
2066 return ret;
2067 }
2068
_regmap_bus_reg_read(void * context,unsigned int reg,unsigned int * val)2069 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2070 unsigned int *val)
2071 {
2072 struct regmap *map = context;
2073
2074 return map->bus->reg_read(map->bus_context, reg, val);
2075 }
2076
_regmap_bus_read(void * context,unsigned int reg,unsigned int * val)2077 static int _regmap_bus_read(void *context, unsigned int reg,
2078 unsigned int *val)
2079 {
2080 int ret;
2081 struct regmap *map = context;
2082
2083 if (!map->format.parse_val)
2084 return -EINVAL;
2085
2086 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2087 if (ret == 0)
2088 *val = map->format.parse_val(map->work_buf);
2089
2090 return ret;
2091 }
2092
_regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2093 static int _regmap_read(struct regmap *map, unsigned int reg,
2094 unsigned int *val)
2095 {
2096 int ret;
2097 void *context = _regmap_map_get_context(map);
2098
2099 WARN_ON(!map->reg_read);
2100
2101 if (!map->cache_bypass) {
2102 ret = regcache_read(map, reg, val);
2103 if (ret == 0)
2104 return 0;
2105 }
2106
2107 if (map->cache_only)
2108 return -EBUSY;
2109
2110 if (!regmap_readable(map, reg))
2111 return -EIO;
2112
2113 ret = map->reg_read(context, reg, val);
2114 if (ret == 0) {
2115 #ifdef LOG_DEVICE
2116 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2117 dev_info(map->dev, "%x => %x\n", reg, *val);
2118 #endif
2119
2120 trace_regmap_reg_read(map, reg, *val);
2121
2122 if (!map->cache_bypass)
2123 regcache_write(map, reg, *val);
2124 }
2125
2126 return ret;
2127 }
2128
2129 /**
2130 * regmap_read(): Read a value from a single register
2131 *
2132 * @map: Register map to read from
2133 * @reg: Register to be read from
2134 * @val: Pointer to store read value
2135 *
2136 * A value of zero will be returned on success, a negative errno will
2137 * be returned in error cases.
2138 */
regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2139 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2140 {
2141 int ret;
2142
2143 if (reg % map->reg_stride)
2144 return -EINVAL;
2145
2146 map->lock(map->lock_arg);
2147
2148 ret = _regmap_read(map, reg, val);
2149
2150 map->unlock(map->lock_arg);
2151
2152 return ret;
2153 }
2154 EXPORT_SYMBOL_GPL(regmap_read);
2155
2156 /**
2157 * regmap_raw_read(): Read raw data from the device
2158 *
2159 * @map: Register map to read from
2160 * @reg: First register to be read from
2161 * @val: Pointer to store read value
2162 * @val_len: Size of data to read
2163 *
2164 * A value of zero will be returned on success, a negative errno will
2165 * be returned in error cases.
2166 */
regmap_raw_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2167 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2168 size_t val_len)
2169 {
2170 size_t val_bytes = map->format.val_bytes;
2171 size_t val_count = val_len / val_bytes;
2172 unsigned int v;
2173 int ret, i;
2174
2175 if (!map->bus)
2176 return -EINVAL;
2177 if (val_len % map->format.val_bytes)
2178 return -EINVAL;
2179 if (reg % map->reg_stride)
2180 return -EINVAL;
2181
2182 map->lock(map->lock_arg);
2183
2184 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2185 map->cache_type == REGCACHE_NONE) {
2186 /* Physical block read if there's no cache involved */
2187 ret = _regmap_raw_read(map, reg, val, val_len);
2188
2189 } else {
2190 /* Otherwise go word by word for the cache; should be low
2191 * cost as we expect to hit the cache.
2192 */
2193 for (i = 0; i < val_count; i++) {
2194 ret = _regmap_read(map, reg + (i * map->reg_stride),
2195 &v);
2196 if (ret != 0)
2197 goto out;
2198
2199 map->format.format_val(val + (i * val_bytes), v, 0);
2200 }
2201 }
2202
2203 out:
2204 map->unlock(map->lock_arg);
2205
2206 return ret;
2207 }
2208 EXPORT_SYMBOL_GPL(regmap_raw_read);
2209
2210 /**
2211 * regmap_field_read(): Read a value to a single register field
2212 *
2213 * @field: Register field to read from
2214 * @val: Pointer to store read value
2215 *
2216 * A value of zero will be returned on success, a negative errno will
2217 * be returned in error cases.
2218 */
regmap_field_read(struct regmap_field * field,unsigned int * val)2219 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2220 {
2221 int ret;
2222 unsigned int reg_val;
2223 ret = regmap_read(field->regmap, field->reg, ®_val);
2224 if (ret != 0)
2225 return ret;
2226
2227 reg_val &= field->mask;
2228 reg_val >>= field->shift;
2229 *val = reg_val;
2230
2231 return ret;
2232 }
2233 EXPORT_SYMBOL_GPL(regmap_field_read);
2234
2235 /**
2236 * regmap_fields_read(): Read a value to a single register field with port ID
2237 *
2238 * @field: Register field to read from
2239 * @id: port ID
2240 * @val: Pointer to store read value
2241 *
2242 * A value of zero will be returned on success, a negative errno will
2243 * be returned in error cases.
2244 */
regmap_fields_read(struct regmap_field * field,unsigned int id,unsigned int * val)2245 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2246 unsigned int *val)
2247 {
2248 int ret;
2249 unsigned int reg_val;
2250
2251 if (id >= field->id_size)
2252 return -EINVAL;
2253
2254 ret = regmap_read(field->regmap,
2255 field->reg + (field->id_offset * id),
2256 ®_val);
2257 if (ret != 0)
2258 return ret;
2259
2260 reg_val &= field->mask;
2261 reg_val >>= field->shift;
2262 *val = reg_val;
2263
2264 return ret;
2265 }
2266 EXPORT_SYMBOL_GPL(regmap_fields_read);
2267
2268 /**
2269 * regmap_bulk_read(): Read multiple registers from the device
2270 *
2271 * @map: Register map to read from
2272 * @reg: First register to be read from
2273 * @val: Pointer to store read value, in native register size for device
2274 * @val_count: Number of registers to read
2275 *
2276 * A value of zero will be returned on success, a negative errno will
2277 * be returned in error cases.
2278 */
regmap_bulk_read(struct regmap * map,unsigned int reg,void * val,size_t val_count)2279 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2280 size_t val_count)
2281 {
2282 int ret, i;
2283 size_t val_bytes = map->format.val_bytes;
2284 bool vol = regmap_volatile_range(map, reg, val_count);
2285
2286 if (reg % map->reg_stride)
2287 return -EINVAL;
2288
2289 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2290 /*
2291 * Some devices does not support bulk read, for
2292 * them we have a series of single read operations.
2293 */
2294 if (map->use_single_rw) {
2295 for (i = 0; i < val_count; i++) {
2296 ret = regmap_raw_read(map,
2297 reg + (i * map->reg_stride),
2298 val + (i * val_bytes),
2299 val_bytes);
2300 if (ret != 0)
2301 return ret;
2302 }
2303 } else {
2304 ret = regmap_raw_read(map, reg, val,
2305 val_bytes * val_count);
2306 if (ret != 0)
2307 return ret;
2308 }
2309
2310 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2311 map->format.parse_inplace(val + i);
2312 } else {
2313 for (i = 0; i < val_count; i++) {
2314 unsigned int ival;
2315 ret = regmap_read(map, reg + (i * map->reg_stride),
2316 &ival);
2317 if (ret != 0)
2318 return ret;
2319 map->format.format_val(val + (i * val_bytes), ival, 0);
2320 }
2321 }
2322
2323 return 0;
2324 }
2325 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2326
_regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change)2327 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2328 unsigned int mask, unsigned int val,
2329 bool *change)
2330 {
2331 int ret;
2332 unsigned int tmp, orig;
2333
2334 ret = _regmap_read(map, reg, &orig);
2335 if (ret != 0)
2336 return ret;
2337
2338 tmp = orig & ~mask;
2339 tmp |= val & mask;
2340
2341 if (tmp != orig) {
2342 ret = _regmap_write(map, reg, tmp);
2343 if (change)
2344 *change = true;
2345 } else {
2346 if (change)
2347 *change = false;
2348 }
2349
2350 return ret;
2351 }
2352
2353 /**
2354 * regmap_update_bits: Perform a read/modify/write cycle on the register map
2355 *
2356 * @map: Register map to update
2357 * @reg: Register to update
2358 * @mask: Bitmask to change
2359 * @val: New value for bitmask
2360 *
2361 * Returns zero for success, a negative number on error.
2362 */
regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val)2363 int regmap_update_bits(struct regmap *map, unsigned int reg,
2364 unsigned int mask, unsigned int val)
2365 {
2366 int ret;
2367
2368 map->lock(map->lock_arg);
2369 ret = _regmap_update_bits(map, reg, mask, val, NULL);
2370 map->unlock(map->lock_arg);
2371
2372 return ret;
2373 }
2374 EXPORT_SYMBOL_GPL(regmap_update_bits);
2375
2376 /**
2377 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2378 * map asynchronously
2379 *
2380 * @map: Register map to update
2381 * @reg: Register to update
2382 * @mask: Bitmask to change
2383 * @val: New value for bitmask
2384 *
2385 * With most buses the read must be done synchronously so this is most
2386 * useful for devices with a cache which do not need to interact with
2387 * the hardware to determine the current register value.
2388 *
2389 * Returns zero for success, a negative number on error.
2390 */
regmap_update_bits_async(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val)2391 int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2392 unsigned int mask, unsigned int val)
2393 {
2394 int ret;
2395
2396 map->lock(map->lock_arg);
2397
2398 map->async = true;
2399
2400 ret = _regmap_update_bits(map, reg, mask, val, NULL);
2401
2402 map->async = false;
2403
2404 map->unlock(map->lock_arg);
2405
2406 return ret;
2407 }
2408 EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2409
2410 /**
2411 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2412 * register map and report if updated
2413 *
2414 * @map: Register map to update
2415 * @reg: Register to update
2416 * @mask: Bitmask to change
2417 * @val: New value for bitmask
2418 * @change: Boolean indicating if a write was done
2419 *
2420 * Returns zero for success, a negative number on error.
2421 */
regmap_update_bits_check(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change)2422 int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2423 unsigned int mask, unsigned int val,
2424 bool *change)
2425 {
2426 int ret;
2427
2428 map->lock(map->lock_arg);
2429 ret = _regmap_update_bits(map, reg, mask, val, change);
2430 map->unlock(map->lock_arg);
2431 return ret;
2432 }
2433 EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2434
2435 /**
2436 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2437 * register map asynchronously and report if
2438 * updated
2439 *
2440 * @map: Register map to update
2441 * @reg: Register to update
2442 * @mask: Bitmask to change
2443 * @val: New value for bitmask
2444 * @change: Boolean indicating if a write was done
2445 *
2446 * With most buses the read must be done synchronously so this is most
2447 * useful for devices with a cache which do not need to interact with
2448 * the hardware to determine the current register value.
2449 *
2450 * Returns zero for success, a negative number on error.
2451 */
regmap_update_bits_check_async(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change)2452 int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2453 unsigned int mask, unsigned int val,
2454 bool *change)
2455 {
2456 int ret;
2457
2458 map->lock(map->lock_arg);
2459
2460 map->async = true;
2461
2462 ret = _regmap_update_bits(map, reg, mask, val, change);
2463
2464 map->async = false;
2465
2466 map->unlock(map->lock_arg);
2467
2468 return ret;
2469 }
2470 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2471
regmap_async_complete_cb(struct regmap_async * async,int ret)2472 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2473 {
2474 struct regmap *map = async->map;
2475 bool wake;
2476
2477 trace_regmap_async_io_complete(map);
2478
2479 spin_lock(&map->async_lock);
2480 list_move(&async->list, &map->async_free);
2481 wake = list_empty(&map->async_list);
2482
2483 if (ret != 0)
2484 map->async_ret = ret;
2485
2486 spin_unlock(&map->async_lock);
2487
2488 if (wake)
2489 wake_up(&map->async_waitq);
2490 }
2491 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2492
regmap_async_is_done(struct regmap * map)2493 static int regmap_async_is_done(struct regmap *map)
2494 {
2495 unsigned long flags;
2496 int ret;
2497
2498 spin_lock_irqsave(&map->async_lock, flags);
2499 ret = list_empty(&map->async_list);
2500 spin_unlock_irqrestore(&map->async_lock, flags);
2501
2502 return ret;
2503 }
2504
2505 /**
2506 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2507 *
2508 * @map: Map to operate on.
2509 *
2510 * Blocks until any pending asynchronous I/O has completed. Returns
2511 * an error code for any failed I/O operations.
2512 */
regmap_async_complete(struct regmap * map)2513 int regmap_async_complete(struct regmap *map)
2514 {
2515 unsigned long flags;
2516 int ret;
2517
2518 /* Nothing to do with no async support */
2519 if (!map->bus || !map->bus->async_write)
2520 return 0;
2521
2522 trace_regmap_async_complete_start(map);
2523
2524 wait_event(map->async_waitq, regmap_async_is_done(map));
2525
2526 spin_lock_irqsave(&map->async_lock, flags);
2527 ret = map->async_ret;
2528 map->async_ret = 0;
2529 spin_unlock_irqrestore(&map->async_lock, flags);
2530
2531 trace_regmap_async_complete_done(map);
2532
2533 return ret;
2534 }
2535 EXPORT_SYMBOL_GPL(regmap_async_complete);
2536
2537 /**
2538 * regmap_register_patch: Register and apply register updates to be applied
2539 * on device initialistion
2540 *
2541 * @map: Register map to apply updates to.
2542 * @regs: Values to update.
2543 * @num_regs: Number of entries in regs.
2544 *
2545 * Register a set of register updates to be applied to the device
2546 * whenever the device registers are synchronised with the cache and
2547 * apply them immediately. Typically this is used to apply
2548 * corrections to be applied to the device defaults on startup, such
2549 * as the updates some vendors provide to undocumented registers.
2550 *
2551 * The caller must ensure that this function cannot be called
2552 * concurrently with either itself or regcache_sync().
2553 */
regmap_register_patch(struct regmap * map,const struct reg_default * regs,int num_regs)2554 int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2555 int num_regs)
2556 {
2557 struct reg_default *p;
2558 int ret;
2559 bool bypass;
2560
2561 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2562 num_regs))
2563 return 0;
2564
2565 p = krealloc(map->patch,
2566 sizeof(struct reg_default) * (map->patch_regs + num_regs),
2567 GFP_KERNEL);
2568 if (p) {
2569 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2570 map->patch = p;
2571 map->patch_regs += num_regs;
2572 } else {
2573 return -ENOMEM;
2574 }
2575
2576 map->lock(map->lock_arg);
2577
2578 bypass = map->cache_bypass;
2579
2580 map->cache_bypass = true;
2581 map->async = true;
2582
2583 ret = _regmap_multi_reg_write(map, regs, num_regs);
2584 if (ret != 0)
2585 goto out;
2586
2587 out:
2588 map->async = false;
2589 map->cache_bypass = bypass;
2590
2591 map->unlock(map->lock_arg);
2592
2593 regmap_async_complete(map);
2594
2595 return ret;
2596 }
2597 EXPORT_SYMBOL_GPL(regmap_register_patch);
2598
2599 /*
2600 * regmap_get_val_bytes(): Report the size of a register value
2601 *
2602 * Report the size of a register value, mainly intended to for use by
2603 * generic infrastructure built on top of regmap.
2604 */
regmap_get_val_bytes(struct regmap * map)2605 int regmap_get_val_bytes(struct regmap *map)
2606 {
2607 if (map->format.format_write)
2608 return -EINVAL;
2609
2610 return map->format.val_bytes;
2611 }
2612 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2613
regmap_parse_val(struct regmap * map,const void * buf,unsigned int * val)2614 int regmap_parse_val(struct regmap *map, const void *buf,
2615 unsigned int *val)
2616 {
2617 if (!map->format.parse_val)
2618 return -EINVAL;
2619
2620 *val = map->format.parse_val(buf);
2621
2622 return 0;
2623 }
2624 EXPORT_SYMBOL_GPL(regmap_parse_val);
2625
regmap_initcall(void)2626 static int __init regmap_initcall(void)
2627 {
2628 regmap_debugfs_initcall();
2629
2630 return 0;
2631 }
2632 postcore_initcall(regmap_initcall);
2633