1 /*
2 * linux/net/sunrpc/sched.c
3 *
4 * Scheduling for synchronous and asynchronous RPC requests.
5 *
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7 *
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10 */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #include "sunrpc.h"
26
27 #ifdef RPC_DEBUG
28 #define RPCDBG_FACILITY RPCDBG_SCHED
29 #endif
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33
34 /*
35 * RPC slabs and memory pools
36 */
37 #define RPC_BUFFER_MAXSIZE (2048)
38 #define RPC_BUFFER_POOLSIZE (8)
39 #define RPC_TASK_POOLSIZE (8)
40 static struct kmem_cache *rpc_task_slabp __read_mostly;
41 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
42 static mempool_t *rpc_task_mempool __read_mostly;
43 static mempool_t *rpc_buffer_mempool __read_mostly;
44
45 static void rpc_async_schedule(struct work_struct *);
46 static void rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48
49 /*
50 * RPC tasks sit here while waiting for conditions to improve.
51 */
52 static struct rpc_wait_queue delay_queue;
53
54 /*
55 * rpciod-related stuff
56 */
57 struct workqueue_struct *rpciod_workqueue;
58
59 /*
60 * Disable the timer for a given RPC task. Should be called with
61 * queue->lock and bh_disabled in order to avoid races within
62 * rpc_run_timer().
63 */
64 static void
__rpc_disable_timer(struct rpc_wait_queue * queue,struct rpc_task * task)65 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
66 {
67 if (task->tk_timeout == 0)
68 return;
69 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
70 task->tk_timeout = 0;
71 list_del(&task->u.tk_wait.timer_list);
72 if (list_empty(&queue->timer_list.list))
73 del_timer(&queue->timer_list.timer);
74 }
75
76 static void
rpc_set_queue_timer(struct rpc_wait_queue * queue,unsigned long expires)77 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
78 {
79 queue->timer_list.expires = expires;
80 mod_timer(&queue->timer_list.timer, expires);
81 }
82
83 /*
84 * Set up a timer for the current task.
85 */
86 static void
__rpc_add_timer(struct rpc_wait_queue * queue,struct rpc_task * task)87 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
88 {
89 if (!task->tk_timeout)
90 return;
91
92 dprintk("RPC: %5u setting alarm for %lu ms\n",
93 task->tk_pid, task->tk_timeout * 1000 / HZ);
94
95 task->u.tk_wait.expires = jiffies + task->tk_timeout;
96 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
97 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
98 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
99 }
100
rpc_rotate_queue_owner(struct rpc_wait_queue * queue)101 static void rpc_rotate_queue_owner(struct rpc_wait_queue *queue)
102 {
103 struct list_head *q = &queue->tasks[queue->priority];
104 struct rpc_task *task;
105
106 if (!list_empty(q)) {
107 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
108 if (task->tk_owner == queue->owner)
109 list_move_tail(&task->u.tk_wait.list, q);
110 }
111 }
112
rpc_set_waitqueue_priority(struct rpc_wait_queue * queue,int priority)113 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
114 {
115 if (queue->priority != priority) {
116 /* Fairness: rotate the list when changing priority */
117 rpc_rotate_queue_owner(queue);
118 queue->priority = priority;
119 }
120 }
121
rpc_set_waitqueue_owner(struct rpc_wait_queue * queue,pid_t pid)122 static void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
123 {
124 queue->owner = pid;
125 queue->nr = RPC_BATCH_COUNT;
126 }
127
rpc_reset_waitqueue_priority(struct rpc_wait_queue * queue)128 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
129 {
130 rpc_set_waitqueue_priority(queue, queue->maxpriority);
131 rpc_set_waitqueue_owner(queue, 0);
132 }
133
134 /*
135 * Add new request to a priority queue.
136 */
__rpc_add_wait_queue_priority(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)137 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
138 struct rpc_task *task,
139 unsigned char queue_priority)
140 {
141 struct list_head *q;
142 struct rpc_task *t;
143
144 INIT_LIST_HEAD(&task->u.tk_wait.links);
145 if (unlikely(queue_priority > queue->maxpriority))
146 queue_priority = queue->maxpriority;
147 if (queue_priority > queue->priority)
148 rpc_set_waitqueue_priority(queue, queue_priority);
149 q = &queue->tasks[queue_priority];
150 list_for_each_entry(t, q, u.tk_wait.list) {
151 if (t->tk_owner == task->tk_owner) {
152 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
153 return;
154 }
155 }
156 list_add_tail(&task->u.tk_wait.list, q);
157 }
158
159 /*
160 * Add new request to wait queue.
161 *
162 * Swapper tasks always get inserted at the head of the queue.
163 * This should avoid many nasty memory deadlocks and hopefully
164 * improve overall performance.
165 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
166 */
__rpc_add_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)167 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
168 struct rpc_task *task,
169 unsigned char queue_priority)
170 {
171 WARN_ON_ONCE(RPC_IS_QUEUED(task));
172 if (RPC_IS_QUEUED(task))
173 return;
174
175 if (RPC_IS_PRIORITY(queue))
176 __rpc_add_wait_queue_priority(queue, task, queue_priority);
177 else if (RPC_IS_SWAPPER(task))
178 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
179 else
180 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
181 task->tk_waitqueue = queue;
182 queue->qlen++;
183 /* barrier matches the read in rpc_wake_up_task_queue_locked() */
184 smp_wmb();
185 rpc_set_queued(task);
186
187 dprintk("RPC: %5u added to queue %p \"%s\"\n",
188 task->tk_pid, queue, rpc_qname(queue));
189 }
190
191 /*
192 * Remove request from a priority queue.
193 */
__rpc_remove_wait_queue_priority(struct rpc_task * task)194 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
195 {
196 struct rpc_task *t;
197
198 if (!list_empty(&task->u.tk_wait.links)) {
199 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
200 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
201 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
202 }
203 }
204
205 /*
206 * Remove request from queue.
207 * Note: must be called with spin lock held.
208 */
__rpc_remove_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task)209 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
210 {
211 __rpc_disable_timer(queue, task);
212 if (RPC_IS_PRIORITY(queue))
213 __rpc_remove_wait_queue_priority(task);
214 list_del(&task->u.tk_wait.list);
215 queue->qlen--;
216 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
217 task->tk_pid, queue, rpc_qname(queue));
218 }
219
__rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname,unsigned char nr_queues)220 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
221 {
222 int i;
223
224 spin_lock_init(&queue->lock);
225 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
226 INIT_LIST_HEAD(&queue->tasks[i]);
227 queue->maxpriority = nr_queues - 1;
228 rpc_reset_waitqueue_priority(queue);
229 queue->qlen = 0;
230 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
231 INIT_LIST_HEAD(&queue->timer_list.list);
232 rpc_assign_waitqueue_name(queue, qname);
233 }
234
rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname)235 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
236 {
237 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
238 }
239 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
240
rpc_init_wait_queue(struct rpc_wait_queue * queue,const char * qname)241 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
242 {
243 __rpc_init_priority_wait_queue(queue, qname, 1);
244 }
245 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
246
rpc_destroy_wait_queue(struct rpc_wait_queue * queue)247 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
248 {
249 del_timer_sync(&queue->timer_list.timer);
250 }
251 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
252
rpc_wait_bit_killable(struct wait_bit_key * key)253 static int rpc_wait_bit_killable(struct wait_bit_key *key)
254 {
255 if (fatal_signal_pending(current))
256 return -ERESTARTSYS;
257 freezable_schedule_unsafe();
258 return 0;
259 }
260
261 #if defined(RPC_DEBUG) || defined(RPC_TRACEPOINTS)
rpc_task_set_debuginfo(struct rpc_task * task)262 static void rpc_task_set_debuginfo(struct rpc_task *task)
263 {
264 static atomic_t rpc_pid;
265
266 task->tk_pid = atomic_inc_return(&rpc_pid);
267 }
268 #else
rpc_task_set_debuginfo(struct rpc_task * task)269 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
270 {
271 }
272 #endif
273
rpc_set_active(struct rpc_task * task)274 static void rpc_set_active(struct rpc_task *task)
275 {
276 rpc_task_set_debuginfo(task);
277 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
278 trace_rpc_task_begin(task->tk_client, task, NULL);
279 }
280
281 /*
282 * Mark an RPC call as having completed by clearing the 'active' bit
283 * and then waking up all tasks that were sleeping.
284 */
rpc_complete_task(struct rpc_task * task)285 static int rpc_complete_task(struct rpc_task *task)
286 {
287 void *m = &task->tk_runstate;
288 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
289 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
290 unsigned long flags;
291 int ret;
292
293 trace_rpc_task_complete(task->tk_client, task, NULL);
294
295 spin_lock_irqsave(&wq->lock, flags);
296 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
297 ret = atomic_dec_and_test(&task->tk_count);
298 if (waitqueue_active(wq))
299 __wake_up_locked_key(wq, TASK_NORMAL, &k);
300 spin_unlock_irqrestore(&wq->lock, flags);
301 return ret;
302 }
303
304 /*
305 * Allow callers to wait for completion of an RPC call
306 *
307 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
308 * to enforce taking of the wq->lock and hence avoid races with
309 * rpc_complete_task().
310 */
__rpc_wait_for_completion_task(struct rpc_task * task,wait_bit_action_f * action)311 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
312 {
313 if (action == NULL)
314 action = rpc_wait_bit_killable;
315 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
316 action, TASK_KILLABLE);
317 }
318 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
319
320 /*
321 * Make an RPC task runnable.
322 *
323 * Note: If the task is ASYNC, and is being made runnable after sitting on an
324 * rpc_wait_queue, this must be called with the queue spinlock held to protect
325 * the wait queue operation.
326 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
327 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
328 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
329 * the RPC_TASK_RUNNING flag.
330 */
rpc_make_runnable(struct rpc_task * task)331 static void rpc_make_runnable(struct rpc_task *task)
332 {
333 bool need_wakeup = !rpc_test_and_set_running(task);
334
335 rpc_clear_queued(task);
336 if (!need_wakeup)
337 return;
338 if (RPC_IS_ASYNC(task)) {
339 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
340 queue_work(rpciod_workqueue, &task->u.tk_work);
341 } else
342 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
343 }
344
345 /*
346 * Prepare for sleeping on a wait queue.
347 * By always appending tasks to the list we ensure FIFO behavior.
348 * NB: An RPC task will only receive interrupt-driven events as long
349 * as it's on a wait queue.
350 */
__rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action,unsigned char queue_priority)351 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
352 struct rpc_task *task,
353 rpc_action action,
354 unsigned char queue_priority)
355 {
356 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
357 task->tk_pid, rpc_qname(q), jiffies);
358
359 trace_rpc_task_sleep(task->tk_client, task, q);
360
361 __rpc_add_wait_queue(q, task, queue_priority);
362
363 WARN_ON_ONCE(task->tk_callback != NULL);
364 task->tk_callback = action;
365 __rpc_add_timer(q, task);
366 }
367
rpc_sleep_on(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action)368 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
369 rpc_action action)
370 {
371 /* We shouldn't ever put an inactive task to sleep */
372 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
373 if (!RPC_IS_ACTIVATED(task)) {
374 task->tk_status = -EIO;
375 rpc_put_task_async(task);
376 return;
377 }
378
379 /*
380 * Protect the queue operations.
381 */
382 spin_lock_bh(&q->lock);
383 __rpc_sleep_on_priority(q, task, action, task->tk_priority);
384 spin_unlock_bh(&q->lock);
385 }
386 EXPORT_SYMBOL_GPL(rpc_sleep_on);
387
rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action,int priority)388 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
389 rpc_action action, int priority)
390 {
391 /* We shouldn't ever put an inactive task to sleep */
392 WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
393 if (!RPC_IS_ACTIVATED(task)) {
394 task->tk_status = -EIO;
395 rpc_put_task_async(task);
396 return;
397 }
398
399 /*
400 * Protect the queue operations.
401 */
402 spin_lock_bh(&q->lock);
403 __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
404 spin_unlock_bh(&q->lock);
405 }
406 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
407
408 /**
409 * __rpc_do_wake_up_task - wake up a single rpc_task
410 * @queue: wait queue
411 * @task: task to be woken up
412 *
413 * Caller must hold queue->lock, and have cleared the task queued flag.
414 */
__rpc_do_wake_up_task(struct rpc_wait_queue * queue,struct rpc_task * task)415 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
416 {
417 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
418 task->tk_pid, jiffies);
419
420 /* Has the task been executed yet? If not, we cannot wake it up! */
421 if (!RPC_IS_ACTIVATED(task)) {
422 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
423 return;
424 }
425
426 trace_rpc_task_wakeup(task->tk_client, task, queue);
427
428 __rpc_remove_wait_queue(queue, task);
429
430 rpc_make_runnable(task);
431
432 dprintk("RPC: __rpc_wake_up_task done\n");
433 }
434
435 /*
436 * Wake up a queued task while the queue lock is being held
437 */
rpc_wake_up_task_queue_locked(struct rpc_wait_queue * queue,struct rpc_task * task)438 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
439 {
440 if (RPC_IS_QUEUED(task)) {
441 smp_rmb();
442 if (task->tk_waitqueue == queue)
443 __rpc_do_wake_up_task(queue, task);
444 }
445 }
446
447 /*
448 * Wake up a task on a specific queue
449 */
rpc_wake_up_queued_task(struct rpc_wait_queue * queue,struct rpc_task * task)450 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
451 {
452 spin_lock_bh(&queue->lock);
453 rpc_wake_up_task_queue_locked(queue, task);
454 spin_unlock_bh(&queue->lock);
455 }
456 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
457
458 /*
459 * Wake up the next task on a priority queue.
460 */
__rpc_find_next_queued_priority(struct rpc_wait_queue * queue)461 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
462 {
463 struct list_head *q;
464 struct rpc_task *task;
465
466 /*
467 * Service a batch of tasks from a single owner.
468 */
469 q = &queue->tasks[queue->priority];
470 if (!list_empty(q)) {
471 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
472 if (queue->owner == task->tk_owner) {
473 if (--queue->nr)
474 goto out;
475 list_move_tail(&task->u.tk_wait.list, q);
476 }
477 /*
478 * Check if we need to switch queues.
479 */
480 goto new_owner;
481 }
482
483 /*
484 * Service the next queue.
485 */
486 do {
487 if (q == &queue->tasks[0])
488 q = &queue->tasks[queue->maxpriority];
489 else
490 q = q - 1;
491 if (!list_empty(q)) {
492 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
493 goto new_queue;
494 }
495 } while (q != &queue->tasks[queue->priority]);
496
497 rpc_reset_waitqueue_priority(queue);
498 return NULL;
499
500 new_queue:
501 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
502 new_owner:
503 rpc_set_waitqueue_owner(queue, task->tk_owner);
504 out:
505 return task;
506 }
507
__rpc_find_next_queued(struct rpc_wait_queue * queue)508 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
509 {
510 if (RPC_IS_PRIORITY(queue))
511 return __rpc_find_next_queued_priority(queue);
512 if (!list_empty(&queue->tasks[0]))
513 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
514 return NULL;
515 }
516
517 /*
518 * Wake up the first task on the wait queue.
519 */
rpc_wake_up_first(struct rpc_wait_queue * queue,bool (* func)(struct rpc_task *,void *),void * data)520 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
521 bool (*func)(struct rpc_task *, void *), void *data)
522 {
523 struct rpc_task *task = NULL;
524
525 dprintk("RPC: wake_up_first(%p \"%s\")\n",
526 queue, rpc_qname(queue));
527 spin_lock_bh(&queue->lock);
528 task = __rpc_find_next_queued(queue);
529 if (task != NULL) {
530 if (func(task, data))
531 rpc_wake_up_task_queue_locked(queue, task);
532 else
533 task = NULL;
534 }
535 spin_unlock_bh(&queue->lock);
536
537 return task;
538 }
539 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
540
rpc_wake_up_next_func(struct rpc_task * task,void * data)541 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
542 {
543 return true;
544 }
545
546 /*
547 * Wake up the next task on the wait queue.
548 */
rpc_wake_up_next(struct rpc_wait_queue * queue)549 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
550 {
551 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
552 }
553 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
554
555 /**
556 * rpc_wake_up - wake up all rpc_tasks
557 * @queue: rpc_wait_queue on which the tasks are sleeping
558 *
559 * Grabs queue->lock
560 */
rpc_wake_up(struct rpc_wait_queue * queue)561 void rpc_wake_up(struct rpc_wait_queue *queue)
562 {
563 struct list_head *head;
564
565 spin_lock_bh(&queue->lock);
566 head = &queue->tasks[queue->maxpriority];
567 for (;;) {
568 while (!list_empty(head)) {
569 struct rpc_task *task;
570 task = list_first_entry(head,
571 struct rpc_task,
572 u.tk_wait.list);
573 rpc_wake_up_task_queue_locked(queue, task);
574 }
575 if (head == &queue->tasks[0])
576 break;
577 head--;
578 }
579 spin_unlock_bh(&queue->lock);
580 }
581 EXPORT_SYMBOL_GPL(rpc_wake_up);
582
583 /**
584 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
585 * @queue: rpc_wait_queue on which the tasks are sleeping
586 * @status: status value to set
587 *
588 * Grabs queue->lock
589 */
rpc_wake_up_status(struct rpc_wait_queue * queue,int status)590 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
591 {
592 struct list_head *head;
593
594 spin_lock_bh(&queue->lock);
595 head = &queue->tasks[queue->maxpriority];
596 for (;;) {
597 while (!list_empty(head)) {
598 struct rpc_task *task;
599 task = list_first_entry(head,
600 struct rpc_task,
601 u.tk_wait.list);
602 task->tk_status = status;
603 rpc_wake_up_task_queue_locked(queue, task);
604 }
605 if (head == &queue->tasks[0])
606 break;
607 head--;
608 }
609 spin_unlock_bh(&queue->lock);
610 }
611 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
612
__rpc_queue_timer_fn(unsigned long ptr)613 static void __rpc_queue_timer_fn(unsigned long ptr)
614 {
615 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
616 struct rpc_task *task, *n;
617 unsigned long expires, now, timeo;
618
619 spin_lock(&queue->lock);
620 expires = now = jiffies;
621 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
622 timeo = task->u.tk_wait.expires;
623 if (time_after_eq(now, timeo)) {
624 dprintk("RPC: %5u timeout\n", task->tk_pid);
625 task->tk_status = -ETIMEDOUT;
626 rpc_wake_up_task_queue_locked(queue, task);
627 continue;
628 }
629 if (expires == now || time_after(expires, timeo))
630 expires = timeo;
631 }
632 if (!list_empty(&queue->timer_list.list))
633 rpc_set_queue_timer(queue, expires);
634 spin_unlock(&queue->lock);
635 }
636
__rpc_atrun(struct rpc_task * task)637 static void __rpc_atrun(struct rpc_task *task)
638 {
639 if (task->tk_status == -ETIMEDOUT)
640 task->tk_status = 0;
641 }
642
643 /*
644 * Run a task at a later time
645 */
rpc_delay(struct rpc_task * task,unsigned long delay)646 void rpc_delay(struct rpc_task *task, unsigned long delay)
647 {
648 task->tk_timeout = delay;
649 rpc_sleep_on(&delay_queue, task, __rpc_atrun);
650 }
651 EXPORT_SYMBOL_GPL(rpc_delay);
652
653 /*
654 * Helper to call task->tk_ops->rpc_call_prepare
655 */
rpc_prepare_task(struct rpc_task * task)656 void rpc_prepare_task(struct rpc_task *task)
657 {
658 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
659 }
660
661 static void
rpc_init_task_statistics(struct rpc_task * task)662 rpc_init_task_statistics(struct rpc_task *task)
663 {
664 /* Initialize retry counters */
665 task->tk_garb_retry = 2;
666 task->tk_cred_retry = 2;
667 task->tk_rebind_retry = 2;
668
669 /* starting timestamp */
670 task->tk_start = ktime_get();
671 }
672
673 static void
rpc_reset_task_statistics(struct rpc_task * task)674 rpc_reset_task_statistics(struct rpc_task *task)
675 {
676 task->tk_timeouts = 0;
677 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
678
679 rpc_init_task_statistics(task);
680 }
681
682 /*
683 * Helper that calls task->tk_ops->rpc_call_done if it exists
684 */
rpc_exit_task(struct rpc_task * task)685 void rpc_exit_task(struct rpc_task *task)
686 {
687 task->tk_action = NULL;
688 if (task->tk_ops->rpc_call_done != NULL) {
689 task->tk_ops->rpc_call_done(task, task->tk_calldata);
690 if (task->tk_action != NULL) {
691 WARN_ON(RPC_ASSASSINATED(task));
692 /* Always release the RPC slot and buffer memory */
693 xprt_release(task);
694 rpc_reset_task_statistics(task);
695 }
696 }
697 }
698
rpc_exit(struct rpc_task * task,int status)699 void rpc_exit(struct rpc_task *task, int status)
700 {
701 task->tk_status = status;
702 task->tk_action = rpc_exit_task;
703 if (RPC_IS_QUEUED(task))
704 rpc_wake_up_queued_task(task->tk_waitqueue, task);
705 }
706 EXPORT_SYMBOL_GPL(rpc_exit);
707
rpc_release_calldata(const struct rpc_call_ops * ops,void * calldata)708 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
709 {
710 if (ops->rpc_release != NULL)
711 ops->rpc_release(calldata);
712 }
713
714 /*
715 * This is the RPC `scheduler' (or rather, the finite state machine).
716 */
__rpc_execute(struct rpc_task * task)717 static void __rpc_execute(struct rpc_task *task)
718 {
719 struct rpc_wait_queue *queue;
720 int task_is_async = RPC_IS_ASYNC(task);
721 int status = 0;
722
723 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
724 task->tk_pid, task->tk_flags);
725
726 WARN_ON_ONCE(RPC_IS_QUEUED(task));
727 if (RPC_IS_QUEUED(task))
728 return;
729
730 for (;;) {
731 void (*do_action)(struct rpc_task *);
732
733 /*
734 * Execute any pending callback first.
735 */
736 do_action = task->tk_callback;
737 task->tk_callback = NULL;
738 if (do_action == NULL) {
739 /*
740 * Perform the next FSM step.
741 * tk_action may be NULL if the task has been killed.
742 * In particular, note that rpc_killall_tasks may
743 * do this at any time, so beware when dereferencing.
744 */
745 do_action = task->tk_action;
746 if (do_action == NULL)
747 break;
748 }
749 trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
750 do_action(task);
751
752 /*
753 * Lockless check for whether task is sleeping or not.
754 */
755 if (!RPC_IS_QUEUED(task))
756 continue;
757 /*
758 * The queue->lock protects against races with
759 * rpc_make_runnable().
760 *
761 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
762 * rpc_task, rpc_make_runnable() can assign it to a
763 * different workqueue. We therefore cannot assume that the
764 * rpc_task pointer may still be dereferenced.
765 */
766 queue = task->tk_waitqueue;
767 spin_lock_bh(&queue->lock);
768 if (!RPC_IS_QUEUED(task)) {
769 spin_unlock_bh(&queue->lock);
770 continue;
771 }
772 rpc_clear_running(task);
773 spin_unlock_bh(&queue->lock);
774 if (task_is_async)
775 return;
776
777 /* sync task: sleep here */
778 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
779 status = out_of_line_wait_on_bit(&task->tk_runstate,
780 RPC_TASK_QUEUED, rpc_wait_bit_killable,
781 TASK_KILLABLE);
782 if (status == -ERESTARTSYS) {
783 /*
784 * When a sync task receives a signal, it exits with
785 * -ERESTARTSYS. In order to catch any callbacks that
786 * clean up after sleeping on some queue, we don't
787 * break the loop here, but go around once more.
788 */
789 dprintk("RPC: %5u got signal\n", task->tk_pid);
790 task->tk_flags |= RPC_TASK_KILLED;
791 rpc_exit(task, -ERESTARTSYS);
792 }
793 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
794 }
795
796 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
797 task->tk_status);
798 /* Release all resources associated with the task */
799 rpc_release_task(task);
800 }
801
802 /*
803 * User-visible entry point to the scheduler.
804 *
805 * This may be called recursively if e.g. an async NFS task updates
806 * the attributes and finds that dirty pages must be flushed.
807 * NOTE: Upon exit of this function the task is guaranteed to be
808 * released. In particular note that tk_release() will have
809 * been called, so your task memory may have been freed.
810 */
rpc_execute(struct rpc_task * task)811 void rpc_execute(struct rpc_task *task)
812 {
813 bool is_async = RPC_IS_ASYNC(task);
814
815 rpc_set_active(task);
816 rpc_make_runnable(task);
817 if (!is_async)
818 __rpc_execute(task);
819 }
820
rpc_async_schedule(struct work_struct * work)821 static void rpc_async_schedule(struct work_struct *work)
822 {
823 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
824 }
825
826 /**
827 * rpc_malloc - allocate an RPC buffer
828 * @task: RPC task that will use this buffer
829 * @size: requested byte size
830 *
831 * To prevent rpciod from hanging, this allocator never sleeps,
832 * returning NULL and suppressing warning if the request cannot be serviced
833 * immediately.
834 * The caller can arrange to sleep in a way that is safe for rpciod.
835 *
836 * Most requests are 'small' (under 2KiB) and can be serviced from a
837 * mempool, ensuring that NFS reads and writes can always proceed,
838 * and that there is good locality of reference for these buffers.
839 *
840 * In order to avoid memory starvation triggering more writebacks of
841 * NFS requests, we avoid using GFP_KERNEL.
842 */
rpc_malloc(struct rpc_task * task,size_t size)843 void *rpc_malloc(struct rpc_task *task, size_t size)
844 {
845 struct rpc_buffer *buf;
846 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
847
848 if (RPC_IS_SWAPPER(task))
849 gfp |= __GFP_MEMALLOC;
850
851 size += sizeof(struct rpc_buffer);
852 if (size <= RPC_BUFFER_MAXSIZE)
853 buf = mempool_alloc(rpc_buffer_mempool, gfp);
854 else
855 buf = kmalloc(size, gfp);
856
857 if (!buf)
858 return NULL;
859
860 buf->len = size;
861 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
862 task->tk_pid, size, buf);
863 return &buf->data;
864 }
865 EXPORT_SYMBOL_GPL(rpc_malloc);
866
867 /**
868 * rpc_free - free buffer allocated via rpc_malloc
869 * @buffer: buffer to free
870 *
871 */
rpc_free(void * buffer)872 void rpc_free(void *buffer)
873 {
874 size_t size;
875 struct rpc_buffer *buf;
876
877 if (!buffer)
878 return;
879
880 buf = container_of(buffer, struct rpc_buffer, data);
881 size = buf->len;
882
883 dprintk("RPC: freeing buffer of size %zu at %p\n",
884 size, buf);
885
886 if (size <= RPC_BUFFER_MAXSIZE)
887 mempool_free(buf, rpc_buffer_mempool);
888 else
889 kfree(buf);
890 }
891 EXPORT_SYMBOL_GPL(rpc_free);
892
893 /*
894 * Creation and deletion of RPC task structures
895 */
rpc_init_task(struct rpc_task * task,const struct rpc_task_setup * task_setup_data)896 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
897 {
898 memset(task, 0, sizeof(*task));
899 atomic_set(&task->tk_count, 1);
900 task->tk_flags = task_setup_data->flags;
901 task->tk_ops = task_setup_data->callback_ops;
902 task->tk_calldata = task_setup_data->callback_data;
903 INIT_LIST_HEAD(&task->tk_task);
904
905 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
906 task->tk_owner = current->tgid;
907
908 /* Initialize workqueue for async tasks */
909 task->tk_workqueue = task_setup_data->workqueue;
910
911 if (task->tk_ops->rpc_call_prepare != NULL)
912 task->tk_action = rpc_prepare_task;
913
914 rpc_init_task_statistics(task);
915
916 dprintk("RPC: new task initialized, procpid %u\n",
917 task_pid_nr(current));
918 }
919
920 static struct rpc_task *
rpc_alloc_task(void)921 rpc_alloc_task(void)
922 {
923 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
924 }
925
926 /*
927 * Create a new task for the specified client.
928 */
rpc_new_task(const struct rpc_task_setup * setup_data)929 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
930 {
931 struct rpc_task *task = setup_data->task;
932 unsigned short flags = 0;
933
934 if (task == NULL) {
935 task = rpc_alloc_task();
936 if (task == NULL) {
937 rpc_release_calldata(setup_data->callback_ops,
938 setup_data->callback_data);
939 return ERR_PTR(-ENOMEM);
940 }
941 flags = RPC_TASK_DYNAMIC;
942 }
943
944 rpc_init_task(task, setup_data);
945 task->tk_flags |= flags;
946 dprintk("RPC: allocated task %p\n", task);
947 return task;
948 }
949
950 /*
951 * rpc_free_task - release rpc task and perform cleanups
952 *
953 * Note that we free up the rpc_task _after_ rpc_release_calldata()
954 * in order to work around a workqueue dependency issue.
955 *
956 * Tejun Heo states:
957 * "Workqueue currently considers two work items to be the same if they're
958 * on the same address and won't execute them concurrently - ie. it
959 * makes a work item which is queued again while being executed wait
960 * for the previous execution to complete.
961 *
962 * If a work function frees the work item, and then waits for an event
963 * which should be performed by another work item and *that* work item
964 * recycles the freed work item, it can create a false dependency loop.
965 * There really is no reliable way to detect this short of verifying
966 * every memory free."
967 *
968 */
rpc_free_task(struct rpc_task * task)969 static void rpc_free_task(struct rpc_task *task)
970 {
971 unsigned short tk_flags = task->tk_flags;
972
973 rpc_release_calldata(task->tk_ops, task->tk_calldata);
974
975 if (tk_flags & RPC_TASK_DYNAMIC) {
976 dprintk("RPC: %5u freeing task\n", task->tk_pid);
977 mempool_free(task, rpc_task_mempool);
978 }
979 }
980
rpc_async_release(struct work_struct * work)981 static void rpc_async_release(struct work_struct *work)
982 {
983 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
984 }
985
rpc_release_resources_task(struct rpc_task * task)986 static void rpc_release_resources_task(struct rpc_task *task)
987 {
988 xprt_release(task);
989 if (task->tk_msg.rpc_cred) {
990 put_rpccred(task->tk_msg.rpc_cred);
991 task->tk_msg.rpc_cred = NULL;
992 }
993 rpc_task_release_client(task);
994 }
995
rpc_final_put_task(struct rpc_task * task,struct workqueue_struct * q)996 static void rpc_final_put_task(struct rpc_task *task,
997 struct workqueue_struct *q)
998 {
999 if (q != NULL) {
1000 INIT_WORK(&task->u.tk_work, rpc_async_release);
1001 queue_work(q, &task->u.tk_work);
1002 } else
1003 rpc_free_task(task);
1004 }
1005
rpc_do_put_task(struct rpc_task * task,struct workqueue_struct * q)1006 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1007 {
1008 if (atomic_dec_and_test(&task->tk_count)) {
1009 rpc_release_resources_task(task);
1010 rpc_final_put_task(task, q);
1011 }
1012 }
1013
rpc_put_task(struct rpc_task * task)1014 void rpc_put_task(struct rpc_task *task)
1015 {
1016 rpc_do_put_task(task, NULL);
1017 }
1018 EXPORT_SYMBOL_GPL(rpc_put_task);
1019
rpc_put_task_async(struct rpc_task * task)1020 void rpc_put_task_async(struct rpc_task *task)
1021 {
1022 rpc_do_put_task(task, task->tk_workqueue);
1023 }
1024 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1025
rpc_release_task(struct rpc_task * task)1026 static void rpc_release_task(struct rpc_task *task)
1027 {
1028 dprintk("RPC: %5u release task\n", task->tk_pid);
1029
1030 WARN_ON_ONCE(RPC_IS_QUEUED(task));
1031
1032 rpc_release_resources_task(task);
1033
1034 /*
1035 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1036 * so it should be safe to use task->tk_count as a test for whether
1037 * or not any other processes still hold references to our rpc_task.
1038 */
1039 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1040 /* Wake up anyone who may be waiting for task completion */
1041 if (!rpc_complete_task(task))
1042 return;
1043 } else {
1044 if (!atomic_dec_and_test(&task->tk_count))
1045 return;
1046 }
1047 rpc_final_put_task(task, task->tk_workqueue);
1048 }
1049
rpciod_up(void)1050 int rpciod_up(void)
1051 {
1052 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1053 }
1054
rpciod_down(void)1055 void rpciod_down(void)
1056 {
1057 module_put(THIS_MODULE);
1058 }
1059
1060 /*
1061 * Start up the rpciod workqueue.
1062 */
rpciod_start(void)1063 static int rpciod_start(void)
1064 {
1065 struct workqueue_struct *wq;
1066
1067 /*
1068 * Create the rpciod thread and wait for it to start.
1069 */
1070 dprintk("RPC: creating workqueue rpciod\n");
1071 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 1);
1072 rpciod_workqueue = wq;
1073 return rpciod_workqueue != NULL;
1074 }
1075
rpciod_stop(void)1076 static void rpciod_stop(void)
1077 {
1078 struct workqueue_struct *wq = NULL;
1079
1080 if (rpciod_workqueue == NULL)
1081 return;
1082 dprintk("RPC: destroying workqueue rpciod\n");
1083
1084 wq = rpciod_workqueue;
1085 rpciod_workqueue = NULL;
1086 destroy_workqueue(wq);
1087 }
1088
1089 void
rpc_destroy_mempool(void)1090 rpc_destroy_mempool(void)
1091 {
1092 rpciod_stop();
1093 if (rpc_buffer_mempool)
1094 mempool_destroy(rpc_buffer_mempool);
1095 if (rpc_task_mempool)
1096 mempool_destroy(rpc_task_mempool);
1097 if (rpc_task_slabp)
1098 kmem_cache_destroy(rpc_task_slabp);
1099 if (rpc_buffer_slabp)
1100 kmem_cache_destroy(rpc_buffer_slabp);
1101 rpc_destroy_wait_queue(&delay_queue);
1102 }
1103
1104 int
rpc_init_mempool(void)1105 rpc_init_mempool(void)
1106 {
1107 /*
1108 * The following is not strictly a mempool initialisation,
1109 * but there is no harm in doing it here
1110 */
1111 rpc_init_wait_queue(&delay_queue, "delayq");
1112 if (!rpciod_start())
1113 goto err_nomem;
1114
1115 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1116 sizeof(struct rpc_task),
1117 0, SLAB_HWCACHE_ALIGN,
1118 NULL);
1119 if (!rpc_task_slabp)
1120 goto err_nomem;
1121 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1122 RPC_BUFFER_MAXSIZE,
1123 0, SLAB_HWCACHE_ALIGN,
1124 NULL);
1125 if (!rpc_buffer_slabp)
1126 goto err_nomem;
1127 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1128 rpc_task_slabp);
1129 if (!rpc_task_mempool)
1130 goto err_nomem;
1131 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1132 rpc_buffer_slabp);
1133 if (!rpc_buffer_mempool)
1134 goto err_nomem;
1135 return 0;
1136 err_nomem:
1137 rpc_destroy_mempool();
1138 return -ENOMEM;
1139 }
1140