1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 /*
22 Module: rt2x00lib
23 Abstract: rt2x00 queue specific routines.
24 */
25
26 #include <linux/slab.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/dma-mapping.h>
30
31 #include "rt2x00.h"
32 #include "rt2x00lib.h"
33
rt2x00queue_alloc_rxskb(struct queue_entry * entry,gfp_t gfp)34 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
35 {
36 struct data_queue *queue = entry->queue;
37 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
38 struct sk_buff *skb;
39 struct skb_frame_desc *skbdesc;
40 unsigned int frame_size;
41 unsigned int head_size = 0;
42 unsigned int tail_size = 0;
43
44 /*
45 * The frame size includes descriptor size, because the
46 * hardware directly receive the frame into the skbuffer.
47 */
48 frame_size = queue->data_size + queue->desc_size + queue->winfo_size;
49
50 /*
51 * The payload should be aligned to a 4-byte boundary,
52 * this means we need at least 3 bytes for moving the frame
53 * into the correct offset.
54 */
55 head_size = 4;
56
57 /*
58 * For IV/EIV/ICV assembly we must make sure there is
59 * at least 8 bytes bytes available in headroom for IV/EIV
60 * and 8 bytes for ICV data as tailroon.
61 */
62 if (rt2x00_has_cap_hw_crypto(rt2x00dev)) {
63 head_size += 8;
64 tail_size += 8;
65 }
66
67 /*
68 * Allocate skbuffer.
69 */
70 skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
71 if (!skb)
72 return NULL;
73
74 /*
75 * Make sure we not have a frame with the requested bytes
76 * available in the head and tail.
77 */
78 skb_reserve(skb, head_size);
79 skb_put(skb, frame_size);
80
81 /*
82 * Populate skbdesc.
83 */
84 skbdesc = get_skb_frame_desc(skb);
85 memset(skbdesc, 0, sizeof(*skbdesc));
86 skbdesc->entry = entry;
87
88 if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) {
89 dma_addr_t skb_dma;
90
91 skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
92 DMA_FROM_DEVICE);
93 if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) {
94 dev_kfree_skb_any(skb);
95 return NULL;
96 }
97
98 skbdesc->skb_dma = skb_dma;
99 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
100 }
101
102 return skb;
103 }
104
rt2x00queue_map_txskb(struct queue_entry * entry)105 int rt2x00queue_map_txskb(struct queue_entry *entry)
106 {
107 struct device *dev = entry->queue->rt2x00dev->dev;
108 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
109
110 skbdesc->skb_dma =
111 dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
112
113 if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma)))
114 return -ENOMEM;
115
116 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
117 return 0;
118 }
119 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
120
rt2x00queue_unmap_skb(struct queue_entry * entry)121 void rt2x00queue_unmap_skb(struct queue_entry *entry)
122 {
123 struct device *dev = entry->queue->rt2x00dev->dev;
124 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
125
126 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
127 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
128 DMA_FROM_DEVICE);
129 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
130 } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
131 dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
132 DMA_TO_DEVICE);
133 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
134 }
135 }
136 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
137
rt2x00queue_free_skb(struct queue_entry * entry)138 void rt2x00queue_free_skb(struct queue_entry *entry)
139 {
140 if (!entry->skb)
141 return;
142
143 rt2x00queue_unmap_skb(entry);
144 dev_kfree_skb_any(entry->skb);
145 entry->skb = NULL;
146 }
147
rt2x00queue_align_frame(struct sk_buff * skb)148 void rt2x00queue_align_frame(struct sk_buff *skb)
149 {
150 unsigned int frame_length = skb->len;
151 unsigned int align = ALIGN_SIZE(skb, 0);
152
153 if (!align)
154 return;
155
156 skb_push(skb, align);
157 memmove(skb->data, skb->data + align, frame_length);
158 skb_trim(skb, frame_length);
159 }
160
161 /*
162 * H/W needs L2 padding between the header and the paylod if header size
163 * is not 4 bytes aligned.
164 */
rt2x00queue_insert_l2pad(struct sk_buff * skb,unsigned int hdr_len)165 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int hdr_len)
166 {
167 unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
168
169 if (!l2pad)
170 return;
171
172 skb_push(skb, l2pad);
173 memmove(skb->data, skb->data + l2pad, hdr_len);
174 }
175
rt2x00queue_remove_l2pad(struct sk_buff * skb,unsigned int hdr_len)176 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int hdr_len)
177 {
178 unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
179
180 if (!l2pad)
181 return;
182
183 memmove(skb->data + l2pad, skb->data, hdr_len);
184 skb_pull(skb, l2pad);
185 }
186
rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc)187 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
188 struct sk_buff *skb,
189 struct txentry_desc *txdesc)
190 {
191 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
192 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
193 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
194 u16 seqno;
195
196 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
197 return;
198
199 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
200
201 if (!test_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags)) {
202 /*
203 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
204 * seqno on retransmited data (non-QOS) frames. To workaround
205 * the problem let's generate seqno in software if QOS is
206 * disabled.
207 */
208 if (test_bit(CONFIG_QOS_DISABLED, &rt2x00dev->flags))
209 __clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
210 else
211 /* H/W will generate sequence number */
212 return;
213 }
214
215 /*
216 * The hardware is not able to insert a sequence number. Assign a
217 * software generated one here.
218 *
219 * This is wrong because beacons are not getting sequence
220 * numbers assigned properly.
221 *
222 * A secondary problem exists for drivers that cannot toggle
223 * sequence counting per-frame, since those will override the
224 * sequence counter given by mac80211.
225 */
226 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
227 seqno = atomic_add_return(0x10, &intf->seqno);
228 else
229 seqno = atomic_read(&intf->seqno);
230
231 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
232 hdr->seq_ctrl |= cpu_to_le16(seqno);
233 }
234
rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc,const struct rt2x00_rate * hwrate)235 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
236 struct sk_buff *skb,
237 struct txentry_desc *txdesc,
238 const struct rt2x00_rate *hwrate)
239 {
240 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
241 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
242 unsigned int data_length;
243 unsigned int duration;
244 unsigned int residual;
245
246 /*
247 * Determine with what IFS priority this frame should be send.
248 * Set ifs to IFS_SIFS when the this is not the first fragment,
249 * or this fragment came after RTS/CTS.
250 */
251 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
252 txdesc->u.plcp.ifs = IFS_BACKOFF;
253 else
254 txdesc->u.plcp.ifs = IFS_SIFS;
255
256 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
257 data_length = skb->len + 4;
258 data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
259
260 /*
261 * PLCP setup
262 * Length calculation depends on OFDM/CCK rate.
263 */
264 txdesc->u.plcp.signal = hwrate->plcp;
265 txdesc->u.plcp.service = 0x04;
266
267 if (hwrate->flags & DEV_RATE_OFDM) {
268 txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
269 txdesc->u.plcp.length_low = data_length & 0x3f;
270 } else {
271 /*
272 * Convert length to microseconds.
273 */
274 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
275 duration = GET_DURATION(data_length, hwrate->bitrate);
276
277 if (residual != 0) {
278 duration++;
279
280 /*
281 * Check if we need to set the Length Extension
282 */
283 if (hwrate->bitrate == 110 && residual <= 30)
284 txdesc->u.plcp.service |= 0x80;
285 }
286
287 txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
288 txdesc->u.plcp.length_low = duration & 0xff;
289
290 /*
291 * When preamble is enabled we should set the
292 * preamble bit for the signal.
293 */
294 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
295 txdesc->u.plcp.signal |= 0x08;
296 }
297 }
298
rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc,struct ieee80211_sta * sta,const struct rt2x00_rate * hwrate)299 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
300 struct sk_buff *skb,
301 struct txentry_desc *txdesc,
302 struct ieee80211_sta *sta,
303 const struct rt2x00_rate *hwrate)
304 {
305 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
306 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
307 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
308 struct rt2x00_sta *sta_priv = NULL;
309
310 if (sta) {
311 txdesc->u.ht.mpdu_density =
312 sta->ht_cap.ampdu_density;
313
314 sta_priv = sta_to_rt2x00_sta(sta);
315 txdesc->u.ht.wcid = sta_priv->wcid;
316 }
317
318 /*
319 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
320 * mcs rate to be used
321 */
322 if (txrate->flags & IEEE80211_TX_RC_MCS) {
323 txdesc->u.ht.mcs = txrate->idx;
324
325 /*
326 * MIMO PS should be set to 1 for STA's using dynamic SM PS
327 * when using more then one tx stream (>MCS7).
328 */
329 if (sta && txdesc->u.ht.mcs > 7 &&
330 sta->smps_mode == IEEE80211_SMPS_DYNAMIC)
331 __set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
332 } else {
333 txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
334 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
335 txdesc->u.ht.mcs |= 0x08;
336 }
337
338 if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
339 if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
340 txdesc->u.ht.txop = TXOP_SIFS;
341 else
342 txdesc->u.ht.txop = TXOP_BACKOFF;
343
344 /* Left zero on all other settings. */
345 return;
346 }
347
348 txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */
349
350 /*
351 * Only one STBC stream is supported for now.
352 */
353 if (tx_info->flags & IEEE80211_TX_CTL_STBC)
354 txdesc->u.ht.stbc = 1;
355
356 /*
357 * This frame is eligible for an AMPDU, however, don't aggregate
358 * frames that are intended to probe a specific tx rate.
359 */
360 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
361 !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
362 __set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
363
364 /*
365 * Set 40Mhz mode if necessary (for legacy rates this will
366 * duplicate the frame to both channels).
367 */
368 if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
369 txrate->flags & IEEE80211_TX_RC_DUP_DATA)
370 __set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
371 if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
372 __set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
373
374 /*
375 * Determine IFS values
376 * - Use TXOP_BACKOFF for management frames except beacons
377 * - Use TXOP_SIFS for fragment bursts
378 * - Use TXOP_HTTXOP for everything else
379 *
380 * Note: rt2800 devices won't use CTS protection (if used)
381 * for frames not transmitted with TXOP_HTTXOP
382 */
383 if (ieee80211_is_mgmt(hdr->frame_control) &&
384 !ieee80211_is_beacon(hdr->frame_control))
385 txdesc->u.ht.txop = TXOP_BACKOFF;
386 else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
387 txdesc->u.ht.txop = TXOP_SIFS;
388 else
389 txdesc->u.ht.txop = TXOP_HTTXOP;
390 }
391
rt2x00queue_create_tx_descriptor(struct rt2x00_dev * rt2x00dev,struct sk_buff * skb,struct txentry_desc * txdesc,struct ieee80211_sta * sta)392 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
393 struct sk_buff *skb,
394 struct txentry_desc *txdesc,
395 struct ieee80211_sta *sta)
396 {
397 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
398 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
399 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
400 struct ieee80211_rate *rate;
401 const struct rt2x00_rate *hwrate = NULL;
402
403 memset(txdesc, 0, sizeof(*txdesc));
404
405 /*
406 * Header and frame information.
407 */
408 txdesc->length = skb->len;
409 txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
410
411 /*
412 * Check whether this frame is to be acked.
413 */
414 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
415 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
416
417 /*
418 * Check if this is a RTS/CTS frame
419 */
420 if (ieee80211_is_rts(hdr->frame_control) ||
421 ieee80211_is_cts(hdr->frame_control)) {
422 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
423 if (ieee80211_is_rts(hdr->frame_control))
424 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
425 else
426 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
427 if (tx_info->control.rts_cts_rate_idx >= 0)
428 rate =
429 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
430 }
431
432 /*
433 * Determine retry information.
434 */
435 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
436 if (txdesc->retry_limit >= rt2x00dev->long_retry)
437 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
438
439 /*
440 * Check if more fragments are pending
441 */
442 if (ieee80211_has_morefrags(hdr->frame_control)) {
443 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
444 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
445 }
446
447 /*
448 * Check if more frames (!= fragments) are pending
449 */
450 if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
451 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
452
453 /*
454 * Beacons and probe responses require the tsf timestamp
455 * to be inserted into the frame.
456 */
457 if (ieee80211_is_beacon(hdr->frame_control) ||
458 ieee80211_is_probe_resp(hdr->frame_control))
459 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
460
461 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
462 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
463 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
464
465 /*
466 * Determine rate modulation.
467 */
468 if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
469 txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
470 else if (txrate->flags & IEEE80211_TX_RC_MCS)
471 txdesc->rate_mode = RATE_MODE_HT_MIX;
472 else {
473 rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
474 hwrate = rt2x00_get_rate(rate->hw_value);
475 if (hwrate->flags & DEV_RATE_OFDM)
476 txdesc->rate_mode = RATE_MODE_OFDM;
477 else
478 txdesc->rate_mode = RATE_MODE_CCK;
479 }
480
481 /*
482 * Apply TX descriptor handling by components
483 */
484 rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
485 rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
486
487 if (test_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags))
488 rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
489 sta, hwrate);
490 else
491 rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
492 hwrate);
493 }
494
rt2x00queue_write_tx_data(struct queue_entry * entry,struct txentry_desc * txdesc)495 static int rt2x00queue_write_tx_data(struct queue_entry *entry,
496 struct txentry_desc *txdesc)
497 {
498 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
499
500 /*
501 * This should not happen, we already checked the entry
502 * was ours. When the hardware disagrees there has been
503 * a queue corruption!
504 */
505 if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
506 rt2x00dev->ops->lib->get_entry_state(entry))) {
507 rt2x00_err(rt2x00dev,
508 "Corrupt queue %d, accessing entry which is not ours\n"
509 "Please file bug report to %s\n",
510 entry->queue->qid, DRV_PROJECT);
511 return -EINVAL;
512 }
513
514 /*
515 * Add the requested extra tx headroom in front of the skb.
516 */
517 skb_push(entry->skb, rt2x00dev->extra_tx_headroom);
518 memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom);
519
520 /*
521 * Call the driver's write_tx_data function, if it exists.
522 */
523 if (rt2x00dev->ops->lib->write_tx_data)
524 rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
525
526 /*
527 * Map the skb to DMA.
528 */
529 if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags) &&
530 rt2x00queue_map_txskb(entry))
531 return -ENOMEM;
532
533 return 0;
534 }
535
rt2x00queue_write_tx_descriptor(struct queue_entry * entry,struct txentry_desc * txdesc)536 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
537 struct txentry_desc *txdesc)
538 {
539 struct data_queue *queue = entry->queue;
540
541 queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
542
543 /*
544 * All processing on the frame has been completed, this means
545 * it is now ready to be dumped to userspace through debugfs.
546 */
547 rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
548 }
549
rt2x00queue_kick_tx_queue(struct data_queue * queue,struct txentry_desc * txdesc)550 static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
551 struct txentry_desc *txdesc)
552 {
553 /*
554 * Check if we need to kick the queue, there are however a few rules
555 * 1) Don't kick unless this is the last in frame in a burst.
556 * When the burst flag is set, this frame is always followed
557 * by another frame which in some way are related to eachother.
558 * This is true for fragments, RTS or CTS-to-self frames.
559 * 2) Rule 1 can be broken when the available entries
560 * in the queue are less then a certain threshold.
561 */
562 if (rt2x00queue_threshold(queue) ||
563 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
564 queue->rt2x00dev->ops->lib->kick_queue(queue);
565 }
566
rt2x00queue_bar_check(struct queue_entry * entry)567 static void rt2x00queue_bar_check(struct queue_entry *entry)
568 {
569 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
570 struct ieee80211_bar *bar = (void *) (entry->skb->data +
571 rt2x00dev->extra_tx_headroom);
572 struct rt2x00_bar_list_entry *bar_entry;
573
574 if (likely(!ieee80211_is_back_req(bar->frame_control)))
575 return;
576
577 bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC);
578
579 /*
580 * If the alloc fails we still send the BAR out but just don't track
581 * it in our bar list. And as a result we will report it to mac80211
582 * back as failed.
583 */
584 if (!bar_entry)
585 return;
586
587 bar_entry->entry = entry;
588 bar_entry->block_acked = 0;
589
590 /*
591 * Copy the relevant parts of the 802.11 BAR into out check list
592 * such that we can use RCU for less-overhead in the RX path since
593 * sending BARs and processing the according BlockAck should be
594 * the exception.
595 */
596 memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra));
597 memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta));
598 bar_entry->control = bar->control;
599 bar_entry->start_seq_num = bar->start_seq_num;
600
601 /*
602 * Insert BAR into our BAR check list.
603 */
604 spin_lock_bh(&rt2x00dev->bar_list_lock);
605 list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list);
606 spin_unlock_bh(&rt2x00dev->bar_list_lock);
607 }
608
rt2x00queue_write_tx_frame(struct data_queue * queue,struct sk_buff * skb,struct ieee80211_sta * sta,bool local)609 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
610 struct ieee80211_sta *sta, bool local)
611 {
612 struct ieee80211_tx_info *tx_info;
613 struct queue_entry *entry;
614 struct txentry_desc txdesc;
615 struct skb_frame_desc *skbdesc;
616 u8 rate_idx, rate_flags;
617 int ret = 0;
618
619 /*
620 * Copy all TX descriptor information into txdesc,
621 * after that we are free to use the skb->cb array
622 * for our information.
623 */
624 rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, sta);
625
626 /*
627 * All information is retrieved from the skb->cb array,
628 * now we should claim ownership of the driver part of that
629 * array, preserving the bitrate index and flags.
630 */
631 tx_info = IEEE80211_SKB_CB(skb);
632 rate_idx = tx_info->control.rates[0].idx;
633 rate_flags = tx_info->control.rates[0].flags;
634 skbdesc = get_skb_frame_desc(skb);
635 memset(skbdesc, 0, sizeof(*skbdesc));
636 skbdesc->tx_rate_idx = rate_idx;
637 skbdesc->tx_rate_flags = rate_flags;
638
639 if (local)
640 skbdesc->flags |= SKBDESC_NOT_MAC80211;
641
642 /*
643 * When hardware encryption is supported, and this frame
644 * is to be encrypted, we should strip the IV/EIV data from
645 * the frame so we can provide it to the driver separately.
646 */
647 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
648 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
649 if (test_bit(REQUIRE_COPY_IV, &queue->rt2x00dev->cap_flags))
650 rt2x00crypto_tx_copy_iv(skb, &txdesc);
651 else
652 rt2x00crypto_tx_remove_iv(skb, &txdesc);
653 }
654
655 /*
656 * When DMA allocation is required we should guarantee to the
657 * driver that the DMA is aligned to a 4-byte boundary.
658 * However some drivers require L2 padding to pad the payload
659 * rather then the header. This could be a requirement for
660 * PCI and USB devices, while header alignment only is valid
661 * for PCI devices.
662 */
663 if (test_bit(REQUIRE_L2PAD, &queue->rt2x00dev->cap_flags))
664 rt2x00queue_insert_l2pad(skb, txdesc.header_length);
665 else if (test_bit(REQUIRE_DMA, &queue->rt2x00dev->cap_flags))
666 rt2x00queue_align_frame(skb);
667
668 /*
669 * That function must be called with bh disabled.
670 */
671 spin_lock(&queue->tx_lock);
672
673 if (unlikely(rt2x00queue_full(queue))) {
674 rt2x00_err(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n",
675 queue->qid);
676 ret = -ENOBUFS;
677 goto out;
678 }
679
680 entry = rt2x00queue_get_entry(queue, Q_INDEX);
681
682 if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
683 &entry->flags))) {
684 rt2x00_err(queue->rt2x00dev,
685 "Arrived at non-free entry in the non-full queue %d\n"
686 "Please file bug report to %s\n",
687 queue->qid, DRV_PROJECT);
688 ret = -EINVAL;
689 goto out;
690 }
691
692 skbdesc->entry = entry;
693 entry->skb = skb;
694
695 /*
696 * It could be possible that the queue was corrupted and this
697 * call failed. Since we always return NETDEV_TX_OK to mac80211,
698 * this frame will simply be dropped.
699 */
700 if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
701 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
702 entry->skb = NULL;
703 ret = -EIO;
704 goto out;
705 }
706
707 /*
708 * Put BlockAckReqs into our check list for driver BA processing.
709 */
710 rt2x00queue_bar_check(entry);
711
712 set_bit(ENTRY_DATA_PENDING, &entry->flags);
713
714 rt2x00queue_index_inc(entry, Q_INDEX);
715 rt2x00queue_write_tx_descriptor(entry, &txdesc);
716 rt2x00queue_kick_tx_queue(queue, &txdesc);
717
718 out:
719 spin_unlock(&queue->tx_lock);
720 return ret;
721 }
722
rt2x00queue_clear_beacon(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)723 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
724 struct ieee80211_vif *vif)
725 {
726 struct rt2x00_intf *intf = vif_to_intf(vif);
727
728 if (unlikely(!intf->beacon))
729 return -ENOBUFS;
730
731 /*
732 * Clean up the beacon skb.
733 */
734 rt2x00queue_free_skb(intf->beacon);
735
736 /*
737 * Clear beacon (single bssid devices don't need to clear the beacon
738 * since the beacon queue will get stopped anyway).
739 */
740 if (rt2x00dev->ops->lib->clear_beacon)
741 rt2x00dev->ops->lib->clear_beacon(intf->beacon);
742
743 return 0;
744 }
745
rt2x00queue_update_beacon(struct rt2x00_dev * rt2x00dev,struct ieee80211_vif * vif)746 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
747 struct ieee80211_vif *vif)
748 {
749 struct rt2x00_intf *intf = vif_to_intf(vif);
750 struct skb_frame_desc *skbdesc;
751 struct txentry_desc txdesc;
752
753 if (unlikely(!intf->beacon))
754 return -ENOBUFS;
755
756 /*
757 * Clean up the beacon skb.
758 */
759 rt2x00queue_free_skb(intf->beacon);
760
761 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
762 if (!intf->beacon->skb)
763 return -ENOMEM;
764
765 /*
766 * Copy all TX descriptor information into txdesc,
767 * after that we are free to use the skb->cb array
768 * for our information.
769 */
770 rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL);
771
772 /*
773 * Fill in skb descriptor
774 */
775 skbdesc = get_skb_frame_desc(intf->beacon->skb);
776 memset(skbdesc, 0, sizeof(*skbdesc));
777 skbdesc->entry = intf->beacon;
778
779 /*
780 * Send beacon to hardware.
781 */
782 rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
783
784 return 0;
785
786 }
787
rt2x00queue_for_each_entry(struct data_queue * queue,enum queue_index start,enum queue_index end,void * data,bool (* fn)(struct queue_entry * entry,void * data))788 bool rt2x00queue_for_each_entry(struct data_queue *queue,
789 enum queue_index start,
790 enum queue_index end,
791 void *data,
792 bool (*fn)(struct queue_entry *entry,
793 void *data))
794 {
795 unsigned long irqflags;
796 unsigned int index_start;
797 unsigned int index_end;
798 unsigned int i;
799
800 if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
801 rt2x00_err(queue->rt2x00dev,
802 "Entry requested from invalid index range (%d - %d)\n",
803 start, end);
804 return true;
805 }
806
807 /*
808 * Only protect the range we are going to loop over,
809 * if during our loop a extra entry is set to pending
810 * it should not be kicked during this run, since it
811 * is part of another TX operation.
812 */
813 spin_lock_irqsave(&queue->index_lock, irqflags);
814 index_start = queue->index[start];
815 index_end = queue->index[end];
816 spin_unlock_irqrestore(&queue->index_lock, irqflags);
817
818 /*
819 * Start from the TX done pointer, this guarantees that we will
820 * send out all frames in the correct order.
821 */
822 if (index_start < index_end) {
823 for (i = index_start; i < index_end; i++) {
824 if (fn(&queue->entries[i], data))
825 return true;
826 }
827 } else {
828 for (i = index_start; i < queue->limit; i++) {
829 if (fn(&queue->entries[i], data))
830 return true;
831 }
832
833 for (i = 0; i < index_end; i++) {
834 if (fn(&queue->entries[i], data))
835 return true;
836 }
837 }
838
839 return false;
840 }
841 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
842
rt2x00queue_get_entry(struct data_queue * queue,enum queue_index index)843 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
844 enum queue_index index)
845 {
846 struct queue_entry *entry;
847 unsigned long irqflags;
848
849 if (unlikely(index >= Q_INDEX_MAX)) {
850 rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n",
851 index);
852 return NULL;
853 }
854
855 spin_lock_irqsave(&queue->index_lock, irqflags);
856
857 entry = &queue->entries[queue->index[index]];
858
859 spin_unlock_irqrestore(&queue->index_lock, irqflags);
860
861 return entry;
862 }
863 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
864
rt2x00queue_index_inc(struct queue_entry * entry,enum queue_index index)865 void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
866 {
867 struct data_queue *queue = entry->queue;
868 unsigned long irqflags;
869
870 if (unlikely(index >= Q_INDEX_MAX)) {
871 rt2x00_err(queue->rt2x00dev,
872 "Index change on invalid index type (%d)\n", index);
873 return;
874 }
875
876 spin_lock_irqsave(&queue->index_lock, irqflags);
877
878 queue->index[index]++;
879 if (queue->index[index] >= queue->limit)
880 queue->index[index] = 0;
881
882 entry->last_action = jiffies;
883
884 if (index == Q_INDEX) {
885 queue->length++;
886 } else if (index == Q_INDEX_DONE) {
887 queue->length--;
888 queue->count++;
889 }
890
891 spin_unlock_irqrestore(&queue->index_lock, irqflags);
892 }
893
rt2x00queue_pause_queue_nocheck(struct data_queue * queue)894 static void rt2x00queue_pause_queue_nocheck(struct data_queue *queue)
895 {
896 switch (queue->qid) {
897 case QID_AC_VO:
898 case QID_AC_VI:
899 case QID_AC_BE:
900 case QID_AC_BK:
901 /*
902 * For TX queues, we have to disable the queue
903 * inside mac80211.
904 */
905 ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
906 break;
907 default:
908 break;
909 }
910 }
rt2x00queue_pause_queue(struct data_queue * queue)911 void rt2x00queue_pause_queue(struct data_queue *queue)
912 {
913 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
914 !test_bit(QUEUE_STARTED, &queue->flags) ||
915 test_and_set_bit(QUEUE_PAUSED, &queue->flags))
916 return;
917
918 rt2x00queue_pause_queue_nocheck(queue);
919 }
920 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
921
rt2x00queue_unpause_queue(struct data_queue * queue)922 void rt2x00queue_unpause_queue(struct data_queue *queue)
923 {
924 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
925 !test_bit(QUEUE_STARTED, &queue->flags) ||
926 !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
927 return;
928
929 switch (queue->qid) {
930 case QID_AC_VO:
931 case QID_AC_VI:
932 case QID_AC_BE:
933 case QID_AC_BK:
934 /*
935 * For TX queues, we have to enable the queue
936 * inside mac80211.
937 */
938 ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
939 break;
940 case QID_RX:
941 /*
942 * For RX we need to kick the queue now in order to
943 * receive frames.
944 */
945 queue->rt2x00dev->ops->lib->kick_queue(queue);
946 default:
947 break;
948 }
949 }
950 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
951
rt2x00queue_start_queue(struct data_queue * queue)952 void rt2x00queue_start_queue(struct data_queue *queue)
953 {
954 mutex_lock(&queue->status_lock);
955
956 if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
957 test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
958 mutex_unlock(&queue->status_lock);
959 return;
960 }
961
962 set_bit(QUEUE_PAUSED, &queue->flags);
963
964 queue->rt2x00dev->ops->lib->start_queue(queue);
965
966 rt2x00queue_unpause_queue(queue);
967
968 mutex_unlock(&queue->status_lock);
969 }
970 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
971
rt2x00queue_stop_queue(struct data_queue * queue)972 void rt2x00queue_stop_queue(struct data_queue *queue)
973 {
974 mutex_lock(&queue->status_lock);
975
976 if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
977 mutex_unlock(&queue->status_lock);
978 return;
979 }
980
981 rt2x00queue_pause_queue_nocheck(queue);
982
983 queue->rt2x00dev->ops->lib->stop_queue(queue);
984
985 mutex_unlock(&queue->status_lock);
986 }
987 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
988
rt2x00queue_flush_queue(struct data_queue * queue,bool drop)989 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
990 {
991 bool tx_queue =
992 (queue->qid == QID_AC_VO) ||
993 (queue->qid == QID_AC_VI) ||
994 (queue->qid == QID_AC_BE) ||
995 (queue->qid == QID_AC_BK);
996
997
998 /*
999 * If we are not supposed to drop any pending
1000 * frames, this means we must force a start (=kick)
1001 * to the queue to make sure the hardware will
1002 * start transmitting.
1003 */
1004 if (!drop && tx_queue)
1005 queue->rt2x00dev->ops->lib->kick_queue(queue);
1006
1007 /*
1008 * Check if driver supports flushing, if that is the case we can
1009 * defer the flushing to the driver. Otherwise we must use the
1010 * alternative which just waits for the queue to become empty.
1011 */
1012 if (likely(queue->rt2x00dev->ops->lib->flush_queue))
1013 queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
1014
1015 /*
1016 * The queue flush has failed...
1017 */
1018 if (unlikely(!rt2x00queue_empty(queue)))
1019 rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n",
1020 queue->qid);
1021 }
1022 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
1023
rt2x00queue_start_queues(struct rt2x00_dev * rt2x00dev)1024 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1025 {
1026 struct data_queue *queue;
1027
1028 /*
1029 * rt2x00queue_start_queue will call ieee80211_wake_queue
1030 * for each queue after is has been properly initialized.
1031 */
1032 tx_queue_for_each(rt2x00dev, queue)
1033 rt2x00queue_start_queue(queue);
1034
1035 rt2x00queue_start_queue(rt2x00dev->rx);
1036 }
1037 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1038
rt2x00queue_stop_queues(struct rt2x00_dev * rt2x00dev)1039 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1040 {
1041 struct data_queue *queue;
1042
1043 /*
1044 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1045 * as well, but we are completely shutting doing everything
1046 * now, so it is much safer to stop all TX queues at once,
1047 * and use rt2x00queue_stop_queue for cleaning up.
1048 */
1049 ieee80211_stop_queues(rt2x00dev->hw);
1050
1051 tx_queue_for_each(rt2x00dev, queue)
1052 rt2x00queue_stop_queue(queue);
1053
1054 rt2x00queue_stop_queue(rt2x00dev->rx);
1055 }
1056 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1057
rt2x00queue_flush_queues(struct rt2x00_dev * rt2x00dev,bool drop)1058 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1059 {
1060 struct data_queue *queue;
1061
1062 tx_queue_for_each(rt2x00dev, queue)
1063 rt2x00queue_flush_queue(queue, drop);
1064
1065 rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1066 }
1067 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1068
rt2x00queue_reset(struct data_queue * queue)1069 static void rt2x00queue_reset(struct data_queue *queue)
1070 {
1071 unsigned long irqflags;
1072 unsigned int i;
1073
1074 spin_lock_irqsave(&queue->index_lock, irqflags);
1075
1076 queue->count = 0;
1077 queue->length = 0;
1078
1079 for (i = 0; i < Q_INDEX_MAX; i++)
1080 queue->index[i] = 0;
1081
1082 spin_unlock_irqrestore(&queue->index_lock, irqflags);
1083 }
1084
rt2x00queue_init_queues(struct rt2x00_dev * rt2x00dev)1085 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1086 {
1087 struct data_queue *queue;
1088 unsigned int i;
1089
1090 queue_for_each(rt2x00dev, queue) {
1091 rt2x00queue_reset(queue);
1092
1093 for (i = 0; i < queue->limit; i++)
1094 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1095 }
1096 }
1097
rt2x00queue_alloc_entries(struct data_queue * queue)1098 static int rt2x00queue_alloc_entries(struct data_queue *queue)
1099 {
1100 struct queue_entry *entries;
1101 unsigned int entry_size;
1102 unsigned int i;
1103
1104 rt2x00queue_reset(queue);
1105
1106 /*
1107 * Allocate all queue entries.
1108 */
1109 entry_size = sizeof(*entries) + queue->priv_size;
1110 entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1111 if (!entries)
1112 return -ENOMEM;
1113
1114 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1115 (((char *)(__base)) + ((__limit) * (__esize)) + \
1116 ((__index) * (__psize)))
1117
1118 for (i = 0; i < queue->limit; i++) {
1119 entries[i].flags = 0;
1120 entries[i].queue = queue;
1121 entries[i].skb = NULL;
1122 entries[i].entry_idx = i;
1123 entries[i].priv_data =
1124 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1125 sizeof(*entries), queue->priv_size);
1126 }
1127
1128 #undef QUEUE_ENTRY_PRIV_OFFSET
1129
1130 queue->entries = entries;
1131
1132 return 0;
1133 }
1134
rt2x00queue_free_skbs(struct data_queue * queue)1135 static void rt2x00queue_free_skbs(struct data_queue *queue)
1136 {
1137 unsigned int i;
1138
1139 if (!queue->entries)
1140 return;
1141
1142 for (i = 0; i < queue->limit; i++) {
1143 rt2x00queue_free_skb(&queue->entries[i]);
1144 }
1145 }
1146
rt2x00queue_alloc_rxskbs(struct data_queue * queue)1147 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1148 {
1149 unsigned int i;
1150 struct sk_buff *skb;
1151
1152 for (i = 0; i < queue->limit; i++) {
1153 skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
1154 if (!skb)
1155 return -ENOMEM;
1156 queue->entries[i].skb = skb;
1157 }
1158
1159 return 0;
1160 }
1161
rt2x00queue_initialize(struct rt2x00_dev * rt2x00dev)1162 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1163 {
1164 struct data_queue *queue;
1165 int status;
1166
1167 status = rt2x00queue_alloc_entries(rt2x00dev->rx);
1168 if (status)
1169 goto exit;
1170
1171 tx_queue_for_each(rt2x00dev, queue) {
1172 status = rt2x00queue_alloc_entries(queue);
1173 if (status)
1174 goto exit;
1175 }
1176
1177 status = rt2x00queue_alloc_entries(rt2x00dev->bcn);
1178 if (status)
1179 goto exit;
1180
1181 if (test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags)) {
1182 status = rt2x00queue_alloc_entries(rt2x00dev->atim);
1183 if (status)
1184 goto exit;
1185 }
1186
1187 status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1188 if (status)
1189 goto exit;
1190
1191 return 0;
1192
1193 exit:
1194 rt2x00_err(rt2x00dev, "Queue entries allocation failed\n");
1195
1196 rt2x00queue_uninitialize(rt2x00dev);
1197
1198 return status;
1199 }
1200
rt2x00queue_uninitialize(struct rt2x00_dev * rt2x00dev)1201 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1202 {
1203 struct data_queue *queue;
1204
1205 rt2x00queue_free_skbs(rt2x00dev->rx);
1206
1207 queue_for_each(rt2x00dev, queue) {
1208 kfree(queue->entries);
1209 queue->entries = NULL;
1210 }
1211 }
1212
rt2x00queue_init(struct rt2x00_dev * rt2x00dev,struct data_queue * queue,enum data_queue_qid qid)1213 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1214 struct data_queue *queue, enum data_queue_qid qid)
1215 {
1216 mutex_init(&queue->status_lock);
1217 spin_lock_init(&queue->tx_lock);
1218 spin_lock_init(&queue->index_lock);
1219
1220 queue->rt2x00dev = rt2x00dev;
1221 queue->qid = qid;
1222 queue->txop = 0;
1223 queue->aifs = 2;
1224 queue->cw_min = 5;
1225 queue->cw_max = 10;
1226
1227 rt2x00dev->ops->queue_init(queue);
1228
1229 queue->threshold = DIV_ROUND_UP(queue->limit, 10);
1230 }
1231
rt2x00queue_allocate(struct rt2x00_dev * rt2x00dev)1232 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1233 {
1234 struct data_queue *queue;
1235 enum data_queue_qid qid;
1236 unsigned int req_atim =
1237 !!test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1238
1239 /*
1240 * We need the following queues:
1241 * RX: 1
1242 * TX: ops->tx_queues
1243 * Beacon: 1
1244 * Atim: 1 (if required)
1245 */
1246 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1247
1248 queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1249 if (!queue) {
1250 rt2x00_err(rt2x00dev, "Queue allocation failed\n");
1251 return -ENOMEM;
1252 }
1253
1254 /*
1255 * Initialize pointers
1256 */
1257 rt2x00dev->rx = queue;
1258 rt2x00dev->tx = &queue[1];
1259 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1260 rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1261
1262 /*
1263 * Initialize queue parameters.
1264 * RX: qid = QID_RX
1265 * TX: qid = QID_AC_VO + index
1266 * TX: cw_min: 2^5 = 32.
1267 * TX: cw_max: 2^10 = 1024.
1268 * BCN: qid = QID_BEACON
1269 * ATIM: qid = QID_ATIM
1270 */
1271 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1272
1273 qid = QID_AC_VO;
1274 tx_queue_for_each(rt2x00dev, queue)
1275 rt2x00queue_init(rt2x00dev, queue, qid++);
1276
1277 rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1278 if (req_atim)
1279 rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1280
1281 return 0;
1282 }
1283
rt2x00queue_free(struct rt2x00_dev * rt2x00dev)1284 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1285 {
1286 kfree(rt2x00dev->rx);
1287 rt2x00dev->rx = NULL;
1288 rt2x00dev->tx = NULL;
1289 rt2x00dev->bcn = NULL;
1290 }
1291