• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38 
39 #include "dummy.h"
40 #include "internal.h"
41 
42 #define rdev_crit(rdev, fmt, ...)					\
43 	pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...)					\
45 	pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...)					\
47 	pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...)					\
49 	pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...)					\
51 	pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52 
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59 
60 static struct dentry *debugfs_root;
61 
62 /*
63  * struct regulator_map
64  *
65  * Used to provide symbolic supply names to devices.
66  */
67 struct regulator_map {
68 	struct list_head list;
69 	const char *dev_name;   /* The dev_name() for the consumer */
70 	const char *supply;
71 	struct regulator_dev *regulator;
72 };
73 
74 /*
75  * struct regulator_enable_gpio
76  *
77  * Management for shared enable GPIO pin
78  */
79 struct regulator_enable_gpio {
80 	struct list_head list;
81 	struct gpio_desc *gpiod;
82 	u32 enable_count;	/* a number of enabled shared GPIO */
83 	u32 request_count;	/* a number of requested shared GPIO */
84 	unsigned int ena_gpio_invert:1;
85 };
86 
87 /*
88  * struct regulator_supply_alias
89  *
90  * Used to map lookups for a supply onto an alternative device.
91  */
92 struct regulator_supply_alias {
93 	struct list_head list;
94 	struct device *src_dev;
95 	const char *src_supply;
96 	struct device *alias_dev;
97 	const char *alias_supply;
98 };
99 
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106 				  unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108 				     int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110 					  struct device *dev,
111 					  const char *supply_name);
112 
dev_to_rdev(struct device * dev)113 static struct regulator_dev *dev_to_rdev(struct device *dev)
114 {
115 	return container_of(dev, struct regulator_dev, dev);
116 }
117 
rdev_get_name(struct regulator_dev * rdev)118 static const char *rdev_get_name(struct regulator_dev *rdev)
119 {
120 	if (rdev->constraints && rdev->constraints->name)
121 		return rdev->constraints->name;
122 	else if (rdev->desc->name)
123 		return rdev->desc->name;
124 	else
125 		return "";
126 }
127 
have_full_constraints(void)128 static bool have_full_constraints(void)
129 {
130 	return has_full_constraints || of_have_populated_dt();
131 }
132 
133 /**
134  * of_get_regulator - get a regulator device node based on supply name
135  * @dev: Device pointer for the consumer (of regulator) device
136  * @supply: regulator supply name
137  *
138  * Extract the regulator device node corresponding to the supply name.
139  * returns the device node corresponding to the regulator if found, else
140  * returns NULL.
141  */
of_get_regulator(struct device * dev,const char * supply)142 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
143 {
144 	struct device_node *regnode = NULL;
145 	char prop_name[32]; /* 32 is max size of property name */
146 
147 	dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
148 
149 	snprintf(prop_name, 32, "%s-supply", supply);
150 	regnode = of_parse_phandle(dev->of_node, prop_name, 0);
151 
152 	if (!regnode) {
153 		dev_dbg(dev, "Looking up %s property in node %s failed",
154 				prop_name, dev->of_node->full_name);
155 		return NULL;
156 	}
157 	return regnode;
158 }
159 
_regulator_can_change_status(struct regulator_dev * rdev)160 static int _regulator_can_change_status(struct regulator_dev *rdev)
161 {
162 	if (!rdev->constraints)
163 		return 0;
164 
165 	if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
166 		return 1;
167 	else
168 		return 0;
169 }
170 
171 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)172 static int regulator_check_voltage(struct regulator_dev *rdev,
173 				   int *min_uV, int *max_uV)
174 {
175 	BUG_ON(*min_uV > *max_uV);
176 
177 	if (!rdev->constraints) {
178 		rdev_err(rdev, "no constraints\n");
179 		return -ENODEV;
180 	}
181 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
182 		rdev_err(rdev, "operation not allowed\n");
183 		return -EPERM;
184 	}
185 
186 	if (*max_uV > rdev->constraints->max_uV)
187 		*max_uV = rdev->constraints->max_uV;
188 	if (*min_uV < rdev->constraints->min_uV)
189 		*min_uV = rdev->constraints->min_uV;
190 
191 	if (*min_uV > *max_uV) {
192 		rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
193 			 *min_uV, *max_uV);
194 		return -EINVAL;
195 	}
196 
197 	return 0;
198 }
199 
200 /* Make sure we select a voltage that suits the needs of all
201  * regulator consumers
202  */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV)203 static int regulator_check_consumers(struct regulator_dev *rdev,
204 				     int *min_uV, int *max_uV)
205 {
206 	struct regulator *regulator;
207 
208 	list_for_each_entry(regulator, &rdev->consumer_list, list) {
209 		/*
210 		 * Assume consumers that didn't say anything are OK
211 		 * with anything in the constraint range.
212 		 */
213 		if (!regulator->min_uV && !regulator->max_uV)
214 			continue;
215 
216 		if (*max_uV > regulator->max_uV)
217 			*max_uV = regulator->max_uV;
218 		if (*min_uV < regulator->min_uV)
219 			*min_uV = regulator->min_uV;
220 	}
221 
222 	if (*min_uV > *max_uV) {
223 		rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
224 			*min_uV, *max_uV);
225 		return -EINVAL;
226 	}
227 
228 	return 0;
229 }
230 
231 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)232 static int regulator_check_current_limit(struct regulator_dev *rdev,
233 					int *min_uA, int *max_uA)
234 {
235 	BUG_ON(*min_uA > *max_uA);
236 
237 	if (!rdev->constraints) {
238 		rdev_err(rdev, "no constraints\n");
239 		return -ENODEV;
240 	}
241 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
242 		rdev_err(rdev, "operation not allowed\n");
243 		return -EPERM;
244 	}
245 
246 	if (*max_uA > rdev->constraints->max_uA)
247 		*max_uA = rdev->constraints->max_uA;
248 	if (*min_uA < rdev->constraints->min_uA)
249 		*min_uA = rdev->constraints->min_uA;
250 
251 	if (*min_uA > *max_uA) {
252 		rdev_err(rdev, "unsupportable current range: %d-%duA\n",
253 			 *min_uA, *max_uA);
254 		return -EINVAL;
255 	}
256 
257 	return 0;
258 }
259 
260 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,int * mode)261 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
262 {
263 	switch (*mode) {
264 	case REGULATOR_MODE_FAST:
265 	case REGULATOR_MODE_NORMAL:
266 	case REGULATOR_MODE_IDLE:
267 	case REGULATOR_MODE_STANDBY:
268 		break;
269 	default:
270 		rdev_err(rdev, "invalid mode %x specified\n", *mode);
271 		return -EINVAL;
272 	}
273 
274 	if (!rdev->constraints) {
275 		rdev_err(rdev, "no constraints\n");
276 		return -ENODEV;
277 	}
278 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
279 		rdev_err(rdev, "operation not allowed\n");
280 		return -EPERM;
281 	}
282 
283 	/* The modes are bitmasks, the most power hungry modes having
284 	 * the lowest values. If the requested mode isn't supported
285 	 * try higher modes. */
286 	while (*mode) {
287 		if (rdev->constraints->valid_modes_mask & *mode)
288 			return 0;
289 		*mode /= 2;
290 	}
291 
292 	return -EINVAL;
293 }
294 
295 /* dynamic regulator mode switching constraint check */
regulator_check_drms(struct regulator_dev * rdev)296 static int regulator_check_drms(struct regulator_dev *rdev)
297 {
298 	if (!rdev->constraints) {
299 		rdev_err(rdev, "no constraints\n");
300 		return -ENODEV;
301 	}
302 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
303 		rdev_err(rdev, "operation not allowed\n");
304 		return -EPERM;
305 	}
306 	return 0;
307 }
308 
regulator_uV_show(struct device * dev,struct device_attribute * attr,char * buf)309 static ssize_t regulator_uV_show(struct device *dev,
310 				struct device_attribute *attr, char *buf)
311 {
312 	struct regulator_dev *rdev = dev_get_drvdata(dev);
313 	ssize_t ret;
314 
315 	mutex_lock(&rdev->mutex);
316 	ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
317 	mutex_unlock(&rdev->mutex);
318 
319 	return ret;
320 }
321 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
322 
regulator_uA_show(struct device * dev,struct device_attribute * attr,char * buf)323 static ssize_t regulator_uA_show(struct device *dev,
324 				struct device_attribute *attr, char *buf)
325 {
326 	struct regulator_dev *rdev = dev_get_drvdata(dev);
327 
328 	return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
329 }
330 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
331 
name_show(struct device * dev,struct device_attribute * attr,char * buf)332 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
333 			 char *buf)
334 {
335 	struct regulator_dev *rdev = dev_get_drvdata(dev);
336 
337 	return sprintf(buf, "%s\n", rdev_get_name(rdev));
338 }
339 static DEVICE_ATTR_RO(name);
340 
regulator_print_opmode(char * buf,int mode)341 static ssize_t regulator_print_opmode(char *buf, int mode)
342 {
343 	switch (mode) {
344 	case REGULATOR_MODE_FAST:
345 		return sprintf(buf, "fast\n");
346 	case REGULATOR_MODE_NORMAL:
347 		return sprintf(buf, "normal\n");
348 	case REGULATOR_MODE_IDLE:
349 		return sprintf(buf, "idle\n");
350 	case REGULATOR_MODE_STANDBY:
351 		return sprintf(buf, "standby\n");
352 	}
353 	return sprintf(buf, "unknown\n");
354 }
355 
regulator_opmode_show(struct device * dev,struct device_attribute * attr,char * buf)356 static ssize_t regulator_opmode_show(struct device *dev,
357 				    struct device_attribute *attr, char *buf)
358 {
359 	struct regulator_dev *rdev = dev_get_drvdata(dev);
360 
361 	return regulator_print_opmode(buf, _regulator_get_mode(rdev));
362 }
363 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
364 
regulator_print_state(char * buf,int state)365 static ssize_t regulator_print_state(char *buf, int state)
366 {
367 	if (state > 0)
368 		return sprintf(buf, "enabled\n");
369 	else if (state == 0)
370 		return sprintf(buf, "disabled\n");
371 	else
372 		return sprintf(buf, "unknown\n");
373 }
374 
regulator_state_show(struct device * dev,struct device_attribute * attr,char * buf)375 static ssize_t regulator_state_show(struct device *dev,
376 				   struct device_attribute *attr, char *buf)
377 {
378 	struct regulator_dev *rdev = dev_get_drvdata(dev);
379 	ssize_t ret;
380 
381 	mutex_lock(&rdev->mutex);
382 	ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
383 	mutex_unlock(&rdev->mutex);
384 
385 	return ret;
386 }
387 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
388 
regulator_status_show(struct device * dev,struct device_attribute * attr,char * buf)389 static ssize_t regulator_status_show(struct device *dev,
390 				   struct device_attribute *attr, char *buf)
391 {
392 	struct regulator_dev *rdev = dev_get_drvdata(dev);
393 	int status;
394 	char *label;
395 
396 	status = rdev->desc->ops->get_status(rdev);
397 	if (status < 0)
398 		return status;
399 
400 	switch (status) {
401 	case REGULATOR_STATUS_OFF:
402 		label = "off";
403 		break;
404 	case REGULATOR_STATUS_ON:
405 		label = "on";
406 		break;
407 	case REGULATOR_STATUS_ERROR:
408 		label = "error";
409 		break;
410 	case REGULATOR_STATUS_FAST:
411 		label = "fast";
412 		break;
413 	case REGULATOR_STATUS_NORMAL:
414 		label = "normal";
415 		break;
416 	case REGULATOR_STATUS_IDLE:
417 		label = "idle";
418 		break;
419 	case REGULATOR_STATUS_STANDBY:
420 		label = "standby";
421 		break;
422 	case REGULATOR_STATUS_BYPASS:
423 		label = "bypass";
424 		break;
425 	case REGULATOR_STATUS_UNDEFINED:
426 		label = "undefined";
427 		break;
428 	default:
429 		return -ERANGE;
430 	}
431 
432 	return sprintf(buf, "%s\n", label);
433 }
434 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
435 
regulator_min_uA_show(struct device * dev,struct device_attribute * attr,char * buf)436 static ssize_t regulator_min_uA_show(struct device *dev,
437 				    struct device_attribute *attr, char *buf)
438 {
439 	struct regulator_dev *rdev = dev_get_drvdata(dev);
440 
441 	if (!rdev->constraints)
442 		return sprintf(buf, "constraint not defined\n");
443 
444 	return sprintf(buf, "%d\n", rdev->constraints->min_uA);
445 }
446 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
447 
regulator_max_uA_show(struct device * dev,struct device_attribute * attr,char * buf)448 static ssize_t regulator_max_uA_show(struct device *dev,
449 				    struct device_attribute *attr, char *buf)
450 {
451 	struct regulator_dev *rdev = dev_get_drvdata(dev);
452 
453 	if (!rdev->constraints)
454 		return sprintf(buf, "constraint not defined\n");
455 
456 	return sprintf(buf, "%d\n", rdev->constraints->max_uA);
457 }
458 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
459 
regulator_min_uV_show(struct device * dev,struct device_attribute * attr,char * buf)460 static ssize_t regulator_min_uV_show(struct device *dev,
461 				    struct device_attribute *attr, char *buf)
462 {
463 	struct regulator_dev *rdev = dev_get_drvdata(dev);
464 
465 	if (!rdev->constraints)
466 		return sprintf(buf, "constraint not defined\n");
467 
468 	return sprintf(buf, "%d\n", rdev->constraints->min_uV);
469 }
470 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
471 
regulator_max_uV_show(struct device * dev,struct device_attribute * attr,char * buf)472 static ssize_t regulator_max_uV_show(struct device *dev,
473 				    struct device_attribute *attr, char *buf)
474 {
475 	struct regulator_dev *rdev = dev_get_drvdata(dev);
476 
477 	if (!rdev->constraints)
478 		return sprintf(buf, "constraint not defined\n");
479 
480 	return sprintf(buf, "%d\n", rdev->constraints->max_uV);
481 }
482 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
483 
regulator_total_uA_show(struct device * dev,struct device_attribute * attr,char * buf)484 static ssize_t regulator_total_uA_show(struct device *dev,
485 				      struct device_attribute *attr, char *buf)
486 {
487 	struct regulator_dev *rdev = dev_get_drvdata(dev);
488 	struct regulator *regulator;
489 	int uA = 0;
490 
491 	mutex_lock(&rdev->mutex);
492 	list_for_each_entry(regulator, &rdev->consumer_list, list)
493 		uA += regulator->uA_load;
494 	mutex_unlock(&rdev->mutex);
495 	return sprintf(buf, "%d\n", uA);
496 }
497 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
498 
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)499 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
500 			      char *buf)
501 {
502 	struct regulator_dev *rdev = dev_get_drvdata(dev);
503 	return sprintf(buf, "%d\n", rdev->use_count);
504 }
505 static DEVICE_ATTR_RO(num_users);
506 
type_show(struct device * dev,struct device_attribute * attr,char * buf)507 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
508 			 char *buf)
509 {
510 	struct regulator_dev *rdev = dev_get_drvdata(dev);
511 
512 	switch (rdev->desc->type) {
513 	case REGULATOR_VOLTAGE:
514 		return sprintf(buf, "voltage\n");
515 	case REGULATOR_CURRENT:
516 		return sprintf(buf, "current\n");
517 	}
518 	return sprintf(buf, "unknown\n");
519 }
520 static DEVICE_ATTR_RO(type);
521 
regulator_suspend_mem_uV_show(struct device * dev,struct device_attribute * attr,char * buf)522 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
523 				struct device_attribute *attr, char *buf)
524 {
525 	struct regulator_dev *rdev = dev_get_drvdata(dev);
526 
527 	return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
528 }
529 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
530 		regulator_suspend_mem_uV_show, NULL);
531 
regulator_suspend_disk_uV_show(struct device * dev,struct device_attribute * attr,char * buf)532 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
533 				struct device_attribute *attr, char *buf)
534 {
535 	struct regulator_dev *rdev = dev_get_drvdata(dev);
536 
537 	return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
538 }
539 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
540 		regulator_suspend_disk_uV_show, NULL);
541 
regulator_suspend_standby_uV_show(struct device * dev,struct device_attribute * attr,char * buf)542 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
543 				struct device_attribute *attr, char *buf)
544 {
545 	struct regulator_dev *rdev = dev_get_drvdata(dev);
546 
547 	return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
548 }
549 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
550 		regulator_suspend_standby_uV_show, NULL);
551 
regulator_suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)552 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
553 				struct device_attribute *attr, char *buf)
554 {
555 	struct regulator_dev *rdev = dev_get_drvdata(dev);
556 
557 	return regulator_print_opmode(buf,
558 		rdev->constraints->state_mem.mode);
559 }
560 static DEVICE_ATTR(suspend_mem_mode, 0444,
561 		regulator_suspend_mem_mode_show, NULL);
562 
regulator_suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)563 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
564 				struct device_attribute *attr, char *buf)
565 {
566 	struct regulator_dev *rdev = dev_get_drvdata(dev);
567 
568 	return regulator_print_opmode(buf,
569 		rdev->constraints->state_disk.mode);
570 }
571 static DEVICE_ATTR(suspend_disk_mode, 0444,
572 		regulator_suspend_disk_mode_show, NULL);
573 
regulator_suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)574 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
575 				struct device_attribute *attr, char *buf)
576 {
577 	struct regulator_dev *rdev = dev_get_drvdata(dev);
578 
579 	return regulator_print_opmode(buf,
580 		rdev->constraints->state_standby.mode);
581 }
582 static DEVICE_ATTR(suspend_standby_mode, 0444,
583 		regulator_suspend_standby_mode_show, NULL);
584 
regulator_suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)585 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
586 				   struct device_attribute *attr, char *buf)
587 {
588 	struct regulator_dev *rdev = dev_get_drvdata(dev);
589 
590 	return regulator_print_state(buf,
591 			rdev->constraints->state_mem.enabled);
592 }
593 static DEVICE_ATTR(suspend_mem_state, 0444,
594 		regulator_suspend_mem_state_show, NULL);
595 
regulator_suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)596 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
597 				   struct device_attribute *attr, char *buf)
598 {
599 	struct regulator_dev *rdev = dev_get_drvdata(dev);
600 
601 	return regulator_print_state(buf,
602 			rdev->constraints->state_disk.enabled);
603 }
604 static DEVICE_ATTR(suspend_disk_state, 0444,
605 		regulator_suspend_disk_state_show, NULL);
606 
regulator_suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)607 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
608 				   struct device_attribute *attr, char *buf)
609 {
610 	struct regulator_dev *rdev = dev_get_drvdata(dev);
611 
612 	return regulator_print_state(buf,
613 			rdev->constraints->state_standby.enabled);
614 }
615 static DEVICE_ATTR(suspend_standby_state, 0444,
616 		regulator_suspend_standby_state_show, NULL);
617 
regulator_bypass_show(struct device * dev,struct device_attribute * attr,char * buf)618 static ssize_t regulator_bypass_show(struct device *dev,
619 				     struct device_attribute *attr, char *buf)
620 {
621 	struct regulator_dev *rdev = dev_get_drvdata(dev);
622 	const char *report;
623 	bool bypass;
624 	int ret;
625 
626 	ret = rdev->desc->ops->get_bypass(rdev, &bypass);
627 
628 	if (ret != 0)
629 		report = "unknown";
630 	else if (bypass)
631 		report = "enabled";
632 	else
633 		report = "disabled";
634 
635 	return sprintf(buf, "%s\n", report);
636 }
637 static DEVICE_ATTR(bypass, 0444,
638 		   regulator_bypass_show, NULL);
639 
640 /*
641  * These are the only attributes are present for all regulators.
642  * Other attributes are a function of regulator functionality.
643  */
644 static struct attribute *regulator_dev_attrs[] = {
645 	&dev_attr_name.attr,
646 	&dev_attr_num_users.attr,
647 	&dev_attr_type.attr,
648 	NULL,
649 };
650 ATTRIBUTE_GROUPS(regulator_dev);
651 
regulator_dev_release(struct device * dev)652 static void regulator_dev_release(struct device *dev)
653 {
654 	struct regulator_dev *rdev = dev_get_drvdata(dev);
655 	kfree(rdev);
656 }
657 
658 static struct class regulator_class = {
659 	.name = "regulator",
660 	.dev_release = regulator_dev_release,
661 	.dev_groups = regulator_dev_groups,
662 };
663 
664 /* Calculate the new optimum regulator operating mode based on the new total
665  * consumer load. All locks held by caller */
drms_uA_update(struct regulator_dev * rdev)666 static void drms_uA_update(struct regulator_dev *rdev)
667 {
668 	struct regulator *sibling;
669 	int current_uA = 0, output_uV, input_uV, err;
670 	unsigned int mode;
671 
672 	err = regulator_check_drms(rdev);
673 	if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
674 	    (!rdev->desc->ops->get_voltage &&
675 	     !rdev->desc->ops->get_voltage_sel) ||
676 	    !rdev->desc->ops->set_mode)
677 		return;
678 
679 	/* get output voltage */
680 	output_uV = _regulator_get_voltage(rdev);
681 	if (output_uV <= 0)
682 		return;
683 
684 	/* get input voltage */
685 	input_uV = 0;
686 	if (rdev->supply)
687 		input_uV = regulator_get_voltage(rdev->supply);
688 	if (input_uV <= 0)
689 		input_uV = rdev->constraints->input_uV;
690 	if (input_uV <= 0)
691 		return;
692 
693 	/* calc total requested load */
694 	list_for_each_entry(sibling, &rdev->consumer_list, list)
695 		current_uA += sibling->uA_load;
696 
697 	/* now get the optimum mode for our new total regulator load */
698 	mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
699 						  output_uV, current_uA);
700 
701 	/* check the new mode is allowed */
702 	err = regulator_mode_constrain(rdev, &mode);
703 	if (err == 0)
704 		rdev->desc->ops->set_mode(rdev, mode);
705 }
706 
suspend_set_state(struct regulator_dev * rdev,struct regulator_state * rstate)707 static int suspend_set_state(struct regulator_dev *rdev,
708 	struct regulator_state *rstate)
709 {
710 	int ret = 0;
711 
712 	/* If we have no suspend mode configration don't set anything;
713 	 * only warn if the driver implements set_suspend_voltage or
714 	 * set_suspend_mode callback.
715 	 */
716 	if (!rstate->enabled && !rstate->disabled) {
717 		if (rdev->desc->ops->set_suspend_voltage ||
718 		    rdev->desc->ops->set_suspend_mode)
719 			rdev_warn(rdev, "No configuration\n");
720 		return 0;
721 	}
722 
723 	if (rstate->enabled && rstate->disabled) {
724 		rdev_err(rdev, "invalid configuration\n");
725 		return -EINVAL;
726 	}
727 
728 	if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
729 		ret = rdev->desc->ops->set_suspend_enable(rdev);
730 	else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
731 		ret = rdev->desc->ops->set_suspend_disable(rdev);
732 	else /* OK if set_suspend_enable or set_suspend_disable is NULL */
733 		ret = 0;
734 
735 	if (ret < 0) {
736 		rdev_err(rdev, "failed to enabled/disable\n");
737 		return ret;
738 	}
739 
740 	if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
741 		ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
742 		if (ret < 0) {
743 			rdev_err(rdev, "failed to set voltage\n");
744 			return ret;
745 		}
746 	}
747 
748 	if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
749 		ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
750 		if (ret < 0) {
751 			rdev_err(rdev, "failed to set mode\n");
752 			return ret;
753 		}
754 	}
755 	return ret;
756 }
757 
758 /* locks held by caller */
suspend_prepare(struct regulator_dev * rdev,suspend_state_t state)759 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
760 {
761 	if (!rdev->constraints)
762 		return -EINVAL;
763 
764 	switch (state) {
765 	case PM_SUSPEND_STANDBY:
766 		return suspend_set_state(rdev,
767 			&rdev->constraints->state_standby);
768 	case PM_SUSPEND_MEM:
769 		return suspend_set_state(rdev,
770 			&rdev->constraints->state_mem);
771 	case PM_SUSPEND_MAX:
772 		return suspend_set_state(rdev,
773 			&rdev->constraints->state_disk);
774 	default:
775 		return -EINVAL;
776 	}
777 }
778 
print_constraints(struct regulator_dev * rdev)779 static void print_constraints(struct regulator_dev *rdev)
780 {
781 	struct regulation_constraints *constraints = rdev->constraints;
782 	char buf[160] = "";
783 	int count = 0;
784 	int ret;
785 
786 	if (constraints->min_uV && constraints->max_uV) {
787 		if (constraints->min_uV == constraints->max_uV)
788 			count += sprintf(buf + count, "%d mV ",
789 					 constraints->min_uV / 1000);
790 		else
791 			count += sprintf(buf + count, "%d <--> %d mV ",
792 					 constraints->min_uV / 1000,
793 					 constraints->max_uV / 1000);
794 	}
795 
796 	if (!constraints->min_uV ||
797 	    constraints->min_uV != constraints->max_uV) {
798 		ret = _regulator_get_voltage(rdev);
799 		if (ret > 0)
800 			count += sprintf(buf + count, "at %d mV ", ret / 1000);
801 	}
802 
803 	if (constraints->uV_offset)
804 		count += sprintf(buf, "%dmV offset ",
805 				 constraints->uV_offset / 1000);
806 
807 	if (constraints->min_uA && constraints->max_uA) {
808 		if (constraints->min_uA == constraints->max_uA)
809 			count += sprintf(buf + count, "%d mA ",
810 					 constraints->min_uA / 1000);
811 		else
812 			count += sprintf(buf + count, "%d <--> %d mA ",
813 					 constraints->min_uA / 1000,
814 					 constraints->max_uA / 1000);
815 	}
816 
817 	if (!constraints->min_uA ||
818 	    constraints->min_uA != constraints->max_uA) {
819 		ret = _regulator_get_current_limit(rdev);
820 		if (ret > 0)
821 			count += sprintf(buf + count, "at %d mA ", ret / 1000);
822 	}
823 
824 	if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
825 		count += sprintf(buf + count, "fast ");
826 	if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
827 		count += sprintf(buf + count, "normal ");
828 	if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
829 		count += sprintf(buf + count, "idle ");
830 	if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
831 		count += sprintf(buf + count, "standby");
832 
833 	if (!count)
834 		sprintf(buf, "no parameters");
835 
836 	rdev_info(rdev, "%s\n", buf);
837 
838 	if ((constraints->min_uV != constraints->max_uV) &&
839 	    !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
840 		rdev_warn(rdev,
841 			  "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
842 }
843 
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)844 static int machine_constraints_voltage(struct regulator_dev *rdev,
845 	struct regulation_constraints *constraints)
846 {
847 	const struct regulator_ops *ops = rdev->desc->ops;
848 	int ret;
849 
850 	/* do we need to apply the constraint voltage */
851 	if (rdev->constraints->apply_uV &&
852 	    rdev->constraints->min_uV == rdev->constraints->max_uV) {
853 		int current_uV = _regulator_get_voltage(rdev);
854 		if (current_uV < 0) {
855 			rdev_err(rdev,
856 				 "failed to get the current voltage(%d)\n",
857 				 current_uV);
858 			return current_uV;
859 		}
860 		if (current_uV < rdev->constraints->min_uV ||
861 		    current_uV > rdev->constraints->max_uV) {
862 			ret = _regulator_do_set_voltage(
863 				rdev, rdev->constraints->min_uV,
864 				rdev->constraints->max_uV);
865 			if (ret < 0) {
866 				rdev_err(rdev,
867 					"failed to apply %duV constraint(%d)\n",
868 					rdev->constraints->min_uV, ret);
869 				return ret;
870 			}
871 		}
872 	}
873 
874 	/* constrain machine-level voltage specs to fit
875 	 * the actual range supported by this regulator.
876 	 */
877 	if (ops->list_voltage && rdev->desc->n_voltages) {
878 		int	count = rdev->desc->n_voltages;
879 		int	i;
880 		int	min_uV = INT_MAX;
881 		int	max_uV = INT_MIN;
882 		int	cmin = constraints->min_uV;
883 		int	cmax = constraints->max_uV;
884 
885 		/* it's safe to autoconfigure fixed-voltage supplies
886 		   and the constraints are used by list_voltage. */
887 		if (count == 1 && !cmin) {
888 			cmin = 1;
889 			cmax = INT_MAX;
890 			constraints->min_uV = cmin;
891 			constraints->max_uV = cmax;
892 		}
893 
894 		/* voltage constraints are optional */
895 		if ((cmin == 0) && (cmax == 0))
896 			return 0;
897 
898 		/* else require explicit machine-level constraints */
899 		if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
900 			rdev_err(rdev, "invalid voltage constraints\n");
901 			return -EINVAL;
902 		}
903 
904 		/* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
905 		for (i = 0; i < count; i++) {
906 			int	value;
907 
908 			value = ops->list_voltage(rdev, i);
909 			if (value <= 0)
910 				continue;
911 
912 			/* maybe adjust [min_uV..max_uV] */
913 			if (value >= cmin && value < min_uV)
914 				min_uV = value;
915 			if (value <= cmax && value > max_uV)
916 				max_uV = value;
917 		}
918 
919 		/* final: [min_uV..max_uV] valid iff constraints valid */
920 		if (max_uV < min_uV) {
921 			rdev_err(rdev,
922 				 "unsupportable voltage constraints %u-%uuV\n",
923 				 min_uV, max_uV);
924 			return -EINVAL;
925 		}
926 
927 		/* use regulator's subset of machine constraints */
928 		if (constraints->min_uV < min_uV) {
929 			rdev_dbg(rdev, "override min_uV, %d -> %d\n",
930 				 constraints->min_uV, min_uV);
931 			constraints->min_uV = min_uV;
932 		}
933 		if (constraints->max_uV > max_uV) {
934 			rdev_dbg(rdev, "override max_uV, %d -> %d\n",
935 				 constraints->max_uV, max_uV);
936 			constraints->max_uV = max_uV;
937 		}
938 	}
939 
940 	return 0;
941 }
942 
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)943 static int machine_constraints_current(struct regulator_dev *rdev,
944 	struct regulation_constraints *constraints)
945 {
946 	const struct regulator_ops *ops = rdev->desc->ops;
947 	int ret;
948 
949 	if (!constraints->min_uA && !constraints->max_uA)
950 		return 0;
951 
952 	if (constraints->min_uA > constraints->max_uA) {
953 		rdev_err(rdev, "Invalid current constraints\n");
954 		return -EINVAL;
955 	}
956 
957 	if (!ops->set_current_limit || !ops->get_current_limit) {
958 		rdev_warn(rdev, "Operation of current configuration missing\n");
959 		return 0;
960 	}
961 
962 	/* Set regulator current in constraints range */
963 	ret = ops->set_current_limit(rdev, constraints->min_uA,
964 			constraints->max_uA);
965 	if (ret < 0) {
966 		rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
967 		return ret;
968 	}
969 
970 	return 0;
971 }
972 
973 static int _regulator_do_enable(struct regulator_dev *rdev);
974 
975 /**
976  * set_machine_constraints - sets regulator constraints
977  * @rdev: regulator source
978  * @constraints: constraints to apply
979  *
980  * Allows platform initialisation code to define and constrain
981  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
982  * Constraints *must* be set by platform code in order for some
983  * regulator operations to proceed i.e. set_voltage, set_current_limit,
984  * set_mode.
985  */
set_machine_constraints(struct regulator_dev * rdev,const struct regulation_constraints * constraints)986 static int set_machine_constraints(struct regulator_dev *rdev,
987 	const struct regulation_constraints *constraints)
988 {
989 	int ret = 0;
990 	const struct regulator_ops *ops = rdev->desc->ops;
991 
992 	if (constraints)
993 		rdev->constraints = kmemdup(constraints, sizeof(*constraints),
994 					    GFP_KERNEL);
995 	else
996 		rdev->constraints = kzalloc(sizeof(*constraints),
997 					    GFP_KERNEL);
998 	if (!rdev->constraints)
999 		return -ENOMEM;
1000 
1001 	ret = machine_constraints_voltage(rdev, rdev->constraints);
1002 	if (ret != 0)
1003 		goto out;
1004 
1005 	ret = machine_constraints_current(rdev, rdev->constraints);
1006 	if (ret != 0)
1007 		goto out;
1008 
1009 	/* do we need to setup our suspend state */
1010 	if (rdev->constraints->initial_state) {
1011 		ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1012 		if (ret < 0) {
1013 			rdev_err(rdev, "failed to set suspend state\n");
1014 			goto out;
1015 		}
1016 	}
1017 
1018 	if (rdev->constraints->initial_mode) {
1019 		if (!ops->set_mode) {
1020 			rdev_err(rdev, "no set_mode operation\n");
1021 			ret = -EINVAL;
1022 			goto out;
1023 		}
1024 
1025 		ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1026 		if (ret < 0) {
1027 			rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1028 			goto out;
1029 		}
1030 	}
1031 
1032 	/* If the constraints say the regulator should be on at this point
1033 	 * and we have control then make sure it is enabled.
1034 	 */
1035 	if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1036 		ret = _regulator_do_enable(rdev);
1037 		if (ret < 0 && ret != -EINVAL) {
1038 			rdev_err(rdev, "failed to enable\n");
1039 			goto out;
1040 		}
1041 	}
1042 
1043 	if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1044 		&& ops->set_ramp_delay) {
1045 		ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1046 		if (ret < 0) {
1047 			rdev_err(rdev, "failed to set ramp_delay\n");
1048 			goto out;
1049 		}
1050 	}
1051 
1052 	print_constraints(rdev);
1053 	return 0;
1054 out:
1055 	kfree(rdev->constraints);
1056 	rdev->constraints = NULL;
1057 	return ret;
1058 }
1059 
1060 /**
1061  * set_supply - set regulator supply regulator
1062  * @rdev: regulator name
1063  * @supply_rdev: supply regulator name
1064  *
1065  * Called by platform initialisation code to set the supply regulator for this
1066  * regulator. This ensures that a regulators supply will also be enabled by the
1067  * core if it's child is enabled.
1068  */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1069 static int set_supply(struct regulator_dev *rdev,
1070 		      struct regulator_dev *supply_rdev)
1071 {
1072 	int err;
1073 
1074 	rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1075 
1076 	rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1077 	if (rdev->supply == NULL) {
1078 		err = -ENOMEM;
1079 		return err;
1080 	}
1081 	supply_rdev->open_count++;
1082 
1083 	return 0;
1084 }
1085 
1086 /**
1087  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1088  * @rdev:         regulator source
1089  * @consumer_dev_name: dev_name() string for device supply applies to
1090  * @supply:       symbolic name for supply
1091  *
1092  * Allows platform initialisation code to map physical regulator
1093  * sources to symbolic names for supplies for use by devices.  Devices
1094  * should use these symbolic names to request regulators, avoiding the
1095  * need to provide board-specific regulator names as platform data.
1096  */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1097 static int set_consumer_device_supply(struct regulator_dev *rdev,
1098 				      const char *consumer_dev_name,
1099 				      const char *supply)
1100 {
1101 	struct regulator_map *node;
1102 	int has_dev;
1103 
1104 	if (supply == NULL)
1105 		return -EINVAL;
1106 
1107 	if (consumer_dev_name != NULL)
1108 		has_dev = 1;
1109 	else
1110 		has_dev = 0;
1111 
1112 	list_for_each_entry(node, &regulator_map_list, list) {
1113 		if (node->dev_name && consumer_dev_name) {
1114 			if (strcmp(node->dev_name, consumer_dev_name) != 0)
1115 				continue;
1116 		} else if (node->dev_name || consumer_dev_name) {
1117 			continue;
1118 		}
1119 
1120 		if (strcmp(node->supply, supply) != 0)
1121 			continue;
1122 
1123 		pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1124 			 consumer_dev_name,
1125 			 dev_name(&node->regulator->dev),
1126 			 node->regulator->desc->name,
1127 			 supply,
1128 			 dev_name(&rdev->dev), rdev_get_name(rdev));
1129 		return -EBUSY;
1130 	}
1131 
1132 	node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1133 	if (node == NULL)
1134 		return -ENOMEM;
1135 
1136 	node->regulator = rdev;
1137 	node->supply = supply;
1138 
1139 	if (has_dev) {
1140 		node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1141 		if (node->dev_name == NULL) {
1142 			kfree(node);
1143 			return -ENOMEM;
1144 		}
1145 	}
1146 
1147 	list_add(&node->list, &regulator_map_list);
1148 	return 0;
1149 }
1150 
unset_regulator_supplies(struct regulator_dev * rdev)1151 static void unset_regulator_supplies(struct regulator_dev *rdev)
1152 {
1153 	struct regulator_map *node, *n;
1154 
1155 	list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1156 		if (rdev == node->regulator) {
1157 			list_del(&node->list);
1158 			kfree(node->dev_name);
1159 			kfree(node);
1160 		}
1161 	}
1162 }
1163 
1164 #define REG_STR_SIZE	64
1165 
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1166 static struct regulator *create_regulator(struct regulator_dev *rdev,
1167 					  struct device *dev,
1168 					  const char *supply_name)
1169 {
1170 	struct regulator *regulator;
1171 	char buf[REG_STR_SIZE];
1172 	int err, size;
1173 
1174 	regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1175 	if (regulator == NULL)
1176 		return NULL;
1177 
1178 	mutex_lock(&rdev->mutex);
1179 	regulator->rdev = rdev;
1180 	list_add(&regulator->list, &rdev->consumer_list);
1181 
1182 	if (dev) {
1183 		regulator->dev = dev;
1184 
1185 		/* Add a link to the device sysfs entry */
1186 		size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1187 				 dev->kobj.name, supply_name);
1188 		if (size >= REG_STR_SIZE)
1189 			goto overflow_err;
1190 
1191 		regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1192 		if (regulator->supply_name == NULL)
1193 			goto overflow_err;
1194 
1195 		err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1196 					buf);
1197 		if (err) {
1198 			rdev_warn(rdev, "could not add device link %s err %d\n",
1199 				  dev->kobj.name, err);
1200 			/* non-fatal */
1201 		}
1202 	} else {
1203 		regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1204 		if (regulator->supply_name == NULL)
1205 			goto overflow_err;
1206 	}
1207 
1208 	regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1209 						rdev->debugfs);
1210 	if (!regulator->debugfs) {
1211 		rdev_warn(rdev, "Failed to create debugfs directory\n");
1212 	} else {
1213 		debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1214 				   &regulator->uA_load);
1215 		debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1216 				   &regulator->min_uV);
1217 		debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1218 				   &regulator->max_uV);
1219 	}
1220 
1221 	/*
1222 	 * Check now if the regulator is an always on regulator - if
1223 	 * it is then we don't need to do nearly so much work for
1224 	 * enable/disable calls.
1225 	 */
1226 	if (!_regulator_can_change_status(rdev) &&
1227 	    _regulator_is_enabled(rdev))
1228 		regulator->always_on = true;
1229 
1230 	mutex_unlock(&rdev->mutex);
1231 	return regulator;
1232 overflow_err:
1233 	list_del(&regulator->list);
1234 	kfree(regulator);
1235 	mutex_unlock(&rdev->mutex);
1236 	return NULL;
1237 }
1238 
_regulator_get_enable_time(struct regulator_dev * rdev)1239 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1240 {
1241 	if (rdev->constraints && rdev->constraints->enable_time)
1242 		return rdev->constraints->enable_time;
1243 	if (!rdev->desc->ops->enable_time)
1244 		return rdev->desc->enable_time;
1245 	return rdev->desc->ops->enable_time(rdev);
1246 }
1247 
regulator_find_supply_alias(struct device * dev,const char * supply)1248 static struct regulator_supply_alias *regulator_find_supply_alias(
1249 		struct device *dev, const char *supply)
1250 {
1251 	struct regulator_supply_alias *map;
1252 
1253 	list_for_each_entry(map, &regulator_supply_alias_list, list)
1254 		if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1255 			return map;
1256 
1257 	return NULL;
1258 }
1259 
regulator_supply_alias(struct device ** dev,const char ** supply)1260 static void regulator_supply_alias(struct device **dev, const char **supply)
1261 {
1262 	struct regulator_supply_alias *map;
1263 
1264 	map = regulator_find_supply_alias(*dev, *supply);
1265 	if (map) {
1266 		dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1267 				*supply, map->alias_supply,
1268 				dev_name(map->alias_dev));
1269 		*dev = map->alias_dev;
1270 		*supply = map->alias_supply;
1271 	}
1272 }
1273 
regulator_dev_lookup(struct device * dev,const char * supply,int * ret)1274 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1275 						  const char *supply,
1276 						  int *ret)
1277 {
1278 	struct regulator_dev *r;
1279 	struct device_node *node;
1280 	struct regulator_map *map;
1281 	const char *devname = NULL;
1282 
1283 	regulator_supply_alias(&dev, &supply);
1284 
1285 	/* first do a dt based lookup */
1286 	if (dev && dev->of_node) {
1287 		node = of_get_regulator(dev, supply);
1288 		if (node) {
1289 			list_for_each_entry(r, &regulator_list, list)
1290 				if (r->dev.parent &&
1291 					node == r->dev.of_node)
1292 					return r;
1293 			*ret = -EPROBE_DEFER;
1294 			return NULL;
1295 		} else {
1296 			/*
1297 			 * If we couldn't even get the node then it's
1298 			 * not just that the device didn't register
1299 			 * yet, there's no node and we'll never
1300 			 * succeed.
1301 			 */
1302 			*ret = -ENODEV;
1303 		}
1304 	}
1305 
1306 	/* if not found, try doing it non-dt way */
1307 	if (dev)
1308 		devname = dev_name(dev);
1309 
1310 	list_for_each_entry(r, &regulator_list, list)
1311 		if (strcmp(rdev_get_name(r), supply) == 0)
1312 			return r;
1313 
1314 	list_for_each_entry(map, &regulator_map_list, list) {
1315 		/* If the mapping has a device set up it must match */
1316 		if (map->dev_name &&
1317 		    (!devname || strcmp(map->dev_name, devname)))
1318 			continue;
1319 
1320 		if (strcmp(map->supply, supply) == 0)
1321 			return map->regulator;
1322 	}
1323 
1324 
1325 	return NULL;
1326 }
1327 
1328 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,bool exclusive,bool allow_dummy)1329 static struct regulator *_regulator_get(struct device *dev, const char *id,
1330 					bool exclusive, bool allow_dummy)
1331 {
1332 	struct regulator_dev *rdev;
1333 	struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1334 	const char *devname = NULL;
1335 	int ret;
1336 
1337 	if (id == NULL) {
1338 		pr_err("get() with no identifier\n");
1339 		return ERR_PTR(-EINVAL);
1340 	}
1341 
1342 	if (dev)
1343 		devname = dev_name(dev);
1344 
1345 	if (have_full_constraints())
1346 		ret = -ENODEV;
1347 	else
1348 		ret = -EPROBE_DEFER;
1349 
1350 	mutex_lock(&regulator_list_mutex);
1351 
1352 	rdev = regulator_dev_lookup(dev, id, &ret);
1353 	if (rdev)
1354 		goto found;
1355 
1356 	regulator = ERR_PTR(ret);
1357 
1358 	/*
1359 	 * If we have return value from dev_lookup fail, we do not expect to
1360 	 * succeed, so, quit with appropriate error value
1361 	 */
1362 	if (ret && ret != -ENODEV)
1363 		goto out;
1364 
1365 	if (!devname)
1366 		devname = "deviceless";
1367 
1368 	/*
1369 	 * Assume that a regulator is physically present and enabled
1370 	 * even if it isn't hooked up and just provide a dummy.
1371 	 */
1372 	if (have_full_constraints() && allow_dummy) {
1373 		pr_warn("%s supply %s not found, using dummy regulator\n",
1374 			devname, id);
1375 
1376 		rdev = dummy_regulator_rdev;
1377 		goto found;
1378 	/* Don't log an error when called from regulator_get_optional() */
1379 	} else if (!have_full_constraints() || exclusive) {
1380 		dev_warn(dev, "dummy supplies not allowed\n");
1381 	}
1382 
1383 	mutex_unlock(&regulator_list_mutex);
1384 	return regulator;
1385 
1386 found:
1387 	if (rdev->exclusive) {
1388 		regulator = ERR_PTR(-EPERM);
1389 		goto out;
1390 	}
1391 
1392 	if (exclusive && rdev->open_count) {
1393 		regulator = ERR_PTR(-EBUSY);
1394 		goto out;
1395 	}
1396 
1397 	if (!try_module_get(rdev->owner))
1398 		goto out;
1399 
1400 	regulator = create_regulator(rdev, dev, id);
1401 	if (regulator == NULL) {
1402 		regulator = ERR_PTR(-ENOMEM);
1403 		module_put(rdev->owner);
1404 		goto out;
1405 	}
1406 
1407 	rdev->open_count++;
1408 	if (exclusive) {
1409 		rdev->exclusive = 1;
1410 
1411 		ret = _regulator_is_enabled(rdev);
1412 		if (ret > 0)
1413 			rdev->use_count = 1;
1414 		else
1415 			rdev->use_count = 0;
1416 	}
1417 
1418 out:
1419 	mutex_unlock(&regulator_list_mutex);
1420 
1421 	return regulator;
1422 }
1423 
1424 /**
1425  * regulator_get - lookup and obtain a reference to a regulator.
1426  * @dev: device for regulator "consumer"
1427  * @id: Supply name or regulator ID.
1428  *
1429  * Returns a struct regulator corresponding to the regulator producer,
1430  * or IS_ERR() condition containing errno.
1431  *
1432  * Use of supply names configured via regulator_set_device_supply() is
1433  * strongly encouraged.  It is recommended that the supply name used
1434  * should match the name used for the supply and/or the relevant
1435  * device pins in the datasheet.
1436  */
regulator_get(struct device * dev,const char * id)1437 struct regulator *regulator_get(struct device *dev, const char *id)
1438 {
1439 	return _regulator_get(dev, id, false, true);
1440 }
1441 EXPORT_SYMBOL_GPL(regulator_get);
1442 
1443 /**
1444  * regulator_get_exclusive - obtain exclusive access to a regulator.
1445  * @dev: device for regulator "consumer"
1446  * @id: Supply name or regulator ID.
1447  *
1448  * Returns a struct regulator corresponding to the regulator producer,
1449  * or IS_ERR() condition containing errno.  Other consumers will be
1450  * unable to obtain this regulator while this reference is held and the
1451  * use count for the regulator will be initialised to reflect the current
1452  * state of the regulator.
1453  *
1454  * This is intended for use by consumers which cannot tolerate shared
1455  * use of the regulator such as those which need to force the
1456  * regulator off for correct operation of the hardware they are
1457  * controlling.
1458  *
1459  * Use of supply names configured via regulator_set_device_supply() is
1460  * strongly encouraged.  It is recommended that the supply name used
1461  * should match the name used for the supply and/or the relevant
1462  * device pins in the datasheet.
1463  */
regulator_get_exclusive(struct device * dev,const char * id)1464 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1465 {
1466 	return _regulator_get(dev, id, true, false);
1467 }
1468 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1469 
1470 /**
1471  * regulator_get_optional - obtain optional access to a regulator.
1472  * @dev: device for regulator "consumer"
1473  * @id: Supply name or regulator ID.
1474  *
1475  * Returns a struct regulator corresponding to the regulator producer,
1476  * or IS_ERR() condition containing errno.
1477  *
1478  * This is intended for use by consumers for devices which can have
1479  * some supplies unconnected in normal use, such as some MMC devices.
1480  * It can allow the regulator core to provide stub supplies for other
1481  * supplies requested using normal regulator_get() calls without
1482  * disrupting the operation of drivers that can handle absent
1483  * supplies.
1484  *
1485  * Use of supply names configured via regulator_set_device_supply() is
1486  * strongly encouraged.  It is recommended that the supply name used
1487  * should match the name used for the supply and/or the relevant
1488  * device pins in the datasheet.
1489  */
regulator_get_optional(struct device * dev,const char * id)1490 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1491 {
1492 	return _regulator_get(dev, id, false, false);
1493 }
1494 EXPORT_SYMBOL_GPL(regulator_get_optional);
1495 
1496 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)1497 static void _regulator_put(struct regulator *regulator)
1498 {
1499 	struct regulator_dev *rdev;
1500 
1501 	if (regulator == NULL || IS_ERR(regulator))
1502 		return;
1503 
1504 	rdev = regulator->rdev;
1505 
1506 	debugfs_remove_recursive(regulator->debugfs);
1507 
1508 	/* remove any sysfs entries */
1509 	if (regulator->dev)
1510 		sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1511 	mutex_lock(&rdev->mutex);
1512 	kfree(regulator->supply_name);
1513 	list_del(&regulator->list);
1514 	kfree(regulator);
1515 
1516 	rdev->open_count--;
1517 	rdev->exclusive = 0;
1518 	mutex_unlock(&rdev->mutex);
1519 
1520 	module_put(rdev->owner);
1521 }
1522 
1523 /**
1524  * regulator_put - "free" the regulator source
1525  * @regulator: regulator source
1526  *
1527  * Note: drivers must ensure that all regulator_enable calls made on this
1528  * regulator source are balanced by regulator_disable calls prior to calling
1529  * this function.
1530  */
regulator_put(struct regulator * regulator)1531 void regulator_put(struct regulator *regulator)
1532 {
1533 	mutex_lock(&regulator_list_mutex);
1534 	_regulator_put(regulator);
1535 	mutex_unlock(&regulator_list_mutex);
1536 }
1537 EXPORT_SYMBOL_GPL(regulator_put);
1538 
1539 /**
1540  * regulator_register_supply_alias - Provide device alias for supply lookup
1541  *
1542  * @dev: device that will be given as the regulator "consumer"
1543  * @id: Supply name or regulator ID
1544  * @alias_dev: device that should be used to lookup the supply
1545  * @alias_id: Supply name or regulator ID that should be used to lookup the
1546  * supply
1547  *
1548  * All lookups for id on dev will instead be conducted for alias_id on
1549  * alias_dev.
1550  */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)1551 int regulator_register_supply_alias(struct device *dev, const char *id,
1552 				    struct device *alias_dev,
1553 				    const char *alias_id)
1554 {
1555 	struct regulator_supply_alias *map;
1556 
1557 	map = regulator_find_supply_alias(dev, id);
1558 	if (map)
1559 		return -EEXIST;
1560 
1561 	map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1562 	if (!map)
1563 		return -ENOMEM;
1564 
1565 	map->src_dev = dev;
1566 	map->src_supply = id;
1567 	map->alias_dev = alias_dev;
1568 	map->alias_supply = alias_id;
1569 
1570 	list_add(&map->list, &regulator_supply_alias_list);
1571 
1572 	pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1573 		id, dev_name(dev), alias_id, dev_name(alias_dev));
1574 
1575 	return 0;
1576 }
1577 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1578 
1579 /**
1580  * regulator_unregister_supply_alias - Remove device alias
1581  *
1582  * @dev: device that will be given as the regulator "consumer"
1583  * @id: Supply name or regulator ID
1584  *
1585  * Remove a lookup alias if one exists for id on dev.
1586  */
regulator_unregister_supply_alias(struct device * dev,const char * id)1587 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1588 {
1589 	struct regulator_supply_alias *map;
1590 
1591 	map = regulator_find_supply_alias(dev, id);
1592 	if (map) {
1593 		list_del(&map->list);
1594 		kfree(map);
1595 	}
1596 }
1597 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1598 
1599 /**
1600  * regulator_bulk_register_supply_alias - register multiple aliases
1601  *
1602  * @dev: device that will be given as the regulator "consumer"
1603  * @id: List of supply names or regulator IDs
1604  * @alias_dev: device that should be used to lookup the supply
1605  * @alias_id: List of supply names or regulator IDs that should be used to
1606  * lookup the supply
1607  * @num_id: Number of aliases to register
1608  *
1609  * @return 0 on success, an errno on failure.
1610  *
1611  * This helper function allows drivers to register several supply
1612  * aliases in one operation.  If any of the aliases cannot be
1613  * registered any aliases that were registered will be removed
1614  * before returning to the caller.
1615  */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)1616 int regulator_bulk_register_supply_alias(struct device *dev,
1617 					 const char *const *id,
1618 					 struct device *alias_dev,
1619 					 const char *const *alias_id,
1620 					 int num_id)
1621 {
1622 	int i;
1623 	int ret;
1624 
1625 	for (i = 0; i < num_id; ++i) {
1626 		ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1627 						      alias_id[i]);
1628 		if (ret < 0)
1629 			goto err;
1630 	}
1631 
1632 	return 0;
1633 
1634 err:
1635 	dev_err(dev,
1636 		"Failed to create supply alias %s,%s -> %s,%s\n",
1637 		id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1638 
1639 	while (--i >= 0)
1640 		regulator_unregister_supply_alias(dev, id[i]);
1641 
1642 	return ret;
1643 }
1644 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1645 
1646 /**
1647  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1648  *
1649  * @dev: device that will be given as the regulator "consumer"
1650  * @id: List of supply names or regulator IDs
1651  * @num_id: Number of aliases to unregister
1652  *
1653  * This helper function allows drivers to unregister several supply
1654  * aliases in one operation.
1655  */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)1656 void regulator_bulk_unregister_supply_alias(struct device *dev,
1657 					    const char *const *id,
1658 					    int num_id)
1659 {
1660 	int i;
1661 
1662 	for (i = 0; i < num_id; ++i)
1663 		regulator_unregister_supply_alias(dev, id[i]);
1664 }
1665 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1666 
1667 
1668 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)1669 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1670 				const struct regulator_config *config)
1671 {
1672 	struct regulator_enable_gpio *pin;
1673 	struct gpio_desc *gpiod;
1674 	int ret;
1675 
1676 	gpiod = gpio_to_desc(config->ena_gpio);
1677 
1678 	list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1679 		if (pin->gpiod == gpiod) {
1680 			rdev_dbg(rdev, "GPIO %d is already used\n",
1681 				config->ena_gpio);
1682 			goto update_ena_gpio_to_rdev;
1683 		}
1684 	}
1685 
1686 	ret = gpio_request_one(config->ena_gpio,
1687 				GPIOF_DIR_OUT | config->ena_gpio_flags,
1688 				rdev_get_name(rdev));
1689 	if (ret)
1690 		return ret;
1691 
1692 	pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1693 	if (pin == NULL) {
1694 		gpio_free(config->ena_gpio);
1695 		return -ENOMEM;
1696 	}
1697 
1698 	pin->gpiod = gpiod;
1699 	pin->ena_gpio_invert = config->ena_gpio_invert;
1700 	list_add(&pin->list, &regulator_ena_gpio_list);
1701 
1702 update_ena_gpio_to_rdev:
1703 	pin->request_count++;
1704 	rdev->ena_pin = pin;
1705 	return 0;
1706 }
1707 
regulator_ena_gpio_free(struct regulator_dev * rdev)1708 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1709 {
1710 	struct regulator_enable_gpio *pin, *n;
1711 
1712 	if (!rdev->ena_pin)
1713 		return;
1714 
1715 	/* Free the GPIO only in case of no use */
1716 	list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1717 		if (pin->gpiod == rdev->ena_pin->gpiod) {
1718 			if (pin->request_count <= 1) {
1719 				pin->request_count = 0;
1720 				gpiod_put(pin->gpiod);
1721 				list_del(&pin->list);
1722 				kfree(pin);
1723 				rdev->ena_pin = NULL;
1724 				return;
1725 			} else {
1726 				pin->request_count--;
1727 			}
1728 		}
1729 	}
1730 }
1731 
1732 /**
1733  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1734  * @rdev: regulator_dev structure
1735  * @enable: enable GPIO at initial use?
1736  *
1737  * GPIO is enabled in case of initial use. (enable_count is 0)
1738  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1739  */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)1740 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1741 {
1742 	struct regulator_enable_gpio *pin = rdev->ena_pin;
1743 
1744 	if (!pin)
1745 		return -EINVAL;
1746 
1747 	if (enable) {
1748 		/* Enable GPIO at initial use */
1749 		if (pin->enable_count == 0)
1750 			gpiod_set_value_cansleep(pin->gpiod,
1751 						 !pin->ena_gpio_invert);
1752 
1753 		pin->enable_count++;
1754 	} else {
1755 		if (pin->enable_count > 1) {
1756 			pin->enable_count--;
1757 			return 0;
1758 		}
1759 
1760 		/* Disable GPIO if not used */
1761 		if (pin->enable_count <= 1) {
1762 			gpiod_set_value_cansleep(pin->gpiod,
1763 						 pin->ena_gpio_invert);
1764 			pin->enable_count = 0;
1765 		}
1766 	}
1767 
1768 	return 0;
1769 }
1770 
1771 /**
1772  * _regulator_enable_delay - a delay helper function
1773  * @delay: time to delay in microseconds
1774  *
1775  * Delay for the requested amount of time as per the guidelines in:
1776  *
1777  *     Documentation/timers/timers-howto.txt
1778  *
1779  * The assumption here is that regulators will never be enabled in
1780  * atomic context and therefore sleeping functions can be used.
1781  */
_regulator_enable_delay(unsigned int delay)1782 static void _regulator_enable_delay(unsigned int delay)
1783 {
1784 	unsigned int ms = delay / 1000;
1785 	unsigned int us = delay % 1000;
1786 
1787 	if (ms > 0) {
1788 		/*
1789 		 * For small enough values, handle super-millisecond
1790 		 * delays in the usleep_range() call below.
1791 		 */
1792 		if (ms < 20)
1793 			us += ms * 1000;
1794 		else
1795 			msleep(ms);
1796 	}
1797 
1798 	/*
1799 	 * Give the scheduler some room to coalesce with any other
1800 	 * wakeup sources. For delays shorter than 10 us, don't even
1801 	 * bother setting up high-resolution timers and just busy-
1802 	 * loop.
1803 	 */
1804 	if (us >= 10)
1805 		usleep_range(us, us + 100);
1806 	else
1807 		udelay(us);
1808 }
1809 
_regulator_do_enable(struct regulator_dev * rdev)1810 static int _regulator_do_enable(struct regulator_dev *rdev)
1811 {
1812 	int ret, delay;
1813 
1814 	/* Query before enabling in case configuration dependent.  */
1815 	ret = _regulator_get_enable_time(rdev);
1816 	if (ret >= 0) {
1817 		delay = ret;
1818 	} else {
1819 		rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1820 		delay = 0;
1821 	}
1822 
1823 	trace_regulator_enable(rdev_get_name(rdev));
1824 
1825 	if (rdev->desc->off_on_delay) {
1826 		/* if needed, keep a distance of off_on_delay from last time
1827 		 * this regulator was disabled.
1828 		 */
1829 		unsigned long start_jiffy = jiffies;
1830 		unsigned long intended, max_delay, remaining;
1831 
1832 		max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1833 		intended = rdev->last_off_jiffy + max_delay;
1834 
1835 		if (time_before(start_jiffy, intended)) {
1836 			/* calc remaining jiffies to deal with one-time
1837 			 * timer wrapping.
1838 			 * in case of multiple timer wrapping, either it can be
1839 			 * detected by out-of-range remaining, or it cannot be
1840 			 * detected and we gets a panelty of
1841 			 * _regulator_enable_delay().
1842 			 */
1843 			remaining = intended - start_jiffy;
1844 			if (remaining <= max_delay)
1845 				_regulator_enable_delay(
1846 						jiffies_to_usecs(remaining));
1847 		}
1848 	}
1849 
1850 	if (rdev->ena_pin) {
1851 		if (!rdev->ena_gpio_state) {
1852 			ret = regulator_ena_gpio_ctrl(rdev, true);
1853 			if (ret < 0)
1854 				return ret;
1855 			rdev->ena_gpio_state = 1;
1856 		}
1857 	} else if (rdev->desc->ops->enable) {
1858 		ret = rdev->desc->ops->enable(rdev);
1859 		if (ret < 0)
1860 			return ret;
1861 	} else {
1862 		return -EINVAL;
1863 	}
1864 
1865 	/* Allow the regulator to ramp; it would be useful to extend
1866 	 * this for bulk operations so that the regulators can ramp
1867 	 * together.  */
1868 	trace_regulator_enable_delay(rdev_get_name(rdev));
1869 
1870 	_regulator_enable_delay(delay);
1871 
1872 	trace_regulator_enable_complete(rdev_get_name(rdev));
1873 
1874 	return 0;
1875 }
1876 
1877 /* locks held by regulator_enable() */
_regulator_enable(struct regulator_dev * rdev)1878 static int _regulator_enable(struct regulator_dev *rdev)
1879 {
1880 	int ret;
1881 
1882 	/* check voltage and requested load before enabling */
1883 	if (rdev->constraints &&
1884 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1885 		drms_uA_update(rdev);
1886 
1887 	if (rdev->use_count == 0) {
1888 		/* The regulator may on if it's not switchable or left on */
1889 		ret = _regulator_is_enabled(rdev);
1890 		if (ret == -EINVAL || ret == 0) {
1891 			if (!_regulator_can_change_status(rdev))
1892 				return -EPERM;
1893 
1894 			ret = _regulator_do_enable(rdev);
1895 			if (ret < 0)
1896 				return ret;
1897 
1898 		} else if (ret < 0) {
1899 			rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1900 			return ret;
1901 		}
1902 		/* Fallthrough on positive return values - already enabled */
1903 	}
1904 
1905 	rdev->use_count++;
1906 
1907 	return 0;
1908 }
1909 
1910 /**
1911  * regulator_enable - enable regulator output
1912  * @regulator: regulator source
1913  *
1914  * Request that the regulator be enabled with the regulator output at
1915  * the predefined voltage or current value.  Calls to regulator_enable()
1916  * must be balanced with calls to regulator_disable().
1917  *
1918  * NOTE: the output value can be set by other drivers, boot loader or may be
1919  * hardwired in the regulator.
1920  */
regulator_enable(struct regulator * regulator)1921 int regulator_enable(struct regulator *regulator)
1922 {
1923 	struct regulator_dev *rdev = regulator->rdev;
1924 	int ret = 0;
1925 
1926 	if (regulator->always_on)
1927 		return 0;
1928 
1929 	if (rdev->supply) {
1930 		ret = regulator_enable(rdev->supply);
1931 		if (ret != 0)
1932 			return ret;
1933 	}
1934 
1935 	mutex_lock(&rdev->mutex);
1936 	ret = _regulator_enable(rdev);
1937 	mutex_unlock(&rdev->mutex);
1938 
1939 	if (ret != 0 && rdev->supply)
1940 		regulator_disable(rdev->supply);
1941 
1942 	return ret;
1943 }
1944 EXPORT_SYMBOL_GPL(regulator_enable);
1945 
_regulator_do_disable(struct regulator_dev * rdev)1946 static int _regulator_do_disable(struct regulator_dev *rdev)
1947 {
1948 	int ret;
1949 
1950 	trace_regulator_disable(rdev_get_name(rdev));
1951 
1952 	if (rdev->ena_pin) {
1953 		if (rdev->ena_gpio_state) {
1954 			ret = regulator_ena_gpio_ctrl(rdev, false);
1955 			if (ret < 0)
1956 				return ret;
1957 			rdev->ena_gpio_state = 0;
1958 		}
1959 
1960 	} else if (rdev->desc->ops->disable) {
1961 		ret = rdev->desc->ops->disable(rdev);
1962 		if (ret != 0)
1963 			return ret;
1964 	}
1965 
1966 	/* cares about last_off_jiffy only if off_on_delay is required by
1967 	 * device.
1968 	 */
1969 	if (rdev->desc->off_on_delay)
1970 		rdev->last_off_jiffy = jiffies;
1971 
1972 	trace_regulator_disable_complete(rdev_get_name(rdev));
1973 
1974 	return 0;
1975 }
1976 
1977 /* locks held by regulator_disable() */
_regulator_disable(struct regulator_dev * rdev)1978 static int _regulator_disable(struct regulator_dev *rdev)
1979 {
1980 	int ret = 0;
1981 
1982 	if (WARN(rdev->use_count <= 0,
1983 		 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1984 		return -EIO;
1985 
1986 	/* are we the last user and permitted to disable ? */
1987 	if (rdev->use_count == 1 &&
1988 	    (rdev->constraints && !rdev->constraints->always_on)) {
1989 
1990 		/* we are last user */
1991 		if (_regulator_can_change_status(rdev)) {
1992 			ret = _regulator_do_disable(rdev);
1993 			if (ret < 0) {
1994 				rdev_err(rdev, "failed to disable\n");
1995 				return ret;
1996 			}
1997 			_notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1998 					NULL);
1999 		}
2000 
2001 		rdev->use_count = 0;
2002 	} else if (rdev->use_count > 1) {
2003 
2004 		if (rdev->constraints &&
2005 			(rdev->constraints->valid_ops_mask &
2006 			REGULATOR_CHANGE_DRMS))
2007 			drms_uA_update(rdev);
2008 
2009 		rdev->use_count--;
2010 	}
2011 
2012 	return ret;
2013 }
2014 
2015 /**
2016  * regulator_disable - disable regulator output
2017  * @regulator: regulator source
2018  *
2019  * Disable the regulator output voltage or current.  Calls to
2020  * regulator_enable() must be balanced with calls to
2021  * regulator_disable().
2022  *
2023  * NOTE: this will only disable the regulator output if no other consumer
2024  * devices have it enabled, the regulator device supports disabling and
2025  * machine constraints permit this operation.
2026  */
regulator_disable(struct regulator * regulator)2027 int regulator_disable(struct regulator *regulator)
2028 {
2029 	struct regulator_dev *rdev = regulator->rdev;
2030 	int ret = 0;
2031 
2032 	if (regulator->always_on)
2033 		return 0;
2034 
2035 	mutex_lock(&rdev->mutex);
2036 	ret = _regulator_disable(rdev);
2037 	mutex_unlock(&rdev->mutex);
2038 
2039 	if (ret == 0 && rdev->supply)
2040 		regulator_disable(rdev->supply);
2041 
2042 	return ret;
2043 }
2044 EXPORT_SYMBOL_GPL(regulator_disable);
2045 
2046 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)2047 static int _regulator_force_disable(struct regulator_dev *rdev)
2048 {
2049 	int ret = 0;
2050 
2051 	ret = _regulator_do_disable(rdev);
2052 	if (ret < 0) {
2053 		rdev_err(rdev, "failed to force disable\n");
2054 		return ret;
2055 	}
2056 
2057 	_notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2058 			REGULATOR_EVENT_DISABLE, NULL);
2059 
2060 	return 0;
2061 }
2062 
2063 /**
2064  * regulator_force_disable - force disable regulator output
2065  * @regulator: regulator source
2066  *
2067  * Forcibly disable the regulator output voltage or current.
2068  * NOTE: this *will* disable the regulator output even if other consumer
2069  * devices have it enabled. This should be used for situations when device
2070  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2071  */
regulator_force_disable(struct regulator * regulator)2072 int regulator_force_disable(struct regulator *regulator)
2073 {
2074 	struct regulator_dev *rdev = regulator->rdev;
2075 	int ret;
2076 
2077 	mutex_lock(&rdev->mutex);
2078 	regulator->uA_load = 0;
2079 	ret = _regulator_force_disable(regulator->rdev);
2080 	mutex_unlock(&rdev->mutex);
2081 
2082 	if (rdev->supply)
2083 		while (rdev->open_count--)
2084 			regulator_disable(rdev->supply);
2085 
2086 	return ret;
2087 }
2088 EXPORT_SYMBOL_GPL(regulator_force_disable);
2089 
regulator_disable_work(struct work_struct * work)2090 static void regulator_disable_work(struct work_struct *work)
2091 {
2092 	struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2093 						  disable_work.work);
2094 	int count, i, ret;
2095 
2096 	mutex_lock(&rdev->mutex);
2097 
2098 	BUG_ON(!rdev->deferred_disables);
2099 
2100 	count = rdev->deferred_disables;
2101 	rdev->deferred_disables = 0;
2102 
2103 	for (i = 0; i < count; i++) {
2104 		ret = _regulator_disable(rdev);
2105 		if (ret != 0)
2106 			rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2107 	}
2108 
2109 	mutex_unlock(&rdev->mutex);
2110 
2111 	if (rdev->supply) {
2112 		for (i = 0; i < count; i++) {
2113 			ret = regulator_disable(rdev->supply);
2114 			if (ret != 0) {
2115 				rdev_err(rdev,
2116 					 "Supply disable failed: %d\n", ret);
2117 			}
2118 		}
2119 	}
2120 }
2121 
2122 /**
2123  * regulator_disable_deferred - disable regulator output with delay
2124  * @regulator: regulator source
2125  * @ms: miliseconds until the regulator is disabled
2126  *
2127  * Execute regulator_disable() on the regulator after a delay.  This
2128  * is intended for use with devices that require some time to quiesce.
2129  *
2130  * NOTE: this will only disable the regulator output if no other consumer
2131  * devices have it enabled, the regulator device supports disabling and
2132  * machine constraints permit this operation.
2133  */
regulator_disable_deferred(struct regulator * regulator,int ms)2134 int regulator_disable_deferred(struct regulator *regulator, int ms)
2135 {
2136 	struct regulator_dev *rdev = regulator->rdev;
2137 	int ret;
2138 
2139 	if (regulator->always_on)
2140 		return 0;
2141 
2142 	if (!ms)
2143 		return regulator_disable(regulator);
2144 
2145 	mutex_lock(&rdev->mutex);
2146 	rdev->deferred_disables++;
2147 	mutex_unlock(&rdev->mutex);
2148 
2149 	ret = queue_delayed_work(system_power_efficient_wq,
2150 				 &rdev->disable_work,
2151 				 msecs_to_jiffies(ms));
2152 	if (ret < 0)
2153 		return ret;
2154 	else
2155 		return 0;
2156 }
2157 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2158 
_regulator_is_enabled(struct regulator_dev * rdev)2159 static int _regulator_is_enabled(struct regulator_dev *rdev)
2160 {
2161 	/* A GPIO control always takes precedence */
2162 	if (rdev->ena_pin)
2163 		return rdev->ena_gpio_state;
2164 
2165 	/* If we don't know then assume that the regulator is always on */
2166 	if (!rdev->desc->ops->is_enabled)
2167 		return 1;
2168 
2169 	return rdev->desc->ops->is_enabled(rdev);
2170 }
2171 
2172 /**
2173  * regulator_is_enabled - is the regulator output enabled
2174  * @regulator: regulator source
2175  *
2176  * Returns positive if the regulator driver backing the source/client
2177  * has requested that the device be enabled, zero if it hasn't, else a
2178  * negative errno code.
2179  *
2180  * Note that the device backing this regulator handle can have multiple
2181  * users, so it might be enabled even if regulator_enable() was never
2182  * called for this particular source.
2183  */
regulator_is_enabled(struct regulator * regulator)2184 int regulator_is_enabled(struct regulator *regulator)
2185 {
2186 	int ret;
2187 
2188 	if (regulator->always_on)
2189 		return 1;
2190 
2191 	mutex_lock(&regulator->rdev->mutex);
2192 	ret = _regulator_is_enabled(regulator->rdev);
2193 	mutex_unlock(&regulator->rdev->mutex);
2194 
2195 	return ret;
2196 }
2197 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2198 
2199 /**
2200  * regulator_can_change_voltage - check if regulator can change voltage
2201  * @regulator: regulator source
2202  *
2203  * Returns positive if the regulator driver backing the source/client
2204  * can change its voltage, false otherwise. Useful for detecting fixed
2205  * or dummy regulators and disabling voltage change logic in the client
2206  * driver.
2207  */
regulator_can_change_voltage(struct regulator * regulator)2208 int regulator_can_change_voltage(struct regulator *regulator)
2209 {
2210 	struct regulator_dev	*rdev = regulator->rdev;
2211 
2212 	if (rdev->constraints &&
2213 	    (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2214 		if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2215 			return 1;
2216 
2217 		if (rdev->desc->continuous_voltage_range &&
2218 		    rdev->constraints->min_uV && rdev->constraints->max_uV &&
2219 		    rdev->constraints->min_uV != rdev->constraints->max_uV)
2220 			return 1;
2221 	}
2222 
2223 	return 0;
2224 }
2225 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2226 
2227 /**
2228  * regulator_count_voltages - count regulator_list_voltage() selectors
2229  * @regulator: regulator source
2230  *
2231  * Returns number of selectors, or negative errno.  Selectors are
2232  * numbered starting at zero, and typically correspond to bitfields
2233  * in hardware registers.
2234  */
regulator_count_voltages(struct regulator * regulator)2235 int regulator_count_voltages(struct regulator *regulator)
2236 {
2237 	struct regulator_dev	*rdev = regulator->rdev;
2238 
2239 	if (rdev->desc->n_voltages)
2240 		return rdev->desc->n_voltages;
2241 
2242 	if (!rdev->supply)
2243 		return -EINVAL;
2244 
2245 	return regulator_count_voltages(rdev->supply);
2246 }
2247 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2248 
2249 /**
2250  * regulator_list_voltage - enumerate supported voltages
2251  * @regulator: regulator source
2252  * @selector: identify voltage to list
2253  * Context: can sleep
2254  *
2255  * Returns a voltage that can be passed to @regulator_set_voltage(),
2256  * zero if this selector code can't be used on this system, or a
2257  * negative errno.
2258  */
regulator_list_voltage(struct regulator * regulator,unsigned selector)2259 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2260 {
2261 	struct regulator_dev *rdev = regulator->rdev;
2262 	const struct regulator_ops *ops = rdev->desc->ops;
2263 	int ret;
2264 
2265 	if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2266 		return rdev->desc->fixed_uV;
2267 
2268 	if (ops->list_voltage) {
2269 		if (selector >= rdev->desc->n_voltages)
2270 			return -EINVAL;
2271 		mutex_lock(&rdev->mutex);
2272 		ret = ops->list_voltage(rdev, selector);
2273 		mutex_unlock(&rdev->mutex);
2274 	} else if (rdev->supply) {
2275 		ret = regulator_list_voltage(rdev->supply, selector);
2276 	} else {
2277 		return -EINVAL;
2278 	}
2279 
2280 	if (ret > 0) {
2281 		if (ret < rdev->constraints->min_uV)
2282 			ret = 0;
2283 		else if (ret > rdev->constraints->max_uV)
2284 			ret = 0;
2285 	}
2286 
2287 	return ret;
2288 }
2289 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2290 
2291 /**
2292  * regulator_get_regmap - get the regulator's register map
2293  * @regulator: regulator source
2294  *
2295  * Returns the register map for the given regulator, or an ERR_PTR value
2296  * if the regulator doesn't use regmap.
2297  */
regulator_get_regmap(struct regulator * regulator)2298 struct regmap *regulator_get_regmap(struct regulator *regulator)
2299 {
2300 	struct regmap *map = regulator->rdev->regmap;
2301 
2302 	return map ? map : ERR_PTR(-EOPNOTSUPP);
2303 }
2304 
2305 /**
2306  * regulator_get_hardware_vsel_register - get the HW voltage selector register
2307  * @regulator: regulator source
2308  * @vsel_reg: voltage selector register, output parameter
2309  * @vsel_mask: mask for voltage selector bitfield, output parameter
2310  *
2311  * Returns the hardware register offset and bitmask used for setting the
2312  * regulator voltage. This might be useful when configuring voltage-scaling
2313  * hardware or firmware that can make I2C requests behind the kernel's back,
2314  * for example.
2315  *
2316  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2317  * and 0 is returned, otherwise a negative errno is returned.
2318  */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)2319 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2320 					 unsigned *vsel_reg,
2321 					 unsigned *vsel_mask)
2322 {
2323 	struct regulator_dev *rdev = regulator->rdev;
2324 	const struct regulator_ops *ops = rdev->desc->ops;
2325 
2326 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2327 		return -EOPNOTSUPP;
2328 
2329 	 *vsel_reg = rdev->desc->vsel_reg;
2330 	 *vsel_mask = rdev->desc->vsel_mask;
2331 
2332 	 return 0;
2333 }
2334 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2335 
2336 /**
2337  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2338  * @regulator: regulator source
2339  * @selector: identify voltage to list
2340  *
2341  * Converts the selector to a hardware-specific voltage selector that can be
2342  * directly written to the regulator registers. The address of the voltage
2343  * register can be determined by calling @regulator_get_hardware_vsel_register.
2344  *
2345  * On error a negative errno is returned.
2346  */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)2347 int regulator_list_hardware_vsel(struct regulator *regulator,
2348 				 unsigned selector)
2349 {
2350 	struct regulator_dev *rdev = regulator->rdev;
2351 	const struct regulator_ops *ops = rdev->desc->ops;
2352 
2353 	if (selector >= rdev->desc->n_voltages)
2354 		return -EINVAL;
2355 	if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2356 		return -EOPNOTSUPP;
2357 
2358 	return selector;
2359 }
2360 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2361 
2362 /**
2363  * regulator_get_linear_step - return the voltage step size between VSEL values
2364  * @regulator: regulator source
2365  *
2366  * Returns the voltage step size between VSEL values for linear
2367  * regulators, or return 0 if the regulator isn't a linear regulator.
2368  */
regulator_get_linear_step(struct regulator * regulator)2369 unsigned int regulator_get_linear_step(struct regulator *regulator)
2370 {
2371 	struct regulator_dev *rdev = regulator->rdev;
2372 
2373 	return rdev->desc->uV_step;
2374 }
2375 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2376 
2377 /**
2378  * regulator_is_supported_voltage - check if a voltage range can be supported
2379  *
2380  * @regulator: Regulator to check.
2381  * @min_uV: Minimum required voltage in uV.
2382  * @max_uV: Maximum required voltage in uV.
2383  *
2384  * Returns a boolean or a negative error code.
2385  */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)2386 int regulator_is_supported_voltage(struct regulator *regulator,
2387 				   int min_uV, int max_uV)
2388 {
2389 	struct regulator_dev *rdev = regulator->rdev;
2390 	int i, voltages, ret;
2391 
2392 	/* If we can't change voltage check the current voltage */
2393 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2394 		ret = regulator_get_voltage(regulator);
2395 		if (ret >= 0)
2396 			return min_uV <= ret && ret <= max_uV;
2397 		else
2398 			return ret;
2399 	}
2400 
2401 	/* Any voltage within constrains range is fine? */
2402 	if (rdev->desc->continuous_voltage_range)
2403 		return min_uV >= rdev->constraints->min_uV &&
2404 				max_uV <= rdev->constraints->max_uV;
2405 
2406 	ret = regulator_count_voltages(regulator);
2407 	if (ret < 0)
2408 		return ret;
2409 	voltages = ret;
2410 
2411 	for (i = 0; i < voltages; i++) {
2412 		ret = regulator_list_voltage(regulator, i);
2413 
2414 		if (ret >= min_uV && ret <= max_uV)
2415 			return 1;
2416 	}
2417 
2418 	return 0;
2419 }
2420 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2421 
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)2422 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2423 				       int min_uV, int max_uV,
2424 				       unsigned *selector)
2425 {
2426 	struct pre_voltage_change_data data;
2427 	int ret;
2428 
2429 	data.old_uV = _regulator_get_voltage(rdev);
2430 	data.min_uV = min_uV;
2431 	data.max_uV = max_uV;
2432 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2433 				   &data);
2434 	if (ret & NOTIFY_STOP_MASK)
2435 		return -EINVAL;
2436 
2437 	ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2438 	if (ret >= 0)
2439 		return ret;
2440 
2441 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2442 			     (void *)data.old_uV);
2443 
2444 	return ret;
2445 }
2446 
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)2447 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2448 					   int uV, unsigned selector)
2449 {
2450 	struct pre_voltage_change_data data;
2451 	int ret;
2452 
2453 	data.old_uV = _regulator_get_voltage(rdev);
2454 	data.min_uV = uV;
2455 	data.max_uV = uV;
2456 	ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2457 				   &data);
2458 	if (ret & NOTIFY_STOP_MASK)
2459 		return -EINVAL;
2460 
2461 	ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2462 	if (ret >= 0)
2463 		return ret;
2464 
2465 	_notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2466 			     (void *)data.old_uV);
2467 
2468 	return ret;
2469 }
2470 
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)2471 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2472 				     int min_uV, int max_uV)
2473 {
2474 	int ret;
2475 	int delay = 0;
2476 	int best_val = 0;
2477 	unsigned int selector;
2478 	int old_selector = -1;
2479 
2480 	trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2481 
2482 	min_uV += rdev->constraints->uV_offset;
2483 	max_uV += rdev->constraints->uV_offset;
2484 
2485 	/*
2486 	 * If we can't obtain the old selector there is not enough
2487 	 * info to call set_voltage_time_sel().
2488 	 */
2489 	if (_regulator_is_enabled(rdev) &&
2490 	    rdev->desc->ops->set_voltage_time_sel &&
2491 	    rdev->desc->ops->get_voltage_sel) {
2492 		old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2493 		if (old_selector < 0)
2494 			return old_selector;
2495 	}
2496 
2497 	if (rdev->desc->ops->set_voltage) {
2498 		ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2499 						  &selector);
2500 
2501 		if (ret >= 0) {
2502 			if (rdev->desc->ops->list_voltage)
2503 				best_val = rdev->desc->ops->list_voltage(rdev,
2504 									 selector);
2505 			else
2506 				best_val = _regulator_get_voltage(rdev);
2507 		}
2508 
2509 	} else if (rdev->desc->ops->set_voltage_sel) {
2510 		if (rdev->desc->ops->map_voltage) {
2511 			ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2512 							   max_uV);
2513 		} else {
2514 			if (rdev->desc->ops->list_voltage ==
2515 			    regulator_list_voltage_linear)
2516 				ret = regulator_map_voltage_linear(rdev,
2517 								min_uV, max_uV);
2518 			else if (rdev->desc->ops->list_voltage ==
2519 				 regulator_list_voltage_linear_range)
2520 				ret = regulator_map_voltage_linear_range(rdev,
2521 								min_uV, max_uV);
2522 			else
2523 				ret = regulator_map_voltage_iterate(rdev,
2524 								min_uV, max_uV);
2525 		}
2526 
2527 		if (ret >= 0) {
2528 			best_val = rdev->desc->ops->list_voltage(rdev, ret);
2529 			if (min_uV <= best_val && max_uV >= best_val) {
2530 				selector = ret;
2531 				if (old_selector == selector)
2532 					ret = 0;
2533 				else
2534 					ret = _regulator_call_set_voltage_sel(
2535 						rdev, best_val, selector);
2536 			} else {
2537 				ret = -EINVAL;
2538 			}
2539 		}
2540 	} else {
2541 		ret = -EINVAL;
2542 	}
2543 
2544 	/* Call set_voltage_time_sel if successfully obtained old_selector */
2545 	if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2546 		&& old_selector != selector) {
2547 
2548 		delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2549 						old_selector, selector);
2550 		if (delay < 0) {
2551 			rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2552 				  delay);
2553 			delay = 0;
2554 		}
2555 
2556 		/* Insert any necessary delays */
2557 		if (delay >= 1000) {
2558 			mdelay(delay / 1000);
2559 			udelay(delay % 1000);
2560 		} else if (delay) {
2561 			udelay(delay);
2562 		}
2563 	}
2564 
2565 	if (ret == 0 && best_val >= 0) {
2566 		unsigned long data = best_val;
2567 
2568 		_notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2569 				     (void *)data);
2570 	}
2571 
2572 	trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2573 
2574 	return ret;
2575 }
2576 
2577 /**
2578  * regulator_set_voltage - set regulator output voltage
2579  * @regulator: regulator source
2580  * @min_uV: Minimum required voltage in uV
2581  * @max_uV: Maximum acceptable voltage in uV
2582  *
2583  * Sets a voltage regulator to the desired output voltage. This can be set
2584  * during any regulator state. IOW, regulator can be disabled or enabled.
2585  *
2586  * If the regulator is enabled then the voltage will change to the new value
2587  * immediately otherwise if the regulator is disabled the regulator will
2588  * output at the new voltage when enabled.
2589  *
2590  * NOTE: If the regulator is shared between several devices then the lowest
2591  * request voltage that meets the system constraints will be used.
2592  * Regulator system constraints must be set for this regulator before
2593  * calling this function otherwise this call will fail.
2594  */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)2595 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2596 {
2597 	struct regulator_dev *rdev = regulator->rdev;
2598 	int ret = 0;
2599 	int old_min_uV, old_max_uV;
2600 	int current_uV;
2601 
2602 	mutex_lock(&rdev->mutex);
2603 
2604 	/* If we're setting the same range as last time the change
2605 	 * should be a noop (some cpufreq implementations use the same
2606 	 * voltage for multiple frequencies, for example).
2607 	 */
2608 	if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2609 		goto out;
2610 
2611 	/* If we're trying to set a range that overlaps the current voltage,
2612 	 * return succesfully even though the regulator does not support
2613 	 * changing the voltage.
2614 	 */
2615 	if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2616 		current_uV = _regulator_get_voltage(rdev);
2617 		if (min_uV <= current_uV && current_uV <= max_uV) {
2618 			regulator->min_uV = min_uV;
2619 			regulator->max_uV = max_uV;
2620 			goto out;
2621 		}
2622 	}
2623 
2624 	/* sanity check */
2625 	if (!rdev->desc->ops->set_voltage &&
2626 	    !rdev->desc->ops->set_voltage_sel) {
2627 		ret = -EINVAL;
2628 		goto out;
2629 	}
2630 
2631 	/* constraints check */
2632 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2633 	if (ret < 0)
2634 		goto out;
2635 
2636 	/* restore original values in case of error */
2637 	old_min_uV = regulator->min_uV;
2638 	old_max_uV = regulator->max_uV;
2639 	regulator->min_uV = min_uV;
2640 	regulator->max_uV = max_uV;
2641 
2642 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2643 	if (ret < 0)
2644 		goto out2;
2645 
2646 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2647 	if (ret < 0)
2648 		goto out2;
2649 
2650 out:
2651 	mutex_unlock(&rdev->mutex);
2652 	return ret;
2653 out2:
2654 	regulator->min_uV = old_min_uV;
2655 	regulator->max_uV = old_max_uV;
2656 	mutex_unlock(&rdev->mutex);
2657 	return ret;
2658 }
2659 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2660 
2661 /**
2662  * regulator_set_voltage_time - get raise/fall time
2663  * @regulator: regulator source
2664  * @old_uV: starting voltage in microvolts
2665  * @new_uV: target voltage in microvolts
2666  *
2667  * Provided with the starting and ending voltage, this function attempts to
2668  * calculate the time in microseconds required to rise or fall to this new
2669  * voltage.
2670  */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)2671 int regulator_set_voltage_time(struct regulator *regulator,
2672 			       int old_uV, int new_uV)
2673 {
2674 	struct regulator_dev *rdev = regulator->rdev;
2675 	const struct regulator_ops *ops = rdev->desc->ops;
2676 	int old_sel = -1;
2677 	int new_sel = -1;
2678 	int voltage;
2679 	int i;
2680 
2681 	/* Currently requires operations to do this */
2682 	if (!ops->list_voltage || !ops->set_voltage_time_sel
2683 	    || !rdev->desc->n_voltages)
2684 		return -EINVAL;
2685 
2686 	for (i = 0; i < rdev->desc->n_voltages; i++) {
2687 		/* We only look for exact voltage matches here */
2688 		voltage = regulator_list_voltage(regulator, i);
2689 		if (voltage < 0)
2690 			return -EINVAL;
2691 		if (voltage == 0)
2692 			continue;
2693 		if (voltage == old_uV)
2694 			old_sel = i;
2695 		if (voltage == new_uV)
2696 			new_sel = i;
2697 	}
2698 
2699 	if (old_sel < 0 || new_sel < 0)
2700 		return -EINVAL;
2701 
2702 	return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2703 }
2704 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2705 
2706 /**
2707  * regulator_set_voltage_time_sel - get raise/fall time
2708  * @rdev: regulator source device
2709  * @old_selector: selector for starting voltage
2710  * @new_selector: selector for target voltage
2711  *
2712  * Provided with the starting and target voltage selectors, this function
2713  * returns time in microseconds required to rise or fall to this new voltage
2714  *
2715  * Drivers providing ramp_delay in regulation_constraints can use this as their
2716  * set_voltage_time_sel() operation.
2717  */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)2718 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2719 				   unsigned int old_selector,
2720 				   unsigned int new_selector)
2721 {
2722 	unsigned int ramp_delay = 0;
2723 	int old_volt, new_volt;
2724 
2725 	if (rdev->constraints->ramp_delay)
2726 		ramp_delay = rdev->constraints->ramp_delay;
2727 	else if (rdev->desc->ramp_delay)
2728 		ramp_delay = rdev->desc->ramp_delay;
2729 
2730 	if (ramp_delay == 0) {
2731 		rdev_warn(rdev, "ramp_delay not set\n");
2732 		return 0;
2733 	}
2734 
2735 	/* sanity check */
2736 	if (!rdev->desc->ops->list_voltage)
2737 		return -EINVAL;
2738 
2739 	old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2740 	new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2741 
2742 	return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2743 }
2744 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2745 
2746 /**
2747  * regulator_sync_voltage - re-apply last regulator output voltage
2748  * @regulator: regulator source
2749  *
2750  * Re-apply the last configured voltage.  This is intended to be used
2751  * where some external control source the consumer is cooperating with
2752  * has caused the configured voltage to change.
2753  */
regulator_sync_voltage(struct regulator * regulator)2754 int regulator_sync_voltage(struct regulator *regulator)
2755 {
2756 	struct regulator_dev *rdev = regulator->rdev;
2757 	int ret, min_uV, max_uV;
2758 
2759 	mutex_lock(&rdev->mutex);
2760 
2761 	if (!rdev->desc->ops->set_voltage &&
2762 	    !rdev->desc->ops->set_voltage_sel) {
2763 		ret = -EINVAL;
2764 		goto out;
2765 	}
2766 
2767 	/* This is only going to work if we've had a voltage configured. */
2768 	if (!regulator->min_uV && !regulator->max_uV) {
2769 		ret = -EINVAL;
2770 		goto out;
2771 	}
2772 
2773 	min_uV = regulator->min_uV;
2774 	max_uV = regulator->max_uV;
2775 
2776 	/* This should be a paranoia check... */
2777 	ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2778 	if (ret < 0)
2779 		goto out;
2780 
2781 	ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2782 	if (ret < 0)
2783 		goto out;
2784 
2785 	ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2786 
2787 out:
2788 	mutex_unlock(&rdev->mutex);
2789 	return ret;
2790 }
2791 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2792 
_regulator_get_voltage(struct regulator_dev * rdev)2793 static int _regulator_get_voltage(struct regulator_dev *rdev)
2794 {
2795 	int sel, ret;
2796 
2797 	if (rdev->desc->ops->get_voltage_sel) {
2798 		sel = rdev->desc->ops->get_voltage_sel(rdev);
2799 		if (sel < 0)
2800 			return sel;
2801 		ret = rdev->desc->ops->list_voltage(rdev, sel);
2802 	} else if (rdev->desc->ops->get_voltage) {
2803 		ret = rdev->desc->ops->get_voltage(rdev);
2804 	} else if (rdev->desc->ops->list_voltage) {
2805 		ret = rdev->desc->ops->list_voltage(rdev, 0);
2806 	} else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2807 		ret = rdev->desc->fixed_uV;
2808 	} else if (rdev->supply) {
2809 		ret = regulator_get_voltage(rdev->supply);
2810 	} else {
2811 		return -EINVAL;
2812 	}
2813 
2814 	if (ret < 0)
2815 		return ret;
2816 	return ret - rdev->constraints->uV_offset;
2817 }
2818 
2819 /**
2820  * regulator_get_voltage - get regulator output voltage
2821  * @regulator: regulator source
2822  *
2823  * This returns the current regulator voltage in uV.
2824  *
2825  * NOTE: If the regulator is disabled it will return the voltage value. This
2826  * function should not be used to determine regulator state.
2827  */
regulator_get_voltage(struct regulator * regulator)2828 int regulator_get_voltage(struct regulator *regulator)
2829 {
2830 	int ret;
2831 
2832 	mutex_lock(&regulator->rdev->mutex);
2833 
2834 	ret = _regulator_get_voltage(regulator->rdev);
2835 
2836 	mutex_unlock(&regulator->rdev->mutex);
2837 
2838 	return ret;
2839 }
2840 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2841 
2842 /**
2843  * regulator_set_current_limit - set regulator output current limit
2844  * @regulator: regulator source
2845  * @min_uA: Minimum supported current in uA
2846  * @max_uA: Maximum supported current in uA
2847  *
2848  * Sets current sink to the desired output current. This can be set during
2849  * any regulator state. IOW, regulator can be disabled or enabled.
2850  *
2851  * If the regulator is enabled then the current will change to the new value
2852  * immediately otherwise if the regulator is disabled the regulator will
2853  * output at the new current when enabled.
2854  *
2855  * NOTE: Regulator system constraints must be set for this regulator before
2856  * calling this function otherwise this call will fail.
2857  */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)2858 int regulator_set_current_limit(struct regulator *regulator,
2859 			       int min_uA, int max_uA)
2860 {
2861 	struct regulator_dev *rdev = regulator->rdev;
2862 	int ret;
2863 
2864 	mutex_lock(&rdev->mutex);
2865 
2866 	/* sanity check */
2867 	if (!rdev->desc->ops->set_current_limit) {
2868 		ret = -EINVAL;
2869 		goto out;
2870 	}
2871 
2872 	/* constraints check */
2873 	ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2874 	if (ret < 0)
2875 		goto out;
2876 
2877 	ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2878 out:
2879 	mutex_unlock(&rdev->mutex);
2880 	return ret;
2881 }
2882 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2883 
_regulator_get_current_limit(struct regulator_dev * rdev)2884 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2885 {
2886 	int ret;
2887 
2888 	mutex_lock(&rdev->mutex);
2889 
2890 	/* sanity check */
2891 	if (!rdev->desc->ops->get_current_limit) {
2892 		ret = -EINVAL;
2893 		goto out;
2894 	}
2895 
2896 	ret = rdev->desc->ops->get_current_limit(rdev);
2897 out:
2898 	mutex_unlock(&rdev->mutex);
2899 	return ret;
2900 }
2901 
2902 /**
2903  * regulator_get_current_limit - get regulator output current
2904  * @regulator: regulator source
2905  *
2906  * This returns the current supplied by the specified current sink in uA.
2907  *
2908  * NOTE: If the regulator is disabled it will return the current value. This
2909  * function should not be used to determine regulator state.
2910  */
regulator_get_current_limit(struct regulator * regulator)2911 int regulator_get_current_limit(struct regulator *regulator)
2912 {
2913 	return _regulator_get_current_limit(regulator->rdev);
2914 }
2915 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2916 
2917 /**
2918  * regulator_set_mode - set regulator operating mode
2919  * @regulator: regulator source
2920  * @mode: operating mode - one of the REGULATOR_MODE constants
2921  *
2922  * Set regulator operating mode to increase regulator efficiency or improve
2923  * regulation performance.
2924  *
2925  * NOTE: Regulator system constraints must be set for this regulator before
2926  * calling this function otherwise this call will fail.
2927  */
regulator_set_mode(struct regulator * regulator,unsigned int mode)2928 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2929 {
2930 	struct regulator_dev *rdev = regulator->rdev;
2931 	int ret;
2932 	int regulator_curr_mode;
2933 
2934 	mutex_lock(&rdev->mutex);
2935 
2936 	/* sanity check */
2937 	if (!rdev->desc->ops->set_mode) {
2938 		ret = -EINVAL;
2939 		goto out;
2940 	}
2941 
2942 	/* return if the same mode is requested */
2943 	if (rdev->desc->ops->get_mode) {
2944 		regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2945 		if (regulator_curr_mode == mode) {
2946 			ret = 0;
2947 			goto out;
2948 		}
2949 	}
2950 
2951 	/* constraints check */
2952 	ret = regulator_mode_constrain(rdev, &mode);
2953 	if (ret < 0)
2954 		goto out;
2955 
2956 	ret = rdev->desc->ops->set_mode(rdev, mode);
2957 out:
2958 	mutex_unlock(&rdev->mutex);
2959 	return ret;
2960 }
2961 EXPORT_SYMBOL_GPL(regulator_set_mode);
2962 
_regulator_get_mode(struct regulator_dev * rdev)2963 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2964 {
2965 	int ret;
2966 
2967 	mutex_lock(&rdev->mutex);
2968 
2969 	/* sanity check */
2970 	if (!rdev->desc->ops->get_mode) {
2971 		ret = -EINVAL;
2972 		goto out;
2973 	}
2974 
2975 	ret = rdev->desc->ops->get_mode(rdev);
2976 out:
2977 	mutex_unlock(&rdev->mutex);
2978 	return ret;
2979 }
2980 
2981 /**
2982  * regulator_get_mode - get regulator operating mode
2983  * @regulator: regulator source
2984  *
2985  * Get the current regulator operating mode.
2986  */
regulator_get_mode(struct regulator * regulator)2987 unsigned int regulator_get_mode(struct regulator *regulator)
2988 {
2989 	return _regulator_get_mode(regulator->rdev);
2990 }
2991 EXPORT_SYMBOL_GPL(regulator_get_mode);
2992 
2993 /**
2994  * regulator_set_optimum_mode - set regulator optimum operating mode
2995  * @regulator: regulator source
2996  * @uA_load: load current
2997  *
2998  * Notifies the regulator core of a new device load. This is then used by
2999  * DRMS (if enabled by constraints) to set the most efficient regulator
3000  * operating mode for the new regulator loading.
3001  *
3002  * Consumer devices notify their supply regulator of the maximum power
3003  * they will require (can be taken from device datasheet in the power
3004  * consumption tables) when they change operational status and hence power
3005  * state. Examples of operational state changes that can affect power
3006  * consumption are :-
3007  *
3008  *    o Device is opened / closed.
3009  *    o Device I/O is about to begin or has just finished.
3010  *    o Device is idling in between work.
3011  *
3012  * This information is also exported via sysfs to userspace.
3013  *
3014  * DRMS will sum the total requested load on the regulator and change
3015  * to the most efficient operating mode if platform constraints allow.
3016  *
3017  * Returns the new regulator mode or error.
3018  */
regulator_set_optimum_mode(struct regulator * regulator,int uA_load)3019 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
3020 {
3021 	struct regulator_dev *rdev = regulator->rdev;
3022 	struct regulator *consumer;
3023 	int ret, output_uV, input_uV = 0, total_uA_load = 0;
3024 	unsigned int mode;
3025 
3026 	if (rdev->supply)
3027 		input_uV = regulator_get_voltage(rdev->supply);
3028 
3029 	mutex_lock(&rdev->mutex);
3030 
3031 	/*
3032 	 * first check to see if we can set modes at all, otherwise just
3033 	 * tell the consumer everything is OK.
3034 	 */
3035 	regulator->uA_load = uA_load;
3036 	ret = regulator_check_drms(rdev);
3037 	if (ret < 0) {
3038 		ret = 0;
3039 		goto out;
3040 	}
3041 
3042 	if (!rdev->desc->ops->get_optimum_mode)
3043 		goto out;
3044 
3045 	/*
3046 	 * we can actually do this so any errors are indicators of
3047 	 * potential real failure.
3048 	 */
3049 	ret = -EINVAL;
3050 
3051 	if (!rdev->desc->ops->set_mode)
3052 		goto out;
3053 
3054 	/* get output voltage */
3055 	output_uV = _regulator_get_voltage(rdev);
3056 	if (output_uV <= 0) {
3057 		rdev_err(rdev, "invalid output voltage found\n");
3058 		goto out;
3059 	}
3060 
3061 	/* No supply? Use constraint voltage */
3062 	if (input_uV <= 0)
3063 		input_uV = rdev->constraints->input_uV;
3064 	if (input_uV <= 0) {
3065 		rdev_err(rdev, "invalid input voltage found\n");
3066 		goto out;
3067 	}
3068 
3069 	/* calc total requested load for this regulator */
3070 	list_for_each_entry(consumer, &rdev->consumer_list, list)
3071 		total_uA_load += consumer->uA_load;
3072 
3073 	mode = rdev->desc->ops->get_optimum_mode(rdev,
3074 						 input_uV, output_uV,
3075 						 total_uA_load);
3076 	ret = regulator_mode_constrain(rdev, &mode);
3077 	if (ret < 0) {
3078 		rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
3079 			 total_uA_load, input_uV, output_uV);
3080 		goto out;
3081 	}
3082 
3083 	ret = rdev->desc->ops->set_mode(rdev, mode);
3084 	if (ret < 0) {
3085 		rdev_err(rdev, "failed to set optimum mode %x\n", mode);
3086 		goto out;
3087 	}
3088 	ret = mode;
3089 out:
3090 	mutex_unlock(&rdev->mutex);
3091 	return ret;
3092 }
3093 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
3094 
3095 /**
3096  * regulator_allow_bypass - allow the regulator to go into bypass mode
3097  *
3098  * @regulator: Regulator to configure
3099  * @enable: enable or disable bypass mode
3100  *
3101  * Allow the regulator to go into bypass mode if all other consumers
3102  * for the regulator also enable bypass mode and the machine
3103  * constraints allow this.  Bypass mode means that the regulator is
3104  * simply passing the input directly to the output with no regulation.
3105  */
regulator_allow_bypass(struct regulator * regulator,bool enable)3106 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3107 {
3108 	struct regulator_dev *rdev = regulator->rdev;
3109 	int ret = 0;
3110 
3111 	if (!rdev->desc->ops->set_bypass)
3112 		return 0;
3113 
3114 	if (rdev->constraints &&
3115 	    !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3116 		return 0;
3117 
3118 	mutex_lock(&rdev->mutex);
3119 
3120 	if (enable && !regulator->bypass) {
3121 		rdev->bypass_count++;
3122 
3123 		if (rdev->bypass_count == rdev->open_count) {
3124 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3125 			if (ret != 0)
3126 				rdev->bypass_count--;
3127 		}
3128 
3129 	} else if (!enable && regulator->bypass) {
3130 		rdev->bypass_count--;
3131 
3132 		if (rdev->bypass_count != rdev->open_count) {
3133 			ret = rdev->desc->ops->set_bypass(rdev, enable);
3134 			if (ret != 0)
3135 				rdev->bypass_count++;
3136 		}
3137 	}
3138 
3139 	if (ret == 0)
3140 		regulator->bypass = enable;
3141 
3142 	mutex_unlock(&rdev->mutex);
3143 
3144 	return ret;
3145 }
3146 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3147 
3148 /**
3149  * regulator_register_notifier - register regulator event notifier
3150  * @regulator: regulator source
3151  * @nb: notifier block
3152  *
3153  * Register notifier block to receive regulator events.
3154  */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)3155 int regulator_register_notifier(struct regulator *regulator,
3156 			      struct notifier_block *nb)
3157 {
3158 	return blocking_notifier_chain_register(&regulator->rdev->notifier,
3159 						nb);
3160 }
3161 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3162 
3163 /**
3164  * regulator_unregister_notifier - unregister regulator event notifier
3165  * @regulator: regulator source
3166  * @nb: notifier block
3167  *
3168  * Unregister regulator event notifier block.
3169  */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)3170 int regulator_unregister_notifier(struct regulator *regulator,
3171 				struct notifier_block *nb)
3172 {
3173 	return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3174 						  nb);
3175 }
3176 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3177 
3178 /* notify regulator consumers and downstream regulator consumers.
3179  * Note mutex must be held by caller.
3180  */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)3181 static int _notifier_call_chain(struct regulator_dev *rdev,
3182 				  unsigned long event, void *data)
3183 {
3184 	/* call rdev chain first */
3185 	return blocking_notifier_call_chain(&rdev->notifier, event, data);
3186 }
3187 
3188 /**
3189  * regulator_bulk_get - get multiple regulator consumers
3190  *
3191  * @dev:           Device to supply
3192  * @num_consumers: Number of consumers to register
3193  * @consumers:     Configuration of consumers; clients are stored here.
3194  *
3195  * @return 0 on success, an errno on failure.
3196  *
3197  * This helper function allows drivers to get several regulator
3198  * consumers in one operation.  If any of the regulators cannot be
3199  * acquired then any regulators that were allocated will be freed
3200  * before returning to the caller.
3201  */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)3202 int regulator_bulk_get(struct device *dev, int num_consumers,
3203 		       struct regulator_bulk_data *consumers)
3204 {
3205 	int i;
3206 	int ret;
3207 
3208 	for (i = 0; i < num_consumers; i++)
3209 		consumers[i].consumer = NULL;
3210 
3211 	for (i = 0; i < num_consumers; i++) {
3212 		consumers[i].consumer = regulator_get(dev,
3213 						      consumers[i].supply);
3214 		if (IS_ERR(consumers[i].consumer)) {
3215 			ret = PTR_ERR(consumers[i].consumer);
3216 			dev_err(dev, "Failed to get supply '%s': %d\n",
3217 				consumers[i].supply, ret);
3218 			consumers[i].consumer = NULL;
3219 			goto err;
3220 		}
3221 	}
3222 
3223 	return 0;
3224 
3225 err:
3226 	while (--i >= 0)
3227 		regulator_put(consumers[i].consumer);
3228 
3229 	return ret;
3230 }
3231 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3232 
regulator_bulk_enable_async(void * data,async_cookie_t cookie)3233 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3234 {
3235 	struct regulator_bulk_data *bulk = data;
3236 
3237 	bulk->ret = regulator_enable(bulk->consumer);
3238 }
3239 
3240 /**
3241  * regulator_bulk_enable - enable multiple regulator consumers
3242  *
3243  * @num_consumers: Number of consumers
3244  * @consumers:     Consumer data; clients are stored here.
3245  * @return         0 on success, an errno on failure
3246  *
3247  * This convenience API allows consumers to enable multiple regulator
3248  * clients in a single API call.  If any consumers cannot be enabled
3249  * then any others that were enabled will be disabled again prior to
3250  * return.
3251  */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)3252 int regulator_bulk_enable(int num_consumers,
3253 			  struct regulator_bulk_data *consumers)
3254 {
3255 	ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3256 	int i;
3257 	int ret = 0;
3258 
3259 	for (i = 0; i < num_consumers; i++) {
3260 		if (consumers[i].consumer->always_on)
3261 			consumers[i].ret = 0;
3262 		else
3263 			async_schedule_domain(regulator_bulk_enable_async,
3264 					      &consumers[i], &async_domain);
3265 	}
3266 
3267 	async_synchronize_full_domain(&async_domain);
3268 
3269 	/* If any consumer failed we need to unwind any that succeeded */
3270 	for (i = 0; i < num_consumers; i++) {
3271 		if (consumers[i].ret != 0) {
3272 			ret = consumers[i].ret;
3273 			goto err;
3274 		}
3275 	}
3276 
3277 	return 0;
3278 
3279 err:
3280 	for (i = 0; i < num_consumers; i++) {
3281 		if (consumers[i].ret < 0)
3282 			pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3283 			       consumers[i].ret);
3284 		else
3285 			regulator_disable(consumers[i].consumer);
3286 	}
3287 
3288 	return ret;
3289 }
3290 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3291 
3292 /**
3293  * regulator_bulk_disable - disable multiple regulator consumers
3294  *
3295  * @num_consumers: Number of consumers
3296  * @consumers:     Consumer data; clients are stored here.
3297  * @return         0 on success, an errno on failure
3298  *
3299  * This convenience API allows consumers to disable multiple regulator
3300  * clients in a single API call.  If any consumers cannot be disabled
3301  * then any others that were disabled will be enabled again prior to
3302  * return.
3303  */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)3304 int regulator_bulk_disable(int num_consumers,
3305 			   struct regulator_bulk_data *consumers)
3306 {
3307 	int i;
3308 	int ret, r;
3309 
3310 	for (i = num_consumers - 1; i >= 0; --i) {
3311 		ret = regulator_disable(consumers[i].consumer);
3312 		if (ret != 0)
3313 			goto err;
3314 	}
3315 
3316 	return 0;
3317 
3318 err:
3319 	pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3320 	for (++i; i < num_consumers; ++i) {
3321 		r = regulator_enable(consumers[i].consumer);
3322 		if (r != 0)
3323 			pr_err("Failed to reename %s: %d\n",
3324 			       consumers[i].supply, r);
3325 	}
3326 
3327 	return ret;
3328 }
3329 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3330 
3331 /**
3332  * regulator_bulk_force_disable - force disable multiple regulator consumers
3333  *
3334  * @num_consumers: Number of consumers
3335  * @consumers:     Consumer data; clients are stored here.
3336  * @return         0 on success, an errno on failure
3337  *
3338  * This convenience API allows consumers to forcibly disable multiple regulator
3339  * clients in a single API call.
3340  * NOTE: This should be used for situations when device damage will
3341  * likely occur if the regulators are not disabled (e.g. over temp).
3342  * Although regulator_force_disable function call for some consumers can
3343  * return error numbers, the function is called for all consumers.
3344  */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)3345 int regulator_bulk_force_disable(int num_consumers,
3346 			   struct regulator_bulk_data *consumers)
3347 {
3348 	int i;
3349 	int ret;
3350 
3351 	for (i = 0; i < num_consumers; i++)
3352 		consumers[i].ret =
3353 			    regulator_force_disable(consumers[i].consumer);
3354 
3355 	for (i = 0; i < num_consumers; i++) {
3356 		if (consumers[i].ret != 0) {
3357 			ret = consumers[i].ret;
3358 			goto out;
3359 		}
3360 	}
3361 
3362 	return 0;
3363 out:
3364 	return ret;
3365 }
3366 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3367 
3368 /**
3369  * regulator_bulk_free - free multiple regulator consumers
3370  *
3371  * @num_consumers: Number of consumers
3372  * @consumers:     Consumer data; clients are stored here.
3373  *
3374  * This convenience API allows consumers to free multiple regulator
3375  * clients in a single API call.
3376  */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)3377 void regulator_bulk_free(int num_consumers,
3378 			 struct regulator_bulk_data *consumers)
3379 {
3380 	int i;
3381 
3382 	for (i = 0; i < num_consumers; i++) {
3383 		regulator_put(consumers[i].consumer);
3384 		consumers[i].consumer = NULL;
3385 	}
3386 }
3387 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3388 
3389 /**
3390  * regulator_notifier_call_chain - call regulator event notifier
3391  * @rdev: regulator source
3392  * @event: notifier block
3393  * @data: callback-specific data.
3394  *
3395  * Called by regulator drivers to notify clients a regulator event has
3396  * occurred. We also notify regulator clients downstream.
3397  * Note lock must be held by caller.
3398  */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)3399 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3400 				  unsigned long event, void *data)
3401 {
3402 	_notifier_call_chain(rdev, event, data);
3403 	return NOTIFY_DONE;
3404 
3405 }
3406 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3407 
3408 /**
3409  * regulator_mode_to_status - convert a regulator mode into a status
3410  *
3411  * @mode: Mode to convert
3412  *
3413  * Convert a regulator mode into a status.
3414  */
regulator_mode_to_status(unsigned int mode)3415 int regulator_mode_to_status(unsigned int mode)
3416 {
3417 	switch (mode) {
3418 	case REGULATOR_MODE_FAST:
3419 		return REGULATOR_STATUS_FAST;
3420 	case REGULATOR_MODE_NORMAL:
3421 		return REGULATOR_STATUS_NORMAL;
3422 	case REGULATOR_MODE_IDLE:
3423 		return REGULATOR_STATUS_IDLE;
3424 	case REGULATOR_MODE_STANDBY:
3425 		return REGULATOR_STATUS_STANDBY;
3426 	default:
3427 		return REGULATOR_STATUS_UNDEFINED;
3428 	}
3429 }
3430 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3431 
3432 /*
3433  * To avoid cluttering sysfs (and memory) with useless state, only
3434  * create attributes that can be meaningfully displayed.
3435  */
add_regulator_attributes(struct regulator_dev * rdev)3436 static int add_regulator_attributes(struct regulator_dev *rdev)
3437 {
3438 	struct device *dev = &rdev->dev;
3439 	const struct regulator_ops *ops = rdev->desc->ops;
3440 	int status = 0;
3441 
3442 	/* some attributes need specific methods to be displayed */
3443 	if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3444 	    (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3445 	    (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3446 		(rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3447 		status = device_create_file(dev, &dev_attr_microvolts);
3448 		if (status < 0)
3449 			return status;
3450 	}
3451 	if (ops->get_current_limit) {
3452 		status = device_create_file(dev, &dev_attr_microamps);
3453 		if (status < 0)
3454 			return status;
3455 	}
3456 	if (ops->get_mode) {
3457 		status = device_create_file(dev, &dev_attr_opmode);
3458 		if (status < 0)
3459 			return status;
3460 	}
3461 	if (rdev->ena_pin || ops->is_enabled) {
3462 		status = device_create_file(dev, &dev_attr_state);
3463 		if (status < 0)
3464 			return status;
3465 	}
3466 	if (ops->get_status) {
3467 		status = device_create_file(dev, &dev_attr_status);
3468 		if (status < 0)
3469 			return status;
3470 	}
3471 	if (ops->get_bypass) {
3472 		status = device_create_file(dev, &dev_attr_bypass);
3473 		if (status < 0)
3474 			return status;
3475 	}
3476 
3477 	/* some attributes are type-specific */
3478 	if (rdev->desc->type == REGULATOR_CURRENT) {
3479 		status = device_create_file(dev, &dev_attr_requested_microamps);
3480 		if (status < 0)
3481 			return status;
3482 	}
3483 
3484 	/* all the other attributes exist to support constraints;
3485 	 * don't show them if there are no constraints, or if the
3486 	 * relevant supporting methods are missing.
3487 	 */
3488 	if (!rdev->constraints)
3489 		return status;
3490 
3491 	/* constraints need specific supporting methods */
3492 	if (ops->set_voltage || ops->set_voltage_sel) {
3493 		status = device_create_file(dev, &dev_attr_min_microvolts);
3494 		if (status < 0)
3495 			return status;
3496 		status = device_create_file(dev, &dev_attr_max_microvolts);
3497 		if (status < 0)
3498 			return status;
3499 	}
3500 	if (ops->set_current_limit) {
3501 		status = device_create_file(dev, &dev_attr_min_microamps);
3502 		if (status < 0)
3503 			return status;
3504 		status = device_create_file(dev, &dev_attr_max_microamps);
3505 		if (status < 0)
3506 			return status;
3507 	}
3508 
3509 	status = device_create_file(dev, &dev_attr_suspend_standby_state);
3510 	if (status < 0)
3511 		return status;
3512 	status = device_create_file(dev, &dev_attr_suspend_mem_state);
3513 	if (status < 0)
3514 		return status;
3515 	status = device_create_file(dev, &dev_attr_suspend_disk_state);
3516 	if (status < 0)
3517 		return status;
3518 
3519 	if (ops->set_suspend_voltage) {
3520 		status = device_create_file(dev,
3521 				&dev_attr_suspend_standby_microvolts);
3522 		if (status < 0)
3523 			return status;
3524 		status = device_create_file(dev,
3525 				&dev_attr_suspend_mem_microvolts);
3526 		if (status < 0)
3527 			return status;
3528 		status = device_create_file(dev,
3529 				&dev_attr_suspend_disk_microvolts);
3530 		if (status < 0)
3531 			return status;
3532 	}
3533 
3534 	if (ops->set_suspend_mode) {
3535 		status = device_create_file(dev,
3536 				&dev_attr_suspend_standby_mode);
3537 		if (status < 0)
3538 			return status;
3539 		status = device_create_file(dev,
3540 				&dev_attr_suspend_mem_mode);
3541 		if (status < 0)
3542 			return status;
3543 		status = device_create_file(dev,
3544 				&dev_attr_suspend_disk_mode);
3545 		if (status < 0)
3546 			return status;
3547 	}
3548 
3549 	return status;
3550 }
3551 
rdev_init_debugfs(struct regulator_dev * rdev)3552 static void rdev_init_debugfs(struct regulator_dev *rdev)
3553 {
3554 	rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3555 	if (!rdev->debugfs) {
3556 		rdev_warn(rdev, "Failed to create debugfs directory\n");
3557 		return;
3558 	}
3559 
3560 	debugfs_create_u32("use_count", 0444, rdev->debugfs,
3561 			   &rdev->use_count);
3562 	debugfs_create_u32("open_count", 0444, rdev->debugfs,
3563 			   &rdev->open_count);
3564 	debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3565 			   &rdev->bypass_count);
3566 }
3567 
3568 /**
3569  * regulator_register - register regulator
3570  * @regulator_desc: regulator to register
3571  * @config: runtime configuration for regulator
3572  *
3573  * Called by regulator drivers to register a regulator.
3574  * Returns a valid pointer to struct regulator_dev on success
3575  * or an ERR_PTR() on error.
3576  */
3577 struct regulator_dev *
regulator_register(const struct regulator_desc * regulator_desc,const struct regulator_config * config)3578 regulator_register(const struct regulator_desc *regulator_desc,
3579 		   const struct regulator_config *config)
3580 {
3581 	const struct regulation_constraints *constraints = NULL;
3582 	const struct regulator_init_data *init_data;
3583 	static atomic_t regulator_no = ATOMIC_INIT(0);
3584 	struct regulator_dev *rdev;
3585 	struct device *dev;
3586 	int ret, i;
3587 	const char *supply = NULL;
3588 
3589 	if (regulator_desc == NULL || config == NULL)
3590 		return ERR_PTR(-EINVAL);
3591 
3592 	dev = config->dev;
3593 	WARN_ON(!dev);
3594 
3595 	if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3596 		return ERR_PTR(-EINVAL);
3597 
3598 	if (regulator_desc->type != REGULATOR_VOLTAGE &&
3599 	    regulator_desc->type != REGULATOR_CURRENT)
3600 		return ERR_PTR(-EINVAL);
3601 
3602 	/* Only one of each should be implemented */
3603 	WARN_ON(regulator_desc->ops->get_voltage &&
3604 		regulator_desc->ops->get_voltage_sel);
3605 	WARN_ON(regulator_desc->ops->set_voltage &&
3606 		regulator_desc->ops->set_voltage_sel);
3607 
3608 	/* If we're using selectors we must implement list_voltage. */
3609 	if (regulator_desc->ops->get_voltage_sel &&
3610 	    !regulator_desc->ops->list_voltage) {
3611 		return ERR_PTR(-EINVAL);
3612 	}
3613 	if (regulator_desc->ops->set_voltage_sel &&
3614 	    !regulator_desc->ops->list_voltage) {
3615 		return ERR_PTR(-EINVAL);
3616 	}
3617 
3618 	rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3619 	if (rdev == NULL)
3620 		return ERR_PTR(-ENOMEM);
3621 
3622 	init_data = regulator_of_get_init_data(dev, regulator_desc,
3623 					       &rdev->dev.of_node);
3624 	if (!init_data) {
3625 		init_data = config->init_data;
3626 		rdev->dev.of_node = of_node_get(config->of_node);
3627 	}
3628 
3629 	mutex_lock(&regulator_list_mutex);
3630 
3631 	mutex_init(&rdev->mutex);
3632 	rdev->reg_data = config->driver_data;
3633 	rdev->owner = regulator_desc->owner;
3634 	rdev->desc = regulator_desc;
3635 	if (config->regmap)
3636 		rdev->regmap = config->regmap;
3637 	else if (dev_get_regmap(dev, NULL))
3638 		rdev->regmap = dev_get_regmap(dev, NULL);
3639 	else if (dev->parent)
3640 		rdev->regmap = dev_get_regmap(dev->parent, NULL);
3641 	INIT_LIST_HEAD(&rdev->consumer_list);
3642 	INIT_LIST_HEAD(&rdev->list);
3643 	BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3644 	INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3645 
3646 	/* preform any regulator specific init */
3647 	if (init_data && init_data->regulator_init) {
3648 		ret = init_data->regulator_init(rdev->reg_data);
3649 		if (ret < 0)
3650 			goto clean;
3651 	}
3652 
3653 	/* register with sysfs */
3654 	rdev->dev.class = &regulator_class;
3655 	rdev->dev.parent = dev;
3656 	dev_set_name(&rdev->dev, "regulator.%d",
3657 		     atomic_inc_return(&regulator_no) - 1);
3658 	ret = device_register(&rdev->dev);
3659 	if (ret != 0) {
3660 		put_device(&rdev->dev);
3661 		goto clean;
3662 	}
3663 
3664 	dev_set_drvdata(&rdev->dev, rdev);
3665 
3666 	if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3667 		ret = regulator_ena_gpio_request(rdev, config);
3668 		if (ret != 0) {
3669 			rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3670 				 config->ena_gpio, ret);
3671 			goto wash;
3672 		}
3673 	}
3674 
3675 	/* set regulator constraints */
3676 	if (init_data)
3677 		constraints = &init_data->constraints;
3678 
3679 	ret = set_machine_constraints(rdev, constraints);
3680 	if (ret < 0)
3681 		goto scrub;
3682 
3683 	/* add attributes supported by this regulator */
3684 	ret = add_regulator_attributes(rdev);
3685 	if (ret < 0)
3686 		goto scrub;
3687 
3688 	if (init_data && init_data->supply_regulator)
3689 		supply = init_data->supply_regulator;
3690 	else if (regulator_desc->supply_name)
3691 		supply = regulator_desc->supply_name;
3692 
3693 	if (supply) {
3694 		struct regulator_dev *r;
3695 
3696 		r = regulator_dev_lookup(dev, supply, &ret);
3697 
3698 		if (ret == -ENODEV) {
3699 			/*
3700 			 * No supply was specified for this regulator and
3701 			 * there will never be one.
3702 			 */
3703 			ret = 0;
3704 			goto add_dev;
3705 		} else if (!r) {
3706 			dev_err(dev, "Failed to find supply %s\n", supply);
3707 			ret = -EPROBE_DEFER;
3708 			goto scrub;
3709 		}
3710 
3711 		ret = set_supply(rdev, r);
3712 		if (ret < 0)
3713 			goto scrub;
3714 
3715 		/* Enable supply if rail is enabled */
3716 		if (_regulator_is_enabled(rdev)) {
3717 			ret = regulator_enable(rdev->supply);
3718 			if (ret < 0)
3719 				goto scrub;
3720 		}
3721 	}
3722 
3723 add_dev:
3724 	/* add consumers devices */
3725 	if (init_data) {
3726 		for (i = 0; i < init_data->num_consumer_supplies; i++) {
3727 			ret = set_consumer_device_supply(rdev,
3728 				init_data->consumer_supplies[i].dev_name,
3729 				init_data->consumer_supplies[i].supply);
3730 			if (ret < 0) {
3731 				dev_err(dev, "Failed to set supply %s\n",
3732 					init_data->consumer_supplies[i].supply);
3733 				goto unset_supplies;
3734 			}
3735 		}
3736 	}
3737 
3738 	list_add(&rdev->list, &regulator_list);
3739 
3740 	rdev_init_debugfs(rdev);
3741 out:
3742 	mutex_unlock(&regulator_list_mutex);
3743 	return rdev;
3744 
3745 unset_supplies:
3746 	unset_regulator_supplies(rdev);
3747 
3748 scrub:
3749 	if (rdev->supply)
3750 		_regulator_put(rdev->supply);
3751 	regulator_ena_gpio_free(rdev);
3752 	kfree(rdev->constraints);
3753 wash:
3754 	device_unregister(&rdev->dev);
3755 	/* device core frees rdev */
3756 	rdev = ERR_PTR(ret);
3757 	goto out;
3758 
3759 clean:
3760 	kfree(rdev);
3761 	rdev = ERR_PTR(ret);
3762 	goto out;
3763 }
3764 EXPORT_SYMBOL_GPL(regulator_register);
3765 
3766 /**
3767  * regulator_unregister - unregister regulator
3768  * @rdev: regulator to unregister
3769  *
3770  * Called by regulator drivers to unregister a regulator.
3771  */
regulator_unregister(struct regulator_dev * rdev)3772 void regulator_unregister(struct regulator_dev *rdev)
3773 {
3774 	if (rdev == NULL)
3775 		return;
3776 
3777 	if (rdev->supply) {
3778 		while (rdev->use_count--)
3779 			regulator_disable(rdev->supply);
3780 		regulator_put(rdev->supply);
3781 	}
3782 	mutex_lock(&regulator_list_mutex);
3783 	debugfs_remove_recursive(rdev->debugfs);
3784 	flush_work(&rdev->disable_work.work);
3785 	WARN_ON(rdev->open_count);
3786 	unset_regulator_supplies(rdev);
3787 	list_del(&rdev->list);
3788 	kfree(rdev->constraints);
3789 	regulator_ena_gpio_free(rdev);
3790 	of_node_put(rdev->dev.of_node);
3791 	device_unregister(&rdev->dev);
3792 	mutex_unlock(&regulator_list_mutex);
3793 }
3794 EXPORT_SYMBOL_GPL(regulator_unregister);
3795 
3796 /**
3797  * regulator_suspend_prepare - prepare regulators for system wide suspend
3798  * @state: system suspend state
3799  *
3800  * Configure each regulator with it's suspend operating parameters for state.
3801  * This will usually be called by machine suspend code prior to supending.
3802  */
regulator_suspend_prepare(suspend_state_t state)3803 int regulator_suspend_prepare(suspend_state_t state)
3804 {
3805 	struct regulator_dev *rdev;
3806 	int ret = 0;
3807 
3808 	/* ON is handled by regulator active state */
3809 	if (state == PM_SUSPEND_ON)
3810 		return -EINVAL;
3811 
3812 	mutex_lock(&regulator_list_mutex);
3813 	list_for_each_entry(rdev, &regulator_list, list) {
3814 
3815 		mutex_lock(&rdev->mutex);
3816 		ret = suspend_prepare(rdev, state);
3817 		mutex_unlock(&rdev->mutex);
3818 
3819 		if (ret < 0) {
3820 			rdev_err(rdev, "failed to prepare\n");
3821 			goto out;
3822 		}
3823 	}
3824 out:
3825 	mutex_unlock(&regulator_list_mutex);
3826 	return ret;
3827 }
3828 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3829 
3830 /**
3831  * regulator_suspend_finish - resume regulators from system wide suspend
3832  *
3833  * Turn on regulators that might be turned off by regulator_suspend_prepare
3834  * and that should be turned on according to the regulators properties.
3835  */
regulator_suspend_finish(void)3836 int regulator_suspend_finish(void)
3837 {
3838 	struct regulator_dev *rdev;
3839 	int ret = 0, error;
3840 
3841 	mutex_lock(&regulator_list_mutex);
3842 	list_for_each_entry(rdev, &regulator_list, list) {
3843 		mutex_lock(&rdev->mutex);
3844 		if (rdev->use_count > 0  || rdev->constraints->always_on) {
3845 			if (!_regulator_is_enabled(rdev)) {
3846 				error = _regulator_do_enable(rdev);
3847 				if (error)
3848 					ret = error;
3849 			}
3850 		} else {
3851 			if (!have_full_constraints())
3852 				goto unlock;
3853 			if (!_regulator_is_enabled(rdev))
3854 				goto unlock;
3855 
3856 			error = _regulator_do_disable(rdev);
3857 			if (error)
3858 				ret = error;
3859 		}
3860 unlock:
3861 		mutex_unlock(&rdev->mutex);
3862 	}
3863 	mutex_unlock(&regulator_list_mutex);
3864 	return ret;
3865 }
3866 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3867 
3868 /**
3869  * regulator_has_full_constraints - the system has fully specified constraints
3870  *
3871  * Calling this function will cause the regulator API to disable all
3872  * regulators which have a zero use count and don't have an always_on
3873  * constraint in a late_initcall.
3874  *
3875  * The intention is that this will become the default behaviour in a
3876  * future kernel release so users are encouraged to use this facility
3877  * now.
3878  */
regulator_has_full_constraints(void)3879 void regulator_has_full_constraints(void)
3880 {
3881 	has_full_constraints = 1;
3882 }
3883 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3884 
3885 /**
3886  * rdev_get_drvdata - get rdev regulator driver data
3887  * @rdev: regulator
3888  *
3889  * Get rdev regulator driver private data. This call can be used in the
3890  * regulator driver context.
3891  */
rdev_get_drvdata(struct regulator_dev * rdev)3892 void *rdev_get_drvdata(struct regulator_dev *rdev)
3893 {
3894 	return rdev->reg_data;
3895 }
3896 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3897 
3898 /**
3899  * regulator_get_drvdata - get regulator driver data
3900  * @regulator: regulator
3901  *
3902  * Get regulator driver private data. This call can be used in the consumer
3903  * driver context when non API regulator specific functions need to be called.
3904  */
regulator_get_drvdata(struct regulator * regulator)3905 void *regulator_get_drvdata(struct regulator *regulator)
3906 {
3907 	return regulator->rdev->reg_data;
3908 }
3909 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3910 
3911 /**
3912  * regulator_set_drvdata - set regulator driver data
3913  * @regulator: regulator
3914  * @data: data
3915  */
regulator_set_drvdata(struct regulator * regulator,void * data)3916 void regulator_set_drvdata(struct regulator *regulator, void *data)
3917 {
3918 	regulator->rdev->reg_data = data;
3919 }
3920 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3921 
3922 /**
3923  * regulator_get_id - get regulator ID
3924  * @rdev: regulator
3925  */
rdev_get_id(struct regulator_dev * rdev)3926 int rdev_get_id(struct regulator_dev *rdev)
3927 {
3928 	return rdev->desc->id;
3929 }
3930 EXPORT_SYMBOL_GPL(rdev_get_id);
3931 
rdev_get_dev(struct regulator_dev * rdev)3932 struct device *rdev_get_dev(struct regulator_dev *rdev)
3933 {
3934 	return &rdev->dev;
3935 }
3936 EXPORT_SYMBOL_GPL(rdev_get_dev);
3937 
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)3938 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3939 {
3940 	return reg_init_data->driver_data;
3941 }
3942 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3943 
3944 #ifdef CONFIG_DEBUG_FS
supply_map_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)3945 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3946 				    size_t count, loff_t *ppos)
3947 {
3948 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3949 	ssize_t len, ret = 0;
3950 	struct regulator_map *map;
3951 
3952 	if (!buf)
3953 		return -ENOMEM;
3954 
3955 	list_for_each_entry(map, &regulator_map_list, list) {
3956 		len = snprintf(buf + ret, PAGE_SIZE - ret,
3957 			       "%s -> %s.%s\n",
3958 			       rdev_get_name(map->regulator), map->dev_name,
3959 			       map->supply);
3960 		if (len >= 0)
3961 			ret += len;
3962 		if (ret > PAGE_SIZE) {
3963 			ret = PAGE_SIZE;
3964 			break;
3965 		}
3966 	}
3967 
3968 	ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3969 
3970 	kfree(buf);
3971 
3972 	return ret;
3973 }
3974 #endif
3975 
3976 static const struct file_operations supply_map_fops = {
3977 #ifdef CONFIG_DEBUG_FS
3978 	.read = supply_map_read_file,
3979 	.llseek = default_llseek,
3980 #endif
3981 };
3982 
regulator_init(void)3983 static int __init regulator_init(void)
3984 {
3985 	int ret;
3986 
3987 	ret = class_register(&regulator_class);
3988 
3989 	debugfs_root = debugfs_create_dir("regulator", NULL);
3990 	if (!debugfs_root)
3991 		pr_warn("regulator: Failed to create debugfs directory\n");
3992 
3993 	debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3994 			    &supply_map_fops);
3995 
3996 	regulator_dummy_init();
3997 
3998 	return ret;
3999 }
4000 
4001 /* init early to allow our consumers to complete system booting */
4002 core_initcall(regulator_init);
4003 
regulator_late_cleanup(struct device * dev,void * data)4004 static int __init regulator_late_cleanup(struct device *dev, void *data)
4005 {
4006 	struct regulator_dev *rdev = dev_to_rdev(dev);
4007 	const struct regulator_ops *ops = rdev->desc->ops;
4008 	struct regulation_constraints *c = rdev->constraints;
4009 	int enabled, ret;
4010 
4011 	if (c && c->always_on)
4012 		return 0;
4013 
4014 	if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
4015 		return 0;
4016 
4017 	mutex_lock(&rdev->mutex);
4018 
4019 	if (rdev->use_count)
4020 		goto unlock;
4021 
4022 	/* If we can't read the status assume it's on. */
4023 	if (ops->is_enabled)
4024 		enabled = ops->is_enabled(rdev);
4025 	else
4026 		enabled = 1;
4027 
4028 	if (!enabled)
4029 		goto unlock;
4030 
4031 	if (have_full_constraints()) {
4032 		/* We log since this may kill the system if it goes
4033 		 * wrong. */
4034 		rdev_info(rdev, "disabling\n");
4035 		ret = _regulator_do_disable(rdev);
4036 		if (ret != 0)
4037 			rdev_err(rdev, "couldn't disable: %d\n", ret);
4038 	} else {
4039 		/* The intention is that in future we will
4040 		 * assume that full constraints are provided
4041 		 * so warn even if we aren't going to do
4042 		 * anything here.
4043 		 */
4044 		rdev_warn(rdev, "incomplete constraints, leaving on\n");
4045 	}
4046 
4047 unlock:
4048 	mutex_unlock(&rdev->mutex);
4049 
4050 	return 0;
4051 }
4052 
regulator_init_complete(void)4053 static int __init regulator_init_complete(void)
4054 {
4055 	/*
4056 	 * Since DT doesn't provide an idiomatic mechanism for
4057 	 * enabling full constraints and since it's much more natural
4058 	 * with DT to provide them just assume that a DT enabled
4059 	 * system has full constraints.
4060 	 */
4061 	if (of_have_populated_dt())
4062 		has_full_constraints = true;
4063 
4064 	/* If we have a full configuration then disable any regulators
4065 	 * we have permission to change the status for and which are
4066 	 * not in use or always_on.  This is effectively the default
4067 	 * for DT and ACPI as they have full constraints.
4068 	 */
4069 	class_for_each_device(&regulator_class, NULL, NULL,
4070 			      regulator_late_cleanup);
4071 
4072 	return 0;
4073 }
4074 late_initcall_sync(regulator_init_complete);
4075