• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40 
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43 
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)		(x)
46 #define DO_NUMA(x)	do { (x); } while (0)
47 #else
48 #define NUMA(x)		(0)
49 #define DO_NUMA(x)	do { } while (0)
50 #endif
51 
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  *
91  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92  * stable trees and multiple unstable trees: one of each for each NUMA node.
93  */
94 
95 /**
96  * struct mm_slot - ksm information per mm that is being scanned
97  * @link: link to the mm_slots hash list
98  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100  * @mm: the mm that this information is valid for
101  */
102 struct mm_slot {
103 	struct hlist_node link;
104 	struct list_head mm_list;
105 	struct rmap_item *rmap_list;
106 	struct mm_struct *mm;
107 };
108 
109 /**
110  * struct ksm_scan - cursor for scanning
111  * @mm_slot: the current mm_slot we are scanning
112  * @address: the next address inside that to be scanned
113  * @rmap_list: link to the next rmap to be scanned in the rmap_list
114  * @seqnr: count of completed full scans (needed when removing unstable node)
115  *
116  * There is only the one ksm_scan instance of this cursor structure.
117  */
118 struct ksm_scan {
119 	struct mm_slot *mm_slot;
120 	unsigned long address;
121 	struct rmap_item **rmap_list;
122 	unsigned long seqnr;
123 };
124 
125 /**
126  * struct stable_node - node of the stable rbtree
127  * @node: rb node of this ksm page in the stable tree
128  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129  * @list: linked into migrate_nodes, pending placement in the proper node tree
130  * @hlist: hlist head of rmap_items using this ksm page
131  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133  */
134 struct stable_node {
135 	union {
136 		struct rb_node node;	/* when node of stable tree */
137 		struct {		/* when listed for migration */
138 			struct list_head *head;
139 			struct list_head list;
140 		};
141 	};
142 	struct hlist_head hlist;
143 	unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145 	int nid;
146 #endif
147 };
148 
149 /**
150  * struct rmap_item - reverse mapping item for virtual addresses
151  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @mm: the memory structure this rmap_item is pointing into
155  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156  * @oldchecksum: previous checksum of the page at that virtual address
157  * @node: rb node of this rmap_item in the unstable tree
158  * @head: pointer to stable_node heading this list in the stable tree
159  * @hlist: link into hlist of rmap_items hanging off that stable_node
160  */
161 struct rmap_item {
162 	struct rmap_item *rmap_list;
163 	union {
164 		struct anon_vma *anon_vma;	/* when stable */
165 #ifdef CONFIG_NUMA
166 		int nid;		/* when node of unstable tree */
167 #endif
168 	};
169 	struct mm_struct *mm;
170 	unsigned long address;		/* + low bits used for flags below */
171 	unsigned int oldchecksum;	/* when unstable */
172 	union {
173 		struct rb_node node;	/* when node of unstable tree */
174 		struct {		/* when listed from stable tree */
175 			struct stable_node *head;
176 			struct hlist_node hlist;
177 		};
178 	};
179 };
180 
181 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
183 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
184 
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190 
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193 
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196 
197 static struct mm_slot ksm_mm_head = {
198 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201 	.mm_slot = &ksm_mm_head,
202 };
203 
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207 
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210 
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213 
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216 
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219 
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222 
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225 
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes	1U
232 #define ksm_nr_node_ids		1
233 #endif
234 
235 #define KSM_RUN_STOP	0
236 #define KSM_RUN_MERGE	1
237 #define KSM_RUN_UNMERGE	2
238 #define KSM_RUN_OFFLINE	4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
241 
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
245 
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247 		sizeof(struct __struct), __alignof__(struct __struct),\
248 		(__flags), NULL)
249 
ksm_slab_init(void)250 static int __init ksm_slab_init(void)
251 {
252 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253 	if (!rmap_item_cache)
254 		goto out;
255 
256 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257 	if (!stable_node_cache)
258 		goto out_free1;
259 
260 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261 	if (!mm_slot_cache)
262 		goto out_free2;
263 
264 	return 0;
265 
266 out_free2:
267 	kmem_cache_destroy(stable_node_cache);
268 out_free1:
269 	kmem_cache_destroy(rmap_item_cache);
270 out:
271 	return -ENOMEM;
272 }
273 
ksm_slab_free(void)274 static void __init ksm_slab_free(void)
275 {
276 	kmem_cache_destroy(mm_slot_cache);
277 	kmem_cache_destroy(stable_node_cache);
278 	kmem_cache_destroy(rmap_item_cache);
279 	mm_slot_cache = NULL;
280 }
281 
alloc_rmap_item(void)282 static inline struct rmap_item *alloc_rmap_item(void)
283 {
284 	struct rmap_item *rmap_item;
285 
286 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
287 						__GFP_NORETRY | __GFP_NOWARN);
288 	if (rmap_item)
289 		ksm_rmap_items++;
290 	return rmap_item;
291 }
292 
free_rmap_item(struct rmap_item * rmap_item)293 static inline void free_rmap_item(struct rmap_item *rmap_item)
294 {
295 	ksm_rmap_items--;
296 	rmap_item->mm = NULL;	/* debug safety */
297 	kmem_cache_free(rmap_item_cache, rmap_item);
298 }
299 
alloc_stable_node(void)300 static inline struct stable_node *alloc_stable_node(void)
301 {
302 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
303 }
304 
free_stable_node(struct stable_node * stable_node)305 static inline void free_stable_node(struct stable_node *stable_node)
306 {
307 	kmem_cache_free(stable_node_cache, stable_node);
308 }
309 
alloc_mm_slot(void)310 static inline struct mm_slot *alloc_mm_slot(void)
311 {
312 	if (!mm_slot_cache)	/* initialization failed */
313 		return NULL;
314 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
315 }
316 
free_mm_slot(struct mm_slot * mm_slot)317 static inline void free_mm_slot(struct mm_slot *mm_slot)
318 {
319 	kmem_cache_free(mm_slot_cache, mm_slot);
320 }
321 
get_mm_slot(struct mm_struct * mm)322 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
323 {
324 	struct mm_slot *slot;
325 
326 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
327 		if (slot->mm == mm)
328 			return slot;
329 
330 	return NULL;
331 }
332 
insert_to_mm_slots_hash(struct mm_struct * mm,struct mm_slot * mm_slot)333 static void insert_to_mm_slots_hash(struct mm_struct *mm,
334 				    struct mm_slot *mm_slot)
335 {
336 	mm_slot->mm = mm;
337 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
338 }
339 
340 /*
341  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
342  * page tables after it has passed through ksm_exit() - which, if necessary,
343  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
344  * a special flag: they can just back out as soon as mm_users goes to zero.
345  * ksm_test_exit() is used throughout to make this test for exit: in some
346  * places for correctness, in some places just to avoid unnecessary work.
347  */
ksm_test_exit(struct mm_struct * mm)348 static inline bool ksm_test_exit(struct mm_struct *mm)
349 {
350 	return atomic_read(&mm->mm_users) == 0;
351 }
352 
353 /*
354  * We use break_ksm to break COW on a ksm page: it's a stripped down
355  *
356  *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
357  *		put_page(page);
358  *
359  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
360  * in case the application has unmapped and remapped mm,addr meanwhile.
361  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
362  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
363  */
break_ksm(struct vm_area_struct * vma,unsigned long addr)364 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
365 {
366 	struct page *page;
367 	int ret = 0;
368 
369 	do {
370 		cond_resched();
371 		page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
372 		if (IS_ERR_OR_NULL(page))
373 			break;
374 		if (PageKsm(page))
375 			ret = handle_mm_fault(vma->vm_mm, vma, addr,
376 							FAULT_FLAG_WRITE);
377 		else
378 			ret = VM_FAULT_WRITE;
379 		put_page(page);
380 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
381 	/*
382 	 * We must loop because handle_mm_fault() may back out if there's
383 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
384 	 *
385 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
386 	 * COW has been broken, even if the vma does not permit VM_WRITE;
387 	 * but note that a concurrent fault might break PageKsm for us.
388 	 *
389 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
390 	 * backing file, which also invalidates anonymous pages: that's
391 	 * okay, that truncation will have unmapped the PageKsm for us.
392 	 *
393 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
394 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
395 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
396 	 * to user; and ksmd, having no mm, would never be chosen for that.
397 	 *
398 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
399 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
400 	 * even ksmd can fail in this way - though it's usually breaking ksm
401 	 * just to undo a merge it made a moment before, so unlikely to oom.
402 	 *
403 	 * That's a pity: we might therefore have more kernel pages allocated
404 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
405 	 * will retry to break_cow on each pass, so should recover the page
406 	 * in due course.  The important thing is to not let VM_MERGEABLE
407 	 * be cleared while any such pages might remain in the area.
408 	 */
409 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
410 }
411 
find_mergeable_vma(struct mm_struct * mm,unsigned long addr)412 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
413 		unsigned long addr)
414 {
415 	struct vm_area_struct *vma;
416 	if (ksm_test_exit(mm))
417 		return NULL;
418 	vma = find_vma(mm, addr);
419 	if (!vma || vma->vm_start > addr)
420 		return NULL;
421 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
422 		return NULL;
423 	return vma;
424 }
425 
break_cow(struct rmap_item * rmap_item)426 static void break_cow(struct rmap_item *rmap_item)
427 {
428 	struct mm_struct *mm = rmap_item->mm;
429 	unsigned long addr = rmap_item->address;
430 	struct vm_area_struct *vma;
431 
432 	/*
433 	 * It is not an accident that whenever we want to break COW
434 	 * to undo, we also need to drop a reference to the anon_vma.
435 	 */
436 	put_anon_vma(rmap_item->anon_vma);
437 
438 	down_read(&mm->mmap_sem);
439 	vma = find_mergeable_vma(mm, addr);
440 	if (vma)
441 		break_ksm(vma, addr);
442 	up_read(&mm->mmap_sem);
443 }
444 
page_trans_compound_anon(struct page * page)445 static struct page *page_trans_compound_anon(struct page *page)
446 {
447 	if (PageTransCompound(page)) {
448 		struct page *head = compound_head(page);
449 		/*
450 		 * head may actually be splitted and freed from under
451 		 * us but it's ok here.
452 		 */
453 		if (PageAnon(head))
454 			return head;
455 	}
456 	return NULL;
457 }
458 
get_mergeable_page(struct rmap_item * rmap_item)459 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
460 {
461 	struct mm_struct *mm = rmap_item->mm;
462 	unsigned long addr = rmap_item->address;
463 	struct vm_area_struct *vma;
464 	struct page *page;
465 
466 	down_read(&mm->mmap_sem);
467 	vma = find_mergeable_vma(mm, addr);
468 	if (!vma)
469 		goto out;
470 
471 	page = follow_page(vma, addr, FOLL_GET);
472 	if (IS_ERR_OR_NULL(page))
473 		goto out;
474 	if (PageAnon(page) || page_trans_compound_anon(page)) {
475 		flush_anon_page(vma, page, addr);
476 		flush_dcache_page(page);
477 	} else {
478 		put_page(page);
479 out:		page = NULL;
480 	}
481 	up_read(&mm->mmap_sem);
482 	return page;
483 }
484 
485 /*
486  * This helper is used for getting right index into array of tree roots.
487  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
488  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
489  * every node has its own stable and unstable tree.
490  */
get_kpfn_nid(unsigned long kpfn)491 static inline int get_kpfn_nid(unsigned long kpfn)
492 {
493 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
494 }
495 
remove_node_from_stable_tree(struct stable_node * stable_node)496 static void remove_node_from_stable_tree(struct stable_node *stable_node)
497 {
498 	struct rmap_item *rmap_item;
499 
500 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
501 		if (rmap_item->hlist.next)
502 			ksm_pages_sharing--;
503 		else
504 			ksm_pages_shared--;
505 		put_anon_vma(rmap_item->anon_vma);
506 		rmap_item->address &= PAGE_MASK;
507 		cond_resched();
508 	}
509 
510 	if (stable_node->head == &migrate_nodes)
511 		list_del(&stable_node->list);
512 	else
513 		rb_erase(&stable_node->node,
514 			 root_stable_tree + NUMA(stable_node->nid));
515 	free_stable_node(stable_node);
516 }
517 
518 /*
519  * get_ksm_page: checks if the page indicated by the stable node
520  * is still its ksm page, despite having held no reference to it.
521  * In which case we can trust the content of the page, and it
522  * returns the gotten page; but if the page has now been zapped,
523  * remove the stale node from the stable tree and return NULL.
524  * But beware, the stable node's page might be being migrated.
525  *
526  * You would expect the stable_node to hold a reference to the ksm page.
527  * But if it increments the page's count, swapping out has to wait for
528  * ksmd to come around again before it can free the page, which may take
529  * seconds or even minutes: much too unresponsive.  So instead we use a
530  * "keyhole reference": access to the ksm page from the stable node peeps
531  * out through its keyhole to see if that page still holds the right key,
532  * pointing back to this stable node.  This relies on freeing a PageAnon
533  * page to reset its page->mapping to NULL, and relies on no other use of
534  * a page to put something that might look like our key in page->mapping.
535  * is on its way to being freed; but it is an anomaly to bear in mind.
536  */
get_ksm_page(struct stable_node * stable_node,bool lock_it)537 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
538 {
539 	struct page *page;
540 	void *expected_mapping;
541 	unsigned long kpfn;
542 
543 	expected_mapping = (void *)stable_node +
544 				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
545 again:
546 	kpfn = ACCESS_ONCE(stable_node->kpfn);
547 	page = pfn_to_page(kpfn);
548 
549 	/*
550 	 * page is computed from kpfn, so on most architectures reading
551 	 * page->mapping is naturally ordered after reading node->kpfn,
552 	 * but on Alpha we need to be more careful.
553 	 */
554 	smp_read_barrier_depends();
555 	if (ACCESS_ONCE(page->mapping) != expected_mapping)
556 		goto stale;
557 
558 	/*
559 	 * We cannot do anything with the page while its refcount is 0.
560 	 * Usually 0 means free, or tail of a higher-order page: in which
561 	 * case this node is no longer referenced, and should be freed;
562 	 * however, it might mean that the page is under page_freeze_refs().
563 	 * The __remove_mapping() case is easy, again the node is now stale;
564 	 * but if page is swapcache in migrate_page_move_mapping(), it might
565 	 * still be our page, in which case it's essential to keep the node.
566 	 */
567 	while (!get_page_unless_zero(page)) {
568 		/*
569 		 * Another check for page->mapping != expected_mapping would
570 		 * work here too.  We have chosen the !PageSwapCache test to
571 		 * optimize the common case, when the page is or is about to
572 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
573 		 * in the freeze_refs section of __remove_mapping(); but Anon
574 		 * page->mapping reset to NULL later, in free_pages_prepare().
575 		 */
576 		if (!PageSwapCache(page))
577 			goto stale;
578 		cpu_relax();
579 	}
580 
581 	if (ACCESS_ONCE(page->mapping) != expected_mapping) {
582 		put_page(page);
583 		goto stale;
584 	}
585 
586 	if (lock_it) {
587 		lock_page(page);
588 		if (ACCESS_ONCE(page->mapping) != expected_mapping) {
589 			unlock_page(page);
590 			put_page(page);
591 			goto stale;
592 		}
593 	}
594 	return page;
595 
596 stale:
597 	/*
598 	 * We come here from above when page->mapping or !PageSwapCache
599 	 * suggests that the node is stale; but it might be under migration.
600 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
601 	 * before checking whether node->kpfn has been changed.
602 	 */
603 	smp_rmb();
604 	if (ACCESS_ONCE(stable_node->kpfn) != kpfn)
605 		goto again;
606 	remove_node_from_stable_tree(stable_node);
607 	return NULL;
608 }
609 
610 /*
611  * Removing rmap_item from stable or unstable tree.
612  * This function will clean the information from the stable/unstable tree.
613  */
remove_rmap_item_from_tree(struct rmap_item * rmap_item)614 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
615 {
616 	if (rmap_item->address & STABLE_FLAG) {
617 		struct stable_node *stable_node;
618 		struct page *page;
619 
620 		stable_node = rmap_item->head;
621 		page = get_ksm_page(stable_node, true);
622 		if (!page)
623 			goto out;
624 
625 		hlist_del(&rmap_item->hlist);
626 		unlock_page(page);
627 		put_page(page);
628 
629 		if (stable_node->hlist.first)
630 			ksm_pages_sharing--;
631 		else
632 			ksm_pages_shared--;
633 
634 		put_anon_vma(rmap_item->anon_vma);
635 		rmap_item->address &= PAGE_MASK;
636 
637 	} else if (rmap_item->address & UNSTABLE_FLAG) {
638 		unsigned char age;
639 		/*
640 		 * Usually ksmd can and must skip the rb_erase, because
641 		 * root_unstable_tree was already reset to RB_ROOT.
642 		 * But be careful when an mm is exiting: do the rb_erase
643 		 * if this rmap_item was inserted by this scan, rather
644 		 * than left over from before.
645 		 */
646 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
647 		BUG_ON(age > 1);
648 		if (!age)
649 			rb_erase(&rmap_item->node,
650 				 root_unstable_tree + NUMA(rmap_item->nid));
651 		ksm_pages_unshared--;
652 		rmap_item->address &= PAGE_MASK;
653 	}
654 out:
655 	cond_resched();		/* we're called from many long loops */
656 }
657 
remove_trailing_rmap_items(struct mm_slot * mm_slot,struct rmap_item ** rmap_list)658 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
659 				       struct rmap_item **rmap_list)
660 {
661 	while (*rmap_list) {
662 		struct rmap_item *rmap_item = *rmap_list;
663 		*rmap_list = rmap_item->rmap_list;
664 		remove_rmap_item_from_tree(rmap_item);
665 		free_rmap_item(rmap_item);
666 	}
667 }
668 
669 /*
670  * Though it's very tempting to unmerge rmap_items from stable tree rather
671  * than check every pte of a given vma, the locking doesn't quite work for
672  * that - an rmap_item is assigned to the stable tree after inserting ksm
673  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
674  * rmap_items from parent to child at fork time (so as not to waste time
675  * if exit comes before the next scan reaches it).
676  *
677  * Similarly, although we'd like to remove rmap_items (so updating counts
678  * and freeing memory) when unmerging an area, it's easier to leave that
679  * to the next pass of ksmd - consider, for example, how ksmd might be
680  * in cmp_and_merge_page on one of the rmap_items we would be removing.
681  */
unmerge_ksm_pages(struct vm_area_struct * vma,unsigned long start,unsigned long end)682 static int unmerge_ksm_pages(struct vm_area_struct *vma,
683 			     unsigned long start, unsigned long end)
684 {
685 	unsigned long addr;
686 	int err = 0;
687 
688 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
689 		if (ksm_test_exit(vma->vm_mm))
690 			break;
691 		if (signal_pending(current))
692 			err = -ERESTARTSYS;
693 		else
694 			err = break_ksm(vma, addr);
695 	}
696 	return err;
697 }
698 
699 #ifdef CONFIG_SYSFS
700 /*
701  * Only called through the sysfs control interface:
702  */
remove_stable_node(struct stable_node * stable_node)703 static int remove_stable_node(struct stable_node *stable_node)
704 {
705 	struct page *page;
706 	int err;
707 
708 	page = get_ksm_page(stable_node, true);
709 	if (!page) {
710 		/*
711 		 * get_ksm_page did remove_node_from_stable_tree itself.
712 		 */
713 		return 0;
714 	}
715 
716 	if (WARN_ON_ONCE(page_mapped(page))) {
717 		/*
718 		 * This should not happen: but if it does, just refuse to let
719 		 * merge_across_nodes be switched - there is no need to panic.
720 		 */
721 		err = -EBUSY;
722 	} else {
723 		/*
724 		 * The stable node did not yet appear stale to get_ksm_page(),
725 		 * since that allows for an unmapped ksm page to be recognized
726 		 * right up until it is freed; but the node is safe to remove.
727 		 * This page might be in a pagevec waiting to be freed,
728 		 * or it might be PageSwapCache (perhaps under writeback),
729 		 * or it might have been removed from swapcache a moment ago.
730 		 */
731 		set_page_stable_node(page, NULL);
732 		remove_node_from_stable_tree(stable_node);
733 		err = 0;
734 	}
735 
736 	unlock_page(page);
737 	put_page(page);
738 	return err;
739 }
740 
remove_all_stable_nodes(void)741 static int remove_all_stable_nodes(void)
742 {
743 	struct stable_node *stable_node;
744 	struct list_head *this, *next;
745 	int nid;
746 	int err = 0;
747 
748 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
749 		while (root_stable_tree[nid].rb_node) {
750 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
751 						struct stable_node, node);
752 			if (remove_stable_node(stable_node)) {
753 				err = -EBUSY;
754 				break;	/* proceed to next nid */
755 			}
756 			cond_resched();
757 		}
758 	}
759 	list_for_each_safe(this, next, &migrate_nodes) {
760 		stable_node = list_entry(this, struct stable_node, list);
761 		if (remove_stable_node(stable_node))
762 			err = -EBUSY;
763 		cond_resched();
764 	}
765 	return err;
766 }
767 
unmerge_and_remove_all_rmap_items(void)768 static int unmerge_and_remove_all_rmap_items(void)
769 {
770 	struct mm_slot *mm_slot;
771 	struct mm_struct *mm;
772 	struct vm_area_struct *vma;
773 	int err = 0;
774 
775 	spin_lock(&ksm_mmlist_lock);
776 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
777 						struct mm_slot, mm_list);
778 	spin_unlock(&ksm_mmlist_lock);
779 
780 	for (mm_slot = ksm_scan.mm_slot;
781 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
782 		mm = mm_slot->mm;
783 		down_read(&mm->mmap_sem);
784 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
785 			if (ksm_test_exit(mm))
786 				break;
787 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
788 				continue;
789 			err = unmerge_ksm_pages(vma,
790 						vma->vm_start, vma->vm_end);
791 			if (err)
792 				goto error;
793 		}
794 
795 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
796 
797 		spin_lock(&ksm_mmlist_lock);
798 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
799 						struct mm_slot, mm_list);
800 		if (ksm_test_exit(mm)) {
801 			hash_del(&mm_slot->link);
802 			list_del(&mm_slot->mm_list);
803 			spin_unlock(&ksm_mmlist_lock);
804 
805 			free_mm_slot(mm_slot);
806 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
807 			up_read(&mm->mmap_sem);
808 			mmdrop(mm);
809 		} else {
810 			spin_unlock(&ksm_mmlist_lock);
811 			up_read(&mm->mmap_sem);
812 		}
813 	}
814 
815 	/* Clean up stable nodes, but don't worry if some are still busy */
816 	remove_all_stable_nodes();
817 	ksm_scan.seqnr = 0;
818 	return 0;
819 
820 error:
821 	up_read(&mm->mmap_sem);
822 	spin_lock(&ksm_mmlist_lock);
823 	ksm_scan.mm_slot = &ksm_mm_head;
824 	spin_unlock(&ksm_mmlist_lock);
825 	return err;
826 }
827 #endif /* CONFIG_SYSFS */
828 
calc_checksum(struct page * page)829 static u32 calc_checksum(struct page *page)
830 {
831 	u32 checksum;
832 	void *addr = kmap_atomic(page);
833 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
834 	kunmap_atomic(addr);
835 	return checksum;
836 }
837 
memcmp_pages(struct page * page1,struct page * page2)838 static int memcmp_pages(struct page *page1, struct page *page2)
839 {
840 	char *addr1, *addr2;
841 	int ret;
842 
843 	addr1 = kmap_atomic(page1);
844 	addr2 = kmap_atomic(page2);
845 	ret = memcmp(addr1, addr2, PAGE_SIZE);
846 	kunmap_atomic(addr2);
847 	kunmap_atomic(addr1);
848 	return ret;
849 }
850 
pages_identical(struct page * page1,struct page * page2)851 static inline int pages_identical(struct page *page1, struct page *page2)
852 {
853 	return !memcmp_pages(page1, page2);
854 }
855 
write_protect_page(struct vm_area_struct * vma,struct page * page,pte_t * orig_pte)856 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
857 			      pte_t *orig_pte)
858 {
859 	struct mm_struct *mm = vma->vm_mm;
860 	unsigned long addr;
861 	pte_t *ptep;
862 	spinlock_t *ptl;
863 	int swapped;
864 	int err = -EFAULT;
865 	unsigned long mmun_start;	/* For mmu_notifiers */
866 	unsigned long mmun_end;		/* For mmu_notifiers */
867 
868 	addr = page_address_in_vma(page, vma);
869 	if (addr == -EFAULT)
870 		goto out;
871 
872 	BUG_ON(PageTransCompound(page));
873 
874 	mmun_start = addr;
875 	mmun_end   = addr + PAGE_SIZE;
876 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
877 
878 	ptep = page_check_address(page, mm, addr, &ptl, 0);
879 	if (!ptep)
880 		goto out_mn;
881 
882 	if (pte_write(*ptep) || pte_dirty(*ptep)) {
883 		pte_t entry;
884 
885 		swapped = PageSwapCache(page);
886 		flush_cache_page(vma, addr, page_to_pfn(page));
887 		/*
888 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
889 		 * take any lock, therefore the check that we are going to make
890 		 * with the pagecount against the mapcount is racey and
891 		 * O_DIRECT can happen right after the check.
892 		 * So we clear the pte and flush the tlb before the check
893 		 * this assure us that no O_DIRECT can happen after the check
894 		 * or in the middle of the check.
895 		 */
896 		entry = ptep_clear_flush(vma, addr, ptep);
897 		/*
898 		 * Check that no O_DIRECT or similar I/O is in progress on the
899 		 * page
900 		 */
901 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
902 			set_pte_at(mm, addr, ptep, entry);
903 			goto out_unlock;
904 		}
905 		if (pte_dirty(entry))
906 			set_page_dirty(page);
907 		entry = pte_mkclean(pte_wrprotect(entry));
908 		set_pte_at_notify(mm, addr, ptep, entry);
909 	}
910 	*orig_pte = *ptep;
911 	err = 0;
912 
913 out_unlock:
914 	pte_unmap_unlock(ptep, ptl);
915 out_mn:
916 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
917 out:
918 	return err;
919 }
920 
921 /**
922  * replace_page - replace page in vma by new ksm page
923  * @vma:      vma that holds the pte pointing to page
924  * @page:     the page we are replacing by kpage
925  * @kpage:    the ksm page we replace page by
926  * @orig_pte: the original value of the pte
927  *
928  * Returns 0 on success, -EFAULT on failure.
929  */
replace_page(struct vm_area_struct * vma,struct page * page,struct page * kpage,pte_t orig_pte)930 static int replace_page(struct vm_area_struct *vma, struct page *page,
931 			struct page *kpage, pte_t orig_pte)
932 {
933 	struct mm_struct *mm = vma->vm_mm;
934 	pmd_t *pmd;
935 	pte_t *ptep;
936 	spinlock_t *ptl;
937 	unsigned long addr;
938 	int err = -EFAULT;
939 	unsigned long mmun_start;	/* For mmu_notifiers */
940 	unsigned long mmun_end;		/* For mmu_notifiers */
941 
942 	addr = page_address_in_vma(page, vma);
943 	if (addr == -EFAULT)
944 		goto out;
945 
946 	pmd = mm_find_pmd(mm, addr);
947 	if (!pmd)
948 		goto out;
949 
950 	mmun_start = addr;
951 	mmun_end   = addr + PAGE_SIZE;
952 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
953 
954 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
955 	if (!pte_same(*ptep, orig_pte)) {
956 		pte_unmap_unlock(ptep, ptl);
957 		goto out_mn;
958 	}
959 
960 	get_page(kpage);
961 	page_add_anon_rmap(kpage, vma, addr);
962 
963 	flush_cache_page(vma, addr, pte_pfn(*ptep));
964 	ptep_clear_flush(vma, addr, ptep);
965 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
966 
967 	page_remove_rmap(page);
968 	if (!page_mapped(page))
969 		try_to_free_swap(page);
970 	put_page(page);
971 
972 	pte_unmap_unlock(ptep, ptl);
973 	err = 0;
974 out_mn:
975 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
976 out:
977 	return err;
978 }
979 
page_trans_compound_anon_split(struct page * page)980 static int page_trans_compound_anon_split(struct page *page)
981 {
982 	int ret = 0;
983 	struct page *transhuge_head = page_trans_compound_anon(page);
984 	if (transhuge_head) {
985 		/* Get the reference on the head to split it. */
986 		if (get_page_unless_zero(transhuge_head)) {
987 			/*
988 			 * Recheck we got the reference while the head
989 			 * was still anonymous.
990 			 */
991 			if (PageAnon(transhuge_head))
992 				ret = split_huge_page(transhuge_head);
993 			else
994 				/*
995 				 * Retry later if split_huge_page run
996 				 * from under us.
997 				 */
998 				ret = 1;
999 			put_page(transhuge_head);
1000 		} else
1001 			/* Retry later if split_huge_page run from under us. */
1002 			ret = 1;
1003 	}
1004 	return ret;
1005 }
1006 
1007 /*
1008  * try_to_merge_one_page - take two pages and merge them into one
1009  * @vma: the vma that holds the pte pointing to page
1010  * @page: the PageAnon page that we want to replace with kpage
1011  * @kpage: the PageKsm page that we want to map instead of page,
1012  *         or NULL the first time when we want to use page as kpage.
1013  *
1014  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1015  */
try_to_merge_one_page(struct vm_area_struct * vma,struct page * page,struct page * kpage)1016 static int try_to_merge_one_page(struct vm_area_struct *vma,
1017 				 struct page *page, struct page *kpage)
1018 {
1019 	pte_t orig_pte = __pte(0);
1020 	int err = -EFAULT;
1021 
1022 	if (page == kpage)			/* ksm page forked */
1023 		return 0;
1024 
1025 	if (!(vma->vm_flags & VM_MERGEABLE))
1026 		goto out;
1027 	if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1028 		goto out;
1029 	BUG_ON(PageTransCompound(page));
1030 	if (!PageAnon(page))
1031 		goto out;
1032 
1033 	/*
1034 	 * We need the page lock to read a stable PageSwapCache in
1035 	 * write_protect_page().  We use trylock_page() instead of
1036 	 * lock_page() because we don't want to wait here - we
1037 	 * prefer to continue scanning and merging different pages,
1038 	 * then come back to this page when it is unlocked.
1039 	 */
1040 	if (!trylock_page(page))
1041 		goto out;
1042 	/*
1043 	 * If this anonymous page is mapped only here, its pte may need
1044 	 * to be write-protected.  If it's mapped elsewhere, all of its
1045 	 * ptes are necessarily already write-protected.  But in either
1046 	 * case, we need to lock and check page_count is not raised.
1047 	 */
1048 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1049 		if (!kpage) {
1050 			/*
1051 			 * While we hold page lock, upgrade page from
1052 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1053 			 * stable_tree_insert() will update stable_node.
1054 			 */
1055 			set_page_stable_node(page, NULL);
1056 			mark_page_accessed(page);
1057 			err = 0;
1058 		} else if (pages_identical(page, kpage))
1059 			err = replace_page(vma, page, kpage, orig_pte);
1060 	}
1061 
1062 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1063 		munlock_vma_page(page);
1064 		if (!PageMlocked(kpage)) {
1065 			unlock_page(page);
1066 			lock_page(kpage);
1067 			mlock_vma_page(kpage);
1068 			page = kpage;		/* for final unlock */
1069 		}
1070 	}
1071 
1072 	unlock_page(page);
1073 out:
1074 	return err;
1075 }
1076 
1077 /*
1078  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1079  * but no new kernel page is allocated: kpage must already be a ksm page.
1080  *
1081  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1082  */
try_to_merge_with_ksm_page(struct rmap_item * rmap_item,struct page * page,struct page * kpage)1083 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1084 				      struct page *page, struct page *kpage)
1085 {
1086 	struct mm_struct *mm = rmap_item->mm;
1087 	struct vm_area_struct *vma;
1088 	int err = -EFAULT;
1089 
1090 	down_read(&mm->mmap_sem);
1091 	if (ksm_test_exit(mm))
1092 		goto out;
1093 	vma = find_vma(mm, rmap_item->address);
1094 	if (!vma || vma->vm_start > rmap_item->address)
1095 		goto out;
1096 
1097 	err = try_to_merge_one_page(vma, page, kpage);
1098 	if (err)
1099 		goto out;
1100 
1101 	/* Unstable nid is in union with stable anon_vma: remove first */
1102 	remove_rmap_item_from_tree(rmap_item);
1103 
1104 	/* Must get reference to anon_vma while still holding mmap_sem */
1105 	rmap_item->anon_vma = vma->anon_vma;
1106 	get_anon_vma(vma->anon_vma);
1107 out:
1108 	up_read(&mm->mmap_sem);
1109 	return err;
1110 }
1111 
1112 /*
1113  * try_to_merge_two_pages - take two identical pages and prepare them
1114  * to be merged into one page.
1115  *
1116  * This function returns the kpage if we successfully merged two identical
1117  * pages into one ksm page, NULL otherwise.
1118  *
1119  * Note that this function upgrades page to ksm page: if one of the pages
1120  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1121  */
try_to_merge_two_pages(struct rmap_item * rmap_item,struct page * page,struct rmap_item * tree_rmap_item,struct page * tree_page)1122 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1123 					   struct page *page,
1124 					   struct rmap_item *tree_rmap_item,
1125 					   struct page *tree_page)
1126 {
1127 	int err;
1128 
1129 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1130 	if (!err) {
1131 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1132 							tree_page, page);
1133 		/*
1134 		 * If that fails, we have a ksm page with only one pte
1135 		 * pointing to it: so break it.
1136 		 */
1137 		if (err)
1138 			break_cow(rmap_item);
1139 	}
1140 	return err ? NULL : page;
1141 }
1142 
1143 /*
1144  * stable_tree_search - search for page inside the stable tree
1145  *
1146  * This function checks if there is a page inside the stable tree
1147  * with identical content to the page that we are scanning right now.
1148  *
1149  * This function returns the stable tree node of identical content if found,
1150  * NULL otherwise.
1151  */
stable_tree_search(struct page * page)1152 static struct page *stable_tree_search(struct page *page)
1153 {
1154 	int nid;
1155 	struct rb_root *root;
1156 	struct rb_node **new;
1157 	struct rb_node *parent;
1158 	struct stable_node *stable_node;
1159 	struct stable_node *page_node;
1160 
1161 	page_node = page_stable_node(page);
1162 	if (page_node && page_node->head != &migrate_nodes) {
1163 		/* ksm page forked */
1164 		get_page(page);
1165 		return page;
1166 	}
1167 
1168 	nid = get_kpfn_nid(page_to_pfn(page));
1169 	root = root_stable_tree + nid;
1170 again:
1171 	new = &root->rb_node;
1172 	parent = NULL;
1173 
1174 	while (*new) {
1175 		struct page *tree_page;
1176 		int ret;
1177 
1178 		cond_resched();
1179 		stable_node = rb_entry(*new, struct stable_node, node);
1180 		tree_page = get_ksm_page(stable_node, false);
1181 		if (!tree_page)
1182 			return NULL;
1183 
1184 		ret = memcmp_pages(page, tree_page);
1185 		put_page(tree_page);
1186 
1187 		parent = *new;
1188 		if (ret < 0)
1189 			new = &parent->rb_left;
1190 		else if (ret > 0)
1191 			new = &parent->rb_right;
1192 		else {
1193 			/*
1194 			 * Lock and unlock the stable_node's page (which
1195 			 * might already have been migrated) so that page
1196 			 * migration is sure to notice its raised count.
1197 			 * It would be more elegant to return stable_node
1198 			 * than kpage, but that involves more changes.
1199 			 */
1200 			tree_page = get_ksm_page(stable_node, true);
1201 			if (tree_page) {
1202 				unlock_page(tree_page);
1203 				if (get_kpfn_nid(stable_node->kpfn) !=
1204 						NUMA(stable_node->nid)) {
1205 					put_page(tree_page);
1206 					goto replace;
1207 				}
1208 				return tree_page;
1209 			}
1210 			/*
1211 			 * There is now a place for page_node, but the tree may
1212 			 * have been rebalanced, so re-evaluate parent and new.
1213 			 */
1214 			if (page_node)
1215 				goto again;
1216 			return NULL;
1217 		}
1218 	}
1219 
1220 	if (!page_node)
1221 		return NULL;
1222 
1223 	list_del(&page_node->list);
1224 	DO_NUMA(page_node->nid = nid);
1225 	rb_link_node(&page_node->node, parent, new);
1226 	rb_insert_color(&page_node->node, root);
1227 	get_page(page);
1228 	return page;
1229 
1230 replace:
1231 	if (page_node) {
1232 		list_del(&page_node->list);
1233 		DO_NUMA(page_node->nid = nid);
1234 		rb_replace_node(&stable_node->node, &page_node->node, root);
1235 		get_page(page);
1236 	} else {
1237 		rb_erase(&stable_node->node, root);
1238 		page = NULL;
1239 	}
1240 	stable_node->head = &migrate_nodes;
1241 	list_add(&stable_node->list, stable_node->head);
1242 	return page;
1243 }
1244 
1245 /*
1246  * stable_tree_insert - insert stable tree node pointing to new ksm page
1247  * into the stable tree.
1248  *
1249  * This function returns the stable tree node just allocated on success,
1250  * NULL otherwise.
1251  */
stable_tree_insert(struct page * kpage)1252 static struct stable_node *stable_tree_insert(struct page *kpage)
1253 {
1254 	int nid;
1255 	unsigned long kpfn;
1256 	struct rb_root *root;
1257 	struct rb_node **new;
1258 	struct rb_node *parent = NULL;
1259 	struct stable_node *stable_node;
1260 
1261 	kpfn = page_to_pfn(kpage);
1262 	nid = get_kpfn_nid(kpfn);
1263 	root = root_stable_tree + nid;
1264 	new = &root->rb_node;
1265 
1266 	while (*new) {
1267 		struct page *tree_page;
1268 		int ret;
1269 
1270 		cond_resched();
1271 		stable_node = rb_entry(*new, struct stable_node, node);
1272 		tree_page = get_ksm_page(stable_node, false);
1273 		if (!tree_page)
1274 			return NULL;
1275 
1276 		ret = memcmp_pages(kpage, tree_page);
1277 		put_page(tree_page);
1278 
1279 		parent = *new;
1280 		if (ret < 0)
1281 			new = &parent->rb_left;
1282 		else if (ret > 0)
1283 			new = &parent->rb_right;
1284 		else {
1285 			/*
1286 			 * It is not a bug that stable_tree_search() didn't
1287 			 * find this node: because at that time our page was
1288 			 * not yet write-protected, so may have changed since.
1289 			 */
1290 			return NULL;
1291 		}
1292 	}
1293 
1294 	stable_node = alloc_stable_node();
1295 	if (!stable_node)
1296 		return NULL;
1297 
1298 	INIT_HLIST_HEAD(&stable_node->hlist);
1299 	stable_node->kpfn = kpfn;
1300 	set_page_stable_node(kpage, stable_node);
1301 	DO_NUMA(stable_node->nid = nid);
1302 	rb_link_node(&stable_node->node, parent, new);
1303 	rb_insert_color(&stable_node->node, root);
1304 
1305 	return stable_node;
1306 }
1307 
1308 /*
1309  * unstable_tree_search_insert - search for identical page,
1310  * else insert rmap_item into the unstable tree.
1311  *
1312  * This function searches for a page in the unstable tree identical to the
1313  * page currently being scanned; and if no identical page is found in the
1314  * tree, we insert rmap_item as a new object into the unstable tree.
1315  *
1316  * This function returns pointer to rmap_item found to be identical
1317  * to the currently scanned page, NULL otherwise.
1318  *
1319  * This function does both searching and inserting, because they share
1320  * the same walking algorithm in an rbtree.
1321  */
1322 static
unstable_tree_search_insert(struct rmap_item * rmap_item,struct page * page,struct page ** tree_pagep)1323 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1324 					      struct page *page,
1325 					      struct page **tree_pagep)
1326 {
1327 	struct rb_node **new;
1328 	struct rb_root *root;
1329 	struct rb_node *parent = NULL;
1330 	int nid;
1331 
1332 	nid = get_kpfn_nid(page_to_pfn(page));
1333 	root = root_unstable_tree + nid;
1334 	new = &root->rb_node;
1335 
1336 	while (*new) {
1337 		struct rmap_item *tree_rmap_item;
1338 		struct page *tree_page;
1339 		int ret;
1340 
1341 		cond_resched();
1342 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1343 		tree_page = get_mergeable_page(tree_rmap_item);
1344 		if (IS_ERR_OR_NULL(tree_page))
1345 			return NULL;
1346 
1347 		/*
1348 		 * Don't substitute a ksm page for a forked page.
1349 		 */
1350 		if (page == tree_page) {
1351 			put_page(tree_page);
1352 			return NULL;
1353 		}
1354 
1355 		ret = memcmp_pages(page, tree_page);
1356 
1357 		parent = *new;
1358 		if (ret < 0) {
1359 			put_page(tree_page);
1360 			new = &parent->rb_left;
1361 		} else if (ret > 0) {
1362 			put_page(tree_page);
1363 			new = &parent->rb_right;
1364 		} else if (!ksm_merge_across_nodes &&
1365 			   page_to_nid(tree_page) != nid) {
1366 			/*
1367 			 * If tree_page has been migrated to another NUMA node,
1368 			 * it will be flushed out and put in the right unstable
1369 			 * tree next time: only merge with it when across_nodes.
1370 			 */
1371 			put_page(tree_page);
1372 			return NULL;
1373 		} else {
1374 			*tree_pagep = tree_page;
1375 			return tree_rmap_item;
1376 		}
1377 	}
1378 
1379 	rmap_item->address |= UNSTABLE_FLAG;
1380 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1381 	DO_NUMA(rmap_item->nid = nid);
1382 	rb_link_node(&rmap_item->node, parent, new);
1383 	rb_insert_color(&rmap_item->node, root);
1384 
1385 	ksm_pages_unshared++;
1386 	return NULL;
1387 }
1388 
1389 /*
1390  * stable_tree_append - add another rmap_item to the linked list of
1391  * rmap_items hanging off a given node of the stable tree, all sharing
1392  * the same ksm page.
1393  */
stable_tree_append(struct rmap_item * rmap_item,struct stable_node * stable_node)1394 static void stable_tree_append(struct rmap_item *rmap_item,
1395 			       struct stable_node *stable_node)
1396 {
1397 	rmap_item->head = stable_node;
1398 	rmap_item->address |= STABLE_FLAG;
1399 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1400 
1401 	if (rmap_item->hlist.next)
1402 		ksm_pages_sharing++;
1403 	else
1404 		ksm_pages_shared++;
1405 }
1406 
1407 /*
1408  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1409  * if not, compare checksum to previous and if it's the same, see if page can
1410  * be inserted into the unstable tree, or merged with a page already there and
1411  * both transferred to the stable tree.
1412  *
1413  * @page: the page that we are searching identical page to.
1414  * @rmap_item: the reverse mapping into the virtual address of this page
1415  */
cmp_and_merge_page(struct page * page,struct rmap_item * rmap_item)1416 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1417 {
1418 	struct rmap_item *tree_rmap_item;
1419 	struct page *tree_page = NULL;
1420 	struct stable_node *stable_node;
1421 	struct page *kpage;
1422 	unsigned int checksum;
1423 	int err;
1424 
1425 	stable_node = page_stable_node(page);
1426 	if (stable_node) {
1427 		if (stable_node->head != &migrate_nodes &&
1428 		    get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1429 			rb_erase(&stable_node->node,
1430 				 root_stable_tree + NUMA(stable_node->nid));
1431 			stable_node->head = &migrate_nodes;
1432 			list_add(&stable_node->list, stable_node->head);
1433 		}
1434 		if (stable_node->head != &migrate_nodes &&
1435 		    rmap_item->head == stable_node)
1436 			return;
1437 	}
1438 
1439 	/* We first start with searching the page inside the stable tree */
1440 	kpage = stable_tree_search(page);
1441 	if (kpage == page && rmap_item->head == stable_node) {
1442 		put_page(kpage);
1443 		return;
1444 	}
1445 
1446 	remove_rmap_item_from_tree(rmap_item);
1447 
1448 	if (kpage) {
1449 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1450 		if (!err) {
1451 			/*
1452 			 * The page was successfully merged:
1453 			 * add its rmap_item to the stable tree.
1454 			 */
1455 			lock_page(kpage);
1456 			stable_tree_append(rmap_item, page_stable_node(kpage));
1457 			unlock_page(kpage);
1458 		}
1459 		put_page(kpage);
1460 		return;
1461 	}
1462 
1463 	/*
1464 	 * If the hash value of the page has changed from the last time
1465 	 * we calculated it, this page is changing frequently: therefore we
1466 	 * don't want to insert it in the unstable tree, and we don't want
1467 	 * to waste our time searching for something identical to it there.
1468 	 */
1469 	checksum = calc_checksum(page);
1470 	if (rmap_item->oldchecksum != checksum) {
1471 		rmap_item->oldchecksum = checksum;
1472 		return;
1473 	}
1474 
1475 	tree_rmap_item =
1476 		unstable_tree_search_insert(rmap_item, page, &tree_page);
1477 	if (tree_rmap_item) {
1478 		kpage = try_to_merge_two_pages(rmap_item, page,
1479 						tree_rmap_item, tree_page);
1480 		put_page(tree_page);
1481 		if (kpage) {
1482 			/*
1483 			 * The pages were successfully merged: insert new
1484 			 * node in the stable tree and add both rmap_items.
1485 			 */
1486 			lock_page(kpage);
1487 			stable_node = stable_tree_insert(kpage);
1488 			if (stable_node) {
1489 				stable_tree_append(tree_rmap_item, stable_node);
1490 				stable_tree_append(rmap_item, stable_node);
1491 			}
1492 			unlock_page(kpage);
1493 
1494 			/*
1495 			 * If we fail to insert the page into the stable tree,
1496 			 * we will have 2 virtual addresses that are pointing
1497 			 * to a ksm page left outside the stable tree,
1498 			 * in which case we need to break_cow on both.
1499 			 */
1500 			if (!stable_node) {
1501 				break_cow(tree_rmap_item);
1502 				break_cow(rmap_item);
1503 			}
1504 		}
1505 	}
1506 }
1507 
get_next_rmap_item(struct mm_slot * mm_slot,struct rmap_item ** rmap_list,unsigned long addr)1508 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1509 					    struct rmap_item **rmap_list,
1510 					    unsigned long addr)
1511 {
1512 	struct rmap_item *rmap_item;
1513 
1514 	while (*rmap_list) {
1515 		rmap_item = *rmap_list;
1516 		if ((rmap_item->address & PAGE_MASK) == addr)
1517 			return rmap_item;
1518 		if (rmap_item->address > addr)
1519 			break;
1520 		*rmap_list = rmap_item->rmap_list;
1521 		remove_rmap_item_from_tree(rmap_item);
1522 		free_rmap_item(rmap_item);
1523 	}
1524 
1525 	rmap_item = alloc_rmap_item();
1526 	if (rmap_item) {
1527 		/* It has already been zeroed */
1528 		rmap_item->mm = mm_slot->mm;
1529 		rmap_item->address = addr;
1530 		rmap_item->rmap_list = *rmap_list;
1531 		*rmap_list = rmap_item;
1532 	}
1533 	return rmap_item;
1534 }
1535 
scan_get_next_rmap_item(struct page ** page)1536 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1537 {
1538 	struct mm_struct *mm;
1539 	struct mm_slot *slot;
1540 	struct vm_area_struct *vma;
1541 	struct rmap_item *rmap_item;
1542 	int nid;
1543 
1544 	if (list_empty(&ksm_mm_head.mm_list))
1545 		return NULL;
1546 
1547 	slot = ksm_scan.mm_slot;
1548 	if (slot == &ksm_mm_head) {
1549 		/*
1550 		 * A number of pages can hang around indefinitely on per-cpu
1551 		 * pagevecs, raised page count preventing write_protect_page
1552 		 * from merging them.  Though it doesn't really matter much,
1553 		 * it is puzzling to see some stuck in pages_volatile until
1554 		 * other activity jostles them out, and they also prevented
1555 		 * LTP's KSM test from succeeding deterministically; so drain
1556 		 * them here (here rather than on entry to ksm_do_scan(),
1557 		 * so we don't IPI too often when pages_to_scan is set low).
1558 		 */
1559 		lru_add_drain_all();
1560 
1561 		/*
1562 		 * Whereas stale stable_nodes on the stable_tree itself
1563 		 * get pruned in the regular course of stable_tree_search(),
1564 		 * those moved out to the migrate_nodes list can accumulate:
1565 		 * so prune them once before each full scan.
1566 		 */
1567 		if (!ksm_merge_across_nodes) {
1568 			struct stable_node *stable_node;
1569 			struct list_head *this, *next;
1570 			struct page *page;
1571 
1572 			list_for_each_safe(this, next, &migrate_nodes) {
1573 				stable_node = list_entry(this,
1574 						struct stable_node, list);
1575 				page = get_ksm_page(stable_node, false);
1576 				if (page)
1577 					put_page(page);
1578 				cond_resched();
1579 			}
1580 		}
1581 
1582 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
1583 			root_unstable_tree[nid] = RB_ROOT;
1584 
1585 		spin_lock(&ksm_mmlist_lock);
1586 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1587 		ksm_scan.mm_slot = slot;
1588 		spin_unlock(&ksm_mmlist_lock);
1589 		/*
1590 		 * Although we tested list_empty() above, a racing __ksm_exit
1591 		 * of the last mm on the list may have removed it since then.
1592 		 */
1593 		if (slot == &ksm_mm_head)
1594 			return NULL;
1595 next_mm:
1596 		ksm_scan.address = 0;
1597 		ksm_scan.rmap_list = &slot->rmap_list;
1598 	}
1599 
1600 	mm = slot->mm;
1601 	down_read(&mm->mmap_sem);
1602 	if (ksm_test_exit(mm))
1603 		vma = NULL;
1604 	else
1605 		vma = find_vma(mm, ksm_scan.address);
1606 
1607 	for (; vma; vma = vma->vm_next) {
1608 		if (!(vma->vm_flags & VM_MERGEABLE))
1609 			continue;
1610 		if (ksm_scan.address < vma->vm_start)
1611 			ksm_scan.address = vma->vm_start;
1612 		if (!vma->anon_vma)
1613 			ksm_scan.address = vma->vm_end;
1614 
1615 		while (ksm_scan.address < vma->vm_end) {
1616 			if (ksm_test_exit(mm))
1617 				break;
1618 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1619 			if (IS_ERR_OR_NULL(*page)) {
1620 				ksm_scan.address += PAGE_SIZE;
1621 				cond_resched();
1622 				continue;
1623 			}
1624 			if (PageAnon(*page) ||
1625 			    page_trans_compound_anon(*page)) {
1626 				flush_anon_page(vma, *page, ksm_scan.address);
1627 				flush_dcache_page(*page);
1628 				rmap_item = get_next_rmap_item(slot,
1629 					ksm_scan.rmap_list, ksm_scan.address);
1630 				if (rmap_item) {
1631 					ksm_scan.rmap_list =
1632 							&rmap_item->rmap_list;
1633 					ksm_scan.address += PAGE_SIZE;
1634 				} else
1635 					put_page(*page);
1636 				up_read(&mm->mmap_sem);
1637 				return rmap_item;
1638 			}
1639 			put_page(*page);
1640 			ksm_scan.address += PAGE_SIZE;
1641 			cond_resched();
1642 		}
1643 	}
1644 
1645 	if (ksm_test_exit(mm)) {
1646 		ksm_scan.address = 0;
1647 		ksm_scan.rmap_list = &slot->rmap_list;
1648 	}
1649 	/*
1650 	 * Nuke all the rmap_items that are above this current rmap:
1651 	 * because there were no VM_MERGEABLE vmas with such addresses.
1652 	 */
1653 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1654 
1655 	spin_lock(&ksm_mmlist_lock);
1656 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1657 						struct mm_slot, mm_list);
1658 	if (ksm_scan.address == 0) {
1659 		/*
1660 		 * We've completed a full scan of all vmas, holding mmap_sem
1661 		 * throughout, and found no VM_MERGEABLE: so do the same as
1662 		 * __ksm_exit does to remove this mm from all our lists now.
1663 		 * This applies either when cleaning up after __ksm_exit
1664 		 * (but beware: we can reach here even before __ksm_exit),
1665 		 * or when all VM_MERGEABLE areas have been unmapped (and
1666 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1667 		 */
1668 		hash_del(&slot->link);
1669 		list_del(&slot->mm_list);
1670 		spin_unlock(&ksm_mmlist_lock);
1671 
1672 		free_mm_slot(slot);
1673 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1674 		up_read(&mm->mmap_sem);
1675 		mmdrop(mm);
1676 	} else {
1677 		spin_unlock(&ksm_mmlist_lock);
1678 		up_read(&mm->mmap_sem);
1679 	}
1680 
1681 	/* Repeat until we've completed scanning the whole list */
1682 	slot = ksm_scan.mm_slot;
1683 	if (slot != &ksm_mm_head)
1684 		goto next_mm;
1685 
1686 	ksm_scan.seqnr++;
1687 	return NULL;
1688 }
1689 
1690 /**
1691  * ksm_do_scan  - the ksm scanner main worker function.
1692  * @scan_npages - number of pages we want to scan before we return.
1693  */
ksm_do_scan(unsigned int scan_npages)1694 static void ksm_do_scan(unsigned int scan_npages)
1695 {
1696 	struct rmap_item *rmap_item;
1697 	struct page *uninitialized_var(page);
1698 
1699 	while (scan_npages-- && likely(!freezing(current))) {
1700 		cond_resched();
1701 		rmap_item = scan_get_next_rmap_item(&page);
1702 		if (!rmap_item)
1703 			return;
1704 		cmp_and_merge_page(page, rmap_item);
1705 		put_page(page);
1706 	}
1707 }
1708 
ksmd_should_run(void)1709 static int ksmd_should_run(void)
1710 {
1711 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1712 }
1713 
ksm_scan_thread(void * nothing)1714 static int ksm_scan_thread(void *nothing)
1715 {
1716 	set_freezable();
1717 	set_user_nice(current, 5);
1718 
1719 	while (!kthread_should_stop()) {
1720 		mutex_lock(&ksm_thread_mutex);
1721 		wait_while_offlining();
1722 		if (ksmd_should_run())
1723 			ksm_do_scan(ksm_thread_pages_to_scan);
1724 		mutex_unlock(&ksm_thread_mutex);
1725 
1726 		try_to_freeze();
1727 
1728 		if (ksmd_should_run()) {
1729 			schedule_timeout_interruptible(
1730 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1731 		} else {
1732 			wait_event_freezable(ksm_thread_wait,
1733 				ksmd_should_run() || kthread_should_stop());
1734 		}
1735 	}
1736 	return 0;
1737 }
1738 
ksm_madvise(struct vm_area_struct * vma,unsigned long start,unsigned long end,int advice,unsigned long * vm_flags)1739 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1740 		unsigned long end, int advice, unsigned long *vm_flags)
1741 {
1742 	struct mm_struct *mm = vma->vm_mm;
1743 	int err;
1744 
1745 	switch (advice) {
1746 	case MADV_MERGEABLE:
1747 		/*
1748 		 * Be somewhat over-protective for now!
1749 		 */
1750 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1751 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1752 				 VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
1753 			return 0;		/* just ignore the advice */
1754 
1755 #ifdef VM_SAO
1756 		if (*vm_flags & VM_SAO)
1757 			return 0;
1758 #endif
1759 
1760 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1761 			err = __ksm_enter(mm);
1762 			if (err)
1763 				return err;
1764 		}
1765 
1766 		*vm_flags |= VM_MERGEABLE;
1767 		break;
1768 
1769 	case MADV_UNMERGEABLE:
1770 		if (!(*vm_flags & VM_MERGEABLE))
1771 			return 0;		/* just ignore the advice */
1772 
1773 		if (vma->anon_vma) {
1774 			err = unmerge_ksm_pages(vma, start, end);
1775 			if (err)
1776 				return err;
1777 		}
1778 
1779 		*vm_flags &= ~VM_MERGEABLE;
1780 		break;
1781 	}
1782 
1783 	return 0;
1784 }
1785 
__ksm_enter(struct mm_struct * mm)1786 int __ksm_enter(struct mm_struct *mm)
1787 {
1788 	struct mm_slot *mm_slot;
1789 	int needs_wakeup;
1790 
1791 	mm_slot = alloc_mm_slot();
1792 	if (!mm_slot)
1793 		return -ENOMEM;
1794 
1795 	/* Check ksm_run too?  Would need tighter locking */
1796 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1797 
1798 	spin_lock(&ksm_mmlist_lock);
1799 	insert_to_mm_slots_hash(mm, mm_slot);
1800 	/*
1801 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1802 	 * insert just behind the scanning cursor, to let the area settle
1803 	 * down a little; when fork is followed by immediate exec, we don't
1804 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1805 	 *
1806 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1807 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
1808 	 * missed: then we might as well insert at the end of the list.
1809 	 */
1810 	if (ksm_run & KSM_RUN_UNMERGE)
1811 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1812 	else
1813 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1814 	spin_unlock(&ksm_mmlist_lock);
1815 
1816 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1817 	atomic_inc(&mm->mm_count);
1818 
1819 	if (needs_wakeup)
1820 		wake_up_interruptible(&ksm_thread_wait);
1821 
1822 	return 0;
1823 }
1824 
__ksm_exit(struct mm_struct * mm)1825 void __ksm_exit(struct mm_struct *mm)
1826 {
1827 	struct mm_slot *mm_slot;
1828 	int easy_to_free = 0;
1829 
1830 	/*
1831 	 * This process is exiting: if it's straightforward (as is the
1832 	 * case when ksmd was never running), free mm_slot immediately.
1833 	 * But if it's at the cursor or has rmap_items linked to it, use
1834 	 * mmap_sem to synchronize with any break_cows before pagetables
1835 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1836 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1837 	 */
1838 
1839 	spin_lock(&ksm_mmlist_lock);
1840 	mm_slot = get_mm_slot(mm);
1841 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1842 		if (!mm_slot->rmap_list) {
1843 			hash_del(&mm_slot->link);
1844 			list_del(&mm_slot->mm_list);
1845 			easy_to_free = 1;
1846 		} else {
1847 			list_move(&mm_slot->mm_list,
1848 				  &ksm_scan.mm_slot->mm_list);
1849 		}
1850 	}
1851 	spin_unlock(&ksm_mmlist_lock);
1852 
1853 	if (easy_to_free) {
1854 		free_mm_slot(mm_slot);
1855 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1856 		mmdrop(mm);
1857 	} else if (mm_slot) {
1858 		down_write(&mm->mmap_sem);
1859 		up_write(&mm->mmap_sem);
1860 	}
1861 }
1862 
ksm_might_need_to_copy(struct page * page,struct vm_area_struct * vma,unsigned long address)1863 struct page *ksm_might_need_to_copy(struct page *page,
1864 			struct vm_area_struct *vma, unsigned long address)
1865 {
1866 	struct anon_vma *anon_vma = page_anon_vma(page);
1867 	struct page *new_page;
1868 
1869 	if (PageKsm(page)) {
1870 		if (page_stable_node(page) &&
1871 		    !(ksm_run & KSM_RUN_UNMERGE))
1872 			return page;	/* no need to copy it */
1873 	} else if (!anon_vma) {
1874 		return page;		/* no need to copy it */
1875 	} else if (anon_vma->root == vma->anon_vma->root &&
1876 		 page->index == linear_page_index(vma, address)) {
1877 		return page;		/* still no need to copy it */
1878 	}
1879 	if (!PageUptodate(page))
1880 		return page;		/* let do_swap_page report the error */
1881 
1882 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1883 	if (new_page) {
1884 		copy_user_highpage(new_page, page, address, vma);
1885 
1886 		SetPageDirty(new_page);
1887 		__SetPageUptodate(new_page);
1888 		__set_page_locked(new_page);
1889 	}
1890 
1891 	return new_page;
1892 }
1893 
rmap_walk_ksm(struct page * page,struct rmap_walk_control * rwc)1894 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1895 {
1896 	struct stable_node *stable_node;
1897 	struct rmap_item *rmap_item;
1898 	int ret = SWAP_AGAIN;
1899 	int search_new_forks = 0;
1900 
1901 	VM_BUG_ON_PAGE(!PageKsm(page), page);
1902 
1903 	/*
1904 	 * Rely on the page lock to protect against concurrent modifications
1905 	 * to that page's node of the stable tree.
1906 	 */
1907 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1908 
1909 	stable_node = page_stable_node(page);
1910 	if (!stable_node)
1911 		return ret;
1912 again:
1913 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1914 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1915 		struct anon_vma_chain *vmac;
1916 		struct vm_area_struct *vma;
1917 
1918 		anon_vma_lock_read(anon_vma);
1919 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1920 					       0, ULONG_MAX) {
1921 			vma = vmac->vma;
1922 			if (rmap_item->address < vma->vm_start ||
1923 			    rmap_item->address >= vma->vm_end)
1924 				continue;
1925 			/*
1926 			 * Initially we examine only the vma which covers this
1927 			 * rmap_item; but later, if there is still work to do,
1928 			 * we examine covering vmas in other mms: in case they
1929 			 * were forked from the original since ksmd passed.
1930 			 */
1931 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1932 				continue;
1933 
1934 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1935 				continue;
1936 
1937 			ret = rwc->rmap_one(page, vma,
1938 					rmap_item->address, rwc->arg);
1939 			if (ret != SWAP_AGAIN) {
1940 				anon_vma_unlock_read(anon_vma);
1941 				goto out;
1942 			}
1943 			if (rwc->done && rwc->done(page)) {
1944 				anon_vma_unlock_read(anon_vma);
1945 				goto out;
1946 			}
1947 		}
1948 		anon_vma_unlock_read(anon_vma);
1949 	}
1950 	if (!search_new_forks++)
1951 		goto again;
1952 out:
1953 	return ret;
1954 }
1955 
1956 #ifdef CONFIG_MIGRATION
ksm_migrate_page(struct page * newpage,struct page * oldpage)1957 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1958 {
1959 	struct stable_node *stable_node;
1960 
1961 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1962 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1963 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1964 
1965 	stable_node = page_stable_node(newpage);
1966 	if (stable_node) {
1967 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1968 		stable_node->kpfn = page_to_pfn(newpage);
1969 		/*
1970 		 * newpage->mapping was set in advance; now we need smp_wmb()
1971 		 * to make sure that the new stable_node->kpfn is visible
1972 		 * to get_ksm_page() before it can see that oldpage->mapping
1973 		 * has gone stale (or that PageSwapCache has been cleared).
1974 		 */
1975 		smp_wmb();
1976 		set_page_stable_node(oldpage, NULL);
1977 	}
1978 }
1979 #endif /* CONFIG_MIGRATION */
1980 
1981 #ifdef CONFIG_MEMORY_HOTREMOVE
wait_while_offlining(void)1982 static void wait_while_offlining(void)
1983 {
1984 	while (ksm_run & KSM_RUN_OFFLINE) {
1985 		mutex_unlock(&ksm_thread_mutex);
1986 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
1987 			    TASK_UNINTERRUPTIBLE);
1988 		mutex_lock(&ksm_thread_mutex);
1989 	}
1990 }
1991 
ksm_check_stable_tree(unsigned long start_pfn,unsigned long end_pfn)1992 static void ksm_check_stable_tree(unsigned long start_pfn,
1993 				  unsigned long end_pfn)
1994 {
1995 	struct stable_node *stable_node;
1996 	struct list_head *this, *next;
1997 	struct rb_node *node;
1998 	int nid;
1999 
2000 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2001 		node = rb_first(root_stable_tree + nid);
2002 		while (node) {
2003 			stable_node = rb_entry(node, struct stable_node, node);
2004 			if (stable_node->kpfn >= start_pfn &&
2005 			    stable_node->kpfn < end_pfn) {
2006 				/*
2007 				 * Don't get_ksm_page, page has already gone:
2008 				 * which is why we keep kpfn instead of page*
2009 				 */
2010 				remove_node_from_stable_tree(stable_node);
2011 				node = rb_first(root_stable_tree + nid);
2012 			} else
2013 				node = rb_next(node);
2014 			cond_resched();
2015 		}
2016 	}
2017 	list_for_each_safe(this, next, &migrate_nodes) {
2018 		stable_node = list_entry(this, struct stable_node, list);
2019 		if (stable_node->kpfn >= start_pfn &&
2020 		    stable_node->kpfn < end_pfn)
2021 			remove_node_from_stable_tree(stable_node);
2022 		cond_resched();
2023 	}
2024 }
2025 
ksm_memory_callback(struct notifier_block * self,unsigned long action,void * arg)2026 static int ksm_memory_callback(struct notifier_block *self,
2027 			       unsigned long action, void *arg)
2028 {
2029 	struct memory_notify *mn = arg;
2030 
2031 	switch (action) {
2032 	case MEM_GOING_OFFLINE:
2033 		/*
2034 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2035 		 * and remove_all_stable_nodes() while memory is going offline:
2036 		 * it is unsafe for them to touch the stable tree at this time.
2037 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2038 		 * which do not need the ksm_thread_mutex are all safe.
2039 		 */
2040 		mutex_lock(&ksm_thread_mutex);
2041 		ksm_run |= KSM_RUN_OFFLINE;
2042 		mutex_unlock(&ksm_thread_mutex);
2043 		break;
2044 
2045 	case MEM_OFFLINE:
2046 		/*
2047 		 * Most of the work is done by page migration; but there might
2048 		 * be a few stable_nodes left over, still pointing to struct
2049 		 * pages which have been offlined: prune those from the tree,
2050 		 * otherwise get_ksm_page() might later try to access a
2051 		 * non-existent struct page.
2052 		 */
2053 		ksm_check_stable_tree(mn->start_pfn,
2054 				      mn->start_pfn + mn->nr_pages);
2055 		/* fallthrough */
2056 
2057 	case MEM_CANCEL_OFFLINE:
2058 		mutex_lock(&ksm_thread_mutex);
2059 		ksm_run &= ~KSM_RUN_OFFLINE;
2060 		mutex_unlock(&ksm_thread_mutex);
2061 
2062 		smp_mb();	/* wake_up_bit advises this */
2063 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2064 		break;
2065 	}
2066 	return NOTIFY_OK;
2067 }
2068 #else
wait_while_offlining(void)2069 static void wait_while_offlining(void)
2070 {
2071 }
2072 #endif /* CONFIG_MEMORY_HOTREMOVE */
2073 
2074 #ifdef CONFIG_SYSFS
2075 /*
2076  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2077  */
2078 
2079 #define KSM_ATTR_RO(_name) \
2080 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2081 #define KSM_ATTR(_name) \
2082 	static struct kobj_attribute _name##_attr = \
2083 		__ATTR(_name, 0644, _name##_show, _name##_store)
2084 
sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2085 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2086 				    struct kobj_attribute *attr, char *buf)
2087 {
2088 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2089 }
2090 
sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2091 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2092 				     struct kobj_attribute *attr,
2093 				     const char *buf, size_t count)
2094 {
2095 	unsigned long msecs;
2096 	int err;
2097 
2098 	err = kstrtoul(buf, 10, &msecs);
2099 	if (err || msecs > UINT_MAX)
2100 		return -EINVAL;
2101 
2102 	ksm_thread_sleep_millisecs = msecs;
2103 
2104 	return count;
2105 }
2106 KSM_ATTR(sleep_millisecs);
2107 
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2108 static ssize_t pages_to_scan_show(struct kobject *kobj,
2109 				  struct kobj_attribute *attr, char *buf)
2110 {
2111 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2112 }
2113 
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2114 static ssize_t pages_to_scan_store(struct kobject *kobj,
2115 				   struct kobj_attribute *attr,
2116 				   const char *buf, size_t count)
2117 {
2118 	int err;
2119 	unsigned long nr_pages;
2120 
2121 	err = kstrtoul(buf, 10, &nr_pages);
2122 	if (err || nr_pages > UINT_MAX)
2123 		return -EINVAL;
2124 
2125 	ksm_thread_pages_to_scan = nr_pages;
2126 
2127 	return count;
2128 }
2129 KSM_ATTR(pages_to_scan);
2130 
run_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2131 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2132 			char *buf)
2133 {
2134 	return sprintf(buf, "%lu\n", ksm_run);
2135 }
2136 
run_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2137 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2138 			 const char *buf, size_t count)
2139 {
2140 	int err;
2141 	unsigned long flags;
2142 
2143 	err = kstrtoul(buf, 10, &flags);
2144 	if (err || flags > UINT_MAX)
2145 		return -EINVAL;
2146 	if (flags > KSM_RUN_UNMERGE)
2147 		return -EINVAL;
2148 
2149 	/*
2150 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2151 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2152 	 * breaking COW to free the pages_shared (but leaves mm_slots
2153 	 * on the list for when ksmd may be set running again).
2154 	 */
2155 
2156 	mutex_lock(&ksm_thread_mutex);
2157 	wait_while_offlining();
2158 	if (ksm_run != flags) {
2159 		ksm_run = flags;
2160 		if (flags & KSM_RUN_UNMERGE) {
2161 			set_current_oom_origin();
2162 			err = unmerge_and_remove_all_rmap_items();
2163 			clear_current_oom_origin();
2164 			if (err) {
2165 				ksm_run = KSM_RUN_STOP;
2166 				count = err;
2167 			}
2168 		}
2169 	}
2170 	mutex_unlock(&ksm_thread_mutex);
2171 
2172 	if (flags & KSM_RUN_MERGE)
2173 		wake_up_interruptible(&ksm_thread_wait);
2174 
2175 	return count;
2176 }
2177 KSM_ATTR(run);
2178 
2179 #ifdef CONFIG_NUMA
merge_across_nodes_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2180 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2181 				struct kobj_attribute *attr, char *buf)
2182 {
2183 	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2184 }
2185 
merge_across_nodes_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2186 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2187 				   struct kobj_attribute *attr,
2188 				   const char *buf, size_t count)
2189 {
2190 	int err;
2191 	unsigned long knob;
2192 
2193 	err = kstrtoul(buf, 10, &knob);
2194 	if (err)
2195 		return err;
2196 	if (knob > 1)
2197 		return -EINVAL;
2198 
2199 	mutex_lock(&ksm_thread_mutex);
2200 	wait_while_offlining();
2201 	if (ksm_merge_across_nodes != knob) {
2202 		if (ksm_pages_shared || remove_all_stable_nodes())
2203 			err = -EBUSY;
2204 		else if (root_stable_tree == one_stable_tree) {
2205 			struct rb_root *buf;
2206 			/*
2207 			 * This is the first time that we switch away from the
2208 			 * default of merging across nodes: must now allocate
2209 			 * a buffer to hold as many roots as may be needed.
2210 			 * Allocate stable and unstable together:
2211 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2212 			 */
2213 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2214 				      GFP_KERNEL);
2215 			/* Let us assume that RB_ROOT is NULL is zero */
2216 			if (!buf)
2217 				err = -ENOMEM;
2218 			else {
2219 				root_stable_tree = buf;
2220 				root_unstable_tree = buf + nr_node_ids;
2221 				/* Stable tree is empty but not the unstable */
2222 				root_unstable_tree[0] = one_unstable_tree[0];
2223 			}
2224 		}
2225 		if (!err) {
2226 			ksm_merge_across_nodes = knob;
2227 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2228 		}
2229 	}
2230 	mutex_unlock(&ksm_thread_mutex);
2231 
2232 	return err ? err : count;
2233 }
2234 KSM_ATTR(merge_across_nodes);
2235 #endif
2236 
pages_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2237 static ssize_t pages_shared_show(struct kobject *kobj,
2238 				 struct kobj_attribute *attr, char *buf)
2239 {
2240 	return sprintf(buf, "%lu\n", ksm_pages_shared);
2241 }
2242 KSM_ATTR_RO(pages_shared);
2243 
pages_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2244 static ssize_t pages_sharing_show(struct kobject *kobj,
2245 				  struct kobj_attribute *attr, char *buf)
2246 {
2247 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
2248 }
2249 KSM_ATTR_RO(pages_sharing);
2250 
pages_unshared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2251 static ssize_t pages_unshared_show(struct kobject *kobj,
2252 				   struct kobj_attribute *attr, char *buf)
2253 {
2254 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
2255 }
2256 KSM_ATTR_RO(pages_unshared);
2257 
pages_volatile_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2258 static ssize_t pages_volatile_show(struct kobject *kobj,
2259 				   struct kobj_attribute *attr, char *buf)
2260 {
2261 	long ksm_pages_volatile;
2262 
2263 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2264 				- ksm_pages_sharing - ksm_pages_unshared;
2265 	/*
2266 	 * It was not worth any locking to calculate that statistic,
2267 	 * but it might therefore sometimes be negative: conceal that.
2268 	 */
2269 	if (ksm_pages_volatile < 0)
2270 		ksm_pages_volatile = 0;
2271 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
2272 }
2273 KSM_ATTR_RO(pages_volatile);
2274 
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2275 static ssize_t full_scans_show(struct kobject *kobj,
2276 			       struct kobj_attribute *attr, char *buf)
2277 {
2278 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2279 }
2280 KSM_ATTR_RO(full_scans);
2281 
2282 static struct attribute *ksm_attrs[] = {
2283 	&sleep_millisecs_attr.attr,
2284 	&pages_to_scan_attr.attr,
2285 	&run_attr.attr,
2286 	&pages_shared_attr.attr,
2287 	&pages_sharing_attr.attr,
2288 	&pages_unshared_attr.attr,
2289 	&pages_volatile_attr.attr,
2290 	&full_scans_attr.attr,
2291 #ifdef CONFIG_NUMA
2292 	&merge_across_nodes_attr.attr,
2293 #endif
2294 	NULL,
2295 };
2296 
2297 static struct attribute_group ksm_attr_group = {
2298 	.attrs = ksm_attrs,
2299 	.name = "ksm",
2300 };
2301 #endif /* CONFIG_SYSFS */
2302 
ksm_init(void)2303 static int __init ksm_init(void)
2304 {
2305 	struct task_struct *ksm_thread;
2306 	int err;
2307 
2308 	err = ksm_slab_init();
2309 	if (err)
2310 		goto out;
2311 
2312 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2313 	if (IS_ERR(ksm_thread)) {
2314 		pr_err("ksm: creating kthread failed\n");
2315 		err = PTR_ERR(ksm_thread);
2316 		goto out_free;
2317 	}
2318 
2319 #ifdef CONFIG_SYSFS
2320 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2321 	if (err) {
2322 		pr_err("ksm: register sysfs failed\n");
2323 		kthread_stop(ksm_thread);
2324 		goto out_free;
2325 	}
2326 #else
2327 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2328 
2329 #endif /* CONFIG_SYSFS */
2330 
2331 #ifdef CONFIG_MEMORY_HOTREMOVE
2332 	/* There is no significance to this priority 100 */
2333 	hotplug_memory_notifier(ksm_memory_callback, 100);
2334 #endif
2335 	return 0;
2336 
2337 out_free:
2338 	ksm_slab_free();
2339 out:
2340 	return err;
2341 }
2342 subsys_initcall(ksm_init);
2343