• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45 
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "regdb.h"
60 #include "nl80211.h"
61 
62 #ifdef CONFIG_CFG80211_REG_DEBUG
63 #define REG_DBG_PRINT(format, args...)			\
64 	printk(KERN_DEBUG pr_fmt(format), ##args)
65 #else
66 #define REG_DBG_PRINT(args...)
67 #endif
68 
69 /**
70  * enum reg_request_treatment - regulatory request treatment
71  *
72  * @REG_REQ_OK: continue processing the regulatory request
73  * @REG_REQ_IGNORE: ignore the regulatory request
74  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
75  *	be intersected with the current one.
76  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
77  *	regulatory settings, and no further processing is required.
78  * @REG_REQ_USER_HINT_HANDLED: a non alpha2  user hint was handled and no
79  *	further processing is required, i.e., not need to update last_request
80  *	etc. This should be used for user hints that do not provide an alpha2
81  *	but some other type of regulatory hint, i.e., indoor operation.
82  */
83 enum reg_request_treatment {
84 	REG_REQ_OK,
85 	REG_REQ_IGNORE,
86 	REG_REQ_INTERSECT,
87 	REG_REQ_ALREADY_SET,
88 	REG_REQ_USER_HINT_HANDLED,
89 };
90 
91 static struct regulatory_request core_request_world = {
92 	.initiator = NL80211_REGDOM_SET_BY_CORE,
93 	.alpha2[0] = '0',
94 	.alpha2[1] = '0',
95 	.intersect = false,
96 	.processed = true,
97 	.country_ie_env = ENVIRON_ANY,
98 };
99 
100 /*
101  * Receipt of information from last regulatory request,
102  * protected by RTNL (and can be accessed with RCU protection)
103  */
104 static struct regulatory_request __rcu *last_request =
105 	(void __rcu *)&core_request_world;
106 
107 /* To trigger userspace events */
108 static struct platform_device *reg_pdev;
109 
110 /*
111  * Central wireless core regulatory domains, we only need two,
112  * the current one and a world regulatory domain in case we have no
113  * information to give us an alpha2.
114  * (protected by RTNL, can be read under RCU)
115  */
116 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117 
118 /*
119  * Number of devices that registered to the core
120  * that support cellular base station regulatory hints
121  * (protected by RTNL)
122  */
123 static int reg_num_devs_support_basehint;
124 
125 /*
126  * State variable indicating if the platform on which the devices
127  * are attached is operating in an indoor environment. The state variable
128  * is relevant for all registered devices.
129  * (protected by RTNL)
130  */
131 static bool reg_is_indoor;
132 
get_cfg80211_regdom(void)133 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
134 {
135 	return rtnl_dereference(cfg80211_regdomain);
136 }
137 
get_wiphy_regdom(struct wiphy * wiphy)138 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
139 {
140 	return rtnl_dereference(wiphy->regd);
141 }
142 
reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)143 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
144 {
145 	switch (dfs_region) {
146 	case NL80211_DFS_UNSET:
147 		return "unset";
148 	case NL80211_DFS_FCC:
149 		return "FCC";
150 	case NL80211_DFS_ETSI:
151 		return "ETSI";
152 	case NL80211_DFS_JP:
153 		return "JP";
154 	}
155 	return "Unknown";
156 }
157 
reg_get_dfs_region(struct wiphy * wiphy)158 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
159 {
160 	const struct ieee80211_regdomain *regd = NULL;
161 	const struct ieee80211_regdomain *wiphy_regd = NULL;
162 
163 	regd = get_cfg80211_regdom();
164 	if (!wiphy)
165 		goto out;
166 
167 	wiphy_regd = get_wiphy_regdom(wiphy);
168 	if (!wiphy_regd)
169 		goto out;
170 
171 	if (wiphy_regd->dfs_region == regd->dfs_region)
172 		goto out;
173 
174 	REG_DBG_PRINT("%s: device specific dfs_region "
175 		      "(%s) disagrees with cfg80211's "
176 		      "central dfs_region (%s)\n",
177 		      dev_name(&wiphy->dev),
178 		      reg_dfs_region_str(wiphy_regd->dfs_region),
179 		      reg_dfs_region_str(regd->dfs_region));
180 
181 out:
182 	return regd->dfs_region;
183 }
184 
rcu_free_regdom(const struct ieee80211_regdomain * r)185 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
186 {
187 	if (!r)
188 		return;
189 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
190 }
191 
get_last_request(void)192 static struct regulatory_request *get_last_request(void)
193 {
194 	return rcu_dereference_rtnl(last_request);
195 }
196 
197 /* Used to queue up regulatory hints */
198 static LIST_HEAD(reg_requests_list);
199 static spinlock_t reg_requests_lock;
200 
201 /* Used to queue up beacon hints for review */
202 static LIST_HEAD(reg_pending_beacons);
203 static spinlock_t reg_pending_beacons_lock;
204 
205 /* Used to keep track of processed beacon hints */
206 static LIST_HEAD(reg_beacon_list);
207 
208 struct reg_beacon {
209 	struct list_head list;
210 	struct ieee80211_channel chan;
211 };
212 
213 static void reg_todo(struct work_struct *work);
214 static DECLARE_WORK(reg_work, reg_todo);
215 
216 static void reg_timeout_work(struct work_struct *work);
217 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
218 
219 /* We keep a static world regulatory domain in case of the absence of CRDA */
220 static const struct ieee80211_regdomain world_regdom = {
221 	.n_reg_rules = 6,
222 	.alpha2 =  "00",
223 	.reg_rules = {
224 		/* IEEE 802.11b/g, channels 1..11 */
225 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
226 		/* IEEE 802.11b/g, channels 12..13. */
227 		REG_RULE(2467-10, 2472+10, 40, 6, 20,
228 			NL80211_RRF_NO_IR),
229 		/* IEEE 802.11 channel 14 - Only JP enables
230 		 * this and for 802.11b only */
231 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
232 			NL80211_RRF_NO_IR |
233 			NL80211_RRF_NO_OFDM),
234 		/* IEEE 802.11a, channel 36..48 */
235 		REG_RULE(5180-10, 5240+10, 160, 6, 20,
236                         NL80211_RRF_NO_IR),
237 
238 		/* IEEE 802.11a, channel 52..64 - DFS required */
239 		REG_RULE(5260-10, 5320+10, 160, 6, 20,
240 			NL80211_RRF_NO_IR |
241 			NL80211_RRF_DFS),
242 
243 		/* IEEE 802.11a, channel 100..144 - DFS required */
244 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
245 			NL80211_RRF_NO_IR |
246 			NL80211_RRF_DFS),
247 
248 		/* IEEE 802.11a, channel 149..165 */
249 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
250 			NL80211_RRF_NO_IR),
251 
252 		/* IEEE 802.11ad (60gHz), channels 1..3 */
253 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
254 	}
255 };
256 
257 /* protected by RTNL */
258 static const struct ieee80211_regdomain *cfg80211_world_regdom =
259 	&world_regdom;
260 
261 static char *ieee80211_regdom = "00";
262 static char user_alpha2[2];
263 
264 module_param(ieee80211_regdom, charp, 0444);
265 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
266 
reg_free_request(struct regulatory_request * request)267 static void reg_free_request(struct regulatory_request *request)
268 {
269 	if (request != get_last_request())
270 		kfree(request);
271 }
272 
reg_free_last_request(void)273 static void reg_free_last_request(void)
274 {
275 	struct regulatory_request *lr = get_last_request();
276 
277 	if (lr != &core_request_world && lr)
278 		kfree_rcu(lr, rcu_head);
279 }
280 
reg_update_last_request(struct regulatory_request * request)281 static void reg_update_last_request(struct regulatory_request *request)
282 {
283 	struct regulatory_request *lr;
284 
285 	lr = get_last_request();
286 	if (lr == request)
287 		return;
288 
289 	reg_free_last_request();
290 	rcu_assign_pointer(last_request, request);
291 }
292 
reset_regdomains(bool full_reset,const struct ieee80211_regdomain * new_regdom)293 static void reset_regdomains(bool full_reset,
294 			     const struct ieee80211_regdomain *new_regdom)
295 {
296 	const struct ieee80211_regdomain *r;
297 
298 	ASSERT_RTNL();
299 
300 	r = get_cfg80211_regdom();
301 
302 	/* avoid freeing static information or freeing something twice */
303 	if (r == cfg80211_world_regdom)
304 		r = NULL;
305 	if (cfg80211_world_regdom == &world_regdom)
306 		cfg80211_world_regdom = NULL;
307 	if (r == &world_regdom)
308 		r = NULL;
309 
310 	rcu_free_regdom(r);
311 	rcu_free_regdom(cfg80211_world_regdom);
312 
313 	cfg80211_world_regdom = &world_regdom;
314 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
315 
316 	if (!full_reset)
317 		return;
318 
319 	reg_update_last_request(&core_request_world);
320 }
321 
322 /*
323  * Dynamic world regulatory domain requested by the wireless
324  * core upon initialization
325  */
update_world_regdomain(const struct ieee80211_regdomain * rd)326 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
327 {
328 	struct regulatory_request *lr;
329 
330 	lr = get_last_request();
331 
332 	WARN_ON(!lr);
333 
334 	reset_regdomains(false, rd);
335 
336 	cfg80211_world_regdom = rd;
337 }
338 
is_world_regdom(const char * alpha2)339 bool is_world_regdom(const char *alpha2)
340 {
341 	if (!alpha2)
342 		return false;
343 	return alpha2[0] == '0' && alpha2[1] == '0';
344 }
345 
is_alpha2_set(const char * alpha2)346 static bool is_alpha2_set(const char *alpha2)
347 {
348 	if (!alpha2)
349 		return false;
350 	return alpha2[0] && alpha2[1];
351 }
352 
is_unknown_alpha2(const char * alpha2)353 static bool is_unknown_alpha2(const char *alpha2)
354 {
355 	if (!alpha2)
356 		return false;
357 	/*
358 	 * Special case where regulatory domain was built by driver
359 	 * but a specific alpha2 cannot be determined
360 	 */
361 	return alpha2[0] == '9' && alpha2[1] == '9';
362 }
363 
is_intersected_alpha2(const char * alpha2)364 static bool is_intersected_alpha2(const char *alpha2)
365 {
366 	if (!alpha2)
367 		return false;
368 	/*
369 	 * Special case where regulatory domain is the
370 	 * result of an intersection between two regulatory domain
371 	 * structures
372 	 */
373 	return alpha2[0] == '9' && alpha2[1] == '8';
374 }
375 
is_an_alpha2(const char * alpha2)376 static bool is_an_alpha2(const char *alpha2)
377 {
378 	if (!alpha2)
379 		return false;
380 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
381 }
382 
alpha2_equal(const char * alpha2_x,const char * alpha2_y)383 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
384 {
385 	if (!alpha2_x || !alpha2_y)
386 		return false;
387 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
388 }
389 
regdom_changes(const char * alpha2)390 static bool regdom_changes(const char *alpha2)
391 {
392 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
393 
394 	if (!r)
395 		return true;
396 	return !alpha2_equal(r->alpha2, alpha2);
397 }
398 
399 /*
400  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
401  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
402  * has ever been issued.
403  */
is_user_regdom_saved(void)404 static bool is_user_regdom_saved(void)
405 {
406 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
407 		return false;
408 
409 	/* This would indicate a mistake on the design */
410 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
411 		 "Unexpected user alpha2: %c%c\n",
412 		 user_alpha2[0], user_alpha2[1]))
413 		return false;
414 
415 	return true;
416 }
417 
418 static const struct ieee80211_regdomain *
reg_copy_regd(const struct ieee80211_regdomain * src_regd)419 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
420 {
421 	struct ieee80211_regdomain *regd;
422 	int size_of_regd;
423 	unsigned int i;
424 
425 	size_of_regd =
426 		sizeof(struct ieee80211_regdomain) +
427 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
428 
429 	regd = kzalloc(size_of_regd, GFP_KERNEL);
430 	if (!regd)
431 		return ERR_PTR(-ENOMEM);
432 
433 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
434 
435 	for (i = 0; i < src_regd->n_reg_rules; i++)
436 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
437 		       sizeof(struct ieee80211_reg_rule));
438 
439 	return regd;
440 }
441 
442 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
443 struct reg_regdb_search_request {
444 	char alpha2[2];
445 	struct list_head list;
446 };
447 
448 static LIST_HEAD(reg_regdb_search_list);
449 static DEFINE_MUTEX(reg_regdb_search_mutex);
450 
reg_regdb_search(struct work_struct * work)451 static void reg_regdb_search(struct work_struct *work)
452 {
453 	struct reg_regdb_search_request *request;
454 	const struct ieee80211_regdomain *curdom, *regdom = NULL;
455 	int i;
456 
457 	rtnl_lock();
458 
459 	mutex_lock(&reg_regdb_search_mutex);
460 	while (!list_empty(&reg_regdb_search_list)) {
461 		request = list_first_entry(&reg_regdb_search_list,
462 					   struct reg_regdb_search_request,
463 					   list);
464 		list_del(&request->list);
465 
466 		for (i = 0; i < reg_regdb_size; i++) {
467 			curdom = reg_regdb[i];
468 
469 			if (alpha2_equal(request->alpha2, curdom->alpha2)) {
470 				regdom = reg_copy_regd(curdom);
471 				break;
472 			}
473 		}
474 
475 		kfree(request);
476 	}
477 	mutex_unlock(&reg_regdb_search_mutex);
478 
479 	if (!IS_ERR_OR_NULL(regdom))
480 		set_regdom(regdom);
481 
482 	rtnl_unlock();
483 }
484 
485 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
486 
reg_regdb_query(const char * alpha2)487 static void reg_regdb_query(const char *alpha2)
488 {
489 	struct reg_regdb_search_request *request;
490 
491 	if (!alpha2)
492 		return;
493 
494 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
495 	if (!request)
496 		return;
497 
498 	memcpy(request->alpha2, alpha2, 2);
499 
500 	mutex_lock(&reg_regdb_search_mutex);
501 	list_add_tail(&request->list, &reg_regdb_search_list);
502 	mutex_unlock(&reg_regdb_search_mutex);
503 
504 	schedule_work(&reg_regdb_work);
505 }
506 
507 /* Feel free to add any other sanity checks here */
reg_regdb_size_check(void)508 static void reg_regdb_size_check(void)
509 {
510 	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
511 	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
512 }
513 #else
reg_regdb_size_check(void)514 static inline void reg_regdb_size_check(void) {}
reg_regdb_query(const char * alpha2)515 static inline void reg_regdb_query(const char *alpha2) {}
516 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
517 
518 /*
519  * This lets us keep regulatory code which is updated on a regulatory
520  * basis in userspace.
521  */
call_crda(const char * alpha2)522 static int call_crda(const char *alpha2)
523 {
524 	char country[12];
525 	char *env[] = { country, NULL };
526 
527 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
528 		 alpha2[0], alpha2[1]);
529 
530 	if (!is_world_regdom((char *) alpha2))
531 		pr_info("Calling CRDA for country: %c%c\n",
532 			alpha2[0], alpha2[1]);
533 	else
534 		pr_info("Calling CRDA to update world regulatory domain\n");
535 
536 	/* query internal regulatory database (if it exists) */
537 	reg_regdb_query(alpha2);
538 
539 	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
540 }
541 
542 static enum reg_request_treatment
reg_call_crda(struct regulatory_request * request)543 reg_call_crda(struct regulatory_request *request)
544 {
545 	if (call_crda(request->alpha2))
546 		return REG_REQ_IGNORE;
547 	return REG_REQ_OK;
548 }
549 
reg_is_valid_request(const char * alpha2)550 bool reg_is_valid_request(const char *alpha2)
551 {
552 	struct regulatory_request *lr = get_last_request();
553 
554 	if (!lr || lr->processed)
555 		return false;
556 
557 	return alpha2_equal(lr->alpha2, alpha2);
558 }
559 
reg_get_regdomain(struct wiphy * wiphy)560 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
561 {
562 	struct regulatory_request *lr = get_last_request();
563 
564 	/*
565 	 * Follow the driver's regulatory domain, if present, unless a country
566 	 * IE has been processed or a user wants to help complaince further
567 	 */
568 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
569 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
570 	    wiphy->regd)
571 		return get_wiphy_regdom(wiphy);
572 
573 	return get_cfg80211_regdom();
574 }
575 
reg_get_max_bandwidth(const struct ieee80211_regdomain * rd,const struct ieee80211_reg_rule * rule)576 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
577 				   const struct ieee80211_reg_rule *rule)
578 {
579 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
580 	const struct ieee80211_freq_range *freq_range_tmp;
581 	const struct ieee80211_reg_rule *tmp;
582 	u32 start_freq, end_freq, idx, no;
583 
584 	for (idx = 0; idx < rd->n_reg_rules; idx++)
585 		if (rule == &rd->reg_rules[idx])
586 			break;
587 
588 	if (idx == rd->n_reg_rules)
589 		return 0;
590 
591 	/* get start_freq */
592 	no = idx;
593 
594 	while (no) {
595 		tmp = &rd->reg_rules[--no];
596 		freq_range_tmp = &tmp->freq_range;
597 
598 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
599 			break;
600 
601 		freq_range = freq_range_tmp;
602 	}
603 
604 	start_freq = freq_range->start_freq_khz;
605 
606 	/* get end_freq */
607 	freq_range = &rule->freq_range;
608 	no = idx;
609 
610 	while (no < rd->n_reg_rules - 1) {
611 		tmp = &rd->reg_rules[++no];
612 		freq_range_tmp = &tmp->freq_range;
613 
614 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
615 			break;
616 
617 		freq_range = freq_range_tmp;
618 	}
619 
620 	end_freq = freq_range->end_freq_khz;
621 
622 	return end_freq - start_freq;
623 }
624 
625 /* Sanity check on a regulatory rule */
is_valid_reg_rule(const struct ieee80211_reg_rule * rule)626 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
627 {
628 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
629 	u32 freq_diff;
630 
631 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
632 		return false;
633 
634 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
635 		return false;
636 
637 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
638 
639 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
640 	    freq_range->max_bandwidth_khz > freq_diff)
641 		return false;
642 
643 	return true;
644 }
645 
is_valid_rd(const struct ieee80211_regdomain * rd)646 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
647 {
648 	const struct ieee80211_reg_rule *reg_rule = NULL;
649 	unsigned int i;
650 
651 	if (!rd->n_reg_rules)
652 		return false;
653 
654 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
655 		return false;
656 
657 	for (i = 0; i < rd->n_reg_rules; i++) {
658 		reg_rule = &rd->reg_rules[i];
659 		if (!is_valid_reg_rule(reg_rule))
660 			return false;
661 	}
662 
663 	return true;
664 }
665 
reg_does_bw_fit(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)666 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
667 			    u32 center_freq_khz, u32 bw_khz)
668 {
669 	u32 start_freq_khz, end_freq_khz;
670 
671 	start_freq_khz = center_freq_khz - (bw_khz/2);
672 	end_freq_khz = center_freq_khz + (bw_khz/2);
673 
674 	if (start_freq_khz >= freq_range->start_freq_khz &&
675 	    end_freq_khz <= freq_range->end_freq_khz)
676 		return true;
677 
678 	return false;
679 }
680 
681 /**
682  * freq_in_rule_band - tells us if a frequency is in a frequency band
683  * @freq_range: frequency rule we want to query
684  * @freq_khz: frequency we are inquiring about
685  *
686  * This lets us know if a specific frequency rule is or is not relevant to
687  * a specific frequency's band. Bands are device specific and artificial
688  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
689  * however it is safe for now to assume that a frequency rule should not be
690  * part of a frequency's band if the start freq or end freq are off by more
691  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
692  * 60 GHz band.
693  * This resolution can be lowered and should be considered as we add
694  * regulatory rule support for other "bands".
695  **/
freq_in_rule_band(const struct ieee80211_freq_range * freq_range,u32 freq_khz)696 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
697 			      u32 freq_khz)
698 {
699 #define ONE_GHZ_IN_KHZ	1000000
700 	/*
701 	 * From 802.11ad: directional multi-gigabit (DMG):
702 	 * Pertaining to operation in a frequency band containing a channel
703 	 * with the Channel starting frequency above 45 GHz.
704 	 */
705 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
706 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
707 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
708 		return true;
709 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
710 		return true;
711 	return false;
712 #undef ONE_GHZ_IN_KHZ
713 }
714 
715 /*
716  * Later on we can perhaps use the more restrictive DFS
717  * region but we don't have information for that yet so
718  * for now simply disallow conflicts.
719  */
720 static enum nl80211_dfs_regions
reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,const enum nl80211_dfs_regions dfs_region2)721 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
722 			 const enum nl80211_dfs_regions dfs_region2)
723 {
724 	if (dfs_region1 != dfs_region2)
725 		return NL80211_DFS_UNSET;
726 	return dfs_region1;
727 }
728 
729 /*
730  * Helper for regdom_intersect(), this does the real
731  * mathematical intersection fun
732  */
reg_rules_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2,const struct ieee80211_reg_rule * rule1,const struct ieee80211_reg_rule * rule2,struct ieee80211_reg_rule * intersected_rule)733 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
734 			       const struct ieee80211_regdomain *rd2,
735 			       const struct ieee80211_reg_rule *rule1,
736 			       const struct ieee80211_reg_rule *rule2,
737 			       struct ieee80211_reg_rule *intersected_rule)
738 {
739 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
740 	struct ieee80211_freq_range *freq_range;
741 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
742 	struct ieee80211_power_rule *power_rule;
743 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
744 
745 	freq_range1 = &rule1->freq_range;
746 	freq_range2 = &rule2->freq_range;
747 	freq_range = &intersected_rule->freq_range;
748 
749 	power_rule1 = &rule1->power_rule;
750 	power_rule2 = &rule2->power_rule;
751 	power_rule = &intersected_rule->power_rule;
752 
753 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
754 					 freq_range2->start_freq_khz);
755 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
756 				       freq_range2->end_freq_khz);
757 
758 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
759 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
760 
761 	if (rule1->flags & NL80211_RRF_AUTO_BW)
762 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
763 	if (rule2->flags & NL80211_RRF_AUTO_BW)
764 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
765 
766 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
767 
768 	intersected_rule->flags = rule1->flags | rule2->flags;
769 
770 	/*
771 	 * In case NL80211_RRF_AUTO_BW requested for both rules
772 	 * set AUTO_BW in intersected rule also. Next we will
773 	 * calculate BW correctly in handle_channel function.
774 	 * In other case remove AUTO_BW flag while we calculate
775 	 * maximum bandwidth correctly and auto calculation is
776 	 * not required.
777 	 */
778 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
779 	    (rule2->flags & NL80211_RRF_AUTO_BW))
780 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
781 	else
782 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
783 
784 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
785 	if (freq_range->max_bandwidth_khz > freq_diff)
786 		freq_range->max_bandwidth_khz = freq_diff;
787 
788 	power_rule->max_eirp = min(power_rule1->max_eirp,
789 		power_rule2->max_eirp);
790 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
791 		power_rule2->max_antenna_gain);
792 
793 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
794 					   rule2->dfs_cac_ms);
795 
796 	if (!is_valid_reg_rule(intersected_rule))
797 		return -EINVAL;
798 
799 	return 0;
800 }
801 
802 /* check whether old rule contains new rule */
rule_contains(struct ieee80211_reg_rule * r1,struct ieee80211_reg_rule * r2)803 static bool rule_contains(struct ieee80211_reg_rule *r1,
804 			  struct ieee80211_reg_rule *r2)
805 {
806 	/* for simplicity, currently consider only same flags */
807 	if (r1->flags != r2->flags)
808 		return false;
809 
810 	/* verify r1 is more restrictive */
811 	if ((r1->power_rule.max_antenna_gain >
812 	     r2->power_rule.max_antenna_gain) ||
813 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
814 		return false;
815 
816 	/* make sure r2's range is contained within r1 */
817 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
818 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
819 		return false;
820 
821 	/* and finally verify that r1.max_bw >= r2.max_bw */
822 	if (r1->freq_range.max_bandwidth_khz <
823 	    r2->freq_range.max_bandwidth_khz)
824 		return false;
825 
826 	return true;
827 }
828 
829 /* add or extend current rules. do nothing if rule is already contained */
add_rule(struct ieee80211_reg_rule * rule,struct ieee80211_reg_rule * reg_rules,u32 * n_rules)830 static void add_rule(struct ieee80211_reg_rule *rule,
831 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
832 {
833 	struct ieee80211_reg_rule *tmp_rule;
834 	int i;
835 
836 	for (i = 0; i < *n_rules; i++) {
837 		tmp_rule = &reg_rules[i];
838 		/* rule is already contained - do nothing */
839 		if (rule_contains(tmp_rule, rule))
840 			return;
841 
842 		/* extend rule if possible */
843 		if (rule_contains(rule, tmp_rule)) {
844 			memcpy(tmp_rule, rule, sizeof(*rule));
845 			return;
846 		}
847 	}
848 
849 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
850 	(*n_rules)++;
851 }
852 
853 /**
854  * regdom_intersect - do the intersection between two regulatory domains
855  * @rd1: first regulatory domain
856  * @rd2: second regulatory domain
857  *
858  * Use this function to get the intersection between two regulatory domains.
859  * Once completed we will mark the alpha2 for the rd as intersected, "98",
860  * as no one single alpha2 can represent this regulatory domain.
861  *
862  * Returns a pointer to the regulatory domain structure which will hold the
863  * resulting intersection of rules between rd1 and rd2. We will
864  * kzalloc() this structure for you.
865  */
866 static struct ieee80211_regdomain *
regdom_intersect(const struct ieee80211_regdomain * rd1,const struct ieee80211_regdomain * rd2)867 regdom_intersect(const struct ieee80211_regdomain *rd1,
868 		 const struct ieee80211_regdomain *rd2)
869 {
870 	int r, size_of_regd;
871 	unsigned int x, y;
872 	unsigned int num_rules = 0;
873 	const struct ieee80211_reg_rule *rule1, *rule2;
874 	struct ieee80211_reg_rule intersected_rule;
875 	struct ieee80211_regdomain *rd;
876 
877 	if (!rd1 || !rd2)
878 		return NULL;
879 
880 	/*
881 	 * First we get a count of the rules we'll need, then we actually
882 	 * build them. This is to so we can malloc() and free() a
883 	 * regdomain once. The reason we use reg_rules_intersect() here
884 	 * is it will return -EINVAL if the rule computed makes no sense.
885 	 * All rules that do check out OK are valid.
886 	 */
887 
888 	for (x = 0; x < rd1->n_reg_rules; x++) {
889 		rule1 = &rd1->reg_rules[x];
890 		for (y = 0; y < rd2->n_reg_rules; y++) {
891 			rule2 = &rd2->reg_rules[y];
892 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
893 						 &intersected_rule))
894 				num_rules++;
895 		}
896 	}
897 
898 	if (!num_rules)
899 		return NULL;
900 
901 	size_of_regd = sizeof(struct ieee80211_regdomain) +
902 		       num_rules * sizeof(struct ieee80211_reg_rule);
903 
904 	rd = kzalloc(size_of_regd, GFP_KERNEL);
905 	if (!rd)
906 		return NULL;
907 
908 	for (x = 0; x < rd1->n_reg_rules; x++) {
909 		rule1 = &rd1->reg_rules[x];
910 		for (y = 0; y < rd2->n_reg_rules; y++) {
911 			rule2 = &rd2->reg_rules[y];
912 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
913 						&intersected_rule);
914 			/*
915 			 * No need to memset here the intersected rule here as
916 			 * we're not using the stack anymore
917 			 */
918 			if (r)
919 				continue;
920 
921 			add_rule(&intersected_rule, rd->reg_rules,
922 				 &rd->n_reg_rules);
923 		}
924 	}
925 
926 	rd->alpha2[0] = '9';
927 	rd->alpha2[1] = '8';
928 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
929 						  rd2->dfs_region);
930 
931 	return rd;
932 }
933 
934 /*
935  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
936  * want to just have the channel structure use these
937  */
map_regdom_flags(u32 rd_flags)938 static u32 map_regdom_flags(u32 rd_flags)
939 {
940 	u32 channel_flags = 0;
941 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
942 		channel_flags |= IEEE80211_CHAN_NO_IR;
943 	if (rd_flags & NL80211_RRF_DFS)
944 		channel_flags |= IEEE80211_CHAN_RADAR;
945 	if (rd_flags & NL80211_RRF_NO_OFDM)
946 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
947 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
948 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
949 	return channel_flags;
950 }
951 
952 static const struct ieee80211_reg_rule *
freq_reg_info_regd(struct wiphy * wiphy,u32 center_freq,const struct ieee80211_regdomain * regd)953 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
954 		   const struct ieee80211_regdomain *regd)
955 {
956 	int i;
957 	bool band_rule_found = false;
958 	bool bw_fits = false;
959 
960 	if (!regd)
961 		return ERR_PTR(-EINVAL);
962 
963 	for (i = 0; i < regd->n_reg_rules; i++) {
964 		const struct ieee80211_reg_rule *rr;
965 		const struct ieee80211_freq_range *fr = NULL;
966 
967 		rr = &regd->reg_rules[i];
968 		fr = &rr->freq_range;
969 
970 		/*
971 		 * We only need to know if one frequency rule was
972 		 * was in center_freq's band, that's enough, so lets
973 		 * not overwrite it once found
974 		 */
975 		if (!band_rule_found)
976 			band_rule_found = freq_in_rule_band(fr, center_freq);
977 
978 		bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
979 
980 		if (band_rule_found && bw_fits)
981 			return rr;
982 	}
983 
984 	if (!band_rule_found)
985 		return ERR_PTR(-ERANGE);
986 
987 	return ERR_PTR(-EINVAL);
988 }
989 
freq_reg_info(struct wiphy * wiphy,u32 center_freq)990 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
991 					       u32 center_freq)
992 {
993 	const struct ieee80211_regdomain *regd;
994 
995 	regd = reg_get_regdomain(wiphy);
996 
997 	return freq_reg_info_regd(wiphy, center_freq, regd);
998 }
999 EXPORT_SYMBOL(freq_reg_info);
1000 
reg_initiator_name(enum nl80211_reg_initiator initiator)1001 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1002 {
1003 	switch (initiator) {
1004 	case NL80211_REGDOM_SET_BY_CORE:
1005 		return "core";
1006 	case NL80211_REGDOM_SET_BY_USER:
1007 		return "user";
1008 	case NL80211_REGDOM_SET_BY_DRIVER:
1009 		return "driver";
1010 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1011 		return "country IE";
1012 	default:
1013 		WARN_ON(1);
1014 		return "bug";
1015 	}
1016 }
1017 EXPORT_SYMBOL(reg_initiator_name);
1018 
1019 #ifdef CONFIG_CFG80211_REG_DEBUG
chan_reg_rule_print_dbg(const struct ieee80211_regdomain * regd,struct ieee80211_channel * chan,const struct ieee80211_reg_rule * reg_rule)1020 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1021 				    struct ieee80211_channel *chan,
1022 				    const struct ieee80211_reg_rule *reg_rule)
1023 {
1024 	const struct ieee80211_power_rule *power_rule;
1025 	const struct ieee80211_freq_range *freq_range;
1026 	char max_antenna_gain[32], bw[32];
1027 
1028 	power_rule = &reg_rule->power_rule;
1029 	freq_range = &reg_rule->freq_range;
1030 
1031 	if (!power_rule->max_antenna_gain)
1032 		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1033 	else
1034 		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1035 			 power_rule->max_antenna_gain);
1036 
1037 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1038 		snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1039 			 freq_range->max_bandwidth_khz,
1040 			 reg_get_max_bandwidth(regd, reg_rule));
1041 	else
1042 		snprintf(bw, sizeof(bw), "%d KHz",
1043 			 freq_range->max_bandwidth_khz);
1044 
1045 	REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1046 		      chan->center_freq);
1047 
1048 	REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1049 		      freq_range->start_freq_khz, freq_range->end_freq_khz,
1050 		      bw, max_antenna_gain,
1051 		      power_rule->max_eirp);
1052 }
1053 #else
chan_reg_rule_print_dbg(const struct ieee80211_regdomain * regd,struct ieee80211_channel * chan,const struct ieee80211_reg_rule * reg_rule)1054 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1055 				    struct ieee80211_channel *chan,
1056 				    const struct ieee80211_reg_rule *reg_rule)
1057 {
1058 	return;
1059 }
1060 #endif
1061 
1062 /*
1063  * Note that right now we assume the desired channel bandwidth
1064  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1065  * per channel, the primary and the extension channel).
1066  */
handle_channel(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_channel * chan)1067 static void handle_channel(struct wiphy *wiphy,
1068 			   enum nl80211_reg_initiator initiator,
1069 			   struct ieee80211_channel *chan)
1070 {
1071 	u32 flags, bw_flags = 0;
1072 	const struct ieee80211_reg_rule *reg_rule = NULL;
1073 	const struct ieee80211_power_rule *power_rule = NULL;
1074 	const struct ieee80211_freq_range *freq_range = NULL;
1075 	struct wiphy *request_wiphy = NULL;
1076 	struct regulatory_request *lr = get_last_request();
1077 	const struct ieee80211_regdomain *regd;
1078 	u32 max_bandwidth_khz;
1079 
1080 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1081 
1082 	flags = chan->orig_flags;
1083 
1084 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1085 	if (IS_ERR(reg_rule)) {
1086 		/*
1087 		 * We will disable all channels that do not match our
1088 		 * received regulatory rule unless the hint is coming
1089 		 * from a Country IE and the Country IE had no information
1090 		 * about a band. The IEEE 802.11 spec allows for an AP
1091 		 * to send only a subset of the regulatory rules allowed,
1092 		 * so an AP in the US that only supports 2.4 GHz may only send
1093 		 * a country IE with information for the 2.4 GHz band
1094 		 * while 5 GHz is still supported.
1095 		 */
1096 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1097 		    PTR_ERR(reg_rule) == -ERANGE)
1098 			return;
1099 
1100 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1101 		    request_wiphy && request_wiphy == wiphy &&
1102 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1103 			REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1104 				      chan->center_freq);
1105 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1106 			chan->flags = chan->orig_flags;
1107 		} else {
1108 			REG_DBG_PRINT("Disabling freq %d MHz\n",
1109 				      chan->center_freq);
1110 			chan->flags |= IEEE80211_CHAN_DISABLED;
1111 		}
1112 		return;
1113 	}
1114 
1115 	regd = reg_get_regdomain(wiphy);
1116 	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1117 
1118 	power_rule = &reg_rule->power_rule;
1119 	freq_range = &reg_rule->freq_range;
1120 
1121 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1122 	/* Check if auto calculation requested */
1123 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1124 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1125 
1126 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1127 		bw_flags = IEEE80211_CHAN_NO_HT40;
1128 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1129 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1130 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1131 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1132 
1133 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1134 	    request_wiphy && request_wiphy == wiphy &&
1135 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1136 		/*
1137 		 * This guarantees the driver's requested regulatory domain
1138 		 * will always be used as a base for further regulatory
1139 		 * settings
1140 		 */
1141 		chan->flags = chan->orig_flags =
1142 			map_regdom_flags(reg_rule->flags) | bw_flags;
1143 		chan->max_antenna_gain = chan->orig_mag =
1144 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1145 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1146 			(int) MBM_TO_DBM(power_rule->max_eirp);
1147 
1148 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1149 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1150 			if (reg_rule->dfs_cac_ms)
1151 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1152 		}
1153 
1154 		return;
1155 	}
1156 
1157 	chan->dfs_state = NL80211_DFS_USABLE;
1158 	chan->dfs_state_entered = jiffies;
1159 
1160 	chan->beacon_found = false;
1161 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1162 	chan->max_antenna_gain =
1163 		min_t(int, chan->orig_mag,
1164 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1165 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1166 
1167 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1168 		if (reg_rule->dfs_cac_ms)
1169 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1170 		else
1171 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1172 	}
1173 
1174 	if (chan->orig_mpwr) {
1175 		/*
1176 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1177 		 * will always follow the passed country IE power settings.
1178 		 */
1179 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1180 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1181 			chan->max_power = chan->max_reg_power;
1182 		else
1183 			chan->max_power = min(chan->orig_mpwr,
1184 					      chan->max_reg_power);
1185 	} else
1186 		chan->max_power = chan->max_reg_power;
1187 }
1188 
handle_band(struct wiphy * wiphy,enum nl80211_reg_initiator initiator,struct ieee80211_supported_band * sband)1189 static void handle_band(struct wiphy *wiphy,
1190 			enum nl80211_reg_initiator initiator,
1191 			struct ieee80211_supported_band *sband)
1192 {
1193 	unsigned int i;
1194 
1195 	if (!sband)
1196 		return;
1197 
1198 	for (i = 0; i < sband->n_channels; i++)
1199 		handle_channel(wiphy, initiator, &sband->channels[i]);
1200 }
1201 
reg_request_cell_base(struct regulatory_request * request)1202 static bool reg_request_cell_base(struct regulatory_request *request)
1203 {
1204 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1205 		return false;
1206 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1207 }
1208 
reg_request_indoor(struct regulatory_request * request)1209 static bool reg_request_indoor(struct regulatory_request *request)
1210 {
1211 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1212 		return false;
1213 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1214 }
1215 
reg_last_request_cell_base(void)1216 bool reg_last_request_cell_base(void)
1217 {
1218 	return reg_request_cell_base(get_last_request());
1219 }
1220 
1221 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1222 /* Core specific check */
1223 static enum reg_request_treatment
reg_ignore_cell_hint(struct regulatory_request * pending_request)1224 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1225 {
1226 	struct regulatory_request *lr = get_last_request();
1227 
1228 	if (!reg_num_devs_support_basehint)
1229 		return REG_REQ_IGNORE;
1230 
1231 	if (reg_request_cell_base(lr) &&
1232 	    !regdom_changes(pending_request->alpha2))
1233 		return REG_REQ_ALREADY_SET;
1234 
1235 	return REG_REQ_OK;
1236 }
1237 
1238 /* Device specific check */
reg_dev_ignore_cell_hint(struct wiphy * wiphy)1239 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1240 {
1241 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1242 }
1243 #else
reg_ignore_cell_hint(struct regulatory_request * pending_request)1244 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1245 {
1246 	return REG_REQ_IGNORE;
1247 }
1248 
reg_dev_ignore_cell_hint(struct wiphy * wiphy)1249 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1250 {
1251 	return true;
1252 }
1253 #endif
1254 
wiphy_strict_alpha2_regd(struct wiphy * wiphy)1255 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1256 {
1257 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1258 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1259 		return true;
1260 	return false;
1261 }
1262 
ignore_reg_update(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)1263 static bool ignore_reg_update(struct wiphy *wiphy,
1264 			      enum nl80211_reg_initiator initiator)
1265 {
1266 	struct regulatory_request *lr = get_last_request();
1267 
1268 	if (!lr) {
1269 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1270 			      "since last_request is not set\n",
1271 			      reg_initiator_name(initiator));
1272 		return true;
1273 	}
1274 
1275 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1276 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1277 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1278 			      "since the driver uses its own custom "
1279 			      "regulatory domain\n",
1280 			      reg_initiator_name(initiator));
1281 		return true;
1282 	}
1283 
1284 	/*
1285 	 * wiphy->regd will be set once the device has its own
1286 	 * desired regulatory domain set
1287 	 */
1288 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1289 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1290 	    !is_world_regdom(lr->alpha2)) {
1291 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1292 			      "since the driver requires its own regulatory "
1293 			      "domain to be set first\n",
1294 			      reg_initiator_name(initiator));
1295 		return true;
1296 	}
1297 
1298 	if (reg_request_cell_base(lr))
1299 		return reg_dev_ignore_cell_hint(wiphy);
1300 
1301 	return false;
1302 }
1303 
reg_is_world_roaming(struct wiphy * wiphy)1304 static bool reg_is_world_roaming(struct wiphy *wiphy)
1305 {
1306 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1307 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1308 	struct regulatory_request *lr = get_last_request();
1309 
1310 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1311 		return true;
1312 
1313 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1314 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1315 		return true;
1316 
1317 	return false;
1318 }
1319 
handle_reg_beacon(struct wiphy * wiphy,unsigned int chan_idx,struct reg_beacon * reg_beacon)1320 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1321 			      struct reg_beacon *reg_beacon)
1322 {
1323 	struct ieee80211_supported_band *sband;
1324 	struct ieee80211_channel *chan;
1325 	bool channel_changed = false;
1326 	struct ieee80211_channel chan_before;
1327 
1328 	sband = wiphy->bands[reg_beacon->chan.band];
1329 	chan = &sband->channels[chan_idx];
1330 
1331 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1332 		return;
1333 
1334 	if (chan->beacon_found)
1335 		return;
1336 
1337 	chan->beacon_found = true;
1338 
1339 	if (!reg_is_world_roaming(wiphy))
1340 		return;
1341 
1342 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1343 		return;
1344 
1345 	chan_before.center_freq = chan->center_freq;
1346 	chan_before.flags = chan->flags;
1347 
1348 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1349 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1350 		channel_changed = true;
1351 	}
1352 
1353 	if (channel_changed)
1354 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1355 }
1356 
1357 /*
1358  * Called when a scan on a wiphy finds a beacon on
1359  * new channel
1360  */
wiphy_update_new_beacon(struct wiphy * wiphy,struct reg_beacon * reg_beacon)1361 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1362 				    struct reg_beacon *reg_beacon)
1363 {
1364 	unsigned int i;
1365 	struct ieee80211_supported_band *sband;
1366 
1367 	if (!wiphy->bands[reg_beacon->chan.band])
1368 		return;
1369 
1370 	sband = wiphy->bands[reg_beacon->chan.band];
1371 
1372 	for (i = 0; i < sband->n_channels; i++)
1373 		handle_reg_beacon(wiphy, i, reg_beacon);
1374 }
1375 
1376 /*
1377  * Called upon reg changes or a new wiphy is added
1378  */
wiphy_update_beacon_reg(struct wiphy * wiphy)1379 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1380 {
1381 	unsigned int i;
1382 	struct ieee80211_supported_band *sband;
1383 	struct reg_beacon *reg_beacon;
1384 
1385 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1386 		if (!wiphy->bands[reg_beacon->chan.band])
1387 			continue;
1388 		sband = wiphy->bands[reg_beacon->chan.band];
1389 		for (i = 0; i < sband->n_channels; i++)
1390 			handle_reg_beacon(wiphy, i, reg_beacon);
1391 	}
1392 }
1393 
1394 /* Reap the advantages of previously found beacons */
reg_process_beacons(struct wiphy * wiphy)1395 static void reg_process_beacons(struct wiphy *wiphy)
1396 {
1397 	/*
1398 	 * Means we are just firing up cfg80211, so no beacons would
1399 	 * have been processed yet.
1400 	 */
1401 	if (!last_request)
1402 		return;
1403 	wiphy_update_beacon_reg(wiphy);
1404 }
1405 
is_ht40_allowed(struct ieee80211_channel * chan)1406 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1407 {
1408 	if (!chan)
1409 		return false;
1410 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1411 		return false;
1412 	/* This would happen when regulatory rules disallow HT40 completely */
1413 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1414 		return false;
1415 	return true;
1416 }
1417 
reg_process_ht_flags_channel(struct wiphy * wiphy,struct ieee80211_channel * channel)1418 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1419 					 struct ieee80211_channel *channel)
1420 {
1421 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1422 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1423 	unsigned int i;
1424 
1425 	if (!is_ht40_allowed(channel)) {
1426 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1427 		return;
1428 	}
1429 
1430 	/*
1431 	 * We need to ensure the extension channels exist to
1432 	 * be able to use HT40- or HT40+, this finds them (or not)
1433 	 */
1434 	for (i = 0; i < sband->n_channels; i++) {
1435 		struct ieee80211_channel *c = &sband->channels[i];
1436 
1437 		if (c->center_freq == (channel->center_freq - 20))
1438 			channel_before = c;
1439 		if (c->center_freq == (channel->center_freq + 20))
1440 			channel_after = c;
1441 	}
1442 
1443 	/*
1444 	 * Please note that this assumes target bandwidth is 20 MHz,
1445 	 * if that ever changes we also need to change the below logic
1446 	 * to include that as well.
1447 	 */
1448 	if (!is_ht40_allowed(channel_before))
1449 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1450 	else
1451 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1452 
1453 	if (!is_ht40_allowed(channel_after))
1454 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1455 	else
1456 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1457 }
1458 
reg_process_ht_flags_band(struct wiphy * wiphy,struct ieee80211_supported_band * sband)1459 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1460 				      struct ieee80211_supported_band *sband)
1461 {
1462 	unsigned int i;
1463 
1464 	if (!sband)
1465 		return;
1466 
1467 	for (i = 0; i < sband->n_channels; i++)
1468 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1469 }
1470 
reg_process_ht_flags(struct wiphy * wiphy)1471 static void reg_process_ht_flags(struct wiphy *wiphy)
1472 {
1473 	enum ieee80211_band band;
1474 
1475 	if (!wiphy)
1476 		return;
1477 
1478 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1479 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1480 }
1481 
reg_call_notifier(struct wiphy * wiphy,struct regulatory_request * request)1482 static void reg_call_notifier(struct wiphy *wiphy,
1483 			      struct regulatory_request *request)
1484 {
1485 	if (wiphy->reg_notifier)
1486 		wiphy->reg_notifier(wiphy, request);
1487 }
1488 
wiphy_update_regulatory(struct wiphy * wiphy,enum nl80211_reg_initiator initiator)1489 static void wiphy_update_regulatory(struct wiphy *wiphy,
1490 				    enum nl80211_reg_initiator initiator)
1491 {
1492 	enum ieee80211_band band;
1493 	struct regulatory_request *lr = get_last_request();
1494 
1495 	if (ignore_reg_update(wiphy, initiator)) {
1496 		/*
1497 		 * Regulatory updates set by CORE are ignored for custom
1498 		 * regulatory cards. Let us notify the changes to the driver,
1499 		 * as some drivers used this to restore its orig_* reg domain.
1500 		 */
1501 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1502 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1503 			reg_call_notifier(wiphy, lr);
1504 		return;
1505 	}
1506 
1507 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1508 
1509 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1510 		handle_band(wiphy, initiator, wiphy->bands[band]);
1511 
1512 	reg_process_beacons(wiphy);
1513 	reg_process_ht_flags(wiphy);
1514 	reg_call_notifier(wiphy, lr);
1515 }
1516 
update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)1517 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1518 {
1519 	struct cfg80211_registered_device *rdev;
1520 	struct wiphy *wiphy;
1521 
1522 	ASSERT_RTNL();
1523 
1524 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1525 		wiphy = &rdev->wiphy;
1526 		wiphy_update_regulatory(wiphy, initiator);
1527 	}
1528 }
1529 
handle_channel_custom(struct wiphy * wiphy,struct ieee80211_channel * chan,const struct ieee80211_regdomain * regd)1530 static void handle_channel_custom(struct wiphy *wiphy,
1531 				  struct ieee80211_channel *chan,
1532 				  const struct ieee80211_regdomain *regd)
1533 {
1534 	u32 bw_flags = 0;
1535 	const struct ieee80211_reg_rule *reg_rule = NULL;
1536 	const struct ieee80211_power_rule *power_rule = NULL;
1537 	const struct ieee80211_freq_range *freq_range = NULL;
1538 	u32 max_bandwidth_khz;
1539 
1540 	reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1541 				      regd);
1542 
1543 	if (IS_ERR(reg_rule)) {
1544 		REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1545 			      chan->center_freq);
1546 		chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1547 		chan->flags = chan->orig_flags;
1548 		return;
1549 	}
1550 
1551 	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1552 
1553 	power_rule = &reg_rule->power_rule;
1554 	freq_range = &reg_rule->freq_range;
1555 
1556 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1557 	/* Check if auto calculation requested */
1558 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1559 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1560 
1561 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1562 		bw_flags = IEEE80211_CHAN_NO_HT40;
1563 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1564 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1565 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1566 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1567 
1568 	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1569 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1570 	chan->max_reg_power = chan->max_power =
1571 		(int) MBM_TO_DBM(power_rule->max_eirp);
1572 }
1573 
handle_band_custom(struct wiphy * wiphy,struct ieee80211_supported_band * sband,const struct ieee80211_regdomain * regd)1574 static void handle_band_custom(struct wiphy *wiphy,
1575 			       struct ieee80211_supported_band *sband,
1576 			       const struct ieee80211_regdomain *regd)
1577 {
1578 	unsigned int i;
1579 
1580 	if (!sband)
1581 		return;
1582 
1583 	for (i = 0; i < sband->n_channels; i++)
1584 		handle_channel_custom(wiphy, &sband->channels[i], regd);
1585 }
1586 
1587 /* Used by drivers prior to wiphy registration */
wiphy_apply_custom_regulatory(struct wiphy * wiphy,const struct ieee80211_regdomain * regd)1588 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1589 				   const struct ieee80211_regdomain *regd)
1590 {
1591 	enum ieee80211_band band;
1592 	unsigned int bands_set = 0;
1593 
1594 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1595 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
1596 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1597 
1598 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1599 		if (!wiphy->bands[band])
1600 			continue;
1601 		handle_band_custom(wiphy, wiphy->bands[band], regd);
1602 		bands_set++;
1603 	}
1604 
1605 	/*
1606 	 * no point in calling this if it won't have any effect
1607 	 * on your device's supported bands.
1608 	 */
1609 	WARN_ON(!bands_set);
1610 }
1611 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1612 
reg_set_request_processed(void)1613 static void reg_set_request_processed(void)
1614 {
1615 	bool need_more_processing = false;
1616 	struct regulatory_request *lr = get_last_request();
1617 
1618 	lr->processed = true;
1619 
1620 	spin_lock(&reg_requests_lock);
1621 	if (!list_empty(&reg_requests_list))
1622 		need_more_processing = true;
1623 	spin_unlock(&reg_requests_lock);
1624 
1625 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1626 		cancel_delayed_work(&reg_timeout);
1627 
1628 	if (need_more_processing)
1629 		schedule_work(&reg_work);
1630 }
1631 
1632 /**
1633  * reg_process_hint_core - process core regulatory requests
1634  * @pending_request: a pending core regulatory request
1635  *
1636  * The wireless subsystem can use this function to process
1637  * a regulatory request issued by the regulatory core.
1638  *
1639  * Returns one of the different reg request treatment values.
1640  */
1641 static enum reg_request_treatment
reg_process_hint_core(struct regulatory_request * core_request)1642 reg_process_hint_core(struct regulatory_request *core_request)
1643 {
1644 
1645 	core_request->intersect = false;
1646 	core_request->processed = false;
1647 
1648 	reg_update_last_request(core_request);
1649 
1650 	return reg_call_crda(core_request);
1651 }
1652 
1653 static enum reg_request_treatment
__reg_process_hint_user(struct regulatory_request * user_request)1654 __reg_process_hint_user(struct regulatory_request *user_request)
1655 {
1656 	struct regulatory_request *lr = get_last_request();
1657 
1658 	if (reg_request_indoor(user_request)) {
1659 		reg_is_indoor = true;
1660 		return REG_REQ_USER_HINT_HANDLED;
1661 	}
1662 
1663 	if (reg_request_cell_base(user_request))
1664 		return reg_ignore_cell_hint(user_request);
1665 
1666 	if (reg_request_cell_base(lr))
1667 		return REG_REQ_IGNORE;
1668 
1669 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1670 		return REG_REQ_INTERSECT;
1671 	/*
1672 	 * If the user knows better the user should set the regdom
1673 	 * to their country before the IE is picked up
1674 	 */
1675 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1676 	    lr->intersect)
1677 		return REG_REQ_IGNORE;
1678 	/*
1679 	 * Process user requests only after previous user/driver/core
1680 	 * requests have been processed
1681 	 */
1682 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1683 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1684 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1685 	    regdom_changes(lr->alpha2))
1686 		return REG_REQ_IGNORE;
1687 
1688 	if (!regdom_changes(user_request->alpha2))
1689 		return REG_REQ_ALREADY_SET;
1690 
1691 	return REG_REQ_OK;
1692 }
1693 
1694 /**
1695  * reg_process_hint_user - process user regulatory requests
1696  * @user_request: a pending user regulatory request
1697  *
1698  * The wireless subsystem can use this function to process
1699  * a regulatory request initiated by userspace.
1700  *
1701  * Returns one of the different reg request treatment values.
1702  */
1703 static enum reg_request_treatment
reg_process_hint_user(struct regulatory_request * user_request)1704 reg_process_hint_user(struct regulatory_request *user_request)
1705 {
1706 	enum reg_request_treatment treatment;
1707 
1708 	treatment = __reg_process_hint_user(user_request);
1709 	if (treatment == REG_REQ_IGNORE ||
1710 	    treatment == REG_REQ_ALREADY_SET ||
1711 	    treatment == REG_REQ_USER_HINT_HANDLED) {
1712 		reg_free_request(user_request);
1713 		return treatment;
1714 	}
1715 
1716 	user_request->intersect = treatment == REG_REQ_INTERSECT;
1717 	user_request->processed = false;
1718 
1719 	reg_update_last_request(user_request);
1720 
1721 	user_alpha2[0] = user_request->alpha2[0];
1722 	user_alpha2[1] = user_request->alpha2[1];
1723 
1724 	return reg_call_crda(user_request);
1725 }
1726 
1727 static enum reg_request_treatment
__reg_process_hint_driver(struct regulatory_request * driver_request)1728 __reg_process_hint_driver(struct regulatory_request *driver_request)
1729 {
1730 	struct regulatory_request *lr = get_last_request();
1731 
1732 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1733 		if (regdom_changes(driver_request->alpha2))
1734 			return REG_REQ_OK;
1735 		return REG_REQ_ALREADY_SET;
1736 	}
1737 
1738 	/*
1739 	 * This would happen if you unplug and plug your card
1740 	 * back in or if you add a new device for which the previously
1741 	 * loaded card also agrees on the regulatory domain.
1742 	 */
1743 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1744 	    !regdom_changes(driver_request->alpha2))
1745 		return REG_REQ_ALREADY_SET;
1746 
1747 	return REG_REQ_INTERSECT;
1748 }
1749 
1750 /**
1751  * reg_process_hint_driver - process driver regulatory requests
1752  * @driver_request: a pending driver regulatory request
1753  *
1754  * The wireless subsystem can use this function to process
1755  * a regulatory request issued by an 802.11 driver.
1756  *
1757  * Returns one of the different reg request treatment values.
1758  */
1759 static enum reg_request_treatment
reg_process_hint_driver(struct wiphy * wiphy,struct regulatory_request * driver_request)1760 reg_process_hint_driver(struct wiphy *wiphy,
1761 			struct regulatory_request *driver_request)
1762 {
1763 	const struct ieee80211_regdomain *regd, *tmp;
1764 	enum reg_request_treatment treatment;
1765 
1766 	treatment = __reg_process_hint_driver(driver_request);
1767 
1768 	switch (treatment) {
1769 	case REG_REQ_OK:
1770 		break;
1771 	case REG_REQ_IGNORE:
1772 	case REG_REQ_USER_HINT_HANDLED:
1773 		reg_free_request(driver_request);
1774 		return treatment;
1775 	case REG_REQ_INTERSECT:
1776 		/* fall through */
1777 	case REG_REQ_ALREADY_SET:
1778 		regd = reg_copy_regd(get_cfg80211_regdom());
1779 		if (IS_ERR(regd)) {
1780 			reg_free_request(driver_request);
1781 			return REG_REQ_IGNORE;
1782 		}
1783 
1784 		tmp = get_wiphy_regdom(wiphy);
1785 		rcu_assign_pointer(wiphy->regd, regd);
1786 		rcu_free_regdom(tmp);
1787 	}
1788 
1789 
1790 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
1791 	driver_request->processed = false;
1792 
1793 	reg_update_last_request(driver_request);
1794 
1795 	/*
1796 	 * Since CRDA will not be called in this case as we already
1797 	 * have applied the requested regulatory domain before we just
1798 	 * inform userspace we have processed the request
1799 	 */
1800 	if (treatment == REG_REQ_ALREADY_SET) {
1801 		nl80211_send_reg_change_event(driver_request);
1802 		reg_set_request_processed();
1803 		return treatment;
1804 	}
1805 
1806 	return reg_call_crda(driver_request);
1807 }
1808 
1809 static enum reg_request_treatment
__reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)1810 __reg_process_hint_country_ie(struct wiphy *wiphy,
1811 			      struct regulatory_request *country_ie_request)
1812 {
1813 	struct wiphy *last_wiphy = NULL;
1814 	struct regulatory_request *lr = get_last_request();
1815 
1816 	if (reg_request_cell_base(lr)) {
1817 		/* Trust a Cell base station over the AP's country IE */
1818 		if (regdom_changes(country_ie_request->alpha2))
1819 			return REG_REQ_IGNORE;
1820 		return REG_REQ_ALREADY_SET;
1821 	} else {
1822 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1823 			return REG_REQ_IGNORE;
1824 	}
1825 
1826 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1827 		return -EINVAL;
1828 
1829 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1830 		return REG_REQ_OK;
1831 
1832 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1833 
1834 	if (last_wiphy != wiphy) {
1835 		/*
1836 		 * Two cards with two APs claiming different
1837 		 * Country IE alpha2s. We could
1838 		 * intersect them, but that seems unlikely
1839 		 * to be correct. Reject second one for now.
1840 		 */
1841 		if (regdom_changes(country_ie_request->alpha2))
1842 			return REG_REQ_IGNORE;
1843 		return REG_REQ_ALREADY_SET;
1844 	}
1845 
1846 	if (regdom_changes(country_ie_request->alpha2))
1847 		return REG_REQ_OK;
1848 	return REG_REQ_ALREADY_SET;
1849 }
1850 
1851 /**
1852  * reg_process_hint_country_ie - process regulatory requests from country IEs
1853  * @country_ie_request: a regulatory request from a country IE
1854  *
1855  * The wireless subsystem can use this function to process
1856  * a regulatory request issued by a country Information Element.
1857  *
1858  * Returns one of the different reg request treatment values.
1859  */
1860 static enum reg_request_treatment
reg_process_hint_country_ie(struct wiphy * wiphy,struct regulatory_request * country_ie_request)1861 reg_process_hint_country_ie(struct wiphy *wiphy,
1862 			    struct regulatory_request *country_ie_request)
1863 {
1864 	enum reg_request_treatment treatment;
1865 
1866 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
1867 
1868 	switch (treatment) {
1869 	case REG_REQ_OK:
1870 		break;
1871 	case REG_REQ_IGNORE:
1872 	case REG_REQ_USER_HINT_HANDLED:
1873 		/* fall through */
1874 	case REG_REQ_ALREADY_SET:
1875 		reg_free_request(country_ie_request);
1876 		return treatment;
1877 	case REG_REQ_INTERSECT:
1878 		reg_free_request(country_ie_request);
1879 		/*
1880 		 * This doesn't happen yet, not sure we
1881 		 * ever want to support it for this case.
1882 		 */
1883 		WARN_ONCE(1, "Unexpected intersection for country IEs");
1884 		return REG_REQ_IGNORE;
1885 	}
1886 
1887 	country_ie_request->intersect = false;
1888 	country_ie_request->processed = false;
1889 
1890 	reg_update_last_request(country_ie_request);
1891 
1892 	return reg_call_crda(country_ie_request);
1893 }
1894 
1895 /* This processes *all* regulatory hints */
reg_process_hint(struct regulatory_request * reg_request)1896 static void reg_process_hint(struct regulatory_request *reg_request)
1897 {
1898 	struct wiphy *wiphy = NULL;
1899 	enum reg_request_treatment treatment;
1900 
1901 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
1902 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1903 
1904 	switch (reg_request->initiator) {
1905 	case NL80211_REGDOM_SET_BY_CORE:
1906 		reg_process_hint_core(reg_request);
1907 		return;
1908 	case NL80211_REGDOM_SET_BY_USER:
1909 		treatment = reg_process_hint_user(reg_request);
1910 		if (treatment == REG_REQ_IGNORE ||
1911 		    treatment == REG_REQ_ALREADY_SET ||
1912 		    treatment == REG_REQ_USER_HINT_HANDLED)
1913 			return;
1914 		queue_delayed_work(system_power_efficient_wq,
1915 				   &reg_timeout, msecs_to_jiffies(3142));
1916 		return;
1917 	case NL80211_REGDOM_SET_BY_DRIVER:
1918 		if (!wiphy)
1919 			goto out_free;
1920 		treatment = reg_process_hint_driver(wiphy, reg_request);
1921 		break;
1922 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1923 		if (!wiphy)
1924 			goto out_free;
1925 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
1926 		break;
1927 	default:
1928 		WARN(1, "invalid initiator %d\n", reg_request->initiator);
1929 		goto out_free;
1930 	}
1931 
1932 	/* This is required so that the orig_* parameters are saved */
1933 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
1934 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG)
1935 		wiphy_update_regulatory(wiphy, reg_request->initiator);
1936 
1937 	return;
1938 
1939 out_free:
1940 	reg_free_request(reg_request);
1941 }
1942 
1943 /*
1944  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1945  * Regulatory hints come on a first come first serve basis and we
1946  * must process each one atomically.
1947  */
reg_process_pending_hints(void)1948 static void reg_process_pending_hints(void)
1949 {
1950 	struct regulatory_request *reg_request, *lr;
1951 
1952 	lr = get_last_request();
1953 
1954 	/* When last_request->processed becomes true this will be rescheduled */
1955 	if (lr && !lr->processed) {
1956 		reg_process_hint(lr);
1957 		return;
1958 	}
1959 
1960 	spin_lock(&reg_requests_lock);
1961 
1962 	if (list_empty(&reg_requests_list)) {
1963 		spin_unlock(&reg_requests_lock);
1964 		return;
1965 	}
1966 
1967 	reg_request = list_first_entry(&reg_requests_list,
1968 				       struct regulatory_request,
1969 				       list);
1970 	list_del_init(&reg_request->list);
1971 
1972 	spin_unlock(&reg_requests_lock);
1973 
1974 	reg_process_hint(reg_request);
1975 }
1976 
1977 /* Processes beacon hints -- this has nothing to do with country IEs */
reg_process_pending_beacon_hints(void)1978 static void reg_process_pending_beacon_hints(void)
1979 {
1980 	struct cfg80211_registered_device *rdev;
1981 	struct reg_beacon *pending_beacon, *tmp;
1982 
1983 	/* This goes through the _pending_ beacon list */
1984 	spin_lock_bh(&reg_pending_beacons_lock);
1985 
1986 	list_for_each_entry_safe(pending_beacon, tmp,
1987 				 &reg_pending_beacons, list) {
1988 		list_del_init(&pending_beacon->list);
1989 
1990 		/* Applies the beacon hint to current wiphys */
1991 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1992 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
1993 
1994 		/* Remembers the beacon hint for new wiphys or reg changes */
1995 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
1996 	}
1997 
1998 	spin_unlock_bh(&reg_pending_beacons_lock);
1999 }
2000 
reg_todo(struct work_struct * work)2001 static void reg_todo(struct work_struct *work)
2002 {
2003 	rtnl_lock();
2004 	reg_process_pending_hints();
2005 	reg_process_pending_beacon_hints();
2006 	rtnl_unlock();
2007 }
2008 
queue_regulatory_request(struct regulatory_request * request)2009 static void queue_regulatory_request(struct regulatory_request *request)
2010 {
2011 	request->alpha2[0] = toupper(request->alpha2[0]);
2012 	request->alpha2[1] = toupper(request->alpha2[1]);
2013 
2014 	spin_lock(&reg_requests_lock);
2015 	list_add_tail(&request->list, &reg_requests_list);
2016 	spin_unlock(&reg_requests_lock);
2017 
2018 	schedule_work(&reg_work);
2019 }
2020 
2021 /*
2022  * Core regulatory hint -- happens during cfg80211_init()
2023  * and when we restore regulatory settings.
2024  */
regulatory_hint_core(const char * alpha2)2025 static int regulatory_hint_core(const char *alpha2)
2026 {
2027 	struct regulatory_request *request;
2028 
2029 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2030 	if (!request)
2031 		return -ENOMEM;
2032 
2033 	request->alpha2[0] = alpha2[0];
2034 	request->alpha2[1] = alpha2[1];
2035 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2036 
2037 	queue_regulatory_request(request);
2038 
2039 	return 0;
2040 }
2041 
2042 /* User hints */
regulatory_hint_user(const char * alpha2,enum nl80211_user_reg_hint_type user_reg_hint_type)2043 int regulatory_hint_user(const char *alpha2,
2044 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2045 {
2046 	struct regulatory_request *request;
2047 
2048 	if (WARN_ON(!alpha2))
2049 		return -EINVAL;
2050 
2051 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2052 	if (!request)
2053 		return -ENOMEM;
2054 
2055 	request->wiphy_idx = WIPHY_IDX_INVALID;
2056 	request->alpha2[0] = alpha2[0];
2057 	request->alpha2[1] = alpha2[1];
2058 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2059 	request->user_reg_hint_type = user_reg_hint_type;
2060 
2061 	queue_regulatory_request(request);
2062 
2063 	return 0;
2064 }
2065 
regulatory_hint_indoor_user(void)2066 int regulatory_hint_indoor_user(void)
2067 {
2068 	struct regulatory_request *request;
2069 
2070 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2071 	if (!request)
2072 		return -ENOMEM;
2073 
2074 	request->wiphy_idx = WIPHY_IDX_INVALID;
2075 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2076 	request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2077 	queue_regulatory_request(request);
2078 
2079 	return 0;
2080 }
2081 
2082 /* Driver hints */
regulatory_hint(struct wiphy * wiphy,const char * alpha2)2083 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2084 {
2085 	struct regulatory_request *request;
2086 
2087 	if (WARN_ON(!alpha2 || !wiphy))
2088 		return -EINVAL;
2089 
2090 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2091 
2092 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2093 	if (!request)
2094 		return -ENOMEM;
2095 
2096 	request->wiphy_idx = get_wiphy_idx(wiphy);
2097 
2098 	request->alpha2[0] = alpha2[0];
2099 	request->alpha2[1] = alpha2[1];
2100 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2101 
2102 	queue_regulatory_request(request);
2103 
2104 	return 0;
2105 }
2106 EXPORT_SYMBOL(regulatory_hint);
2107 
regulatory_hint_country_ie(struct wiphy * wiphy,enum ieee80211_band band,const u8 * country_ie,u8 country_ie_len)2108 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2109 				const u8 *country_ie, u8 country_ie_len)
2110 {
2111 	char alpha2[2];
2112 	enum environment_cap env = ENVIRON_ANY;
2113 	struct regulatory_request *request = NULL, *lr;
2114 
2115 	/* IE len must be evenly divisible by 2 */
2116 	if (country_ie_len & 0x01)
2117 		return;
2118 
2119 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2120 		return;
2121 
2122 	request = kzalloc(sizeof(*request), GFP_KERNEL);
2123 	if (!request)
2124 		return;
2125 
2126 	alpha2[0] = country_ie[0];
2127 	alpha2[1] = country_ie[1];
2128 
2129 	if (country_ie[2] == 'I')
2130 		env = ENVIRON_INDOOR;
2131 	else if (country_ie[2] == 'O')
2132 		env = ENVIRON_OUTDOOR;
2133 
2134 	rcu_read_lock();
2135 	lr = get_last_request();
2136 
2137 	if (unlikely(!lr))
2138 		goto out;
2139 
2140 	/*
2141 	 * We will run this only upon a successful connection on cfg80211.
2142 	 * We leave conflict resolution to the workqueue, where can hold
2143 	 * the RTNL.
2144 	 */
2145 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2146 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
2147 		goto out;
2148 
2149 	request->wiphy_idx = get_wiphy_idx(wiphy);
2150 	request->alpha2[0] = alpha2[0];
2151 	request->alpha2[1] = alpha2[1];
2152 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2153 	request->country_ie_env = env;
2154 
2155 	queue_regulatory_request(request);
2156 	request = NULL;
2157 out:
2158 	kfree(request);
2159 	rcu_read_unlock();
2160 }
2161 
restore_alpha2(char * alpha2,bool reset_user)2162 static void restore_alpha2(char *alpha2, bool reset_user)
2163 {
2164 	/* indicates there is no alpha2 to consider for restoration */
2165 	alpha2[0] = '9';
2166 	alpha2[1] = '7';
2167 
2168 	/* The user setting has precedence over the module parameter */
2169 	if (is_user_regdom_saved()) {
2170 		/* Unless we're asked to ignore it and reset it */
2171 		if (reset_user) {
2172 			REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2173 			user_alpha2[0] = '9';
2174 			user_alpha2[1] = '7';
2175 
2176 			/*
2177 			 * If we're ignoring user settings, we still need to
2178 			 * check the module parameter to ensure we put things
2179 			 * back as they were for a full restore.
2180 			 */
2181 			if (!is_world_regdom(ieee80211_regdom)) {
2182 				REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2183 					      ieee80211_regdom[0], ieee80211_regdom[1]);
2184 				alpha2[0] = ieee80211_regdom[0];
2185 				alpha2[1] = ieee80211_regdom[1];
2186 			}
2187 		} else {
2188 			REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2189 				      user_alpha2[0], user_alpha2[1]);
2190 			alpha2[0] = user_alpha2[0];
2191 			alpha2[1] = user_alpha2[1];
2192 		}
2193 	} else if (!is_world_regdom(ieee80211_regdom)) {
2194 		REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2195 			      ieee80211_regdom[0], ieee80211_regdom[1]);
2196 		alpha2[0] = ieee80211_regdom[0];
2197 		alpha2[1] = ieee80211_regdom[1];
2198 	} else
2199 		REG_DBG_PRINT("Restoring regulatory settings\n");
2200 }
2201 
restore_custom_reg_settings(struct wiphy * wiphy)2202 static void restore_custom_reg_settings(struct wiphy *wiphy)
2203 {
2204 	struct ieee80211_supported_band *sband;
2205 	enum ieee80211_band band;
2206 	struct ieee80211_channel *chan;
2207 	int i;
2208 
2209 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2210 		sband = wiphy->bands[band];
2211 		if (!sband)
2212 			continue;
2213 		for (i = 0; i < sband->n_channels; i++) {
2214 			chan = &sband->channels[i];
2215 			chan->flags = chan->orig_flags;
2216 			chan->max_antenna_gain = chan->orig_mag;
2217 			chan->max_power = chan->orig_mpwr;
2218 			chan->beacon_found = false;
2219 		}
2220 	}
2221 }
2222 
2223 /*
2224  * Restoring regulatory settings involves ingoring any
2225  * possibly stale country IE information and user regulatory
2226  * settings if so desired, this includes any beacon hints
2227  * learned as we could have traveled outside to another country
2228  * after disconnection. To restore regulatory settings we do
2229  * exactly what we did at bootup:
2230  *
2231  *   - send a core regulatory hint
2232  *   - send a user regulatory hint if applicable
2233  *
2234  * Device drivers that send a regulatory hint for a specific country
2235  * keep their own regulatory domain on wiphy->regd so that does does
2236  * not need to be remembered.
2237  */
restore_regulatory_settings(bool reset_user)2238 static void restore_regulatory_settings(bool reset_user)
2239 {
2240 	char alpha2[2];
2241 	char world_alpha2[2];
2242 	struct reg_beacon *reg_beacon, *btmp;
2243 	struct regulatory_request *reg_request, *tmp;
2244 	LIST_HEAD(tmp_reg_req_list);
2245 	struct cfg80211_registered_device *rdev;
2246 
2247 	ASSERT_RTNL();
2248 
2249 	reg_is_indoor = false;
2250 
2251 	reset_regdomains(true, &world_regdom);
2252 	restore_alpha2(alpha2, reset_user);
2253 
2254 	/*
2255 	 * If there's any pending requests we simply
2256 	 * stash them to a temporary pending queue and
2257 	 * add then after we've restored regulatory
2258 	 * settings.
2259 	 */
2260 	spin_lock(&reg_requests_lock);
2261 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2262 		if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2263 			continue;
2264 		list_move_tail(&reg_request->list, &tmp_reg_req_list);
2265 	}
2266 	spin_unlock(&reg_requests_lock);
2267 
2268 	/* Clear beacon hints */
2269 	spin_lock_bh(&reg_pending_beacons_lock);
2270 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2271 		list_del(&reg_beacon->list);
2272 		kfree(reg_beacon);
2273 	}
2274 	spin_unlock_bh(&reg_pending_beacons_lock);
2275 
2276 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2277 		list_del(&reg_beacon->list);
2278 		kfree(reg_beacon);
2279 	}
2280 
2281 	/* First restore to the basic regulatory settings */
2282 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2283 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2284 
2285 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2286 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2287 			restore_custom_reg_settings(&rdev->wiphy);
2288 	}
2289 
2290 	regulatory_hint_core(world_alpha2);
2291 
2292 	/*
2293 	 * This restores the ieee80211_regdom module parameter
2294 	 * preference or the last user requested regulatory
2295 	 * settings, user regulatory settings takes precedence.
2296 	 */
2297 	if (is_an_alpha2(alpha2))
2298 		regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2299 
2300 	spin_lock(&reg_requests_lock);
2301 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2302 	spin_unlock(&reg_requests_lock);
2303 
2304 	REG_DBG_PRINT("Kicking the queue\n");
2305 
2306 	schedule_work(&reg_work);
2307 }
2308 
regulatory_hint_disconnect(void)2309 void regulatory_hint_disconnect(void)
2310 {
2311 	REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2312 	restore_regulatory_settings(false);
2313 }
2314 
freq_is_chan_12_13_14(u16 freq)2315 static bool freq_is_chan_12_13_14(u16 freq)
2316 {
2317 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2318 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2319 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2320 		return true;
2321 	return false;
2322 }
2323 
pending_reg_beacon(struct ieee80211_channel * beacon_chan)2324 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2325 {
2326 	struct reg_beacon *pending_beacon;
2327 
2328 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2329 		if (beacon_chan->center_freq ==
2330 		    pending_beacon->chan.center_freq)
2331 			return true;
2332 	return false;
2333 }
2334 
regulatory_hint_found_beacon(struct wiphy * wiphy,struct ieee80211_channel * beacon_chan,gfp_t gfp)2335 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2336 				 struct ieee80211_channel *beacon_chan,
2337 				 gfp_t gfp)
2338 {
2339 	struct reg_beacon *reg_beacon;
2340 	bool processing;
2341 
2342 	if (beacon_chan->beacon_found ||
2343 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2344 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2345 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2346 		return 0;
2347 
2348 	spin_lock_bh(&reg_pending_beacons_lock);
2349 	processing = pending_reg_beacon(beacon_chan);
2350 	spin_unlock_bh(&reg_pending_beacons_lock);
2351 
2352 	if (processing)
2353 		return 0;
2354 
2355 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2356 	if (!reg_beacon)
2357 		return -ENOMEM;
2358 
2359 	REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2360 		      beacon_chan->center_freq,
2361 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
2362 		      wiphy_name(wiphy));
2363 
2364 	memcpy(&reg_beacon->chan, beacon_chan,
2365 	       sizeof(struct ieee80211_channel));
2366 
2367 	/*
2368 	 * Since we can be called from BH or and non-BH context
2369 	 * we must use spin_lock_bh()
2370 	 */
2371 	spin_lock_bh(&reg_pending_beacons_lock);
2372 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2373 	spin_unlock_bh(&reg_pending_beacons_lock);
2374 
2375 	schedule_work(&reg_work);
2376 
2377 	return 0;
2378 }
2379 
print_rd_rules(const struct ieee80211_regdomain * rd)2380 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2381 {
2382 	unsigned int i;
2383 	const struct ieee80211_reg_rule *reg_rule = NULL;
2384 	const struct ieee80211_freq_range *freq_range = NULL;
2385 	const struct ieee80211_power_rule *power_rule = NULL;
2386 	char bw[32], cac_time[32];
2387 
2388 	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2389 
2390 	for (i = 0; i < rd->n_reg_rules; i++) {
2391 		reg_rule = &rd->reg_rules[i];
2392 		freq_range = &reg_rule->freq_range;
2393 		power_rule = &reg_rule->power_rule;
2394 
2395 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2396 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2397 				 freq_range->max_bandwidth_khz,
2398 				 reg_get_max_bandwidth(rd, reg_rule));
2399 		else
2400 			snprintf(bw, sizeof(bw), "%d KHz",
2401 				 freq_range->max_bandwidth_khz);
2402 
2403 		if (reg_rule->flags & NL80211_RRF_DFS)
2404 			scnprintf(cac_time, sizeof(cac_time), "%u s",
2405 				  reg_rule->dfs_cac_ms/1000);
2406 		else
2407 			scnprintf(cac_time, sizeof(cac_time), "N/A");
2408 
2409 
2410 		/*
2411 		 * There may not be documentation for max antenna gain
2412 		 * in certain regions
2413 		 */
2414 		if (power_rule->max_antenna_gain)
2415 			pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2416 				freq_range->start_freq_khz,
2417 				freq_range->end_freq_khz,
2418 				bw,
2419 				power_rule->max_antenna_gain,
2420 				power_rule->max_eirp,
2421 				cac_time);
2422 		else
2423 			pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2424 				freq_range->start_freq_khz,
2425 				freq_range->end_freq_khz,
2426 				bw,
2427 				power_rule->max_eirp,
2428 				cac_time);
2429 	}
2430 }
2431 
reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)2432 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2433 {
2434 	switch (dfs_region) {
2435 	case NL80211_DFS_UNSET:
2436 	case NL80211_DFS_FCC:
2437 	case NL80211_DFS_ETSI:
2438 	case NL80211_DFS_JP:
2439 		return true;
2440 	default:
2441 		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2442 			      dfs_region);
2443 		return false;
2444 	}
2445 }
2446 
print_regdomain(const struct ieee80211_regdomain * rd)2447 static void print_regdomain(const struct ieee80211_regdomain *rd)
2448 {
2449 	struct regulatory_request *lr = get_last_request();
2450 
2451 	if (is_intersected_alpha2(rd->alpha2)) {
2452 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2453 			struct cfg80211_registered_device *rdev;
2454 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2455 			if (rdev) {
2456 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2457 					rdev->country_ie_alpha2[0],
2458 					rdev->country_ie_alpha2[1]);
2459 			} else
2460 				pr_info("Current regulatory domain intersected:\n");
2461 		} else
2462 			pr_info("Current regulatory domain intersected:\n");
2463 	} else if (is_world_regdom(rd->alpha2)) {
2464 		pr_info("World regulatory domain updated:\n");
2465 	} else {
2466 		if (is_unknown_alpha2(rd->alpha2))
2467 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2468 		else {
2469 			if (reg_request_cell_base(lr))
2470 				pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2471 					rd->alpha2[0], rd->alpha2[1]);
2472 			else
2473 				pr_info("Regulatory domain changed to country: %c%c\n",
2474 					rd->alpha2[0], rd->alpha2[1]);
2475 		}
2476 	}
2477 
2478 	pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2479 	print_rd_rules(rd);
2480 }
2481 
print_regdomain_info(const struct ieee80211_regdomain * rd)2482 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2483 {
2484 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2485 	print_rd_rules(rd);
2486 }
2487 
reg_set_rd_core(const struct ieee80211_regdomain * rd)2488 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2489 {
2490 	if (!is_world_regdom(rd->alpha2))
2491 		return -EINVAL;
2492 	update_world_regdomain(rd);
2493 	return 0;
2494 }
2495 
reg_set_rd_user(const struct ieee80211_regdomain * rd,struct regulatory_request * user_request)2496 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2497 			   struct regulatory_request *user_request)
2498 {
2499 	const struct ieee80211_regdomain *intersected_rd = NULL;
2500 
2501 	if (!regdom_changes(rd->alpha2))
2502 		return -EALREADY;
2503 
2504 	if (!is_valid_rd(rd)) {
2505 		pr_err("Invalid regulatory domain detected:\n");
2506 		print_regdomain_info(rd);
2507 		return -EINVAL;
2508 	}
2509 
2510 	if (!user_request->intersect) {
2511 		reset_regdomains(false, rd);
2512 		return 0;
2513 	}
2514 
2515 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2516 	if (!intersected_rd)
2517 		return -EINVAL;
2518 
2519 	kfree(rd);
2520 	rd = NULL;
2521 	reset_regdomains(false, intersected_rd);
2522 
2523 	return 0;
2524 }
2525 
reg_set_rd_driver(const struct ieee80211_regdomain * rd,struct regulatory_request * driver_request)2526 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2527 			     struct regulatory_request *driver_request)
2528 {
2529 	const struct ieee80211_regdomain *regd;
2530 	const struct ieee80211_regdomain *intersected_rd = NULL;
2531 	const struct ieee80211_regdomain *tmp;
2532 	struct wiphy *request_wiphy;
2533 
2534 	if (is_world_regdom(rd->alpha2))
2535 		return -EINVAL;
2536 
2537 	if (!regdom_changes(rd->alpha2))
2538 		return -EALREADY;
2539 
2540 	if (!is_valid_rd(rd)) {
2541 		pr_err("Invalid regulatory domain detected:\n");
2542 		print_regdomain_info(rd);
2543 		return -EINVAL;
2544 	}
2545 
2546 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2547 	if (!request_wiphy) {
2548 		queue_delayed_work(system_power_efficient_wq,
2549 				   &reg_timeout, 0);
2550 		return -ENODEV;
2551 	}
2552 
2553 	if (!driver_request->intersect) {
2554 		if (request_wiphy->regd)
2555 			return -EALREADY;
2556 
2557 		regd = reg_copy_regd(rd);
2558 		if (IS_ERR(regd))
2559 			return PTR_ERR(regd);
2560 
2561 		rcu_assign_pointer(request_wiphy->regd, regd);
2562 		reset_regdomains(false, rd);
2563 		return 0;
2564 	}
2565 
2566 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2567 	if (!intersected_rd)
2568 		return -EINVAL;
2569 
2570 	/*
2571 	 * We can trash what CRDA provided now.
2572 	 * However if a driver requested this specific regulatory
2573 	 * domain we keep it for its private use
2574 	 */
2575 	tmp = get_wiphy_regdom(request_wiphy);
2576 	rcu_assign_pointer(request_wiphy->regd, rd);
2577 	rcu_free_regdom(tmp);
2578 
2579 	rd = NULL;
2580 
2581 	reset_regdomains(false, intersected_rd);
2582 
2583 	return 0;
2584 }
2585 
reg_set_rd_country_ie(const struct ieee80211_regdomain * rd,struct regulatory_request * country_ie_request)2586 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2587 				 struct regulatory_request *country_ie_request)
2588 {
2589 	struct wiphy *request_wiphy;
2590 
2591 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2592 	    !is_unknown_alpha2(rd->alpha2))
2593 		return -EINVAL;
2594 
2595 	/*
2596 	 * Lets only bother proceeding on the same alpha2 if the current
2597 	 * rd is non static (it means CRDA was present and was used last)
2598 	 * and the pending request came in from a country IE
2599 	 */
2600 
2601 	if (!is_valid_rd(rd)) {
2602 		pr_err("Invalid regulatory domain detected:\n");
2603 		print_regdomain_info(rd);
2604 		return -EINVAL;
2605 	}
2606 
2607 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2608 	if (!request_wiphy) {
2609 		queue_delayed_work(system_power_efficient_wq,
2610 				   &reg_timeout, 0);
2611 		return -ENODEV;
2612 	}
2613 
2614 	if (country_ie_request->intersect)
2615 		return -EINVAL;
2616 
2617 	reset_regdomains(false, rd);
2618 	return 0;
2619 }
2620 
2621 /*
2622  * Use this call to set the current regulatory domain. Conflicts with
2623  * multiple drivers can be ironed out later. Caller must've already
2624  * kmalloc'd the rd structure.
2625  */
set_regdom(const struct ieee80211_regdomain * rd)2626 int set_regdom(const struct ieee80211_regdomain *rd)
2627 {
2628 	struct regulatory_request *lr;
2629 	bool user_reset = false;
2630 	int r;
2631 
2632 	if (!reg_is_valid_request(rd->alpha2)) {
2633 		kfree(rd);
2634 		return -EINVAL;
2635 	}
2636 
2637 	lr = get_last_request();
2638 
2639 	/* Note that this doesn't update the wiphys, this is done below */
2640 	switch (lr->initiator) {
2641 	case NL80211_REGDOM_SET_BY_CORE:
2642 		r = reg_set_rd_core(rd);
2643 		break;
2644 	case NL80211_REGDOM_SET_BY_USER:
2645 		r = reg_set_rd_user(rd, lr);
2646 		user_reset = true;
2647 		break;
2648 	case NL80211_REGDOM_SET_BY_DRIVER:
2649 		r = reg_set_rd_driver(rd, lr);
2650 		break;
2651 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2652 		r = reg_set_rd_country_ie(rd, lr);
2653 		break;
2654 	default:
2655 		WARN(1, "invalid initiator %d\n", lr->initiator);
2656 		return -EINVAL;
2657 	}
2658 
2659 	if (r) {
2660 		switch (r) {
2661 		case -EALREADY:
2662 			reg_set_request_processed();
2663 			break;
2664 		default:
2665 			/* Back to world regulatory in case of errors */
2666 			restore_regulatory_settings(user_reset);
2667 		}
2668 
2669 		kfree(rd);
2670 		return r;
2671 	}
2672 
2673 	/* This would make this whole thing pointless */
2674 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2675 		return -EINVAL;
2676 
2677 	/* update all wiphys now with the new established regulatory domain */
2678 	update_all_wiphy_regulatory(lr->initiator);
2679 
2680 	print_regdomain(get_cfg80211_regdom());
2681 
2682 	nl80211_send_reg_change_event(lr);
2683 
2684 	reg_set_request_processed();
2685 
2686 	return 0;
2687 }
2688 
wiphy_regulatory_register(struct wiphy * wiphy)2689 void wiphy_regulatory_register(struct wiphy *wiphy)
2690 {
2691 	struct regulatory_request *lr;
2692 
2693 	if (!reg_dev_ignore_cell_hint(wiphy))
2694 		reg_num_devs_support_basehint++;
2695 
2696 	lr = get_last_request();
2697 	wiphy_update_regulatory(wiphy, lr->initiator);
2698 }
2699 
wiphy_regulatory_deregister(struct wiphy * wiphy)2700 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2701 {
2702 	struct wiphy *request_wiphy = NULL;
2703 	struct regulatory_request *lr;
2704 
2705 	lr = get_last_request();
2706 
2707 	if (!reg_dev_ignore_cell_hint(wiphy))
2708 		reg_num_devs_support_basehint--;
2709 
2710 	rcu_free_regdom(get_wiphy_regdom(wiphy));
2711 	RCU_INIT_POINTER(wiphy->regd, NULL);
2712 
2713 	if (lr)
2714 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2715 
2716 	if (!request_wiphy || request_wiphy != wiphy)
2717 		return;
2718 
2719 	lr->wiphy_idx = WIPHY_IDX_INVALID;
2720 	lr->country_ie_env = ENVIRON_ANY;
2721 }
2722 
reg_timeout_work(struct work_struct * work)2723 static void reg_timeout_work(struct work_struct *work)
2724 {
2725 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2726 	rtnl_lock();
2727 	restore_regulatory_settings(true);
2728 	rtnl_unlock();
2729 }
2730 
2731 /*
2732  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
2733  * UNII band definitions
2734  */
cfg80211_get_unii(int freq)2735 int cfg80211_get_unii(int freq)
2736 {
2737 	/* UNII-1 */
2738 	if (freq >= 5150 && freq <= 5250)
2739 		return 0;
2740 
2741 	/* UNII-2A */
2742 	if (freq > 5250 && freq <= 5350)
2743 		return 1;
2744 
2745 	/* UNII-2B */
2746 	if (freq > 5350 && freq <= 5470)
2747 		return 2;
2748 
2749 	/* UNII-2C */
2750 	if (freq > 5470 && freq <= 5725)
2751 		return 3;
2752 
2753 	/* UNII-3 */
2754 	if (freq > 5725 && freq <= 5825)
2755 		return 4;
2756 
2757 	return -EINVAL;
2758 }
2759 
regulatory_indoor_allowed(void)2760 bool regulatory_indoor_allowed(void)
2761 {
2762 	return reg_is_indoor;
2763 }
2764 
regulatory_init(void)2765 int __init regulatory_init(void)
2766 {
2767 	int err = 0;
2768 
2769 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2770 	if (IS_ERR(reg_pdev))
2771 		return PTR_ERR(reg_pdev);
2772 
2773 	spin_lock_init(&reg_requests_lock);
2774 	spin_lock_init(&reg_pending_beacons_lock);
2775 
2776 	reg_regdb_size_check();
2777 
2778 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2779 
2780 	user_alpha2[0] = '9';
2781 	user_alpha2[1] = '7';
2782 
2783 	/* We always try to get an update for the static regdomain */
2784 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2785 	if (err) {
2786 		if (err == -ENOMEM)
2787 			return err;
2788 		/*
2789 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2790 		 * memory which is handled and propagated appropriately above
2791 		 * but it can also fail during a netlink_broadcast() or during
2792 		 * early boot for call_usermodehelper(). For now treat these
2793 		 * errors as non-fatal.
2794 		 */
2795 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2796 	}
2797 
2798 	/*
2799 	 * Finally, if the user set the module parameter treat it
2800 	 * as a user hint.
2801 	 */
2802 	if (!is_world_regdom(ieee80211_regdom))
2803 		regulatory_hint_user(ieee80211_regdom,
2804 				     NL80211_USER_REG_HINT_USER);
2805 
2806 	return 0;
2807 }
2808 
regulatory_exit(void)2809 void regulatory_exit(void)
2810 {
2811 	struct regulatory_request *reg_request, *tmp;
2812 	struct reg_beacon *reg_beacon, *btmp;
2813 
2814 	cancel_work_sync(&reg_work);
2815 	cancel_delayed_work_sync(&reg_timeout);
2816 
2817 	/* Lock to suppress warnings */
2818 	rtnl_lock();
2819 	reset_regdomains(true, NULL);
2820 	rtnl_unlock();
2821 
2822 	dev_set_uevent_suppress(&reg_pdev->dev, true);
2823 
2824 	platform_device_unregister(reg_pdev);
2825 
2826 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2827 		list_del(&reg_beacon->list);
2828 		kfree(reg_beacon);
2829 	}
2830 
2831 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2832 		list_del(&reg_beacon->list);
2833 		kfree(reg_beacon);
2834 	}
2835 
2836 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2837 		list_del(&reg_request->list);
2838 		kfree(reg_request);
2839 	}
2840 }
2841