• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11 
12 #include <linux/module.h>
13 
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22 
23 #include <linux/sunrpc/clnt.h>
24 
25 #include "sunrpc.h"
26 
27 #ifdef RPC_DEBUG
28 #define RPCDBG_FACILITY		RPCDBG_SCHED
29 #endif
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33 
34 /*
35  * RPC slabs and memory pools
36  */
37 #define RPC_BUFFER_MAXSIZE	(2048)
38 #define RPC_BUFFER_POOLSIZE	(8)
39 #define RPC_TASK_POOLSIZE	(8)
40 static struct kmem_cache	*rpc_task_slabp __read_mostly;
41 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
42 static mempool_t	*rpc_task_mempool __read_mostly;
43 static mempool_t	*rpc_buffer_mempool __read_mostly;
44 
45 static void			rpc_async_schedule(struct work_struct *);
46 static void			 rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48 
49 /*
50  * RPC tasks sit here while waiting for conditions to improve.
51  */
52 static struct rpc_wait_queue delay_queue;
53 
54 /*
55  * rpciod-related stuff
56  */
57 struct workqueue_struct *rpciod_workqueue;
58 
59 /*
60  * Disable the timer for a given RPC task. Should be called with
61  * queue->lock and bh_disabled in order to avoid races within
62  * rpc_run_timer().
63  */
64 static void
__rpc_disable_timer(struct rpc_wait_queue * queue,struct rpc_task * task)65 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
66 {
67 	if (task->tk_timeout == 0)
68 		return;
69 	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
70 	task->tk_timeout = 0;
71 	list_del(&task->u.tk_wait.timer_list);
72 	if (list_empty(&queue->timer_list.list))
73 		del_timer(&queue->timer_list.timer);
74 }
75 
76 static void
rpc_set_queue_timer(struct rpc_wait_queue * queue,unsigned long expires)77 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
78 {
79 	queue->timer_list.expires = expires;
80 	mod_timer(&queue->timer_list.timer, expires);
81 }
82 
83 /*
84  * Set up a timer for the current task.
85  */
86 static void
__rpc_add_timer(struct rpc_wait_queue * queue,struct rpc_task * task)87 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
88 {
89 	if (!task->tk_timeout)
90 		return;
91 
92 	dprintk("RPC: %5u setting alarm for %lu ms\n",
93 			task->tk_pid, task->tk_timeout * 1000 / HZ);
94 
95 	task->u.tk_wait.expires = jiffies + task->tk_timeout;
96 	if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
97 		rpc_set_queue_timer(queue, task->u.tk_wait.expires);
98 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
99 }
100 
rpc_rotate_queue_owner(struct rpc_wait_queue * queue)101 static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue)
102 {
103 	struct list_head *q = &queue->tasks[queue->priority];
104 	struct rpc_task *task;
105 
106 	if (!list_empty(q)) {
107 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
108 		if (task->tk_owner == queue->owner)
109 			list_move_tail(&task->u.tk_wait.list, q);
110 	}
111 }
112 
rpc_set_waitqueue_priority(struct rpc_wait_queue * queue,int priority)113 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
114 {
115 	if (queue->priority != priority) {
116 		/* Fairness: rotate the list when changing priority */
117 		rpc_rotate_queue_owner(queue);
118 		queue->priority = priority;
119 	}
120 }
121 
rpc_set_waitqueue_owner(struct rpc_wait_queue * queue,pid_t pid)122 static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
123 {
124 	queue->owner = pid;
125 	queue->nr = RPC_BATCH_COUNT;
126 }
127 
rpc_reset_waitqueue_priority(struct rpc_wait_queue * queue)128 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
129 {
130 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
131 	rpc_set_waitqueue_owner(queue, 0);
132 }
133 
134 /*
135  * Add new request to a priority queue.
136  */
__rpc_add_wait_queue_priority(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)137 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
138 		struct rpc_task *task,
139 		unsigned char queue_priority)
140 {
141 	struct list_head *q;
142 	struct rpc_task *t;
143 
144 	INIT_LIST_HEAD(&task->u.tk_wait.links);
145 	if (unlikely(queue_priority > queue->maxpriority))
146 		queue_priority = queue->maxpriority;
147 	if (queue_priority > queue->priority)
148 		rpc_set_waitqueue_priority(queue, queue_priority);
149 	q = &queue->tasks[queue_priority];
150 	list_for_each_entry(t, q, u.tk_wait.list) {
151 		if (t->tk_owner == task->tk_owner) {
152 			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
153 			return;
154 		}
155 	}
156 	list_add_tail(&task->u.tk_wait.list, q);
157 }
158 
159 /*
160  * Add new request to wait queue.
161  *
162  * Swapper tasks always get inserted at the head of the queue.
163  * This should avoid many nasty memory deadlocks and hopefully
164  * improve overall performance.
165  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
166  */
__rpc_add_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)167 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
168 		struct rpc_task *task,
169 		unsigned char queue_priority)
170 {
171 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
172 	if (RPC_IS_QUEUED(task))
173 		return;
174 
175 	if (RPC_IS_PRIORITY(queue))
176 		__rpc_add_wait_queue_priority(queue, task, queue_priority);
177 	else if (RPC_IS_SWAPPER(task))
178 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
179 	else
180 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
181 	task->tk_waitqueue = queue;
182 	queue->qlen++;
183 	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
184 	smp_wmb();
185 	rpc_set_queued(task);
186 
187 	dprintk("RPC: %5u added to queue %p \"%s\"\n",
188 			task->tk_pid, queue, rpc_qname(queue));
189 }
190 
191 /*
192  * Remove request from a priority queue.
193  */
__rpc_remove_wait_queue_priority(struct rpc_task * task)194 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
195 {
196 	struct rpc_task *t;
197 
198 	if (!list_empty(&task->u.tk_wait.links)) {
199 		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
200 		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
201 		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
202 	}
203 }
204 
205 /*
206  * Remove request from queue.
207  * Note: must be called with spin lock held.
208  */
__rpc_remove_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task)209 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
210 {
211 	__rpc_disable_timer(queue, task);
212 	if (RPC_IS_PRIORITY(queue))
213 		__rpc_remove_wait_queue_priority(task);
214 	list_del(&task->u.tk_wait.list);
215 	queue->qlen--;
216 	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
217 			task->tk_pid, queue, rpc_qname(queue));
218 }
219 
__rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname,unsigned char nr_queues)220 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
221 {
222 	int i;
223 
224 	spin_lock_init(&queue->lock);
225 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
226 		INIT_LIST_HEAD(&queue->tasks[i]);
227 	queue->maxpriority = nr_queues - 1;
228 	rpc_reset_waitqueue_priority(queue);
229 	queue->qlen = 0;
230 	setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
231 	INIT_LIST_HEAD(&queue->timer_list.list);
232 	rpc_assign_waitqueue_name(queue, qname);
233 }
234 
rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname)235 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
236 {
237 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
238 }
239 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
240 
rpc_init_wait_queue(struct rpc_wait_queue * queue,const char * qname)241 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
242 {
243 	__rpc_init_priority_wait_queue(queue, qname, 1);
244 }
245 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
246 
rpc_destroy_wait_queue(struct rpc_wait_queue * queue)247 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
248 {
249 	del_timer_sync(&queue->timer_list.timer);
250 }
251 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
252 
rpc_wait_bit_killable(struct wait_bit_key * key)253 static int rpc_wait_bit_killable(struct wait_bit_key *key)
254 {
255 	if (fatal_signal_pending(current))
256 		return -ERESTARTSYS;
257 	freezable_schedule_unsafe();
258 	return 0;
259 }
260 
261 #if defined(RPC_DEBUG) || defined(RPC_TRACEPOINTS)
rpc_task_set_debuginfo(struct rpc_task * task)262 static void rpc_task_set_debuginfo(struct rpc_task *task)
263 {
264 	static atomic_t rpc_pid;
265 
266 	task->tk_pid = atomic_inc_return(&rpc_pid);
267 }
268 #else
rpc_task_set_debuginfo(struct rpc_task * task)269 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
270 {
271 }
272 #endif
273 
rpc_set_active(struct rpc_task * task)274 static void rpc_set_active(struct rpc_task *task)
275 {
276 	rpc_task_set_debuginfo(task);
277 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
278 	trace_rpc_task_begin(task->tk_client, task, NULL);
279 }
280 
281 /*
282  * Mark an RPC call as having completed by clearing the 'active' bit
283  * and then waking up all tasks that were sleeping.
284  */
rpc_complete_task(struct rpc_task * task)285 static int rpc_complete_task(struct rpc_task *task)
286 {
287 	void *m = &task->tk_runstate;
288 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
289 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
290 	unsigned long flags;
291 	int ret;
292 
293 	trace_rpc_task_complete(task->tk_client, task, NULL);
294 
295 	spin_lock_irqsave(&wq->lock, flags);
296 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
297 	ret = atomic_dec_and_test(&task->tk_count);
298 	if (waitqueue_active(wq))
299 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
300 	spin_unlock_irqrestore(&wq->lock, flags);
301 	return ret;
302 }
303 
304 /*
305  * Allow callers to wait for completion of an RPC call
306  *
307  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
308  * to enforce taking of the wq->lock and hence avoid races with
309  * rpc_complete_task().
310  */
__rpc_wait_for_completion_task(struct rpc_task * task,wait_bit_action_f * action)311 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
312 {
313 	if (action == NULL)
314 		action = rpc_wait_bit_killable;
315 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
316 			action, TASK_KILLABLE);
317 }
318 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
319 
320 /*
321  * Make an RPC task runnable.
322  *
323  * Note: If the task is ASYNC, and is being made runnable after sitting on an
324  * rpc_wait_queue, this must be called with the queue spinlock held to protect
325  * the wait queue operation.
326  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
327  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
328  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
329  * the RPC_TASK_RUNNING flag.
330  */
rpc_make_runnable(struct rpc_task * task)331 static void rpc_make_runnable(struct rpc_task *task)
332 {
333 	bool need_wakeup = !rpc_test_and_set_running(task);
334 
335 	rpc_clear_queued(task);
336 	if (!need_wakeup)
337 		return;
338 	if (RPC_IS_ASYNC(task)) {
339 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
340 		queue_work(rpciod_workqueue, &task->u.tk_work);
341 	} else
342 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
343 }
344 
345 /*
346  * Prepare for sleeping on a wait queue.
347  * By always appending tasks to the list we ensure FIFO behavior.
348  * NB: An RPC task will only receive interrupt-driven events as long
349  * as it's on a wait queue.
350  */
__rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action,unsigned char queue_priority)351 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
352 		struct rpc_task *task,
353 		rpc_action action,
354 		unsigned char queue_priority)
355 {
356 	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
357 			task->tk_pid, rpc_qname(q), jiffies);
358 
359 	trace_rpc_task_sleep(task->tk_client, task, q);
360 
361 	__rpc_add_wait_queue(q, task, queue_priority);
362 
363 	WARN_ON_ONCE(task->tk_callback != NULL);
364 	task->tk_callback = action;
365 	__rpc_add_timer(q, task);
366 }
367 
rpc_sleep_on(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action)368 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
369 				rpc_action action)
370 {
371 	/* We shouldn't ever put an inactive task to sleep */
372 	WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
373 	if (!RPC_IS_ACTIVATED(task)) {
374 		task->tk_status = -EIO;
375 		rpc_put_task_async(task);
376 		return;
377 	}
378 
379 	/*
380 	 * Protect the queue operations.
381 	 */
382 	spin_lock_bh(&q->lock);
383 	__rpc_sleep_on_priority(q, task, action, task->tk_priority);
384 	spin_unlock_bh(&q->lock);
385 }
386 EXPORT_SYMBOL_GPL(rpc_sleep_on);
387 
rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action,int priority)388 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
389 		rpc_action action, int priority)
390 {
391 	/* We shouldn't ever put an inactive task to sleep */
392 	WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
393 	if (!RPC_IS_ACTIVATED(task)) {
394 		task->tk_status = -EIO;
395 		rpc_put_task_async(task);
396 		return;
397 	}
398 
399 	/*
400 	 * Protect the queue operations.
401 	 */
402 	spin_lock_bh(&q->lock);
403 	__rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
404 	spin_unlock_bh(&q->lock);
405 }
406 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
407 
408 /**
409  * __rpc_do_wake_up_task - wake up a single rpc_task
410  * @queue: wait queue
411  * @task: task to be woken up
412  *
413  * Caller must hold queue->lock, and have cleared the task queued flag.
414  */
__rpc_do_wake_up_task(struct rpc_wait_queue * queue,struct rpc_task * task)415 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
416 {
417 	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
418 			task->tk_pid, jiffies);
419 
420 	/* Has the task been executed yet? If not, we cannot wake it up! */
421 	if (!RPC_IS_ACTIVATED(task)) {
422 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
423 		return;
424 	}
425 
426 	trace_rpc_task_wakeup(task->tk_client, task, queue);
427 
428 	__rpc_remove_wait_queue(queue, task);
429 
430 	rpc_make_runnable(task);
431 
432 	dprintk("RPC:       __rpc_wake_up_task done\n");
433 }
434 
435 /*
436  * Wake up a queued task while the queue lock is being held
437  */
rpc_wake_up_task_queue_locked(struct rpc_wait_queue * queue,struct rpc_task * task)438 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
439 {
440 	if (RPC_IS_QUEUED(task)) {
441 		smp_rmb();
442 		if (task->tk_waitqueue == queue)
443 			__rpc_do_wake_up_task(queue, task);
444 	}
445 }
446 
447 /*
448  * Wake up a task on a specific queue
449  */
rpc_wake_up_queued_task(struct rpc_wait_queue * queue,struct rpc_task * task)450 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
451 {
452 	spin_lock_bh(&queue->lock);
453 	rpc_wake_up_task_queue_locked(queue, task);
454 	spin_unlock_bh(&queue->lock);
455 }
456 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
457 
458 /*
459  * Wake up the next task on a priority queue.
460  */
__rpc_find_next_queued_priority(struct rpc_wait_queue * queue)461 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
462 {
463 	struct list_head *q;
464 	struct rpc_task *task;
465 
466 	/*
467 	 * Service a batch of tasks from a single owner.
468 	 */
469 	q = &queue->tasks[queue->priority];
470 	if (!list_empty(q)) {
471 		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
472 		if (queue->owner == task->tk_owner) {
473 			if (--queue->nr)
474 				goto out;
475 			list_move_tail(&task->u.tk_wait.list, q);
476 		}
477 		/*
478 		 * Check if we need to switch queues.
479 		 */
480 		goto new_owner;
481 	}
482 
483 	/*
484 	 * Service the next queue.
485 	 */
486 	do {
487 		if (q == &queue->tasks[0])
488 			q = &queue->tasks[queue->maxpriority];
489 		else
490 			q = q - 1;
491 		if (!list_empty(q)) {
492 			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
493 			goto new_queue;
494 		}
495 	} while (q != &queue->tasks[queue->priority]);
496 
497 	rpc_reset_waitqueue_priority(queue);
498 	return NULL;
499 
500 new_queue:
501 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
502 new_owner:
503 	rpc_set_waitqueue_owner(queue, task->tk_owner);
504 out:
505 	return task;
506 }
507 
__rpc_find_next_queued(struct rpc_wait_queue * queue)508 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
509 {
510 	if (RPC_IS_PRIORITY(queue))
511 		return __rpc_find_next_queued_priority(queue);
512 	if (!list_empty(&queue->tasks[0]))
513 		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
514 	return NULL;
515 }
516 
517 /*
518  * Wake up the first task on the wait queue.
519  */
rpc_wake_up_first(struct rpc_wait_queue * queue,bool (* func)(struct rpc_task *,void *),void * data)520 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
521 		bool (*func)(struct rpc_task *, void *), void *data)
522 {
523 	struct rpc_task	*task = NULL;
524 
525 	dprintk("RPC:       wake_up_first(%p \"%s\")\n",
526 			queue, rpc_qname(queue));
527 	spin_lock_bh(&queue->lock);
528 	task = __rpc_find_next_queued(queue);
529 	if (task != NULL) {
530 		if (func(task, data))
531 			rpc_wake_up_task_queue_locked(queue, task);
532 		else
533 			task = NULL;
534 	}
535 	spin_unlock_bh(&queue->lock);
536 
537 	return task;
538 }
539 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
540 
rpc_wake_up_next_func(struct rpc_task * task,void * data)541 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
542 {
543 	return true;
544 }
545 
546 /*
547  * Wake up the next task on the wait queue.
548 */
rpc_wake_up_next(struct rpc_wait_queue * queue)549 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
550 {
551 	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
552 }
553 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
554 
555 /**
556  * rpc_wake_up - wake up all rpc_tasks
557  * @queue: rpc_wait_queue on which the tasks are sleeping
558  *
559  * Grabs queue->lock
560  */
rpc_wake_up(struct rpc_wait_queue * queue)561 void rpc_wake_up(struct rpc_wait_queue *queue)
562 {
563 	struct list_head *head;
564 
565 	spin_lock_bh(&queue->lock);
566 	head = &queue->tasks[queue->maxpriority];
567 	for (;;) {
568 		while (!list_empty(head)) {
569 			struct rpc_task *task;
570 			task = list_first_entry(head,
571 					struct rpc_task,
572 					u.tk_wait.list);
573 			rpc_wake_up_task_queue_locked(queue, task);
574 		}
575 		if (head == &queue->tasks[0])
576 			break;
577 		head--;
578 	}
579 	spin_unlock_bh(&queue->lock);
580 }
581 EXPORT_SYMBOL_GPL(rpc_wake_up);
582 
583 /**
584  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
585  * @queue: rpc_wait_queue on which the tasks are sleeping
586  * @status: status value to set
587  *
588  * Grabs queue->lock
589  */
rpc_wake_up_status(struct rpc_wait_queue * queue,int status)590 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
591 {
592 	struct list_head *head;
593 
594 	spin_lock_bh(&queue->lock);
595 	head = &queue->tasks[queue->maxpriority];
596 	for (;;) {
597 		while (!list_empty(head)) {
598 			struct rpc_task *task;
599 			task = list_first_entry(head,
600 					struct rpc_task,
601 					u.tk_wait.list);
602 			task->tk_status = status;
603 			rpc_wake_up_task_queue_locked(queue, task);
604 		}
605 		if (head == &queue->tasks[0])
606 			break;
607 		head--;
608 	}
609 	spin_unlock_bh(&queue->lock);
610 }
611 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
612 
__rpc_queue_timer_fn(unsigned long ptr)613 static void __rpc_queue_timer_fn(unsigned long ptr)
614 {
615 	struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
616 	struct rpc_task *task, *n;
617 	unsigned long expires, now, timeo;
618 
619 	spin_lock(&queue->lock);
620 	expires = now = jiffies;
621 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
622 		timeo = task->u.tk_wait.expires;
623 		if (time_after_eq(now, timeo)) {
624 			dprintk("RPC: %5u timeout\n", task->tk_pid);
625 			task->tk_status = -ETIMEDOUT;
626 			rpc_wake_up_task_queue_locked(queue, task);
627 			continue;
628 		}
629 		if (expires == now || time_after(expires, timeo))
630 			expires = timeo;
631 	}
632 	if (!list_empty(&queue->timer_list.list))
633 		rpc_set_queue_timer(queue, expires);
634 	spin_unlock(&queue->lock);
635 }
636 
__rpc_atrun(struct rpc_task * task)637 static void __rpc_atrun(struct rpc_task *task)
638 {
639 	if (task->tk_status == -ETIMEDOUT)
640 		task->tk_status = 0;
641 }
642 
643 /*
644  * Run a task at a later time
645  */
rpc_delay(struct rpc_task * task,unsigned long delay)646 void rpc_delay(struct rpc_task *task, unsigned long delay)
647 {
648 	task->tk_timeout = delay;
649 	rpc_sleep_on(&delay_queue, task, __rpc_atrun);
650 }
651 EXPORT_SYMBOL_GPL(rpc_delay);
652 
653 /*
654  * Helper to call task->tk_ops->rpc_call_prepare
655  */
rpc_prepare_task(struct rpc_task * task)656 void rpc_prepare_task(struct rpc_task *task)
657 {
658 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
659 }
660 
661 static void
rpc_init_task_statistics(struct rpc_task * task)662 rpc_init_task_statistics(struct rpc_task *task)
663 {
664 	/* Initialize retry counters */
665 	task->tk_garb_retry = 2;
666 	task->tk_cred_retry = 2;
667 	task->tk_rebind_retry = 2;
668 
669 	/* starting timestamp */
670 	task->tk_start = ktime_get();
671 }
672 
673 static void
rpc_reset_task_statistics(struct rpc_task * task)674 rpc_reset_task_statistics(struct rpc_task *task)
675 {
676 	task->tk_timeouts = 0;
677 	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
678 
679 	rpc_init_task_statistics(task);
680 }
681 
682 /*
683  * Helper that calls task->tk_ops->rpc_call_done if it exists
684  */
rpc_exit_task(struct rpc_task * task)685 void rpc_exit_task(struct rpc_task *task)
686 {
687 	task->tk_action = NULL;
688 	if (task->tk_ops->rpc_call_done != NULL) {
689 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
690 		if (task->tk_action != NULL) {
691 			WARN_ON(RPC_ASSASSINATED(task));
692 			/* Always release the RPC slot and buffer memory */
693 			xprt_release(task);
694 			rpc_reset_task_statistics(task);
695 		}
696 	}
697 }
698 
rpc_exit(struct rpc_task * task,int status)699 void rpc_exit(struct rpc_task *task, int status)
700 {
701 	task->tk_status = status;
702 	task->tk_action = rpc_exit_task;
703 	if (RPC_IS_QUEUED(task))
704 		rpc_wake_up_queued_task(task->tk_waitqueue, task);
705 }
706 EXPORT_SYMBOL_GPL(rpc_exit);
707 
rpc_release_calldata(const struct rpc_call_ops * ops,void * calldata)708 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
709 {
710 	if (ops->rpc_release != NULL)
711 		ops->rpc_release(calldata);
712 }
713 
714 /*
715  * This is the RPC `scheduler' (or rather, the finite state machine).
716  */
__rpc_execute(struct rpc_task * task)717 static void __rpc_execute(struct rpc_task *task)
718 {
719 	struct rpc_wait_queue *queue;
720 	int task_is_async = RPC_IS_ASYNC(task);
721 	int status = 0;
722 
723 	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
724 			task->tk_pid, task->tk_flags);
725 
726 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
727 	if (RPC_IS_QUEUED(task))
728 		return;
729 
730 	for (;;) {
731 		void (*do_action)(struct rpc_task *);
732 
733 		/*
734 		 * Execute any pending callback first.
735 		 */
736 		do_action = task->tk_callback;
737 		task->tk_callback = NULL;
738 		if (do_action == NULL) {
739 			/*
740 			 * Perform the next FSM step.
741 			 * tk_action may be NULL if the task has been killed.
742 			 * In particular, note that rpc_killall_tasks may
743 			 * do this at any time, so beware when dereferencing.
744 			 */
745 			do_action = task->tk_action;
746 			if (do_action == NULL)
747 				break;
748 		}
749 		trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
750 		do_action(task);
751 
752 		/*
753 		 * Lockless check for whether task is sleeping or not.
754 		 */
755 		if (!RPC_IS_QUEUED(task))
756 			continue;
757 		/*
758 		 * The queue->lock protects against races with
759 		 * rpc_make_runnable().
760 		 *
761 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
762 		 * rpc_task, rpc_make_runnable() can assign it to a
763 		 * different workqueue. We therefore cannot assume that the
764 		 * rpc_task pointer may still be dereferenced.
765 		 */
766 		queue = task->tk_waitqueue;
767 		spin_lock_bh(&queue->lock);
768 		if (!RPC_IS_QUEUED(task)) {
769 			spin_unlock_bh(&queue->lock);
770 			continue;
771 		}
772 		rpc_clear_running(task);
773 		spin_unlock_bh(&queue->lock);
774 		if (task_is_async)
775 			return;
776 
777 		/* sync task: sleep here */
778 		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
779 		status = out_of_line_wait_on_bit(&task->tk_runstate,
780 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
781 				TASK_KILLABLE);
782 		if (status == -ERESTARTSYS) {
783 			/*
784 			 * When a sync task receives a signal, it exits with
785 			 * -ERESTARTSYS. In order to catch any callbacks that
786 			 * clean up after sleeping on some queue, we don't
787 			 * break the loop here, but go around once more.
788 			 */
789 			dprintk("RPC: %5u got signal\n", task->tk_pid);
790 			task->tk_flags |= RPC_TASK_KILLED;
791 			rpc_exit(task, -ERESTARTSYS);
792 		}
793 		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
794 	}
795 
796 	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
797 			task->tk_status);
798 	/* Release all resources associated with the task */
799 	rpc_release_task(task);
800 }
801 
802 /*
803  * User-visible entry point to the scheduler.
804  *
805  * This may be called recursively if e.g. an async NFS task updates
806  * the attributes and finds that dirty pages must be flushed.
807  * NOTE: Upon exit of this function the task is guaranteed to be
808  *	 released. In particular note that tk_release() will have
809  *	 been called, so your task memory may have been freed.
810  */
rpc_execute(struct rpc_task * task)811 void rpc_execute(struct rpc_task *task)
812 {
813 	bool is_async = RPC_IS_ASYNC(task);
814 
815 	rpc_set_active(task);
816 	rpc_make_runnable(task);
817 	if (!is_async)
818 		__rpc_execute(task);
819 }
820 
rpc_async_schedule(struct work_struct * work)821 static void rpc_async_schedule(struct work_struct *work)
822 {
823 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
824 }
825 
826 /**
827  * rpc_malloc - allocate an RPC buffer
828  * @task: RPC task that will use this buffer
829  * @size: requested byte size
830  *
831  * To prevent rpciod from hanging, this allocator never sleeps,
832  * returning NULL and suppressing warning if the request cannot be serviced
833  * immediately.
834  * The caller can arrange to sleep in a way that is safe for rpciod.
835  *
836  * Most requests are 'small' (under 2KiB) and can be serviced from a
837  * mempool, ensuring that NFS reads and writes can always proceed,
838  * and that there is good locality of reference for these buffers.
839  *
840  * In order to avoid memory starvation triggering more writebacks of
841  * NFS requests, we avoid using GFP_KERNEL.
842  */
rpc_malloc(struct rpc_task * task,size_t size)843 void *rpc_malloc(struct rpc_task *task, size_t size)
844 {
845 	struct rpc_buffer *buf;
846 	gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
847 
848 	if (RPC_IS_SWAPPER(task))
849 		gfp |= __GFP_MEMALLOC;
850 
851 	size += sizeof(struct rpc_buffer);
852 	if (size <= RPC_BUFFER_MAXSIZE)
853 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
854 	else
855 		buf = kmalloc(size, gfp);
856 
857 	if (!buf)
858 		return NULL;
859 
860 	buf->len = size;
861 	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
862 			task->tk_pid, size, buf);
863 	return &buf->data;
864 }
865 EXPORT_SYMBOL_GPL(rpc_malloc);
866 
867 /**
868  * rpc_free - free buffer allocated via rpc_malloc
869  * @buffer: buffer to free
870  *
871  */
rpc_free(void * buffer)872 void rpc_free(void *buffer)
873 {
874 	size_t size;
875 	struct rpc_buffer *buf;
876 
877 	if (!buffer)
878 		return;
879 
880 	buf = container_of(buffer, struct rpc_buffer, data);
881 	size = buf->len;
882 
883 	dprintk("RPC:       freeing buffer of size %zu at %p\n",
884 			size, buf);
885 
886 	if (size <= RPC_BUFFER_MAXSIZE)
887 		mempool_free(buf, rpc_buffer_mempool);
888 	else
889 		kfree(buf);
890 }
891 EXPORT_SYMBOL_GPL(rpc_free);
892 
893 /*
894  * Creation and deletion of RPC task structures
895  */
rpc_init_task(struct rpc_task * task,const struct rpc_task_setup * task_setup_data)896 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
897 {
898 	memset(task, 0, sizeof(*task));
899 	atomic_set(&task->tk_count, 1);
900 	task->tk_flags  = task_setup_data->flags;
901 	task->tk_ops = task_setup_data->callback_ops;
902 	task->tk_calldata = task_setup_data->callback_data;
903 	INIT_LIST_HEAD(&task->tk_task);
904 
905 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
906 	task->tk_owner = current->tgid;
907 
908 	/* Initialize workqueue for async tasks */
909 	task->tk_workqueue = task_setup_data->workqueue;
910 
911 	if (task->tk_ops->rpc_call_prepare != NULL)
912 		task->tk_action = rpc_prepare_task;
913 
914 	rpc_init_task_statistics(task);
915 
916 	dprintk("RPC:       new task initialized, procpid %u\n",
917 				task_pid_nr(current));
918 }
919 
920 static struct rpc_task *
rpc_alloc_task(void)921 rpc_alloc_task(void)
922 {
923 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
924 }
925 
926 /*
927  * Create a new task for the specified client.
928  */
rpc_new_task(const struct rpc_task_setup * setup_data)929 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
930 {
931 	struct rpc_task	*task = setup_data->task;
932 	unsigned short flags = 0;
933 
934 	if (task == NULL) {
935 		task = rpc_alloc_task();
936 		if (task == NULL) {
937 			rpc_release_calldata(setup_data->callback_ops,
938 					setup_data->callback_data);
939 			return ERR_PTR(-ENOMEM);
940 		}
941 		flags = RPC_TASK_DYNAMIC;
942 	}
943 
944 	rpc_init_task(task, setup_data);
945 	task->tk_flags |= flags;
946 	dprintk("RPC:       allocated task %p\n", task);
947 	return task;
948 }
949 
950 /*
951  * rpc_free_task - release rpc task and perform cleanups
952  *
953  * Note that we free up the rpc_task _after_ rpc_release_calldata()
954  * in order to work around a workqueue dependency issue.
955  *
956  * Tejun Heo states:
957  * "Workqueue currently considers two work items to be the same if they're
958  * on the same address and won't execute them concurrently - ie. it
959  * makes a work item which is queued again while being executed wait
960  * for the previous execution to complete.
961  *
962  * If a work function frees the work item, and then waits for an event
963  * which should be performed by another work item and *that* work item
964  * recycles the freed work item, it can create a false dependency loop.
965  * There really is no reliable way to detect this short of verifying
966  * every memory free."
967  *
968  */
rpc_free_task(struct rpc_task * task)969 static void rpc_free_task(struct rpc_task *task)
970 {
971 	unsigned short tk_flags = task->tk_flags;
972 
973 	rpc_release_calldata(task->tk_ops, task->tk_calldata);
974 
975 	if (tk_flags & RPC_TASK_DYNAMIC) {
976 		dprintk("RPC: %5u freeing task\n", task->tk_pid);
977 		mempool_free(task, rpc_task_mempool);
978 	}
979 }
980 
rpc_async_release(struct work_struct * work)981 static void rpc_async_release(struct work_struct *work)
982 {
983 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
984 }
985 
rpc_release_resources_task(struct rpc_task * task)986 static void rpc_release_resources_task(struct rpc_task *task)
987 {
988 	xprt_release(task);
989 	if (task->tk_msg.rpc_cred) {
990 		put_rpccred(task->tk_msg.rpc_cred);
991 		task->tk_msg.rpc_cred = NULL;
992 	}
993 	rpc_task_release_client(task);
994 }
995 
rpc_final_put_task(struct rpc_task * task,struct workqueue_struct * q)996 static void rpc_final_put_task(struct rpc_task *task,
997 		struct workqueue_struct *q)
998 {
999 	if (q != NULL) {
1000 		INIT_WORK(&task->u.tk_work, rpc_async_release);
1001 		queue_work(q, &task->u.tk_work);
1002 	} else
1003 		rpc_free_task(task);
1004 }
1005 
rpc_do_put_task(struct rpc_task * task,struct workqueue_struct * q)1006 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1007 {
1008 	if (atomic_dec_and_test(&task->tk_count)) {
1009 		rpc_release_resources_task(task);
1010 		rpc_final_put_task(task, q);
1011 	}
1012 }
1013 
rpc_put_task(struct rpc_task * task)1014 void rpc_put_task(struct rpc_task *task)
1015 {
1016 	rpc_do_put_task(task, NULL);
1017 }
1018 EXPORT_SYMBOL_GPL(rpc_put_task);
1019 
rpc_put_task_async(struct rpc_task * task)1020 void rpc_put_task_async(struct rpc_task *task)
1021 {
1022 	rpc_do_put_task(task, task->tk_workqueue);
1023 }
1024 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1025 
rpc_release_task(struct rpc_task * task)1026 static void rpc_release_task(struct rpc_task *task)
1027 {
1028 	dprintk("RPC: %5u release task\n", task->tk_pid);
1029 
1030 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1031 
1032 	rpc_release_resources_task(task);
1033 
1034 	/*
1035 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1036 	 * so it should be safe to use task->tk_count as a test for whether
1037 	 * or not any other processes still hold references to our rpc_task.
1038 	 */
1039 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1040 		/* Wake up anyone who may be waiting for task completion */
1041 		if (!rpc_complete_task(task))
1042 			return;
1043 	} else {
1044 		if (!atomic_dec_and_test(&task->tk_count))
1045 			return;
1046 	}
1047 	rpc_final_put_task(task, task->tk_workqueue);
1048 }
1049 
rpciod_up(void)1050 int rpciod_up(void)
1051 {
1052 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1053 }
1054 
rpciod_down(void)1055 void rpciod_down(void)
1056 {
1057 	module_put(THIS_MODULE);
1058 }
1059 
1060 /*
1061  * Start up the rpciod workqueue.
1062  */
rpciod_start(void)1063 static int rpciod_start(void)
1064 {
1065 	struct workqueue_struct *wq;
1066 
1067 	/*
1068 	 * Create the rpciod thread and wait for it to start.
1069 	 */
1070 	dprintk("RPC:       creating workqueue rpciod\n");
1071 	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 1);
1072 	rpciod_workqueue = wq;
1073 	return rpciod_workqueue != NULL;
1074 }
1075 
rpciod_stop(void)1076 static void rpciod_stop(void)
1077 {
1078 	struct workqueue_struct *wq = NULL;
1079 
1080 	if (rpciod_workqueue == NULL)
1081 		return;
1082 	dprintk("RPC:       destroying workqueue rpciod\n");
1083 
1084 	wq = rpciod_workqueue;
1085 	rpciod_workqueue = NULL;
1086 	destroy_workqueue(wq);
1087 }
1088 
1089 void
rpc_destroy_mempool(void)1090 rpc_destroy_mempool(void)
1091 {
1092 	rpciod_stop();
1093 	if (rpc_buffer_mempool)
1094 		mempool_destroy(rpc_buffer_mempool);
1095 	if (rpc_task_mempool)
1096 		mempool_destroy(rpc_task_mempool);
1097 	if (rpc_task_slabp)
1098 		kmem_cache_destroy(rpc_task_slabp);
1099 	if (rpc_buffer_slabp)
1100 		kmem_cache_destroy(rpc_buffer_slabp);
1101 	rpc_destroy_wait_queue(&delay_queue);
1102 }
1103 
1104 int
rpc_init_mempool(void)1105 rpc_init_mempool(void)
1106 {
1107 	/*
1108 	 * The following is not strictly a mempool initialisation,
1109 	 * but there is no harm in doing it here
1110 	 */
1111 	rpc_init_wait_queue(&delay_queue, "delayq");
1112 	if (!rpciod_start())
1113 		goto err_nomem;
1114 
1115 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1116 					     sizeof(struct rpc_task),
1117 					     0, SLAB_HWCACHE_ALIGN,
1118 					     NULL);
1119 	if (!rpc_task_slabp)
1120 		goto err_nomem;
1121 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1122 					     RPC_BUFFER_MAXSIZE,
1123 					     0, SLAB_HWCACHE_ALIGN,
1124 					     NULL);
1125 	if (!rpc_buffer_slabp)
1126 		goto err_nomem;
1127 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1128 						    rpc_task_slabp);
1129 	if (!rpc_task_mempool)
1130 		goto err_nomem;
1131 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1132 						      rpc_buffer_slabp);
1133 	if (!rpc_buffer_mempool)
1134 		goto err_nomem;
1135 	return 0;
1136 err_nomem:
1137 	rpc_destroy_mempool();
1138 	return -ENOMEM;
1139 }
1140