1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63 * struct regulator_map
64 *
65 * Used to provide symbolic supply names to devices.
66 */
67 struct regulator_map {
68 struct list_head list;
69 const char *dev_name; /* The dev_name() for the consumer */
70 const char *supply;
71 struct regulator_dev *regulator;
72 };
73
74 /*
75 * struct regulator_enable_gpio
76 *
77 * Management for shared enable GPIO pin
78 */
79 struct regulator_enable_gpio {
80 struct list_head list;
81 struct gpio_desc *gpiod;
82 u32 enable_count; /* a number of enabled shared GPIO */
83 u32 request_count; /* a number of requested shared GPIO */
84 unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88 * struct regulator_supply_alias
89 *
90 * Used to map lookups for a supply onto an alternative device.
91 */
92 struct regulator_supply_alias {
93 struct list_head list;
94 struct device *src_dev;
95 const char *src_supply;
96 struct device *alias_dev;
97 const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106 unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108 int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110 struct device *dev,
111 const char *supply_name);
112
dev_to_rdev(struct device * dev)113 static struct regulator_dev *dev_to_rdev(struct device *dev)
114 {
115 return container_of(dev, struct regulator_dev, dev);
116 }
117
rdev_get_name(struct regulator_dev * rdev)118 static const char *rdev_get_name(struct regulator_dev *rdev)
119 {
120 if (rdev->constraints && rdev->constraints->name)
121 return rdev->constraints->name;
122 else if (rdev->desc->name)
123 return rdev->desc->name;
124 else
125 return "";
126 }
127
have_full_constraints(void)128 static bool have_full_constraints(void)
129 {
130 return has_full_constraints || of_have_populated_dt();
131 }
132
133 /**
134 * of_get_regulator - get a regulator device node based on supply name
135 * @dev: Device pointer for the consumer (of regulator) device
136 * @supply: regulator supply name
137 *
138 * Extract the regulator device node corresponding to the supply name.
139 * returns the device node corresponding to the regulator if found, else
140 * returns NULL.
141 */
of_get_regulator(struct device * dev,const char * supply)142 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
143 {
144 struct device_node *regnode = NULL;
145 char prop_name[32]; /* 32 is max size of property name */
146
147 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
148
149 snprintf(prop_name, 32, "%s-supply", supply);
150 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
151
152 if (!regnode) {
153 dev_dbg(dev, "Looking up %s property in node %s failed",
154 prop_name, dev->of_node->full_name);
155 return NULL;
156 }
157 return regnode;
158 }
159
_regulator_can_change_status(struct regulator_dev * rdev)160 static int _regulator_can_change_status(struct regulator_dev *rdev)
161 {
162 if (!rdev->constraints)
163 return 0;
164
165 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
166 return 1;
167 else
168 return 0;
169 }
170
171 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)172 static int regulator_check_voltage(struct regulator_dev *rdev,
173 int *min_uV, int *max_uV)
174 {
175 BUG_ON(*min_uV > *max_uV);
176
177 if (!rdev->constraints) {
178 rdev_err(rdev, "no constraints\n");
179 return -ENODEV;
180 }
181 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
182 rdev_err(rdev, "operation not allowed\n");
183 return -EPERM;
184 }
185
186 if (*max_uV > rdev->constraints->max_uV)
187 *max_uV = rdev->constraints->max_uV;
188 if (*min_uV < rdev->constraints->min_uV)
189 *min_uV = rdev->constraints->min_uV;
190
191 if (*min_uV > *max_uV) {
192 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
193 *min_uV, *max_uV);
194 return -EINVAL;
195 }
196
197 return 0;
198 }
199
200 /* Make sure we select a voltage that suits the needs of all
201 * regulator consumers
202 */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV)203 static int regulator_check_consumers(struct regulator_dev *rdev,
204 int *min_uV, int *max_uV)
205 {
206 struct regulator *regulator;
207
208 list_for_each_entry(regulator, &rdev->consumer_list, list) {
209 /*
210 * Assume consumers that didn't say anything are OK
211 * with anything in the constraint range.
212 */
213 if (!regulator->min_uV && !regulator->max_uV)
214 continue;
215
216 if (*max_uV > regulator->max_uV)
217 *max_uV = regulator->max_uV;
218 if (*min_uV < regulator->min_uV)
219 *min_uV = regulator->min_uV;
220 }
221
222 if (*min_uV > *max_uV) {
223 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
224 *min_uV, *max_uV);
225 return -EINVAL;
226 }
227
228 return 0;
229 }
230
231 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)232 static int regulator_check_current_limit(struct regulator_dev *rdev,
233 int *min_uA, int *max_uA)
234 {
235 BUG_ON(*min_uA > *max_uA);
236
237 if (!rdev->constraints) {
238 rdev_err(rdev, "no constraints\n");
239 return -ENODEV;
240 }
241 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
242 rdev_err(rdev, "operation not allowed\n");
243 return -EPERM;
244 }
245
246 if (*max_uA > rdev->constraints->max_uA)
247 *max_uA = rdev->constraints->max_uA;
248 if (*min_uA < rdev->constraints->min_uA)
249 *min_uA = rdev->constraints->min_uA;
250
251 if (*min_uA > *max_uA) {
252 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
253 *min_uA, *max_uA);
254 return -EINVAL;
255 }
256
257 return 0;
258 }
259
260 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,int * mode)261 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
262 {
263 switch (*mode) {
264 case REGULATOR_MODE_FAST:
265 case REGULATOR_MODE_NORMAL:
266 case REGULATOR_MODE_IDLE:
267 case REGULATOR_MODE_STANDBY:
268 break;
269 default:
270 rdev_err(rdev, "invalid mode %x specified\n", *mode);
271 return -EINVAL;
272 }
273
274 if (!rdev->constraints) {
275 rdev_err(rdev, "no constraints\n");
276 return -ENODEV;
277 }
278 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
279 rdev_err(rdev, "operation not allowed\n");
280 return -EPERM;
281 }
282
283 /* The modes are bitmasks, the most power hungry modes having
284 * the lowest values. If the requested mode isn't supported
285 * try higher modes. */
286 while (*mode) {
287 if (rdev->constraints->valid_modes_mask & *mode)
288 return 0;
289 *mode /= 2;
290 }
291
292 return -EINVAL;
293 }
294
295 /* dynamic regulator mode switching constraint check */
regulator_check_drms(struct regulator_dev * rdev)296 static int regulator_check_drms(struct regulator_dev *rdev)
297 {
298 if (!rdev->constraints) {
299 rdev_err(rdev, "no constraints\n");
300 return -ENODEV;
301 }
302 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
303 rdev_err(rdev, "operation not allowed\n");
304 return -EPERM;
305 }
306 return 0;
307 }
308
regulator_uV_show(struct device * dev,struct device_attribute * attr,char * buf)309 static ssize_t regulator_uV_show(struct device *dev,
310 struct device_attribute *attr, char *buf)
311 {
312 struct regulator_dev *rdev = dev_get_drvdata(dev);
313 ssize_t ret;
314
315 mutex_lock(&rdev->mutex);
316 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
317 mutex_unlock(&rdev->mutex);
318
319 return ret;
320 }
321 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
322
regulator_uA_show(struct device * dev,struct device_attribute * attr,char * buf)323 static ssize_t regulator_uA_show(struct device *dev,
324 struct device_attribute *attr, char *buf)
325 {
326 struct regulator_dev *rdev = dev_get_drvdata(dev);
327
328 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
329 }
330 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
331
name_show(struct device * dev,struct device_attribute * attr,char * buf)332 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
333 char *buf)
334 {
335 struct regulator_dev *rdev = dev_get_drvdata(dev);
336
337 return sprintf(buf, "%s\n", rdev_get_name(rdev));
338 }
339 static DEVICE_ATTR_RO(name);
340
regulator_print_opmode(char * buf,int mode)341 static ssize_t regulator_print_opmode(char *buf, int mode)
342 {
343 switch (mode) {
344 case REGULATOR_MODE_FAST:
345 return sprintf(buf, "fast\n");
346 case REGULATOR_MODE_NORMAL:
347 return sprintf(buf, "normal\n");
348 case REGULATOR_MODE_IDLE:
349 return sprintf(buf, "idle\n");
350 case REGULATOR_MODE_STANDBY:
351 return sprintf(buf, "standby\n");
352 }
353 return sprintf(buf, "unknown\n");
354 }
355
regulator_opmode_show(struct device * dev,struct device_attribute * attr,char * buf)356 static ssize_t regulator_opmode_show(struct device *dev,
357 struct device_attribute *attr, char *buf)
358 {
359 struct regulator_dev *rdev = dev_get_drvdata(dev);
360
361 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
362 }
363 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
364
regulator_print_state(char * buf,int state)365 static ssize_t regulator_print_state(char *buf, int state)
366 {
367 if (state > 0)
368 return sprintf(buf, "enabled\n");
369 else if (state == 0)
370 return sprintf(buf, "disabled\n");
371 else
372 return sprintf(buf, "unknown\n");
373 }
374
regulator_state_show(struct device * dev,struct device_attribute * attr,char * buf)375 static ssize_t regulator_state_show(struct device *dev,
376 struct device_attribute *attr, char *buf)
377 {
378 struct regulator_dev *rdev = dev_get_drvdata(dev);
379 ssize_t ret;
380
381 mutex_lock(&rdev->mutex);
382 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
383 mutex_unlock(&rdev->mutex);
384
385 return ret;
386 }
387 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
388
regulator_status_show(struct device * dev,struct device_attribute * attr,char * buf)389 static ssize_t regulator_status_show(struct device *dev,
390 struct device_attribute *attr, char *buf)
391 {
392 struct regulator_dev *rdev = dev_get_drvdata(dev);
393 int status;
394 char *label;
395
396 status = rdev->desc->ops->get_status(rdev);
397 if (status < 0)
398 return status;
399
400 switch (status) {
401 case REGULATOR_STATUS_OFF:
402 label = "off";
403 break;
404 case REGULATOR_STATUS_ON:
405 label = "on";
406 break;
407 case REGULATOR_STATUS_ERROR:
408 label = "error";
409 break;
410 case REGULATOR_STATUS_FAST:
411 label = "fast";
412 break;
413 case REGULATOR_STATUS_NORMAL:
414 label = "normal";
415 break;
416 case REGULATOR_STATUS_IDLE:
417 label = "idle";
418 break;
419 case REGULATOR_STATUS_STANDBY:
420 label = "standby";
421 break;
422 case REGULATOR_STATUS_BYPASS:
423 label = "bypass";
424 break;
425 case REGULATOR_STATUS_UNDEFINED:
426 label = "undefined";
427 break;
428 default:
429 return -ERANGE;
430 }
431
432 return sprintf(buf, "%s\n", label);
433 }
434 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
435
regulator_min_uA_show(struct device * dev,struct device_attribute * attr,char * buf)436 static ssize_t regulator_min_uA_show(struct device *dev,
437 struct device_attribute *attr, char *buf)
438 {
439 struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441 if (!rdev->constraints)
442 return sprintf(buf, "constraint not defined\n");
443
444 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
445 }
446 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
447
regulator_max_uA_show(struct device * dev,struct device_attribute * attr,char * buf)448 static ssize_t regulator_max_uA_show(struct device *dev,
449 struct device_attribute *attr, char *buf)
450 {
451 struct regulator_dev *rdev = dev_get_drvdata(dev);
452
453 if (!rdev->constraints)
454 return sprintf(buf, "constraint not defined\n");
455
456 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
457 }
458 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
459
regulator_min_uV_show(struct device * dev,struct device_attribute * attr,char * buf)460 static ssize_t regulator_min_uV_show(struct device *dev,
461 struct device_attribute *attr, char *buf)
462 {
463 struct regulator_dev *rdev = dev_get_drvdata(dev);
464
465 if (!rdev->constraints)
466 return sprintf(buf, "constraint not defined\n");
467
468 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
469 }
470 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
471
regulator_max_uV_show(struct device * dev,struct device_attribute * attr,char * buf)472 static ssize_t regulator_max_uV_show(struct device *dev,
473 struct device_attribute *attr, char *buf)
474 {
475 struct regulator_dev *rdev = dev_get_drvdata(dev);
476
477 if (!rdev->constraints)
478 return sprintf(buf, "constraint not defined\n");
479
480 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
481 }
482 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
483
regulator_total_uA_show(struct device * dev,struct device_attribute * attr,char * buf)484 static ssize_t regulator_total_uA_show(struct device *dev,
485 struct device_attribute *attr, char *buf)
486 {
487 struct regulator_dev *rdev = dev_get_drvdata(dev);
488 struct regulator *regulator;
489 int uA = 0;
490
491 mutex_lock(&rdev->mutex);
492 list_for_each_entry(regulator, &rdev->consumer_list, list)
493 uA += regulator->uA_load;
494 mutex_unlock(&rdev->mutex);
495 return sprintf(buf, "%d\n", uA);
496 }
497 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
498
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)499 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
500 char *buf)
501 {
502 struct regulator_dev *rdev = dev_get_drvdata(dev);
503 return sprintf(buf, "%d\n", rdev->use_count);
504 }
505 static DEVICE_ATTR_RO(num_users);
506
type_show(struct device * dev,struct device_attribute * attr,char * buf)507 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
508 char *buf)
509 {
510 struct regulator_dev *rdev = dev_get_drvdata(dev);
511
512 switch (rdev->desc->type) {
513 case REGULATOR_VOLTAGE:
514 return sprintf(buf, "voltage\n");
515 case REGULATOR_CURRENT:
516 return sprintf(buf, "current\n");
517 }
518 return sprintf(buf, "unknown\n");
519 }
520 static DEVICE_ATTR_RO(type);
521
regulator_suspend_mem_uV_show(struct device * dev,struct device_attribute * attr,char * buf)522 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
523 struct device_attribute *attr, char *buf)
524 {
525 struct regulator_dev *rdev = dev_get_drvdata(dev);
526
527 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
528 }
529 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
530 regulator_suspend_mem_uV_show, NULL);
531
regulator_suspend_disk_uV_show(struct device * dev,struct device_attribute * attr,char * buf)532 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
533 struct device_attribute *attr, char *buf)
534 {
535 struct regulator_dev *rdev = dev_get_drvdata(dev);
536
537 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
538 }
539 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
540 regulator_suspend_disk_uV_show, NULL);
541
regulator_suspend_standby_uV_show(struct device * dev,struct device_attribute * attr,char * buf)542 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
543 struct device_attribute *attr, char *buf)
544 {
545 struct regulator_dev *rdev = dev_get_drvdata(dev);
546
547 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
548 }
549 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
550 regulator_suspend_standby_uV_show, NULL);
551
regulator_suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)552 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
553 struct device_attribute *attr, char *buf)
554 {
555 struct regulator_dev *rdev = dev_get_drvdata(dev);
556
557 return regulator_print_opmode(buf,
558 rdev->constraints->state_mem.mode);
559 }
560 static DEVICE_ATTR(suspend_mem_mode, 0444,
561 regulator_suspend_mem_mode_show, NULL);
562
regulator_suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)563 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
564 struct device_attribute *attr, char *buf)
565 {
566 struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568 return regulator_print_opmode(buf,
569 rdev->constraints->state_disk.mode);
570 }
571 static DEVICE_ATTR(suspend_disk_mode, 0444,
572 regulator_suspend_disk_mode_show, NULL);
573
regulator_suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)574 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
575 struct device_attribute *attr, char *buf)
576 {
577 struct regulator_dev *rdev = dev_get_drvdata(dev);
578
579 return regulator_print_opmode(buf,
580 rdev->constraints->state_standby.mode);
581 }
582 static DEVICE_ATTR(suspend_standby_mode, 0444,
583 regulator_suspend_standby_mode_show, NULL);
584
regulator_suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)585 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
586 struct device_attribute *attr, char *buf)
587 {
588 struct regulator_dev *rdev = dev_get_drvdata(dev);
589
590 return regulator_print_state(buf,
591 rdev->constraints->state_mem.enabled);
592 }
593 static DEVICE_ATTR(suspend_mem_state, 0444,
594 regulator_suspend_mem_state_show, NULL);
595
regulator_suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)596 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
597 struct device_attribute *attr, char *buf)
598 {
599 struct regulator_dev *rdev = dev_get_drvdata(dev);
600
601 return regulator_print_state(buf,
602 rdev->constraints->state_disk.enabled);
603 }
604 static DEVICE_ATTR(suspend_disk_state, 0444,
605 regulator_suspend_disk_state_show, NULL);
606
regulator_suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)607 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
608 struct device_attribute *attr, char *buf)
609 {
610 struct regulator_dev *rdev = dev_get_drvdata(dev);
611
612 return regulator_print_state(buf,
613 rdev->constraints->state_standby.enabled);
614 }
615 static DEVICE_ATTR(suspend_standby_state, 0444,
616 regulator_suspend_standby_state_show, NULL);
617
regulator_bypass_show(struct device * dev,struct device_attribute * attr,char * buf)618 static ssize_t regulator_bypass_show(struct device *dev,
619 struct device_attribute *attr, char *buf)
620 {
621 struct regulator_dev *rdev = dev_get_drvdata(dev);
622 const char *report;
623 bool bypass;
624 int ret;
625
626 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
627
628 if (ret != 0)
629 report = "unknown";
630 else if (bypass)
631 report = "enabled";
632 else
633 report = "disabled";
634
635 return sprintf(buf, "%s\n", report);
636 }
637 static DEVICE_ATTR(bypass, 0444,
638 regulator_bypass_show, NULL);
639
640 /*
641 * These are the only attributes are present for all regulators.
642 * Other attributes are a function of regulator functionality.
643 */
644 static struct attribute *regulator_dev_attrs[] = {
645 &dev_attr_name.attr,
646 &dev_attr_num_users.attr,
647 &dev_attr_type.attr,
648 NULL,
649 };
650 ATTRIBUTE_GROUPS(regulator_dev);
651
regulator_dev_release(struct device * dev)652 static void regulator_dev_release(struct device *dev)
653 {
654 struct regulator_dev *rdev = dev_get_drvdata(dev);
655 kfree(rdev);
656 }
657
658 static struct class regulator_class = {
659 .name = "regulator",
660 .dev_release = regulator_dev_release,
661 .dev_groups = regulator_dev_groups,
662 };
663
664 /* Calculate the new optimum regulator operating mode based on the new total
665 * consumer load. All locks held by caller */
drms_uA_update(struct regulator_dev * rdev)666 static void drms_uA_update(struct regulator_dev *rdev)
667 {
668 struct regulator *sibling;
669 int current_uA = 0, output_uV, input_uV, err;
670 unsigned int mode;
671
672 err = regulator_check_drms(rdev);
673 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
674 (!rdev->desc->ops->get_voltage &&
675 !rdev->desc->ops->get_voltage_sel) ||
676 !rdev->desc->ops->set_mode)
677 return;
678
679 /* get output voltage */
680 output_uV = _regulator_get_voltage(rdev);
681 if (output_uV <= 0)
682 return;
683
684 /* get input voltage */
685 input_uV = 0;
686 if (rdev->supply)
687 input_uV = regulator_get_voltage(rdev->supply);
688 if (input_uV <= 0)
689 input_uV = rdev->constraints->input_uV;
690 if (input_uV <= 0)
691 return;
692
693 /* calc total requested load */
694 list_for_each_entry(sibling, &rdev->consumer_list, list)
695 current_uA += sibling->uA_load;
696
697 /* now get the optimum mode for our new total regulator load */
698 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
699 output_uV, current_uA);
700
701 /* check the new mode is allowed */
702 err = regulator_mode_constrain(rdev, &mode);
703 if (err == 0)
704 rdev->desc->ops->set_mode(rdev, mode);
705 }
706
suspend_set_state(struct regulator_dev * rdev,struct regulator_state * rstate)707 static int suspend_set_state(struct regulator_dev *rdev,
708 struct regulator_state *rstate)
709 {
710 int ret = 0;
711
712 /* If we have no suspend mode configration don't set anything;
713 * only warn if the driver implements set_suspend_voltage or
714 * set_suspend_mode callback.
715 */
716 if (!rstate->enabled && !rstate->disabled) {
717 if (rdev->desc->ops->set_suspend_voltage ||
718 rdev->desc->ops->set_suspend_mode)
719 rdev_warn(rdev, "No configuration\n");
720 return 0;
721 }
722
723 if (rstate->enabled && rstate->disabled) {
724 rdev_err(rdev, "invalid configuration\n");
725 return -EINVAL;
726 }
727
728 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
729 ret = rdev->desc->ops->set_suspend_enable(rdev);
730 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
731 ret = rdev->desc->ops->set_suspend_disable(rdev);
732 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
733 ret = 0;
734
735 if (ret < 0) {
736 rdev_err(rdev, "failed to enabled/disable\n");
737 return ret;
738 }
739
740 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
741 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
742 if (ret < 0) {
743 rdev_err(rdev, "failed to set voltage\n");
744 return ret;
745 }
746 }
747
748 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
749 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
750 if (ret < 0) {
751 rdev_err(rdev, "failed to set mode\n");
752 return ret;
753 }
754 }
755 return ret;
756 }
757
758 /* locks held by caller */
suspend_prepare(struct regulator_dev * rdev,suspend_state_t state)759 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
760 {
761 if (!rdev->constraints)
762 return -EINVAL;
763
764 switch (state) {
765 case PM_SUSPEND_STANDBY:
766 return suspend_set_state(rdev,
767 &rdev->constraints->state_standby);
768 case PM_SUSPEND_MEM:
769 return suspend_set_state(rdev,
770 &rdev->constraints->state_mem);
771 case PM_SUSPEND_MAX:
772 return suspend_set_state(rdev,
773 &rdev->constraints->state_disk);
774 default:
775 return -EINVAL;
776 }
777 }
778
print_constraints(struct regulator_dev * rdev)779 static void print_constraints(struct regulator_dev *rdev)
780 {
781 struct regulation_constraints *constraints = rdev->constraints;
782 char buf[160] = "";
783 int count = 0;
784 int ret;
785
786 if (constraints->min_uV && constraints->max_uV) {
787 if (constraints->min_uV == constraints->max_uV)
788 count += sprintf(buf + count, "%d mV ",
789 constraints->min_uV / 1000);
790 else
791 count += sprintf(buf + count, "%d <--> %d mV ",
792 constraints->min_uV / 1000,
793 constraints->max_uV / 1000);
794 }
795
796 if (!constraints->min_uV ||
797 constraints->min_uV != constraints->max_uV) {
798 ret = _regulator_get_voltage(rdev);
799 if (ret > 0)
800 count += sprintf(buf + count, "at %d mV ", ret / 1000);
801 }
802
803 if (constraints->uV_offset)
804 count += sprintf(buf, "%dmV offset ",
805 constraints->uV_offset / 1000);
806
807 if (constraints->min_uA && constraints->max_uA) {
808 if (constraints->min_uA == constraints->max_uA)
809 count += sprintf(buf + count, "%d mA ",
810 constraints->min_uA / 1000);
811 else
812 count += sprintf(buf + count, "%d <--> %d mA ",
813 constraints->min_uA / 1000,
814 constraints->max_uA / 1000);
815 }
816
817 if (!constraints->min_uA ||
818 constraints->min_uA != constraints->max_uA) {
819 ret = _regulator_get_current_limit(rdev);
820 if (ret > 0)
821 count += sprintf(buf + count, "at %d mA ", ret / 1000);
822 }
823
824 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
825 count += sprintf(buf + count, "fast ");
826 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
827 count += sprintf(buf + count, "normal ");
828 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
829 count += sprintf(buf + count, "idle ");
830 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
831 count += sprintf(buf + count, "standby");
832
833 if (!count)
834 sprintf(buf, "no parameters");
835
836 rdev_info(rdev, "%s\n", buf);
837
838 if ((constraints->min_uV != constraints->max_uV) &&
839 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
840 rdev_warn(rdev,
841 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
842 }
843
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)844 static int machine_constraints_voltage(struct regulator_dev *rdev,
845 struct regulation_constraints *constraints)
846 {
847 const struct regulator_ops *ops = rdev->desc->ops;
848 int ret;
849
850 /* do we need to apply the constraint voltage */
851 if (rdev->constraints->apply_uV &&
852 rdev->constraints->min_uV == rdev->constraints->max_uV) {
853 int current_uV = _regulator_get_voltage(rdev);
854 if (current_uV < 0) {
855 rdev_err(rdev,
856 "failed to get the current voltage(%d)\n",
857 current_uV);
858 return current_uV;
859 }
860 if (current_uV < rdev->constraints->min_uV ||
861 current_uV > rdev->constraints->max_uV) {
862 ret = _regulator_do_set_voltage(
863 rdev, rdev->constraints->min_uV,
864 rdev->constraints->max_uV);
865 if (ret < 0) {
866 rdev_err(rdev,
867 "failed to apply %duV constraint(%d)\n",
868 rdev->constraints->min_uV, ret);
869 return ret;
870 }
871 }
872 }
873
874 /* constrain machine-level voltage specs to fit
875 * the actual range supported by this regulator.
876 */
877 if (ops->list_voltage && rdev->desc->n_voltages) {
878 int count = rdev->desc->n_voltages;
879 int i;
880 int min_uV = INT_MAX;
881 int max_uV = INT_MIN;
882 int cmin = constraints->min_uV;
883 int cmax = constraints->max_uV;
884
885 /* it's safe to autoconfigure fixed-voltage supplies
886 and the constraints are used by list_voltage. */
887 if (count == 1 && !cmin) {
888 cmin = 1;
889 cmax = INT_MAX;
890 constraints->min_uV = cmin;
891 constraints->max_uV = cmax;
892 }
893
894 /* voltage constraints are optional */
895 if ((cmin == 0) && (cmax == 0))
896 return 0;
897
898 /* else require explicit machine-level constraints */
899 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
900 rdev_err(rdev, "invalid voltage constraints\n");
901 return -EINVAL;
902 }
903
904 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
905 for (i = 0; i < count; i++) {
906 int value;
907
908 value = ops->list_voltage(rdev, i);
909 if (value <= 0)
910 continue;
911
912 /* maybe adjust [min_uV..max_uV] */
913 if (value >= cmin && value < min_uV)
914 min_uV = value;
915 if (value <= cmax && value > max_uV)
916 max_uV = value;
917 }
918
919 /* final: [min_uV..max_uV] valid iff constraints valid */
920 if (max_uV < min_uV) {
921 rdev_err(rdev,
922 "unsupportable voltage constraints %u-%uuV\n",
923 min_uV, max_uV);
924 return -EINVAL;
925 }
926
927 /* use regulator's subset of machine constraints */
928 if (constraints->min_uV < min_uV) {
929 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
930 constraints->min_uV, min_uV);
931 constraints->min_uV = min_uV;
932 }
933 if (constraints->max_uV > max_uV) {
934 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
935 constraints->max_uV, max_uV);
936 constraints->max_uV = max_uV;
937 }
938 }
939
940 return 0;
941 }
942
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)943 static int machine_constraints_current(struct regulator_dev *rdev,
944 struct regulation_constraints *constraints)
945 {
946 const struct regulator_ops *ops = rdev->desc->ops;
947 int ret;
948
949 if (!constraints->min_uA && !constraints->max_uA)
950 return 0;
951
952 if (constraints->min_uA > constraints->max_uA) {
953 rdev_err(rdev, "Invalid current constraints\n");
954 return -EINVAL;
955 }
956
957 if (!ops->set_current_limit || !ops->get_current_limit) {
958 rdev_warn(rdev, "Operation of current configuration missing\n");
959 return 0;
960 }
961
962 /* Set regulator current in constraints range */
963 ret = ops->set_current_limit(rdev, constraints->min_uA,
964 constraints->max_uA);
965 if (ret < 0) {
966 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
967 return ret;
968 }
969
970 return 0;
971 }
972
973 static int _regulator_do_enable(struct regulator_dev *rdev);
974
975 /**
976 * set_machine_constraints - sets regulator constraints
977 * @rdev: regulator source
978 * @constraints: constraints to apply
979 *
980 * Allows platform initialisation code to define and constrain
981 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
982 * Constraints *must* be set by platform code in order for some
983 * regulator operations to proceed i.e. set_voltage, set_current_limit,
984 * set_mode.
985 */
set_machine_constraints(struct regulator_dev * rdev,const struct regulation_constraints * constraints)986 static int set_machine_constraints(struct regulator_dev *rdev,
987 const struct regulation_constraints *constraints)
988 {
989 int ret = 0;
990 const struct regulator_ops *ops = rdev->desc->ops;
991
992 if (constraints)
993 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
994 GFP_KERNEL);
995 else
996 rdev->constraints = kzalloc(sizeof(*constraints),
997 GFP_KERNEL);
998 if (!rdev->constraints)
999 return -ENOMEM;
1000
1001 ret = machine_constraints_voltage(rdev, rdev->constraints);
1002 if (ret != 0)
1003 goto out;
1004
1005 ret = machine_constraints_current(rdev, rdev->constraints);
1006 if (ret != 0)
1007 goto out;
1008
1009 /* do we need to setup our suspend state */
1010 if (rdev->constraints->initial_state) {
1011 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1012 if (ret < 0) {
1013 rdev_err(rdev, "failed to set suspend state\n");
1014 goto out;
1015 }
1016 }
1017
1018 if (rdev->constraints->initial_mode) {
1019 if (!ops->set_mode) {
1020 rdev_err(rdev, "no set_mode operation\n");
1021 ret = -EINVAL;
1022 goto out;
1023 }
1024
1025 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1026 if (ret < 0) {
1027 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1028 goto out;
1029 }
1030 }
1031
1032 /* If the constraints say the regulator should be on at this point
1033 * and we have control then make sure it is enabled.
1034 */
1035 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1036 ret = _regulator_do_enable(rdev);
1037 if (ret < 0 && ret != -EINVAL) {
1038 rdev_err(rdev, "failed to enable\n");
1039 goto out;
1040 }
1041 }
1042
1043 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1044 && ops->set_ramp_delay) {
1045 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1046 if (ret < 0) {
1047 rdev_err(rdev, "failed to set ramp_delay\n");
1048 goto out;
1049 }
1050 }
1051
1052 print_constraints(rdev);
1053 return 0;
1054 out:
1055 kfree(rdev->constraints);
1056 rdev->constraints = NULL;
1057 return ret;
1058 }
1059
1060 /**
1061 * set_supply - set regulator supply regulator
1062 * @rdev: regulator name
1063 * @supply_rdev: supply regulator name
1064 *
1065 * Called by platform initialisation code to set the supply regulator for this
1066 * regulator. This ensures that a regulators supply will also be enabled by the
1067 * core if it's child is enabled.
1068 */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1069 static int set_supply(struct regulator_dev *rdev,
1070 struct regulator_dev *supply_rdev)
1071 {
1072 int err;
1073
1074 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1075
1076 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1077 if (rdev->supply == NULL) {
1078 err = -ENOMEM;
1079 return err;
1080 }
1081 supply_rdev->open_count++;
1082
1083 return 0;
1084 }
1085
1086 /**
1087 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1088 * @rdev: regulator source
1089 * @consumer_dev_name: dev_name() string for device supply applies to
1090 * @supply: symbolic name for supply
1091 *
1092 * Allows platform initialisation code to map physical regulator
1093 * sources to symbolic names for supplies for use by devices. Devices
1094 * should use these symbolic names to request regulators, avoiding the
1095 * need to provide board-specific regulator names as platform data.
1096 */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1097 static int set_consumer_device_supply(struct regulator_dev *rdev,
1098 const char *consumer_dev_name,
1099 const char *supply)
1100 {
1101 struct regulator_map *node;
1102 int has_dev;
1103
1104 if (supply == NULL)
1105 return -EINVAL;
1106
1107 if (consumer_dev_name != NULL)
1108 has_dev = 1;
1109 else
1110 has_dev = 0;
1111
1112 list_for_each_entry(node, ®ulator_map_list, list) {
1113 if (node->dev_name && consumer_dev_name) {
1114 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1115 continue;
1116 } else if (node->dev_name || consumer_dev_name) {
1117 continue;
1118 }
1119
1120 if (strcmp(node->supply, supply) != 0)
1121 continue;
1122
1123 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1124 consumer_dev_name,
1125 dev_name(&node->regulator->dev),
1126 node->regulator->desc->name,
1127 supply,
1128 dev_name(&rdev->dev), rdev_get_name(rdev));
1129 return -EBUSY;
1130 }
1131
1132 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1133 if (node == NULL)
1134 return -ENOMEM;
1135
1136 node->regulator = rdev;
1137 node->supply = supply;
1138
1139 if (has_dev) {
1140 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1141 if (node->dev_name == NULL) {
1142 kfree(node);
1143 return -ENOMEM;
1144 }
1145 }
1146
1147 list_add(&node->list, ®ulator_map_list);
1148 return 0;
1149 }
1150
unset_regulator_supplies(struct regulator_dev * rdev)1151 static void unset_regulator_supplies(struct regulator_dev *rdev)
1152 {
1153 struct regulator_map *node, *n;
1154
1155 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1156 if (rdev == node->regulator) {
1157 list_del(&node->list);
1158 kfree(node->dev_name);
1159 kfree(node);
1160 }
1161 }
1162 }
1163
1164 #define REG_STR_SIZE 64
1165
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1166 static struct regulator *create_regulator(struct regulator_dev *rdev,
1167 struct device *dev,
1168 const char *supply_name)
1169 {
1170 struct regulator *regulator;
1171 char buf[REG_STR_SIZE];
1172 int err, size;
1173
1174 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1175 if (regulator == NULL)
1176 return NULL;
1177
1178 mutex_lock(&rdev->mutex);
1179 regulator->rdev = rdev;
1180 list_add(®ulator->list, &rdev->consumer_list);
1181
1182 if (dev) {
1183 regulator->dev = dev;
1184
1185 /* Add a link to the device sysfs entry */
1186 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1187 dev->kobj.name, supply_name);
1188 if (size >= REG_STR_SIZE)
1189 goto overflow_err;
1190
1191 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1192 if (regulator->supply_name == NULL)
1193 goto overflow_err;
1194
1195 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1196 buf);
1197 if (err) {
1198 rdev_warn(rdev, "could not add device link %s err %d\n",
1199 dev->kobj.name, err);
1200 /* non-fatal */
1201 }
1202 } else {
1203 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1204 if (regulator->supply_name == NULL)
1205 goto overflow_err;
1206 }
1207
1208 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1209 rdev->debugfs);
1210 if (!regulator->debugfs) {
1211 rdev_warn(rdev, "Failed to create debugfs directory\n");
1212 } else {
1213 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1214 ®ulator->uA_load);
1215 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1216 ®ulator->min_uV);
1217 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1218 ®ulator->max_uV);
1219 }
1220
1221 /*
1222 * Check now if the regulator is an always on regulator - if
1223 * it is then we don't need to do nearly so much work for
1224 * enable/disable calls.
1225 */
1226 if (!_regulator_can_change_status(rdev) &&
1227 _regulator_is_enabled(rdev))
1228 regulator->always_on = true;
1229
1230 mutex_unlock(&rdev->mutex);
1231 return regulator;
1232 overflow_err:
1233 list_del(®ulator->list);
1234 kfree(regulator);
1235 mutex_unlock(&rdev->mutex);
1236 return NULL;
1237 }
1238
_regulator_get_enable_time(struct regulator_dev * rdev)1239 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1240 {
1241 if (rdev->constraints && rdev->constraints->enable_time)
1242 return rdev->constraints->enable_time;
1243 if (!rdev->desc->ops->enable_time)
1244 return rdev->desc->enable_time;
1245 return rdev->desc->ops->enable_time(rdev);
1246 }
1247
regulator_find_supply_alias(struct device * dev,const char * supply)1248 static struct regulator_supply_alias *regulator_find_supply_alias(
1249 struct device *dev, const char *supply)
1250 {
1251 struct regulator_supply_alias *map;
1252
1253 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1254 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1255 return map;
1256
1257 return NULL;
1258 }
1259
regulator_supply_alias(struct device ** dev,const char ** supply)1260 static void regulator_supply_alias(struct device **dev, const char **supply)
1261 {
1262 struct regulator_supply_alias *map;
1263
1264 map = regulator_find_supply_alias(*dev, *supply);
1265 if (map) {
1266 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1267 *supply, map->alias_supply,
1268 dev_name(map->alias_dev));
1269 *dev = map->alias_dev;
1270 *supply = map->alias_supply;
1271 }
1272 }
1273
regulator_dev_lookup(struct device * dev,const char * supply,int * ret)1274 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1275 const char *supply,
1276 int *ret)
1277 {
1278 struct regulator_dev *r;
1279 struct device_node *node;
1280 struct regulator_map *map;
1281 const char *devname = NULL;
1282
1283 regulator_supply_alias(&dev, &supply);
1284
1285 /* first do a dt based lookup */
1286 if (dev && dev->of_node) {
1287 node = of_get_regulator(dev, supply);
1288 if (node) {
1289 list_for_each_entry(r, ®ulator_list, list)
1290 if (r->dev.parent &&
1291 node == r->dev.of_node)
1292 return r;
1293 *ret = -EPROBE_DEFER;
1294 return NULL;
1295 } else {
1296 /*
1297 * If we couldn't even get the node then it's
1298 * not just that the device didn't register
1299 * yet, there's no node and we'll never
1300 * succeed.
1301 */
1302 *ret = -ENODEV;
1303 }
1304 }
1305
1306 /* if not found, try doing it non-dt way */
1307 if (dev)
1308 devname = dev_name(dev);
1309
1310 list_for_each_entry(r, ®ulator_list, list)
1311 if (strcmp(rdev_get_name(r), supply) == 0)
1312 return r;
1313
1314 list_for_each_entry(map, ®ulator_map_list, list) {
1315 /* If the mapping has a device set up it must match */
1316 if (map->dev_name &&
1317 (!devname || strcmp(map->dev_name, devname)))
1318 continue;
1319
1320 if (strcmp(map->supply, supply) == 0)
1321 return map->regulator;
1322 }
1323
1324
1325 return NULL;
1326 }
1327
1328 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,bool exclusive,bool allow_dummy)1329 static struct regulator *_regulator_get(struct device *dev, const char *id,
1330 bool exclusive, bool allow_dummy)
1331 {
1332 struct regulator_dev *rdev;
1333 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1334 const char *devname = NULL;
1335 int ret;
1336
1337 if (id == NULL) {
1338 pr_err("get() with no identifier\n");
1339 return ERR_PTR(-EINVAL);
1340 }
1341
1342 if (dev)
1343 devname = dev_name(dev);
1344
1345 if (have_full_constraints())
1346 ret = -ENODEV;
1347 else
1348 ret = -EPROBE_DEFER;
1349
1350 mutex_lock(®ulator_list_mutex);
1351
1352 rdev = regulator_dev_lookup(dev, id, &ret);
1353 if (rdev)
1354 goto found;
1355
1356 regulator = ERR_PTR(ret);
1357
1358 /*
1359 * If we have return value from dev_lookup fail, we do not expect to
1360 * succeed, so, quit with appropriate error value
1361 */
1362 if (ret && ret != -ENODEV)
1363 goto out;
1364
1365 if (!devname)
1366 devname = "deviceless";
1367
1368 /*
1369 * Assume that a regulator is physically present and enabled
1370 * even if it isn't hooked up and just provide a dummy.
1371 */
1372 if (have_full_constraints() && allow_dummy) {
1373 pr_warn("%s supply %s not found, using dummy regulator\n",
1374 devname, id);
1375
1376 rdev = dummy_regulator_rdev;
1377 goto found;
1378 /* Don't log an error when called from regulator_get_optional() */
1379 } else if (!have_full_constraints() || exclusive) {
1380 dev_warn(dev, "dummy supplies not allowed\n");
1381 }
1382
1383 mutex_unlock(®ulator_list_mutex);
1384 return regulator;
1385
1386 found:
1387 if (rdev->exclusive) {
1388 regulator = ERR_PTR(-EPERM);
1389 goto out;
1390 }
1391
1392 if (exclusive && rdev->open_count) {
1393 regulator = ERR_PTR(-EBUSY);
1394 goto out;
1395 }
1396
1397 if (!try_module_get(rdev->owner))
1398 goto out;
1399
1400 regulator = create_regulator(rdev, dev, id);
1401 if (regulator == NULL) {
1402 regulator = ERR_PTR(-ENOMEM);
1403 module_put(rdev->owner);
1404 goto out;
1405 }
1406
1407 rdev->open_count++;
1408 if (exclusive) {
1409 rdev->exclusive = 1;
1410
1411 ret = _regulator_is_enabled(rdev);
1412 if (ret > 0)
1413 rdev->use_count = 1;
1414 else
1415 rdev->use_count = 0;
1416 }
1417
1418 out:
1419 mutex_unlock(®ulator_list_mutex);
1420
1421 return regulator;
1422 }
1423
1424 /**
1425 * regulator_get - lookup and obtain a reference to a regulator.
1426 * @dev: device for regulator "consumer"
1427 * @id: Supply name or regulator ID.
1428 *
1429 * Returns a struct regulator corresponding to the regulator producer,
1430 * or IS_ERR() condition containing errno.
1431 *
1432 * Use of supply names configured via regulator_set_device_supply() is
1433 * strongly encouraged. It is recommended that the supply name used
1434 * should match the name used for the supply and/or the relevant
1435 * device pins in the datasheet.
1436 */
regulator_get(struct device * dev,const char * id)1437 struct regulator *regulator_get(struct device *dev, const char *id)
1438 {
1439 return _regulator_get(dev, id, false, true);
1440 }
1441 EXPORT_SYMBOL_GPL(regulator_get);
1442
1443 /**
1444 * regulator_get_exclusive - obtain exclusive access to a regulator.
1445 * @dev: device for regulator "consumer"
1446 * @id: Supply name or regulator ID.
1447 *
1448 * Returns a struct regulator corresponding to the regulator producer,
1449 * or IS_ERR() condition containing errno. Other consumers will be
1450 * unable to obtain this regulator while this reference is held and the
1451 * use count for the regulator will be initialised to reflect the current
1452 * state of the regulator.
1453 *
1454 * This is intended for use by consumers which cannot tolerate shared
1455 * use of the regulator such as those which need to force the
1456 * regulator off for correct operation of the hardware they are
1457 * controlling.
1458 *
1459 * Use of supply names configured via regulator_set_device_supply() is
1460 * strongly encouraged. It is recommended that the supply name used
1461 * should match the name used for the supply and/or the relevant
1462 * device pins in the datasheet.
1463 */
regulator_get_exclusive(struct device * dev,const char * id)1464 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1465 {
1466 return _regulator_get(dev, id, true, false);
1467 }
1468 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1469
1470 /**
1471 * regulator_get_optional - obtain optional access to a regulator.
1472 * @dev: device for regulator "consumer"
1473 * @id: Supply name or regulator ID.
1474 *
1475 * Returns a struct regulator corresponding to the regulator producer,
1476 * or IS_ERR() condition containing errno.
1477 *
1478 * This is intended for use by consumers for devices which can have
1479 * some supplies unconnected in normal use, such as some MMC devices.
1480 * It can allow the regulator core to provide stub supplies for other
1481 * supplies requested using normal regulator_get() calls without
1482 * disrupting the operation of drivers that can handle absent
1483 * supplies.
1484 *
1485 * Use of supply names configured via regulator_set_device_supply() is
1486 * strongly encouraged. It is recommended that the supply name used
1487 * should match the name used for the supply and/or the relevant
1488 * device pins in the datasheet.
1489 */
regulator_get_optional(struct device * dev,const char * id)1490 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1491 {
1492 return _regulator_get(dev, id, false, false);
1493 }
1494 EXPORT_SYMBOL_GPL(regulator_get_optional);
1495
1496 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)1497 static void _regulator_put(struct regulator *regulator)
1498 {
1499 struct regulator_dev *rdev;
1500
1501 if (regulator == NULL || IS_ERR(regulator))
1502 return;
1503
1504 rdev = regulator->rdev;
1505
1506 debugfs_remove_recursive(regulator->debugfs);
1507
1508 /* remove any sysfs entries */
1509 if (regulator->dev)
1510 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1511 mutex_lock(&rdev->mutex);
1512 kfree(regulator->supply_name);
1513 list_del(®ulator->list);
1514 kfree(regulator);
1515
1516 rdev->open_count--;
1517 rdev->exclusive = 0;
1518 mutex_unlock(&rdev->mutex);
1519
1520 module_put(rdev->owner);
1521 }
1522
1523 /**
1524 * regulator_put - "free" the regulator source
1525 * @regulator: regulator source
1526 *
1527 * Note: drivers must ensure that all regulator_enable calls made on this
1528 * regulator source are balanced by regulator_disable calls prior to calling
1529 * this function.
1530 */
regulator_put(struct regulator * regulator)1531 void regulator_put(struct regulator *regulator)
1532 {
1533 mutex_lock(®ulator_list_mutex);
1534 _regulator_put(regulator);
1535 mutex_unlock(®ulator_list_mutex);
1536 }
1537 EXPORT_SYMBOL_GPL(regulator_put);
1538
1539 /**
1540 * regulator_register_supply_alias - Provide device alias for supply lookup
1541 *
1542 * @dev: device that will be given as the regulator "consumer"
1543 * @id: Supply name or regulator ID
1544 * @alias_dev: device that should be used to lookup the supply
1545 * @alias_id: Supply name or regulator ID that should be used to lookup the
1546 * supply
1547 *
1548 * All lookups for id on dev will instead be conducted for alias_id on
1549 * alias_dev.
1550 */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)1551 int regulator_register_supply_alias(struct device *dev, const char *id,
1552 struct device *alias_dev,
1553 const char *alias_id)
1554 {
1555 struct regulator_supply_alias *map;
1556
1557 map = regulator_find_supply_alias(dev, id);
1558 if (map)
1559 return -EEXIST;
1560
1561 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1562 if (!map)
1563 return -ENOMEM;
1564
1565 map->src_dev = dev;
1566 map->src_supply = id;
1567 map->alias_dev = alias_dev;
1568 map->alias_supply = alias_id;
1569
1570 list_add(&map->list, ®ulator_supply_alias_list);
1571
1572 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1573 id, dev_name(dev), alias_id, dev_name(alias_dev));
1574
1575 return 0;
1576 }
1577 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1578
1579 /**
1580 * regulator_unregister_supply_alias - Remove device alias
1581 *
1582 * @dev: device that will be given as the regulator "consumer"
1583 * @id: Supply name or regulator ID
1584 *
1585 * Remove a lookup alias if one exists for id on dev.
1586 */
regulator_unregister_supply_alias(struct device * dev,const char * id)1587 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1588 {
1589 struct regulator_supply_alias *map;
1590
1591 map = regulator_find_supply_alias(dev, id);
1592 if (map) {
1593 list_del(&map->list);
1594 kfree(map);
1595 }
1596 }
1597 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1598
1599 /**
1600 * regulator_bulk_register_supply_alias - register multiple aliases
1601 *
1602 * @dev: device that will be given as the regulator "consumer"
1603 * @id: List of supply names or regulator IDs
1604 * @alias_dev: device that should be used to lookup the supply
1605 * @alias_id: List of supply names or regulator IDs that should be used to
1606 * lookup the supply
1607 * @num_id: Number of aliases to register
1608 *
1609 * @return 0 on success, an errno on failure.
1610 *
1611 * This helper function allows drivers to register several supply
1612 * aliases in one operation. If any of the aliases cannot be
1613 * registered any aliases that were registered will be removed
1614 * before returning to the caller.
1615 */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)1616 int regulator_bulk_register_supply_alias(struct device *dev,
1617 const char *const *id,
1618 struct device *alias_dev,
1619 const char *const *alias_id,
1620 int num_id)
1621 {
1622 int i;
1623 int ret;
1624
1625 for (i = 0; i < num_id; ++i) {
1626 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1627 alias_id[i]);
1628 if (ret < 0)
1629 goto err;
1630 }
1631
1632 return 0;
1633
1634 err:
1635 dev_err(dev,
1636 "Failed to create supply alias %s,%s -> %s,%s\n",
1637 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1638
1639 while (--i >= 0)
1640 regulator_unregister_supply_alias(dev, id[i]);
1641
1642 return ret;
1643 }
1644 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1645
1646 /**
1647 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1648 *
1649 * @dev: device that will be given as the regulator "consumer"
1650 * @id: List of supply names or regulator IDs
1651 * @num_id: Number of aliases to unregister
1652 *
1653 * This helper function allows drivers to unregister several supply
1654 * aliases in one operation.
1655 */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)1656 void regulator_bulk_unregister_supply_alias(struct device *dev,
1657 const char *const *id,
1658 int num_id)
1659 {
1660 int i;
1661
1662 for (i = 0; i < num_id; ++i)
1663 regulator_unregister_supply_alias(dev, id[i]);
1664 }
1665 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1666
1667
1668 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)1669 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1670 const struct regulator_config *config)
1671 {
1672 struct regulator_enable_gpio *pin;
1673 struct gpio_desc *gpiod;
1674 int ret;
1675
1676 gpiod = gpio_to_desc(config->ena_gpio);
1677
1678 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
1679 if (pin->gpiod == gpiod) {
1680 rdev_dbg(rdev, "GPIO %d is already used\n",
1681 config->ena_gpio);
1682 goto update_ena_gpio_to_rdev;
1683 }
1684 }
1685
1686 ret = gpio_request_one(config->ena_gpio,
1687 GPIOF_DIR_OUT | config->ena_gpio_flags,
1688 rdev_get_name(rdev));
1689 if (ret)
1690 return ret;
1691
1692 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1693 if (pin == NULL) {
1694 gpio_free(config->ena_gpio);
1695 return -ENOMEM;
1696 }
1697
1698 pin->gpiod = gpiod;
1699 pin->ena_gpio_invert = config->ena_gpio_invert;
1700 list_add(&pin->list, ®ulator_ena_gpio_list);
1701
1702 update_ena_gpio_to_rdev:
1703 pin->request_count++;
1704 rdev->ena_pin = pin;
1705 return 0;
1706 }
1707
regulator_ena_gpio_free(struct regulator_dev * rdev)1708 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1709 {
1710 struct regulator_enable_gpio *pin, *n;
1711
1712 if (!rdev->ena_pin)
1713 return;
1714
1715 /* Free the GPIO only in case of no use */
1716 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
1717 if (pin->gpiod == rdev->ena_pin->gpiod) {
1718 if (pin->request_count <= 1) {
1719 pin->request_count = 0;
1720 gpiod_put(pin->gpiod);
1721 list_del(&pin->list);
1722 kfree(pin);
1723 rdev->ena_pin = NULL;
1724 return;
1725 } else {
1726 pin->request_count--;
1727 }
1728 }
1729 }
1730 }
1731
1732 /**
1733 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1734 * @rdev: regulator_dev structure
1735 * @enable: enable GPIO at initial use?
1736 *
1737 * GPIO is enabled in case of initial use. (enable_count is 0)
1738 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1739 */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)1740 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1741 {
1742 struct regulator_enable_gpio *pin = rdev->ena_pin;
1743
1744 if (!pin)
1745 return -EINVAL;
1746
1747 if (enable) {
1748 /* Enable GPIO at initial use */
1749 if (pin->enable_count == 0)
1750 gpiod_set_value_cansleep(pin->gpiod,
1751 !pin->ena_gpio_invert);
1752
1753 pin->enable_count++;
1754 } else {
1755 if (pin->enable_count > 1) {
1756 pin->enable_count--;
1757 return 0;
1758 }
1759
1760 /* Disable GPIO if not used */
1761 if (pin->enable_count <= 1) {
1762 gpiod_set_value_cansleep(pin->gpiod,
1763 pin->ena_gpio_invert);
1764 pin->enable_count = 0;
1765 }
1766 }
1767
1768 return 0;
1769 }
1770
1771 /**
1772 * _regulator_enable_delay - a delay helper function
1773 * @delay: time to delay in microseconds
1774 *
1775 * Delay for the requested amount of time as per the guidelines in:
1776 *
1777 * Documentation/timers/timers-howto.txt
1778 *
1779 * The assumption here is that regulators will never be enabled in
1780 * atomic context and therefore sleeping functions can be used.
1781 */
_regulator_enable_delay(unsigned int delay)1782 static void _regulator_enable_delay(unsigned int delay)
1783 {
1784 unsigned int ms = delay / 1000;
1785 unsigned int us = delay % 1000;
1786
1787 if (ms > 0) {
1788 /*
1789 * For small enough values, handle super-millisecond
1790 * delays in the usleep_range() call below.
1791 */
1792 if (ms < 20)
1793 us += ms * 1000;
1794 else
1795 msleep(ms);
1796 }
1797
1798 /*
1799 * Give the scheduler some room to coalesce with any other
1800 * wakeup sources. For delays shorter than 10 us, don't even
1801 * bother setting up high-resolution timers and just busy-
1802 * loop.
1803 */
1804 if (us >= 10)
1805 usleep_range(us, us + 100);
1806 else
1807 udelay(us);
1808 }
1809
_regulator_do_enable(struct regulator_dev * rdev)1810 static int _regulator_do_enable(struct regulator_dev *rdev)
1811 {
1812 int ret, delay;
1813
1814 /* Query before enabling in case configuration dependent. */
1815 ret = _regulator_get_enable_time(rdev);
1816 if (ret >= 0) {
1817 delay = ret;
1818 } else {
1819 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1820 delay = 0;
1821 }
1822
1823 trace_regulator_enable(rdev_get_name(rdev));
1824
1825 if (rdev->desc->off_on_delay) {
1826 /* if needed, keep a distance of off_on_delay from last time
1827 * this regulator was disabled.
1828 */
1829 unsigned long start_jiffy = jiffies;
1830 unsigned long intended, max_delay, remaining;
1831
1832 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1833 intended = rdev->last_off_jiffy + max_delay;
1834
1835 if (time_before(start_jiffy, intended)) {
1836 /* calc remaining jiffies to deal with one-time
1837 * timer wrapping.
1838 * in case of multiple timer wrapping, either it can be
1839 * detected by out-of-range remaining, or it cannot be
1840 * detected and we gets a panelty of
1841 * _regulator_enable_delay().
1842 */
1843 remaining = intended - start_jiffy;
1844 if (remaining <= max_delay)
1845 _regulator_enable_delay(
1846 jiffies_to_usecs(remaining));
1847 }
1848 }
1849
1850 if (rdev->ena_pin) {
1851 if (!rdev->ena_gpio_state) {
1852 ret = regulator_ena_gpio_ctrl(rdev, true);
1853 if (ret < 0)
1854 return ret;
1855 rdev->ena_gpio_state = 1;
1856 }
1857 } else if (rdev->desc->ops->enable) {
1858 ret = rdev->desc->ops->enable(rdev);
1859 if (ret < 0)
1860 return ret;
1861 } else {
1862 return -EINVAL;
1863 }
1864
1865 /* Allow the regulator to ramp; it would be useful to extend
1866 * this for bulk operations so that the regulators can ramp
1867 * together. */
1868 trace_regulator_enable_delay(rdev_get_name(rdev));
1869
1870 _regulator_enable_delay(delay);
1871
1872 trace_regulator_enable_complete(rdev_get_name(rdev));
1873
1874 return 0;
1875 }
1876
1877 /* locks held by regulator_enable() */
_regulator_enable(struct regulator_dev * rdev)1878 static int _regulator_enable(struct regulator_dev *rdev)
1879 {
1880 int ret;
1881
1882 /* check voltage and requested load before enabling */
1883 if (rdev->constraints &&
1884 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1885 drms_uA_update(rdev);
1886
1887 if (rdev->use_count == 0) {
1888 /* The regulator may on if it's not switchable or left on */
1889 ret = _regulator_is_enabled(rdev);
1890 if (ret == -EINVAL || ret == 0) {
1891 if (!_regulator_can_change_status(rdev))
1892 return -EPERM;
1893
1894 ret = _regulator_do_enable(rdev);
1895 if (ret < 0)
1896 return ret;
1897
1898 } else if (ret < 0) {
1899 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1900 return ret;
1901 }
1902 /* Fallthrough on positive return values - already enabled */
1903 }
1904
1905 rdev->use_count++;
1906
1907 return 0;
1908 }
1909
1910 /**
1911 * regulator_enable - enable regulator output
1912 * @regulator: regulator source
1913 *
1914 * Request that the regulator be enabled with the regulator output at
1915 * the predefined voltage or current value. Calls to regulator_enable()
1916 * must be balanced with calls to regulator_disable().
1917 *
1918 * NOTE: the output value can be set by other drivers, boot loader or may be
1919 * hardwired in the regulator.
1920 */
regulator_enable(struct regulator * regulator)1921 int regulator_enable(struct regulator *regulator)
1922 {
1923 struct regulator_dev *rdev = regulator->rdev;
1924 int ret = 0;
1925
1926 if (regulator->always_on)
1927 return 0;
1928
1929 if (rdev->supply) {
1930 ret = regulator_enable(rdev->supply);
1931 if (ret != 0)
1932 return ret;
1933 }
1934
1935 mutex_lock(&rdev->mutex);
1936 ret = _regulator_enable(rdev);
1937 mutex_unlock(&rdev->mutex);
1938
1939 if (ret != 0 && rdev->supply)
1940 regulator_disable(rdev->supply);
1941
1942 return ret;
1943 }
1944 EXPORT_SYMBOL_GPL(regulator_enable);
1945
_regulator_do_disable(struct regulator_dev * rdev)1946 static int _regulator_do_disable(struct regulator_dev *rdev)
1947 {
1948 int ret;
1949
1950 trace_regulator_disable(rdev_get_name(rdev));
1951
1952 if (rdev->ena_pin) {
1953 if (rdev->ena_gpio_state) {
1954 ret = regulator_ena_gpio_ctrl(rdev, false);
1955 if (ret < 0)
1956 return ret;
1957 rdev->ena_gpio_state = 0;
1958 }
1959
1960 } else if (rdev->desc->ops->disable) {
1961 ret = rdev->desc->ops->disable(rdev);
1962 if (ret != 0)
1963 return ret;
1964 }
1965
1966 /* cares about last_off_jiffy only if off_on_delay is required by
1967 * device.
1968 */
1969 if (rdev->desc->off_on_delay)
1970 rdev->last_off_jiffy = jiffies;
1971
1972 trace_regulator_disable_complete(rdev_get_name(rdev));
1973
1974 return 0;
1975 }
1976
1977 /* locks held by regulator_disable() */
_regulator_disable(struct regulator_dev * rdev)1978 static int _regulator_disable(struct regulator_dev *rdev)
1979 {
1980 int ret = 0;
1981
1982 if (WARN(rdev->use_count <= 0,
1983 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1984 return -EIO;
1985
1986 /* are we the last user and permitted to disable ? */
1987 if (rdev->use_count == 1 &&
1988 (rdev->constraints && !rdev->constraints->always_on)) {
1989
1990 /* we are last user */
1991 if (_regulator_can_change_status(rdev)) {
1992 ret = _regulator_do_disable(rdev);
1993 if (ret < 0) {
1994 rdev_err(rdev, "failed to disable\n");
1995 return ret;
1996 }
1997 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1998 NULL);
1999 }
2000
2001 rdev->use_count = 0;
2002 } else if (rdev->use_count > 1) {
2003
2004 if (rdev->constraints &&
2005 (rdev->constraints->valid_ops_mask &
2006 REGULATOR_CHANGE_DRMS))
2007 drms_uA_update(rdev);
2008
2009 rdev->use_count--;
2010 }
2011
2012 return ret;
2013 }
2014
2015 /**
2016 * regulator_disable - disable regulator output
2017 * @regulator: regulator source
2018 *
2019 * Disable the regulator output voltage or current. Calls to
2020 * regulator_enable() must be balanced with calls to
2021 * regulator_disable().
2022 *
2023 * NOTE: this will only disable the regulator output if no other consumer
2024 * devices have it enabled, the regulator device supports disabling and
2025 * machine constraints permit this operation.
2026 */
regulator_disable(struct regulator * regulator)2027 int regulator_disable(struct regulator *regulator)
2028 {
2029 struct regulator_dev *rdev = regulator->rdev;
2030 int ret = 0;
2031
2032 if (regulator->always_on)
2033 return 0;
2034
2035 mutex_lock(&rdev->mutex);
2036 ret = _regulator_disable(rdev);
2037 mutex_unlock(&rdev->mutex);
2038
2039 if (ret == 0 && rdev->supply)
2040 regulator_disable(rdev->supply);
2041
2042 return ret;
2043 }
2044 EXPORT_SYMBOL_GPL(regulator_disable);
2045
2046 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)2047 static int _regulator_force_disable(struct regulator_dev *rdev)
2048 {
2049 int ret = 0;
2050
2051 ret = _regulator_do_disable(rdev);
2052 if (ret < 0) {
2053 rdev_err(rdev, "failed to force disable\n");
2054 return ret;
2055 }
2056
2057 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2058 REGULATOR_EVENT_DISABLE, NULL);
2059
2060 return 0;
2061 }
2062
2063 /**
2064 * regulator_force_disable - force disable regulator output
2065 * @regulator: regulator source
2066 *
2067 * Forcibly disable the regulator output voltage or current.
2068 * NOTE: this *will* disable the regulator output even if other consumer
2069 * devices have it enabled. This should be used for situations when device
2070 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2071 */
regulator_force_disable(struct regulator * regulator)2072 int regulator_force_disable(struct regulator *regulator)
2073 {
2074 struct regulator_dev *rdev = regulator->rdev;
2075 int ret;
2076
2077 mutex_lock(&rdev->mutex);
2078 regulator->uA_load = 0;
2079 ret = _regulator_force_disable(regulator->rdev);
2080 mutex_unlock(&rdev->mutex);
2081
2082 if (rdev->supply)
2083 while (rdev->open_count--)
2084 regulator_disable(rdev->supply);
2085
2086 return ret;
2087 }
2088 EXPORT_SYMBOL_GPL(regulator_force_disable);
2089
regulator_disable_work(struct work_struct * work)2090 static void regulator_disable_work(struct work_struct *work)
2091 {
2092 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2093 disable_work.work);
2094 int count, i, ret;
2095
2096 mutex_lock(&rdev->mutex);
2097
2098 BUG_ON(!rdev->deferred_disables);
2099
2100 count = rdev->deferred_disables;
2101 rdev->deferred_disables = 0;
2102
2103 for (i = 0; i < count; i++) {
2104 ret = _regulator_disable(rdev);
2105 if (ret != 0)
2106 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2107 }
2108
2109 mutex_unlock(&rdev->mutex);
2110
2111 if (rdev->supply) {
2112 for (i = 0; i < count; i++) {
2113 ret = regulator_disable(rdev->supply);
2114 if (ret != 0) {
2115 rdev_err(rdev,
2116 "Supply disable failed: %d\n", ret);
2117 }
2118 }
2119 }
2120 }
2121
2122 /**
2123 * regulator_disable_deferred - disable regulator output with delay
2124 * @regulator: regulator source
2125 * @ms: miliseconds until the regulator is disabled
2126 *
2127 * Execute regulator_disable() on the regulator after a delay. This
2128 * is intended for use with devices that require some time to quiesce.
2129 *
2130 * NOTE: this will only disable the regulator output if no other consumer
2131 * devices have it enabled, the regulator device supports disabling and
2132 * machine constraints permit this operation.
2133 */
regulator_disable_deferred(struct regulator * regulator,int ms)2134 int regulator_disable_deferred(struct regulator *regulator, int ms)
2135 {
2136 struct regulator_dev *rdev = regulator->rdev;
2137 int ret;
2138
2139 if (regulator->always_on)
2140 return 0;
2141
2142 if (!ms)
2143 return regulator_disable(regulator);
2144
2145 mutex_lock(&rdev->mutex);
2146 rdev->deferred_disables++;
2147 mutex_unlock(&rdev->mutex);
2148
2149 ret = queue_delayed_work(system_power_efficient_wq,
2150 &rdev->disable_work,
2151 msecs_to_jiffies(ms));
2152 if (ret < 0)
2153 return ret;
2154 else
2155 return 0;
2156 }
2157 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2158
_regulator_is_enabled(struct regulator_dev * rdev)2159 static int _regulator_is_enabled(struct regulator_dev *rdev)
2160 {
2161 /* A GPIO control always takes precedence */
2162 if (rdev->ena_pin)
2163 return rdev->ena_gpio_state;
2164
2165 /* If we don't know then assume that the regulator is always on */
2166 if (!rdev->desc->ops->is_enabled)
2167 return 1;
2168
2169 return rdev->desc->ops->is_enabled(rdev);
2170 }
2171
2172 /**
2173 * regulator_is_enabled - is the regulator output enabled
2174 * @regulator: regulator source
2175 *
2176 * Returns positive if the regulator driver backing the source/client
2177 * has requested that the device be enabled, zero if it hasn't, else a
2178 * negative errno code.
2179 *
2180 * Note that the device backing this regulator handle can have multiple
2181 * users, so it might be enabled even if regulator_enable() was never
2182 * called for this particular source.
2183 */
regulator_is_enabled(struct regulator * regulator)2184 int regulator_is_enabled(struct regulator *regulator)
2185 {
2186 int ret;
2187
2188 if (regulator->always_on)
2189 return 1;
2190
2191 mutex_lock(®ulator->rdev->mutex);
2192 ret = _regulator_is_enabled(regulator->rdev);
2193 mutex_unlock(®ulator->rdev->mutex);
2194
2195 return ret;
2196 }
2197 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2198
2199 /**
2200 * regulator_can_change_voltage - check if regulator can change voltage
2201 * @regulator: regulator source
2202 *
2203 * Returns positive if the regulator driver backing the source/client
2204 * can change its voltage, false otherwise. Useful for detecting fixed
2205 * or dummy regulators and disabling voltage change logic in the client
2206 * driver.
2207 */
regulator_can_change_voltage(struct regulator * regulator)2208 int regulator_can_change_voltage(struct regulator *regulator)
2209 {
2210 struct regulator_dev *rdev = regulator->rdev;
2211
2212 if (rdev->constraints &&
2213 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2214 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2215 return 1;
2216
2217 if (rdev->desc->continuous_voltage_range &&
2218 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2219 rdev->constraints->min_uV != rdev->constraints->max_uV)
2220 return 1;
2221 }
2222
2223 return 0;
2224 }
2225 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2226
2227 /**
2228 * regulator_count_voltages - count regulator_list_voltage() selectors
2229 * @regulator: regulator source
2230 *
2231 * Returns number of selectors, or negative errno. Selectors are
2232 * numbered starting at zero, and typically correspond to bitfields
2233 * in hardware registers.
2234 */
regulator_count_voltages(struct regulator * regulator)2235 int regulator_count_voltages(struct regulator *regulator)
2236 {
2237 struct regulator_dev *rdev = regulator->rdev;
2238
2239 if (rdev->desc->n_voltages)
2240 return rdev->desc->n_voltages;
2241
2242 if (!rdev->supply)
2243 return -EINVAL;
2244
2245 return regulator_count_voltages(rdev->supply);
2246 }
2247 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2248
2249 /**
2250 * regulator_list_voltage - enumerate supported voltages
2251 * @regulator: regulator source
2252 * @selector: identify voltage to list
2253 * Context: can sleep
2254 *
2255 * Returns a voltage that can be passed to @regulator_set_voltage(),
2256 * zero if this selector code can't be used on this system, or a
2257 * negative errno.
2258 */
regulator_list_voltage(struct regulator * regulator,unsigned selector)2259 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2260 {
2261 struct regulator_dev *rdev = regulator->rdev;
2262 const struct regulator_ops *ops = rdev->desc->ops;
2263 int ret;
2264
2265 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2266 return rdev->desc->fixed_uV;
2267
2268 if (ops->list_voltage) {
2269 if (selector >= rdev->desc->n_voltages)
2270 return -EINVAL;
2271 mutex_lock(&rdev->mutex);
2272 ret = ops->list_voltage(rdev, selector);
2273 mutex_unlock(&rdev->mutex);
2274 } else if (rdev->supply) {
2275 ret = regulator_list_voltage(rdev->supply, selector);
2276 } else {
2277 return -EINVAL;
2278 }
2279
2280 if (ret > 0) {
2281 if (ret < rdev->constraints->min_uV)
2282 ret = 0;
2283 else if (ret > rdev->constraints->max_uV)
2284 ret = 0;
2285 }
2286
2287 return ret;
2288 }
2289 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2290
2291 /**
2292 * regulator_get_regmap - get the regulator's register map
2293 * @regulator: regulator source
2294 *
2295 * Returns the register map for the given regulator, or an ERR_PTR value
2296 * if the regulator doesn't use regmap.
2297 */
regulator_get_regmap(struct regulator * regulator)2298 struct regmap *regulator_get_regmap(struct regulator *regulator)
2299 {
2300 struct regmap *map = regulator->rdev->regmap;
2301
2302 return map ? map : ERR_PTR(-EOPNOTSUPP);
2303 }
2304
2305 /**
2306 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2307 * @regulator: regulator source
2308 * @vsel_reg: voltage selector register, output parameter
2309 * @vsel_mask: mask for voltage selector bitfield, output parameter
2310 *
2311 * Returns the hardware register offset and bitmask used for setting the
2312 * regulator voltage. This might be useful when configuring voltage-scaling
2313 * hardware or firmware that can make I2C requests behind the kernel's back,
2314 * for example.
2315 *
2316 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2317 * and 0 is returned, otherwise a negative errno is returned.
2318 */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)2319 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2320 unsigned *vsel_reg,
2321 unsigned *vsel_mask)
2322 {
2323 struct regulator_dev *rdev = regulator->rdev;
2324 const struct regulator_ops *ops = rdev->desc->ops;
2325
2326 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2327 return -EOPNOTSUPP;
2328
2329 *vsel_reg = rdev->desc->vsel_reg;
2330 *vsel_mask = rdev->desc->vsel_mask;
2331
2332 return 0;
2333 }
2334 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2335
2336 /**
2337 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2338 * @regulator: regulator source
2339 * @selector: identify voltage to list
2340 *
2341 * Converts the selector to a hardware-specific voltage selector that can be
2342 * directly written to the regulator registers. The address of the voltage
2343 * register can be determined by calling @regulator_get_hardware_vsel_register.
2344 *
2345 * On error a negative errno is returned.
2346 */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)2347 int regulator_list_hardware_vsel(struct regulator *regulator,
2348 unsigned selector)
2349 {
2350 struct regulator_dev *rdev = regulator->rdev;
2351 const struct regulator_ops *ops = rdev->desc->ops;
2352
2353 if (selector >= rdev->desc->n_voltages)
2354 return -EINVAL;
2355 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2356 return -EOPNOTSUPP;
2357
2358 return selector;
2359 }
2360 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2361
2362 /**
2363 * regulator_get_linear_step - return the voltage step size between VSEL values
2364 * @regulator: regulator source
2365 *
2366 * Returns the voltage step size between VSEL values for linear
2367 * regulators, or return 0 if the regulator isn't a linear regulator.
2368 */
regulator_get_linear_step(struct regulator * regulator)2369 unsigned int regulator_get_linear_step(struct regulator *regulator)
2370 {
2371 struct regulator_dev *rdev = regulator->rdev;
2372
2373 return rdev->desc->uV_step;
2374 }
2375 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2376
2377 /**
2378 * regulator_is_supported_voltage - check if a voltage range can be supported
2379 *
2380 * @regulator: Regulator to check.
2381 * @min_uV: Minimum required voltage in uV.
2382 * @max_uV: Maximum required voltage in uV.
2383 *
2384 * Returns a boolean or a negative error code.
2385 */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)2386 int regulator_is_supported_voltage(struct regulator *regulator,
2387 int min_uV, int max_uV)
2388 {
2389 struct regulator_dev *rdev = regulator->rdev;
2390 int i, voltages, ret;
2391
2392 /* If we can't change voltage check the current voltage */
2393 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2394 ret = regulator_get_voltage(regulator);
2395 if (ret >= 0)
2396 return min_uV <= ret && ret <= max_uV;
2397 else
2398 return ret;
2399 }
2400
2401 /* Any voltage within constrains range is fine? */
2402 if (rdev->desc->continuous_voltage_range)
2403 return min_uV >= rdev->constraints->min_uV &&
2404 max_uV <= rdev->constraints->max_uV;
2405
2406 ret = regulator_count_voltages(regulator);
2407 if (ret < 0)
2408 return ret;
2409 voltages = ret;
2410
2411 for (i = 0; i < voltages; i++) {
2412 ret = regulator_list_voltage(regulator, i);
2413
2414 if (ret >= min_uV && ret <= max_uV)
2415 return 1;
2416 }
2417
2418 return 0;
2419 }
2420 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2421
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)2422 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2423 int min_uV, int max_uV,
2424 unsigned *selector)
2425 {
2426 struct pre_voltage_change_data data;
2427 int ret;
2428
2429 data.old_uV = _regulator_get_voltage(rdev);
2430 data.min_uV = min_uV;
2431 data.max_uV = max_uV;
2432 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2433 &data);
2434 if (ret & NOTIFY_STOP_MASK)
2435 return -EINVAL;
2436
2437 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2438 if (ret >= 0)
2439 return ret;
2440
2441 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2442 (void *)data.old_uV);
2443
2444 return ret;
2445 }
2446
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)2447 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2448 int uV, unsigned selector)
2449 {
2450 struct pre_voltage_change_data data;
2451 int ret;
2452
2453 data.old_uV = _regulator_get_voltage(rdev);
2454 data.min_uV = uV;
2455 data.max_uV = uV;
2456 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2457 &data);
2458 if (ret & NOTIFY_STOP_MASK)
2459 return -EINVAL;
2460
2461 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2462 if (ret >= 0)
2463 return ret;
2464
2465 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2466 (void *)data.old_uV);
2467
2468 return ret;
2469 }
2470
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)2471 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2472 int min_uV, int max_uV)
2473 {
2474 int ret;
2475 int delay = 0;
2476 int best_val = 0;
2477 unsigned int selector;
2478 int old_selector = -1;
2479
2480 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2481
2482 min_uV += rdev->constraints->uV_offset;
2483 max_uV += rdev->constraints->uV_offset;
2484
2485 /*
2486 * If we can't obtain the old selector there is not enough
2487 * info to call set_voltage_time_sel().
2488 */
2489 if (_regulator_is_enabled(rdev) &&
2490 rdev->desc->ops->set_voltage_time_sel &&
2491 rdev->desc->ops->get_voltage_sel) {
2492 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2493 if (old_selector < 0)
2494 return old_selector;
2495 }
2496
2497 if (rdev->desc->ops->set_voltage) {
2498 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2499 &selector);
2500
2501 if (ret >= 0) {
2502 if (rdev->desc->ops->list_voltage)
2503 best_val = rdev->desc->ops->list_voltage(rdev,
2504 selector);
2505 else
2506 best_val = _regulator_get_voltage(rdev);
2507 }
2508
2509 } else if (rdev->desc->ops->set_voltage_sel) {
2510 if (rdev->desc->ops->map_voltage) {
2511 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2512 max_uV);
2513 } else {
2514 if (rdev->desc->ops->list_voltage ==
2515 regulator_list_voltage_linear)
2516 ret = regulator_map_voltage_linear(rdev,
2517 min_uV, max_uV);
2518 else if (rdev->desc->ops->list_voltage ==
2519 regulator_list_voltage_linear_range)
2520 ret = regulator_map_voltage_linear_range(rdev,
2521 min_uV, max_uV);
2522 else
2523 ret = regulator_map_voltage_iterate(rdev,
2524 min_uV, max_uV);
2525 }
2526
2527 if (ret >= 0) {
2528 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2529 if (min_uV <= best_val && max_uV >= best_val) {
2530 selector = ret;
2531 if (old_selector == selector)
2532 ret = 0;
2533 else
2534 ret = _regulator_call_set_voltage_sel(
2535 rdev, best_val, selector);
2536 } else {
2537 ret = -EINVAL;
2538 }
2539 }
2540 } else {
2541 ret = -EINVAL;
2542 }
2543
2544 /* Call set_voltage_time_sel if successfully obtained old_selector */
2545 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2546 && old_selector != selector) {
2547
2548 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2549 old_selector, selector);
2550 if (delay < 0) {
2551 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2552 delay);
2553 delay = 0;
2554 }
2555
2556 /* Insert any necessary delays */
2557 if (delay >= 1000) {
2558 mdelay(delay / 1000);
2559 udelay(delay % 1000);
2560 } else if (delay) {
2561 udelay(delay);
2562 }
2563 }
2564
2565 if (ret == 0 && best_val >= 0) {
2566 unsigned long data = best_val;
2567
2568 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2569 (void *)data);
2570 }
2571
2572 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2573
2574 return ret;
2575 }
2576
2577 /**
2578 * regulator_set_voltage - set regulator output voltage
2579 * @regulator: regulator source
2580 * @min_uV: Minimum required voltage in uV
2581 * @max_uV: Maximum acceptable voltage in uV
2582 *
2583 * Sets a voltage regulator to the desired output voltage. This can be set
2584 * during any regulator state. IOW, regulator can be disabled or enabled.
2585 *
2586 * If the regulator is enabled then the voltage will change to the new value
2587 * immediately otherwise if the regulator is disabled the regulator will
2588 * output at the new voltage when enabled.
2589 *
2590 * NOTE: If the regulator is shared between several devices then the lowest
2591 * request voltage that meets the system constraints will be used.
2592 * Regulator system constraints must be set for this regulator before
2593 * calling this function otherwise this call will fail.
2594 */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)2595 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2596 {
2597 struct regulator_dev *rdev = regulator->rdev;
2598 int ret = 0;
2599 int old_min_uV, old_max_uV;
2600 int current_uV;
2601
2602 mutex_lock(&rdev->mutex);
2603
2604 /* If we're setting the same range as last time the change
2605 * should be a noop (some cpufreq implementations use the same
2606 * voltage for multiple frequencies, for example).
2607 */
2608 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2609 goto out;
2610
2611 /* If we're trying to set a range that overlaps the current voltage,
2612 * return succesfully even though the regulator does not support
2613 * changing the voltage.
2614 */
2615 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2616 current_uV = _regulator_get_voltage(rdev);
2617 if (min_uV <= current_uV && current_uV <= max_uV) {
2618 regulator->min_uV = min_uV;
2619 regulator->max_uV = max_uV;
2620 goto out;
2621 }
2622 }
2623
2624 /* sanity check */
2625 if (!rdev->desc->ops->set_voltage &&
2626 !rdev->desc->ops->set_voltage_sel) {
2627 ret = -EINVAL;
2628 goto out;
2629 }
2630
2631 /* constraints check */
2632 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2633 if (ret < 0)
2634 goto out;
2635
2636 /* restore original values in case of error */
2637 old_min_uV = regulator->min_uV;
2638 old_max_uV = regulator->max_uV;
2639 regulator->min_uV = min_uV;
2640 regulator->max_uV = max_uV;
2641
2642 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2643 if (ret < 0)
2644 goto out2;
2645
2646 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2647 if (ret < 0)
2648 goto out2;
2649
2650 out:
2651 mutex_unlock(&rdev->mutex);
2652 return ret;
2653 out2:
2654 regulator->min_uV = old_min_uV;
2655 regulator->max_uV = old_max_uV;
2656 mutex_unlock(&rdev->mutex);
2657 return ret;
2658 }
2659 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2660
2661 /**
2662 * regulator_set_voltage_time - get raise/fall time
2663 * @regulator: regulator source
2664 * @old_uV: starting voltage in microvolts
2665 * @new_uV: target voltage in microvolts
2666 *
2667 * Provided with the starting and ending voltage, this function attempts to
2668 * calculate the time in microseconds required to rise or fall to this new
2669 * voltage.
2670 */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)2671 int regulator_set_voltage_time(struct regulator *regulator,
2672 int old_uV, int new_uV)
2673 {
2674 struct regulator_dev *rdev = regulator->rdev;
2675 const struct regulator_ops *ops = rdev->desc->ops;
2676 int old_sel = -1;
2677 int new_sel = -1;
2678 int voltage;
2679 int i;
2680
2681 /* Currently requires operations to do this */
2682 if (!ops->list_voltage || !ops->set_voltage_time_sel
2683 || !rdev->desc->n_voltages)
2684 return -EINVAL;
2685
2686 for (i = 0; i < rdev->desc->n_voltages; i++) {
2687 /* We only look for exact voltage matches here */
2688 voltage = regulator_list_voltage(regulator, i);
2689 if (voltage < 0)
2690 return -EINVAL;
2691 if (voltage == 0)
2692 continue;
2693 if (voltage == old_uV)
2694 old_sel = i;
2695 if (voltage == new_uV)
2696 new_sel = i;
2697 }
2698
2699 if (old_sel < 0 || new_sel < 0)
2700 return -EINVAL;
2701
2702 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2703 }
2704 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2705
2706 /**
2707 * regulator_set_voltage_time_sel - get raise/fall time
2708 * @rdev: regulator source device
2709 * @old_selector: selector for starting voltage
2710 * @new_selector: selector for target voltage
2711 *
2712 * Provided with the starting and target voltage selectors, this function
2713 * returns time in microseconds required to rise or fall to this new voltage
2714 *
2715 * Drivers providing ramp_delay in regulation_constraints can use this as their
2716 * set_voltage_time_sel() operation.
2717 */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)2718 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2719 unsigned int old_selector,
2720 unsigned int new_selector)
2721 {
2722 unsigned int ramp_delay = 0;
2723 int old_volt, new_volt;
2724
2725 if (rdev->constraints->ramp_delay)
2726 ramp_delay = rdev->constraints->ramp_delay;
2727 else if (rdev->desc->ramp_delay)
2728 ramp_delay = rdev->desc->ramp_delay;
2729
2730 if (ramp_delay == 0) {
2731 rdev_warn(rdev, "ramp_delay not set\n");
2732 return 0;
2733 }
2734
2735 /* sanity check */
2736 if (!rdev->desc->ops->list_voltage)
2737 return -EINVAL;
2738
2739 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2740 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2741
2742 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2743 }
2744 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2745
2746 /**
2747 * regulator_sync_voltage - re-apply last regulator output voltage
2748 * @regulator: regulator source
2749 *
2750 * Re-apply the last configured voltage. This is intended to be used
2751 * where some external control source the consumer is cooperating with
2752 * has caused the configured voltage to change.
2753 */
regulator_sync_voltage(struct regulator * regulator)2754 int regulator_sync_voltage(struct regulator *regulator)
2755 {
2756 struct regulator_dev *rdev = regulator->rdev;
2757 int ret, min_uV, max_uV;
2758
2759 mutex_lock(&rdev->mutex);
2760
2761 if (!rdev->desc->ops->set_voltage &&
2762 !rdev->desc->ops->set_voltage_sel) {
2763 ret = -EINVAL;
2764 goto out;
2765 }
2766
2767 /* This is only going to work if we've had a voltage configured. */
2768 if (!regulator->min_uV && !regulator->max_uV) {
2769 ret = -EINVAL;
2770 goto out;
2771 }
2772
2773 min_uV = regulator->min_uV;
2774 max_uV = regulator->max_uV;
2775
2776 /* This should be a paranoia check... */
2777 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2778 if (ret < 0)
2779 goto out;
2780
2781 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2782 if (ret < 0)
2783 goto out;
2784
2785 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2786
2787 out:
2788 mutex_unlock(&rdev->mutex);
2789 return ret;
2790 }
2791 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2792
_regulator_get_voltage(struct regulator_dev * rdev)2793 static int _regulator_get_voltage(struct regulator_dev *rdev)
2794 {
2795 int sel, ret;
2796
2797 if (rdev->desc->ops->get_voltage_sel) {
2798 sel = rdev->desc->ops->get_voltage_sel(rdev);
2799 if (sel < 0)
2800 return sel;
2801 ret = rdev->desc->ops->list_voltage(rdev, sel);
2802 } else if (rdev->desc->ops->get_voltage) {
2803 ret = rdev->desc->ops->get_voltage(rdev);
2804 } else if (rdev->desc->ops->list_voltage) {
2805 ret = rdev->desc->ops->list_voltage(rdev, 0);
2806 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2807 ret = rdev->desc->fixed_uV;
2808 } else if (rdev->supply) {
2809 ret = regulator_get_voltage(rdev->supply);
2810 } else {
2811 return -EINVAL;
2812 }
2813
2814 if (ret < 0)
2815 return ret;
2816 return ret - rdev->constraints->uV_offset;
2817 }
2818
2819 /**
2820 * regulator_get_voltage - get regulator output voltage
2821 * @regulator: regulator source
2822 *
2823 * This returns the current regulator voltage in uV.
2824 *
2825 * NOTE: If the regulator is disabled it will return the voltage value. This
2826 * function should not be used to determine regulator state.
2827 */
regulator_get_voltage(struct regulator * regulator)2828 int regulator_get_voltage(struct regulator *regulator)
2829 {
2830 int ret;
2831
2832 mutex_lock(®ulator->rdev->mutex);
2833
2834 ret = _regulator_get_voltage(regulator->rdev);
2835
2836 mutex_unlock(®ulator->rdev->mutex);
2837
2838 return ret;
2839 }
2840 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2841
2842 /**
2843 * regulator_set_current_limit - set regulator output current limit
2844 * @regulator: regulator source
2845 * @min_uA: Minimum supported current in uA
2846 * @max_uA: Maximum supported current in uA
2847 *
2848 * Sets current sink to the desired output current. This can be set during
2849 * any regulator state. IOW, regulator can be disabled or enabled.
2850 *
2851 * If the regulator is enabled then the current will change to the new value
2852 * immediately otherwise if the regulator is disabled the regulator will
2853 * output at the new current when enabled.
2854 *
2855 * NOTE: Regulator system constraints must be set for this regulator before
2856 * calling this function otherwise this call will fail.
2857 */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)2858 int regulator_set_current_limit(struct regulator *regulator,
2859 int min_uA, int max_uA)
2860 {
2861 struct regulator_dev *rdev = regulator->rdev;
2862 int ret;
2863
2864 mutex_lock(&rdev->mutex);
2865
2866 /* sanity check */
2867 if (!rdev->desc->ops->set_current_limit) {
2868 ret = -EINVAL;
2869 goto out;
2870 }
2871
2872 /* constraints check */
2873 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2874 if (ret < 0)
2875 goto out;
2876
2877 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2878 out:
2879 mutex_unlock(&rdev->mutex);
2880 return ret;
2881 }
2882 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2883
_regulator_get_current_limit(struct regulator_dev * rdev)2884 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2885 {
2886 int ret;
2887
2888 mutex_lock(&rdev->mutex);
2889
2890 /* sanity check */
2891 if (!rdev->desc->ops->get_current_limit) {
2892 ret = -EINVAL;
2893 goto out;
2894 }
2895
2896 ret = rdev->desc->ops->get_current_limit(rdev);
2897 out:
2898 mutex_unlock(&rdev->mutex);
2899 return ret;
2900 }
2901
2902 /**
2903 * regulator_get_current_limit - get regulator output current
2904 * @regulator: regulator source
2905 *
2906 * This returns the current supplied by the specified current sink in uA.
2907 *
2908 * NOTE: If the regulator is disabled it will return the current value. This
2909 * function should not be used to determine regulator state.
2910 */
regulator_get_current_limit(struct regulator * regulator)2911 int regulator_get_current_limit(struct regulator *regulator)
2912 {
2913 return _regulator_get_current_limit(regulator->rdev);
2914 }
2915 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2916
2917 /**
2918 * regulator_set_mode - set regulator operating mode
2919 * @regulator: regulator source
2920 * @mode: operating mode - one of the REGULATOR_MODE constants
2921 *
2922 * Set regulator operating mode to increase regulator efficiency or improve
2923 * regulation performance.
2924 *
2925 * NOTE: Regulator system constraints must be set for this regulator before
2926 * calling this function otherwise this call will fail.
2927 */
regulator_set_mode(struct regulator * regulator,unsigned int mode)2928 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2929 {
2930 struct regulator_dev *rdev = regulator->rdev;
2931 int ret;
2932 int regulator_curr_mode;
2933
2934 mutex_lock(&rdev->mutex);
2935
2936 /* sanity check */
2937 if (!rdev->desc->ops->set_mode) {
2938 ret = -EINVAL;
2939 goto out;
2940 }
2941
2942 /* return if the same mode is requested */
2943 if (rdev->desc->ops->get_mode) {
2944 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2945 if (regulator_curr_mode == mode) {
2946 ret = 0;
2947 goto out;
2948 }
2949 }
2950
2951 /* constraints check */
2952 ret = regulator_mode_constrain(rdev, &mode);
2953 if (ret < 0)
2954 goto out;
2955
2956 ret = rdev->desc->ops->set_mode(rdev, mode);
2957 out:
2958 mutex_unlock(&rdev->mutex);
2959 return ret;
2960 }
2961 EXPORT_SYMBOL_GPL(regulator_set_mode);
2962
_regulator_get_mode(struct regulator_dev * rdev)2963 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2964 {
2965 int ret;
2966
2967 mutex_lock(&rdev->mutex);
2968
2969 /* sanity check */
2970 if (!rdev->desc->ops->get_mode) {
2971 ret = -EINVAL;
2972 goto out;
2973 }
2974
2975 ret = rdev->desc->ops->get_mode(rdev);
2976 out:
2977 mutex_unlock(&rdev->mutex);
2978 return ret;
2979 }
2980
2981 /**
2982 * regulator_get_mode - get regulator operating mode
2983 * @regulator: regulator source
2984 *
2985 * Get the current regulator operating mode.
2986 */
regulator_get_mode(struct regulator * regulator)2987 unsigned int regulator_get_mode(struct regulator *regulator)
2988 {
2989 return _regulator_get_mode(regulator->rdev);
2990 }
2991 EXPORT_SYMBOL_GPL(regulator_get_mode);
2992
2993 /**
2994 * regulator_set_optimum_mode - set regulator optimum operating mode
2995 * @regulator: regulator source
2996 * @uA_load: load current
2997 *
2998 * Notifies the regulator core of a new device load. This is then used by
2999 * DRMS (if enabled by constraints) to set the most efficient regulator
3000 * operating mode for the new regulator loading.
3001 *
3002 * Consumer devices notify their supply regulator of the maximum power
3003 * they will require (can be taken from device datasheet in the power
3004 * consumption tables) when they change operational status and hence power
3005 * state. Examples of operational state changes that can affect power
3006 * consumption are :-
3007 *
3008 * o Device is opened / closed.
3009 * o Device I/O is about to begin or has just finished.
3010 * o Device is idling in between work.
3011 *
3012 * This information is also exported via sysfs to userspace.
3013 *
3014 * DRMS will sum the total requested load on the regulator and change
3015 * to the most efficient operating mode if platform constraints allow.
3016 *
3017 * Returns the new regulator mode or error.
3018 */
regulator_set_optimum_mode(struct regulator * regulator,int uA_load)3019 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
3020 {
3021 struct regulator_dev *rdev = regulator->rdev;
3022 struct regulator *consumer;
3023 int ret, output_uV, input_uV = 0, total_uA_load = 0;
3024 unsigned int mode;
3025
3026 if (rdev->supply)
3027 input_uV = regulator_get_voltage(rdev->supply);
3028
3029 mutex_lock(&rdev->mutex);
3030
3031 /*
3032 * first check to see if we can set modes at all, otherwise just
3033 * tell the consumer everything is OK.
3034 */
3035 regulator->uA_load = uA_load;
3036 ret = regulator_check_drms(rdev);
3037 if (ret < 0) {
3038 ret = 0;
3039 goto out;
3040 }
3041
3042 if (!rdev->desc->ops->get_optimum_mode)
3043 goto out;
3044
3045 /*
3046 * we can actually do this so any errors are indicators of
3047 * potential real failure.
3048 */
3049 ret = -EINVAL;
3050
3051 if (!rdev->desc->ops->set_mode)
3052 goto out;
3053
3054 /* get output voltage */
3055 output_uV = _regulator_get_voltage(rdev);
3056 if (output_uV <= 0) {
3057 rdev_err(rdev, "invalid output voltage found\n");
3058 goto out;
3059 }
3060
3061 /* No supply? Use constraint voltage */
3062 if (input_uV <= 0)
3063 input_uV = rdev->constraints->input_uV;
3064 if (input_uV <= 0) {
3065 rdev_err(rdev, "invalid input voltage found\n");
3066 goto out;
3067 }
3068
3069 /* calc total requested load for this regulator */
3070 list_for_each_entry(consumer, &rdev->consumer_list, list)
3071 total_uA_load += consumer->uA_load;
3072
3073 mode = rdev->desc->ops->get_optimum_mode(rdev,
3074 input_uV, output_uV,
3075 total_uA_load);
3076 ret = regulator_mode_constrain(rdev, &mode);
3077 if (ret < 0) {
3078 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
3079 total_uA_load, input_uV, output_uV);
3080 goto out;
3081 }
3082
3083 ret = rdev->desc->ops->set_mode(rdev, mode);
3084 if (ret < 0) {
3085 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
3086 goto out;
3087 }
3088 ret = mode;
3089 out:
3090 mutex_unlock(&rdev->mutex);
3091 return ret;
3092 }
3093 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
3094
3095 /**
3096 * regulator_allow_bypass - allow the regulator to go into bypass mode
3097 *
3098 * @regulator: Regulator to configure
3099 * @enable: enable or disable bypass mode
3100 *
3101 * Allow the regulator to go into bypass mode if all other consumers
3102 * for the regulator also enable bypass mode and the machine
3103 * constraints allow this. Bypass mode means that the regulator is
3104 * simply passing the input directly to the output with no regulation.
3105 */
regulator_allow_bypass(struct regulator * regulator,bool enable)3106 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3107 {
3108 struct regulator_dev *rdev = regulator->rdev;
3109 int ret = 0;
3110
3111 if (!rdev->desc->ops->set_bypass)
3112 return 0;
3113
3114 if (rdev->constraints &&
3115 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3116 return 0;
3117
3118 mutex_lock(&rdev->mutex);
3119
3120 if (enable && !regulator->bypass) {
3121 rdev->bypass_count++;
3122
3123 if (rdev->bypass_count == rdev->open_count) {
3124 ret = rdev->desc->ops->set_bypass(rdev, enable);
3125 if (ret != 0)
3126 rdev->bypass_count--;
3127 }
3128
3129 } else if (!enable && regulator->bypass) {
3130 rdev->bypass_count--;
3131
3132 if (rdev->bypass_count != rdev->open_count) {
3133 ret = rdev->desc->ops->set_bypass(rdev, enable);
3134 if (ret != 0)
3135 rdev->bypass_count++;
3136 }
3137 }
3138
3139 if (ret == 0)
3140 regulator->bypass = enable;
3141
3142 mutex_unlock(&rdev->mutex);
3143
3144 return ret;
3145 }
3146 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3147
3148 /**
3149 * regulator_register_notifier - register regulator event notifier
3150 * @regulator: regulator source
3151 * @nb: notifier block
3152 *
3153 * Register notifier block to receive regulator events.
3154 */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)3155 int regulator_register_notifier(struct regulator *regulator,
3156 struct notifier_block *nb)
3157 {
3158 return blocking_notifier_chain_register(®ulator->rdev->notifier,
3159 nb);
3160 }
3161 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3162
3163 /**
3164 * regulator_unregister_notifier - unregister regulator event notifier
3165 * @regulator: regulator source
3166 * @nb: notifier block
3167 *
3168 * Unregister regulator event notifier block.
3169 */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)3170 int regulator_unregister_notifier(struct regulator *regulator,
3171 struct notifier_block *nb)
3172 {
3173 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
3174 nb);
3175 }
3176 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3177
3178 /* notify regulator consumers and downstream regulator consumers.
3179 * Note mutex must be held by caller.
3180 */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)3181 static int _notifier_call_chain(struct regulator_dev *rdev,
3182 unsigned long event, void *data)
3183 {
3184 /* call rdev chain first */
3185 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3186 }
3187
3188 /**
3189 * regulator_bulk_get - get multiple regulator consumers
3190 *
3191 * @dev: Device to supply
3192 * @num_consumers: Number of consumers to register
3193 * @consumers: Configuration of consumers; clients are stored here.
3194 *
3195 * @return 0 on success, an errno on failure.
3196 *
3197 * This helper function allows drivers to get several regulator
3198 * consumers in one operation. If any of the regulators cannot be
3199 * acquired then any regulators that were allocated will be freed
3200 * before returning to the caller.
3201 */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)3202 int regulator_bulk_get(struct device *dev, int num_consumers,
3203 struct regulator_bulk_data *consumers)
3204 {
3205 int i;
3206 int ret;
3207
3208 for (i = 0; i < num_consumers; i++)
3209 consumers[i].consumer = NULL;
3210
3211 for (i = 0; i < num_consumers; i++) {
3212 consumers[i].consumer = regulator_get(dev,
3213 consumers[i].supply);
3214 if (IS_ERR(consumers[i].consumer)) {
3215 ret = PTR_ERR(consumers[i].consumer);
3216 dev_err(dev, "Failed to get supply '%s': %d\n",
3217 consumers[i].supply, ret);
3218 consumers[i].consumer = NULL;
3219 goto err;
3220 }
3221 }
3222
3223 return 0;
3224
3225 err:
3226 while (--i >= 0)
3227 regulator_put(consumers[i].consumer);
3228
3229 return ret;
3230 }
3231 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3232
regulator_bulk_enable_async(void * data,async_cookie_t cookie)3233 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3234 {
3235 struct regulator_bulk_data *bulk = data;
3236
3237 bulk->ret = regulator_enable(bulk->consumer);
3238 }
3239
3240 /**
3241 * regulator_bulk_enable - enable multiple regulator consumers
3242 *
3243 * @num_consumers: Number of consumers
3244 * @consumers: Consumer data; clients are stored here.
3245 * @return 0 on success, an errno on failure
3246 *
3247 * This convenience API allows consumers to enable multiple regulator
3248 * clients in a single API call. If any consumers cannot be enabled
3249 * then any others that were enabled will be disabled again prior to
3250 * return.
3251 */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)3252 int regulator_bulk_enable(int num_consumers,
3253 struct regulator_bulk_data *consumers)
3254 {
3255 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3256 int i;
3257 int ret = 0;
3258
3259 for (i = 0; i < num_consumers; i++) {
3260 if (consumers[i].consumer->always_on)
3261 consumers[i].ret = 0;
3262 else
3263 async_schedule_domain(regulator_bulk_enable_async,
3264 &consumers[i], &async_domain);
3265 }
3266
3267 async_synchronize_full_domain(&async_domain);
3268
3269 /* If any consumer failed we need to unwind any that succeeded */
3270 for (i = 0; i < num_consumers; i++) {
3271 if (consumers[i].ret != 0) {
3272 ret = consumers[i].ret;
3273 goto err;
3274 }
3275 }
3276
3277 return 0;
3278
3279 err:
3280 for (i = 0; i < num_consumers; i++) {
3281 if (consumers[i].ret < 0)
3282 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3283 consumers[i].ret);
3284 else
3285 regulator_disable(consumers[i].consumer);
3286 }
3287
3288 return ret;
3289 }
3290 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3291
3292 /**
3293 * regulator_bulk_disable - disable multiple regulator consumers
3294 *
3295 * @num_consumers: Number of consumers
3296 * @consumers: Consumer data; clients are stored here.
3297 * @return 0 on success, an errno on failure
3298 *
3299 * This convenience API allows consumers to disable multiple regulator
3300 * clients in a single API call. If any consumers cannot be disabled
3301 * then any others that were disabled will be enabled again prior to
3302 * return.
3303 */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)3304 int regulator_bulk_disable(int num_consumers,
3305 struct regulator_bulk_data *consumers)
3306 {
3307 int i;
3308 int ret, r;
3309
3310 for (i = num_consumers - 1; i >= 0; --i) {
3311 ret = regulator_disable(consumers[i].consumer);
3312 if (ret != 0)
3313 goto err;
3314 }
3315
3316 return 0;
3317
3318 err:
3319 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3320 for (++i; i < num_consumers; ++i) {
3321 r = regulator_enable(consumers[i].consumer);
3322 if (r != 0)
3323 pr_err("Failed to reename %s: %d\n",
3324 consumers[i].supply, r);
3325 }
3326
3327 return ret;
3328 }
3329 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3330
3331 /**
3332 * regulator_bulk_force_disable - force disable multiple regulator consumers
3333 *
3334 * @num_consumers: Number of consumers
3335 * @consumers: Consumer data; clients are stored here.
3336 * @return 0 on success, an errno on failure
3337 *
3338 * This convenience API allows consumers to forcibly disable multiple regulator
3339 * clients in a single API call.
3340 * NOTE: This should be used for situations when device damage will
3341 * likely occur if the regulators are not disabled (e.g. over temp).
3342 * Although regulator_force_disable function call for some consumers can
3343 * return error numbers, the function is called for all consumers.
3344 */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)3345 int regulator_bulk_force_disable(int num_consumers,
3346 struct regulator_bulk_data *consumers)
3347 {
3348 int i;
3349 int ret;
3350
3351 for (i = 0; i < num_consumers; i++)
3352 consumers[i].ret =
3353 regulator_force_disable(consumers[i].consumer);
3354
3355 for (i = 0; i < num_consumers; i++) {
3356 if (consumers[i].ret != 0) {
3357 ret = consumers[i].ret;
3358 goto out;
3359 }
3360 }
3361
3362 return 0;
3363 out:
3364 return ret;
3365 }
3366 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3367
3368 /**
3369 * regulator_bulk_free - free multiple regulator consumers
3370 *
3371 * @num_consumers: Number of consumers
3372 * @consumers: Consumer data; clients are stored here.
3373 *
3374 * This convenience API allows consumers to free multiple regulator
3375 * clients in a single API call.
3376 */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)3377 void regulator_bulk_free(int num_consumers,
3378 struct regulator_bulk_data *consumers)
3379 {
3380 int i;
3381
3382 for (i = 0; i < num_consumers; i++) {
3383 regulator_put(consumers[i].consumer);
3384 consumers[i].consumer = NULL;
3385 }
3386 }
3387 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3388
3389 /**
3390 * regulator_notifier_call_chain - call regulator event notifier
3391 * @rdev: regulator source
3392 * @event: notifier block
3393 * @data: callback-specific data.
3394 *
3395 * Called by regulator drivers to notify clients a regulator event has
3396 * occurred. We also notify regulator clients downstream.
3397 * Note lock must be held by caller.
3398 */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)3399 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3400 unsigned long event, void *data)
3401 {
3402 _notifier_call_chain(rdev, event, data);
3403 return NOTIFY_DONE;
3404
3405 }
3406 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3407
3408 /**
3409 * regulator_mode_to_status - convert a regulator mode into a status
3410 *
3411 * @mode: Mode to convert
3412 *
3413 * Convert a regulator mode into a status.
3414 */
regulator_mode_to_status(unsigned int mode)3415 int regulator_mode_to_status(unsigned int mode)
3416 {
3417 switch (mode) {
3418 case REGULATOR_MODE_FAST:
3419 return REGULATOR_STATUS_FAST;
3420 case REGULATOR_MODE_NORMAL:
3421 return REGULATOR_STATUS_NORMAL;
3422 case REGULATOR_MODE_IDLE:
3423 return REGULATOR_STATUS_IDLE;
3424 case REGULATOR_MODE_STANDBY:
3425 return REGULATOR_STATUS_STANDBY;
3426 default:
3427 return REGULATOR_STATUS_UNDEFINED;
3428 }
3429 }
3430 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3431
3432 /*
3433 * To avoid cluttering sysfs (and memory) with useless state, only
3434 * create attributes that can be meaningfully displayed.
3435 */
add_regulator_attributes(struct regulator_dev * rdev)3436 static int add_regulator_attributes(struct regulator_dev *rdev)
3437 {
3438 struct device *dev = &rdev->dev;
3439 const struct regulator_ops *ops = rdev->desc->ops;
3440 int status = 0;
3441
3442 /* some attributes need specific methods to be displayed */
3443 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3444 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3445 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3446 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3447 status = device_create_file(dev, &dev_attr_microvolts);
3448 if (status < 0)
3449 return status;
3450 }
3451 if (ops->get_current_limit) {
3452 status = device_create_file(dev, &dev_attr_microamps);
3453 if (status < 0)
3454 return status;
3455 }
3456 if (ops->get_mode) {
3457 status = device_create_file(dev, &dev_attr_opmode);
3458 if (status < 0)
3459 return status;
3460 }
3461 if (rdev->ena_pin || ops->is_enabled) {
3462 status = device_create_file(dev, &dev_attr_state);
3463 if (status < 0)
3464 return status;
3465 }
3466 if (ops->get_status) {
3467 status = device_create_file(dev, &dev_attr_status);
3468 if (status < 0)
3469 return status;
3470 }
3471 if (ops->get_bypass) {
3472 status = device_create_file(dev, &dev_attr_bypass);
3473 if (status < 0)
3474 return status;
3475 }
3476
3477 /* some attributes are type-specific */
3478 if (rdev->desc->type == REGULATOR_CURRENT) {
3479 status = device_create_file(dev, &dev_attr_requested_microamps);
3480 if (status < 0)
3481 return status;
3482 }
3483
3484 /* all the other attributes exist to support constraints;
3485 * don't show them if there are no constraints, or if the
3486 * relevant supporting methods are missing.
3487 */
3488 if (!rdev->constraints)
3489 return status;
3490
3491 /* constraints need specific supporting methods */
3492 if (ops->set_voltage || ops->set_voltage_sel) {
3493 status = device_create_file(dev, &dev_attr_min_microvolts);
3494 if (status < 0)
3495 return status;
3496 status = device_create_file(dev, &dev_attr_max_microvolts);
3497 if (status < 0)
3498 return status;
3499 }
3500 if (ops->set_current_limit) {
3501 status = device_create_file(dev, &dev_attr_min_microamps);
3502 if (status < 0)
3503 return status;
3504 status = device_create_file(dev, &dev_attr_max_microamps);
3505 if (status < 0)
3506 return status;
3507 }
3508
3509 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3510 if (status < 0)
3511 return status;
3512 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3513 if (status < 0)
3514 return status;
3515 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3516 if (status < 0)
3517 return status;
3518
3519 if (ops->set_suspend_voltage) {
3520 status = device_create_file(dev,
3521 &dev_attr_suspend_standby_microvolts);
3522 if (status < 0)
3523 return status;
3524 status = device_create_file(dev,
3525 &dev_attr_suspend_mem_microvolts);
3526 if (status < 0)
3527 return status;
3528 status = device_create_file(dev,
3529 &dev_attr_suspend_disk_microvolts);
3530 if (status < 0)
3531 return status;
3532 }
3533
3534 if (ops->set_suspend_mode) {
3535 status = device_create_file(dev,
3536 &dev_attr_suspend_standby_mode);
3537 if (status < 0)
3538 return status;
3539 status = device_create_file(dev,
3540 &dev_attr_suspend_mem_mode);
3541 if (status < 0)
3542 return status;
3543 status = device_create_file(dev,
3544 &dev_attr_suspend_disk_mode);
3545 if (status < 0)
3546 return status;
3547 }
3548
3549 return status;
3550 }
3551
rdev_init_debugfs(struct regulator_dev * rdev)3552 static void rdev_init_debugfs(struct regulator_dev *rdev)
3553 {
3554 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3555 if (!rdev->debugfs) {
3556 rdev_warn(rdev, "Failed to create debugfs directory\n");
3557 return;
3558 }
3559
3560 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3561 &rdev->use_count);
3562 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3563 &rdev->open_count);
3564 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3565 &rdev->bypass_count);
3566 }
3567
3568 /**
3569 * regulator_register - register regulator
3570 * @regulator_desc: regulator to register
3571 * @config: runtime configuration for regulator
3572 *
3573 * Called by regulator drivers to register a regulator.
3574 * Returns a valid pointer to struct regulator_dev on success
3575 * or an ERR_PTR() on error.
3576 */
3577 struct regulator_dev *
regulator_register(const struct regulator_desc * regulator_desc,const struct regulator_config * config)3578 regulator_register(const struct regulator_desc *regulator_desc,
3579 const struct regulator_config *config)
3580 {
3581 const struct regulation_constraints *constraints = NULL;
3582 const struct regulator_init_data *init_data;
3583 static atomic_t regulator_no = ATOMIC_INIT(0);
3584 struct regulator_dev *rdev;
3585 struct device *dev;
3586 int ret, i;
3587 const char *supply = NULL;
3588
3589 if (regulator_desc == NULL || config == NULL)
3590 return ERR_PTR(-EINVAL);
3591
3592 dev = config->dev;
3593 WARN_ON(!dev);
3594
3595 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3596 return ERR_PTR(-EINVAL);
3597
3598 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3599 regulator_desc->type != REGULATOR_CURRENT)
3600 return ERR_PTR(-EINVAL);
3601
3602 /* Only one of each should be implemented */
3603 WARN_ON(regulator_desc->ops->get_voltage &&
3604 regulator_desc->ops->get_voltage_sel);
3605 WARN_ON(regulator_desc->ops->set_voltage &&
3606 regulator_desc->ops->set_voltage_sel);
3607
3608 /* If we're using selectors we must implement list_voltage. */
3609 if (regulator_desc->ops->get_voltage_sel &&
3610 !regulator_desc->ops->list_voltage) {
3611 return ERR_PTR(-EINVAL);
3612 }
3613 if (regulator_desc->ops->set_voltage_sel &&
3614 !regulator_desc->ops->list_voltage) {
3615 return ERR_PTR(-EINVAL);
3616 }
3617
3618 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3619 if (rdev == NULL)
3620 return ERR_PTR(-ENOMEM);
3621
3622 init_data = regulator_of_get_init_data(dev, regulator_desc,
3623 &rdev->dev.of_node);
3624 if (!init_data) {
3625 init_data = config->init_data;
3626 rdev->dev.of_node = of_node_get(config->of_node);
3627 }
3628
3629 mutex_lock(®ulator_list_mutex);
3630
3631 mutex_init(&rdev->mutex);
3632 rdev->reg_data = config->driver_data;
3633 rdev->owner = regulator_desc->owner;
3634 rdev->desc = regulator_desc;
3635 if (config->regmap)
3636 rdev->regmap = config->regmap;
3637 else if (dev_get_regmap(dev, NULL))
3638 rdev->regmap = dev_get_regmap(dev, NULL);
3639 else if (dev->parent)
3640 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3641 INIT_LIST_HEAD(&rdev->consumer_list);
3642 INIT_LIST_HEAD(&rdev->list);
3643 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3644 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3645
3646 /* preform any regulator specific init */
3647 if (init_data && init_data->regulator_init) {
3648 ret = init_data->regulator_init(rdev->reg_data);
3649 if (ret < 0)
3650 goto clean;
3651 }
3652
3653 /* register with sysfs */
3654 rdev->dev.class = ®ulator_class;
3655 rdev->dev.parent = dev;
3656 dev_set_name(&rdev->dev, "regulator.%d",
3657 atomic_inc_return(®ulator_no) - 1);
3658 ret = device_register(&rdev->dev);
3659 if (ret != 0) {
3660 put_device(&rdev->dev);
3661 goto clean;
3662 }
3663
3664 dev_set_drvdata(&rdev->dev, rdev);
3665
3666 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3667 ret = regulator_ena_gpio_request(rdev, config);
3668 if (ret != 0) {
3669 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3670 config->ena_gpio, ret);
3671 goto wash;
3672 }
3673 }
3674
3675 /* set regulator constraints */
3676 if (init_data)
3677 constraints = &init_data->constraints;
3678
3679 ret = set_machine_constraints(rdev, constraints);
3680 if (ret < 0)
3681 goto scrub;
3682
3683 /* add attributes supported by this regulator */
3684 ret = add_regulator_attributes(rdev);
3685 if (ret < 0)
3686 goto scrub;
3687
3688 if (init_data && init_data->supply_regulator)
3689 supply = init_data->supply_regulator;
3690 else if (regulator_desc->supply_name)
3691 supply = regulator_desc->supply_name;
3692
3693 if (supply) {
3694 struct regulator_dev *r;
3695
3696 r = regulator_dev_lookup(dev, supply, &ret);
3697
3698 if (ret == -ENODEV) {
3699 /*
3700 * No supply was specified for this regulator and
3701 * there will never be one.
3702 */
3703 ret = 0;
3704 goto add_dev;
3705 } else if (!r) {
3706 dev_err(dev, "Failed to find supply %s\n", supply);
3707 ret = -EPROBE_DEFER;
3708 goto scrub;
3709 }
3710
3711 ret = set_supply(rdev, r);
3712 if (ret < 0)
3713 goto scrub;
3714
3715 /* Enable supply if rail is enabled */
3716 if (_regulator_is_enabled(rdev)) {
3717 ret = regulator_enable(rdev->supply);
3718 if (ret < 0)
3719 goto scrub;
3720 }
3721 }
3722
3723 add_dev:
3724 /* add consumers devices */
3725 if (init_data) {
3726 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3727 ret = set_consumer_device_supply(rdev,
3728 init_data->consumer_supplies[i].dev_name,
3729 init_data->consumer_supplies[i].supply);
3730 if (ret < 0) {
3731 dev_err(dev, "Failed to set supply %s\n",
3732 init_data->consumer_supplies[i].supply);
3733 goto unset_supplies;
3734 }
3735 }
3736 }
3737
3738 list_add(&rdev->list, ®ulator_list);
3739
3740 rdev_init_debugfs(rdev);
3741 out:
3742 mutex_unlock(®ulator_list_mutex);
3743 return rdev;
3744
3745 unset_supplies:
3746 unset_regulator_supplies(rdev);
3747
3748 scrub:
3749 if (rdev->supply)
3750 _regulator_put(rdev->supply);
3751 regulator_ena_gpio_free(rdev);
3752 kfree(rdev->constraints);
3753 wash:
3754 device_unregister(&rdev->dev);
3755 /* device core frees rdev */
3756 rdev = ERR_PTR(ret);
3757 goto out;
3758
3759 clean:
3760 kfree(rdev);
3761 rdev = ERR_PTR(ret);
3762 goto out;
3763 }
3764 EXPORT_SYMBOL_GPL(regulator_register);
3765
3766 /**
3767 * regulator_unregister - unregister regulator
3768 * @rdev: regulator to unregister
3769 *
3770 * Called by regulator drivers to unregister a regulator.
3771 */
regulator_unregister(struct regulator_dev * rdev)3772 void regulator_unregister(struct regulator_dev *rdev)
3773 {
3774 if (rdev == NULL)
3775 return;
3776
3777 if (rdev->supply) {
3778 while (rdev->use_count--)
3779 regulator_disable(rdev->supply);
3780 regulator_put(rdev->supply);
3781 }
3782 mutex_lock(®ulator_list_mutex);
3783 debugfs_remove_recursive(rdev->debugfs);
3784 flush_work(&rdev->disable_work.work);
3785 WARN_ON(rdev->open_count);
3786 unset_regulator_supplies(rdev);
3787 list_del(&rdev->list);
3788 kfree(rdev->constraints);
3789 regulator_ena_gpio_free(rdev);
3790 of_node_put(rdev->dev.of_node);
3791 device_unregister(&rdev->dev);
3792 mutex_unlock(®ulator_list_mutex);
3793 }
3794 EXPORT_SYMBOL_GPL(regulator_unregister);
3795
3796 /**
3797 * regulator_suspend_prepare - prepare regulators for system wide suspend
3798 * @state: system suspend state
3799 *
3800 * Configure each regulator with it's suspend operating parameters for state.
3801 * This will usually be called by machine suspend code prior to supending.
3802 */
regulator_suspend_prepare(suspend_state_t state)3803 int regulator_suspend_prepare(suspend_state_t state)
3804 {
3805 struct regulator_dev *rdev;
3806 int ret = 0;
3807
3808 /* ON is handled by regulator active state */
3809 if (state == PM_SUSPEND_ON)
3810 return -EINVAL;
3811
3812 mutex_lock(®ulator_list_mutex);
3813 list_for_each_entry(rdev, ®ulator_list, list) {
3814
3815 mutex_lock(&rdev->mutex);
3816 ret = suspend_prepare(rdev, state);
3817 mutex_unlock(&rdev->mutex);
3818
3819 if (ret < 0) {
3820 rdev_err(rdev, "failed to prepare\n");
3821 goto out;
3822 }
3823 }
3824 out:
3825 mutex_unlock(®ulator_list_mutex);
3826 return ret;
3827 }
3828 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3829
3830 /**
3831 * regulator_suspend_finish - resume regulators from system wide suspend
3832 *
3833 * Turn on regulators that might be turned off by regulator_suspend_prepare
3834 * and that should be turned on according to the regulators properties.
3835 */
regulator_suspend_finish(void)3836 int regulator_suspend_finish(void)
3837 {
3838 struct regulator_dev *rdev;
3839 int ret = 0, error;
3840
3841 mutex_lock(®ulator_list_mutex);
3842 list_for_each_entry(rdev, ®ulator_list, list) {
3843 mutex_lock(&rdev->mutex);
3844 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3845 if (!_regulator_is_enabled(rdev)) {
3846 error = _regulator_do_enable(rdev);
3847 if (error)
3848 ret = error;
3849 }
3850 } else {
3851 if (!have_full_constraints())
3852 goto unlock;
3853 if (!_regulator_is_enabled(rdev))
3854 goto unlock;
3855
3856 error = _regulator_do_disable(rdev);
3857 if (error)
3858 ret = error;
3859 }
3860 unlock:
3861 mutex_unlock(&rdev->mutex);
3862 }
3863 mutex_unlock(®ulator_list_mutex);
3864 return ret;
3865 }
3866 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3867
3868 /**
3869 * regulator_has_full_constraints - the system has fully specified constraints
3870 *
3871 * Calling this function will cause the regulator API to disable all
3872 * regulators which have a zero use count and don't have an always_on
3873 * constraint in a late_initcall.
3874 *
3875 * The intention is that this will become the default behaviour in a
3876 * future kernel release so users are encouraged to use this facility
3877 * now.
3878 */
regulator_has_full_constraints(void)3879 void regulator_has_full_constraints(void)
3880 {
3881 has_full_constraints = 1;
3882 }
3883 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3884
3885 /**
3886 * rdev_get_drvdata - get rdev regulator driver data
3887 * @rdev: regulator
3888 *
3889 * Get rdev regulator driver private data. This call can be used in the
3890 * regulator driver context.
3891 */
rdev_get_drvdata(struct regulator_dev * rdev)3892 void *rdev_get_drvdata(struct regulator_dev *rdev)
3893 {
3894 return rdev->reg_data;
3895 }
3896 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3897
3898 /**
3899 * regulator_get_drvdata - get regulator driver data
3900 * @regulator: regulator
3901 *
3902 * Get regulator driver private data. This call can be used in the consumer
3903 * driver context when non API regulator specific functions need to be called.
3904 */
regulator_get_drvdata(struct regulator * regulator)3905 void *regulator_get_drvdata(struct regulator *regulator)
3906 {
3907 return regulator->rdev->reg_data;
3908 }
3909 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3910
3911 /**
3912 * regulator_set_drvdata - set regulator driver data
3913 * @regulator: regulator
3914 * @data: data
3915 */
regulator_set_drvdata(struct regulator * regulator,void * data)3916 void regulator_set_drvdata(struct regulator *regulator, void *data)
3917 {
3918 regulator->rdev->reg_data = data;
3919 }
3920 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3921
3922 /**
3923 * regulator_get_id - get regulator ID
3924 * @rdev: regulator
3925 */
rdev_get_id(struct regulator_dev * rdev)3926 int rdev_get_id(struct regulator_dev *rdev)
3927 {
3928 return rdev->desc->id;
3929 }
3930 EXPORT_SYMBOL_GPL(rdev_get_id);
3931
rdev_get_dev(struct regulator_dev * rdev)3932 struct device *rdev_get_dev(struct regulator_dev *rdev)
3933 {
3934 return &rdev->dev;
3935 }
3936 EXPORT_SYMBOL_GPL(rdev_get_dev);
3937
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)3938 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3939 {
3940 return reg_init_data->driver_data;
3941 }
3942 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3943
3944 #ifdef CONFIG_DEBUG_FS
supply_map_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)3945 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3946 size_t count, loff_t *ppos)
3947 {
3948 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3949 ssize_t len, ret = 0;
3950 struct regulator_map *map;
3951
3952 if (!buf)
3953 return -ENOMEM;
3954
3955 list_for_each_entry(map, ®ulator_map_list, list) {
3956 len = snprintf(buf + ret, PAGE_SIZE - ret,
3957 "%s -> %s.%s\n",
3958 rdev_get_name(map->regulator), map->dev_name,
3959 map->supply);
3960 if (len >= 0)
3961 ret += len;
3962 if (ret > PAGE_SIZE) {
3963 ret = PAGE_SIZE;
3964 break;
3965 }
3966 }
3967
3968 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3969
3970 kfree(buf);
3971
3972 return ret;
3973 }
3974 #endif
3975
3976 static const struct file_operations supply_map_fops = {
3977 #ifdef CONFIG_DEBUG_FS
3978 .read = supply_map_read_file,
3979 .llseek = default_llseek,
3980 #endif
3981 };
3982
regulator_init(void)3983 static int __init regulator_init(void)
3984 {
3985 int ret;
3986
3987 ret = class_register(®ulator_class);
3988
3989 debugfs_root = debugfs_create_dir("regulator", NULL);
3990 if (!debugfs_root)
3991 pr_warn("regulator: Failed to create debugfs directory\n");
3992
3993 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3994 &supply_map_fops);
3995
3996 regulator_dummy_init();
3997
3998 return ret;
3999 }
4000
4001 /* init early to allow our consumers to complete system booting */
4002 core_initcall(regulator_init);
4003
regulator_late_cleanup(struct device * dev,void * data)4004 static int __init regulator_late_cleanup(struct device *dev, void *data)
4005 {
4006 struct regulator_dev *rdev = dev_to_rdev(dev);
4007 const struct regulator_ops *ops = rdev->desc->ops;
4008 struct regulation_constraints *c = rdev->constraints;
4009 int enabled, ret;
4010
4011 if (c && c->always_on)
4012 return 0;
4013
4014 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4015 return 0;
4016
4017 mutex_lock(&rdev->mutex);
4018
4019 if (rdev->use_count)
4020 goto unlock;
4021
4022 /* If we can't read the status assume it's on. */
4023 if (ops->is_enabled)
4024 enabled = ops->is_enabled(rdev);
4025 else
4026 enabled = 1;
4027
4028 if (!enabled)
4029 goto unlock;
4030
4031 if (have_full_constraints()) {
4032 /* We log since this may kill the system if it goes
4033 * wrong. */
4034 rdev_info(rdev, "disabling\n");
4035 ret = _regulator_do_disable(rdev);
4036 if (ret != 0)
4037 rdev_err(rdev, "couldn't disable: %d\n", ret);
4038 } else {
4039 /* The intention is that in future we will
4040 * assume that full constraints are provided
4041 * so warn even if we aren't going to do
4042 * anything here.
4043 */
4044 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4045 }
4046
4047 unlock:
4048 mutex_unlock(&rdev->mutex);
4049
4050 return 0;
4051 }
4052
regulator_init_complete(void)4053 static int __init regulator_init_complete(void)
4054 {
4055 /*
4056 * Since DT doesn't provide an idiomatic mechanism for
4057 * enabling full constraints and since it's much more natural
4058 * with DT to provide them just assume that a DT enabled
4059 * system has full constraints.
4060 */
4061 if (of_have_populated_dt())
4062 has_full_constraints = true;
4063
4064 /* If we have a full configuration then disable any regulators
4065 * we have permission to change the status for and which are
4066 * not in use or always_on. This is effectively the default
4067 * for DT and ACPI as they have full constraints.
4068 */
4069 class_for_each_device(®ulator_class, NULL, NULL,
4070 regulator_late_cleanup);
4071
4072 return 0;
4073 }
4074 late_initcall_sync(regulator_init_complete);
4075