• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3  *
4  * started by Ingo Molnar and Thomas Gleixner.
5  *
6  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9  *  Copyright (C) 2006 Esben Nielsen
10  *
11  *  See Documentation/locking/rt-mutex-design.txt for details.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/timer.h>
19 
20 #include "rtmutex_common.h"
21 
22 /*
23  * lock->owner state tracking:
24  *
25  * lock->owner holds the task_struct pointer of the owner. Bit 0
26  * is used to keep track of the "lock has waiters" state.
27  *
28  * owner	bit0
29  * NULL		0	lock is free (fast acquire possible)
30  * NULL		1	lock is free and has waiters and the top waiter
31  *				is going to take the lock*
32  * taskpointer	0	lock is held (fast release possible)
33  * taskpointer	1	lock is held and has waiters**
34  *
35  * The fast atomic compare exchange based acquire and release is only
36  * possible when bit 0 of lock->owner is 0.
37  *
38  * (*) It also can be a transitional state when grabbing the lock
39  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40  * we need to set the bit0 before looking at the lock, and the owner may be
41  * NULL in this small time, hence this can be a transitional state.
42  *
43  * (**) There is a small time when bit 0 is set but there are no
44  * waiters. This can happen when grabbing the lock in the slow path.
45  * To prevent a cmpxchg of the owner releasing the lock, we need to
46  * set this bit before looking at the lock.
47  */
48 
49 static void
rt_mutex_set_owner(struct rt_mutex * lock,struct task_struct * owner)50 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51 {
52 	unsigned long val = (unsigned long)owner;
53 
54 	if (rt_mutex_has_waiters(lock))
55 		val |= RT_MUTEX_HAS_WAITERS;
56 
57 	lock->owner = (struct task_struct *)val;
58 }
59 
clear_rt_mutex_waiters(struct rt_mutex * lock)60 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61 {
62 	lock->owner = (struct task_struct *)
63 			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64 }
65 
fixup_rt_mutex_waiters(struct rt_mutex * lock)66 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67 {
68 	if (!rt_mutex_has_waiters(lock))
69 		clear_rt_mutex_waiters(lock);
70 }
71 
72 /*
73  * We can speed up the acquire/release, if the architecture
74  * supports cmpxchg and if there's no debugging state to be set up
75  */
76 #if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
77 # define rt_mutex_cmpxchg(l,c,n)	(cmpxchg(&l->owner, c, n) == c)
mark_rt_mutex_waiters(struct rt_mutex * lock)78 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
79 {
80 	unsigned long owner, *p = (unsigned long *) &lock->owner;
81 
82 	do {
83 		owner = *p;
84 	} while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
85 }
86 
87 /*
88  * Safe fastpath aware unlock:
89  * 1) Clear the waiters bit
90  * 2) Drop lock->wait_lock
91  * 3) Try to unlock the lock with cmpxchg
92  */
unlock_rt_mutex_safe(struct rt_mutex * lock)93 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
94 	__releases(lock->wait_lock)
95 {
96 	struct task_struct *owner = rt_mutex_owner(lock);
97 
98 	clear_rt_mutex_waiters(lock);
99 	raw_spin_unlock(&lock->wait_lock);
100 	/*
101 	 * If a new waiter comes in between the unlock and the cmpxchg
102 	 * we have two situations:
103 	 *
104 	 * unlock(wait_lock);
105 	 *					lock(wait_lock);
106 	 * cmpxchg(p, owner, 0) == owner
107 	 *					mark_rt_mutex_waiters(lock);
108 	 *					acquire(lock);
109 	 * or:
110 	 *
111 	 * unlock(wait_lock);
112 	 *					lock(wait_lock);
113 	 *					mark_rt_mutex_waiters(lock);
114 	 *
115 	 * cmpxchg(p, owner, 0) != owner
116 	 *					enqueue_waiter();
117 	 *					unlock(wait_lock);
118 	 * lock(wait_lock);
119 	 * wake waiter();
120 	 * unlock(wait_lock);
121 	 *					lock(wait_lock);
122 	 *					acquire(lock);
123 	 */
124 	return rt_mutex_cmpxchg(lock, owner, NULL);
125 }
126 
127 #else
128 # define rt_mutex_cmpxchg(l,c,n)	(0)
mark_rt_mutex_waiters(struct rt_mutex * lock)129 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
130 {
131 	lock->owner = (struct task_struct *)
132 			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
133 }
134 
135 /*
136  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
137  */
unlock_rt_mutex_safe(struct rt_mutex * lock)138 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
139 	__releases(lock->wait_lock)
140 {
141 	lock->owner = NULL;
142 	raw_spin_unlock(&lock->wait_lock);
143 	return true;
144 }
145 #endif
146 
147 static inline int
rt_mutex_waiter_less(struct rt_mutex_waiter * left,struct rt_mutex_waiter * right)148 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
149 		     struct rt_mutex_waiter *right)
150 {
151 	if (left->prio < right->prio)
152 		return 1;
153 
154 	/*
155 	 * If both waiters have dl_prio(), we check the deadlines of the
156 	 * associated tasks.
157 	 * If left waiter has a dl_prio(), and we didn't return 1 above,
158 	 * then right waiter has a dl_prio() too.
159 	 */
160 	if (dl_prio(left->prio))
161 		return (left->task->dl.deadline < right->task->dl.deadline);
162 
163 	return 0;
164 }
165 
166 static void
rt_mutex_enqueue(struct rt_mutex * lock,struct rt_mutex_waiter * waiter)167 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
168 {
169 	struct rb_node **link = &lock->waiters.rb_node;
170 	struct rb_node *parent = NULL;
171 	struct rt_mutex_waiter *entry;
172 	int leftmost = 1;
173 
174 	while (*link) {
175 		parent = *link;
176 		entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
177 		if (rt_mutex_waiter_less(waiter, entry)) {
178 			link = &parent->rb_left;
179 		} else {
180 			link = &parent->rb_right;
181 			leftmost = 0;
182 		}
183 	}
184 
185 	if (leftmost)
186 		lock->waiters_leftmost = &waiter->tree_entry;
187 
188 	rb_link_node(&waiter->tree_entry, parent, link);
189 	rb_insert_color(&waiter->tree_entry, &lock->waiters);
190 }
191 
192 static void
rt_mutex_dequeue(struct rt_mutex * lock,struct rt_mutex_waiter * waiter)193 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
194 {
195 	if (RB_EMPTY_NODE(&waiter->tree_entry))
196 		return;
197 
198 	if (lock->waiters_leftmost == &waiter->tree_entry)
199 		lock->waiters_leftmost = rb_next(&waiter->tree_entry);
200 
201 	rb_erase(&waiter->tree_entry, &lock->waiters);
202 	RB_CLEAR_NODE(&waiter->tree_entry);
203 }
204 
205 static void
rt_mutex_enqueue_pi(struct task_struct * task,struct rt_mutex_waiter * waiter)206 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
207 {
208 	struct rb_node **link = &task->pi_waiters.rb_node;
209 	struct rb_node *parent = NULL;
210 	struct rt_mutex_waiter *entry;
211 	int leftmost = 1;
212 
213 	while (*link) {
214 		parent = *link;
215 		entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
216 		if (rt_mutex_waiter_less(waiter, entry)) {
217 			link = &parent->rb_left;
218 		} else {
219 			link = &parent->rb_right;
220 			leftmost = 0;
221 		}
222 	}
223 
224 	if (leftmost)
225 		task->pi_waiters_leftmost = &waiter->pi_tree_entry;
226 
227 	rb_link_node(&waiter->pi_tree_entry, parent, link);
228 	rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
229 }
230 
231 static void
rt_mutex_dequeue_pi(struct task_struct * task,struct rt_mutex_waiter * waiter)232 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
233 {
234 	if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
235 		return;
236 
237 	if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
238 		task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
239 
240 	rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
241 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
242 }
243 
244 /*
245  * Calculate task priority from the waiter tree priority
246  *
247  * Return task->normal_prio when the waiter tree is empty or when
248  * the waiter is not allowed to do priority boosting
249  */
rt_mutex_getprio(struct task_struct * task)250 int rt_mutex_getprio(struct task_struct *task)
251 {
252 	if (likely(!task_has_pi_waiters(task)))
253 		return task->normal_prio;
254 
255 	return min(task_top_pi_waiter(task)->prio,
256 		   task->normal_prio);
257 }
258 
rt_mutex_get_top_task(struct task_struct * task)259 struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
260 {
261 	if (likely(!task_has_pi_waiters(task)))
262 		return NULL;
263 
264 	return task_top_pi_waiter(task)->task;
265 }
266 
267 /*
268  * Called by sched_setscheduler() to get the priority which will be
269  * effective after the change.
270  */
rt_mutex_get_effective_prio(struct task_struct * task,int newprio)271 int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
272 {
273 	if (!task_has_pi_waiters(task))
274 		return newprio;
275 
276 	if (task_top_pi_waiter(task)->task->prio <= newprio)
277 		return task_top_pi_waiter(task)->task->prio;
278 	return newprio;
279 }
280 
281 /*
282  * Adjust the priority of a task, after its pi_waiters got modified.
283  *
284  * This can be both boosting and unboosting. task->pi_lock must be held.
285  */
__rt_mutex_adjust_prio(struct task_struct * task)286 static void __rt_mutex_adjust_prio(struct task_struct *task)
287 {
288 	int prio = rt_mutex_getprio(task);
289 
290 	if (task->prio != prio || dl_prio(prio))
291 		rt_mutex_setprio(task, prio);
292 }
293 
294 /*
295  * Adjust task priority (undo boosting). Called from the exit path of
296  * rt_mutex_slowunlock() and rt_mutex_slowlock().
297  *
298  * (Note: We do this outside of the protection of lock->wait_lock to
299  * allow the lock to be taken while or before we readjust the priority
300  * of task. We do not use the spin_xx_mutex() variants here as we are
301  * outside of the debug path.)
302  */
rt_mutex_adjust_prio(struct task_struct * task)303 static void rt_mutex_adjust_prio(struct task_struct *task)
304 {
305 	unsigned long flags;
306 
307 	raw_spin_lock_irqsave(&task->pi_lock, flags);
308 	__rt_mutex_adjust_prio(task);
309 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
310 }
311 
312 /*
313  * Deadlock detection is conditional:
314  *
315  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
316  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
317  *
318  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
319  * conducted independent of the detect argument.
320  *
321  * If the waiter argument is NULL this indicates the deboost path and
322  * deadlock detection is disabled independent of the detect argument
323  * and the config settings.
324  */
rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter * waiter,enum rtmutex_chainwalk chwalk)325 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
326 					  enum rtmutex_chainwalk chwalk)
327 {
328 	/*
329 	 * This is just a wrapper function for the following call,
330 	 * because debug_rt_mutex_detect_deadlock() smells like a magic
331 	 * debug feature and I wanted to keep the cond function in the
332 	 * main source file along with the comments instead of having
333 	 * two of the same in the headers.
334 	 */
335 	return debug_rt_mutex_detect_deadlock(waiter, chwalk);
336 }
337 
338 /*
339  * Max number of times we'll walk the boosting chain:
340  */
341 int max_lock_depth = 1024;
342 
task_blocked_on_lock(struct task_struct * p)343 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
344 {
345 	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
346 }
347 
348 /*
349  * Adjust the priority chain. Also used for deadlock detection.
350  * Decreases task's usage by one - may thus free the task.
351  *
352  * @task:	the task owning the mutex (owner) for which a chain walk is
353  *		probably needed
354  * @deadlock_detect: do we have to carry out deadlock detection?
355  * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
356  *		things for a task that has just got its priority adjusted, and
357  *		is waiting on a mutex)
358  * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
359  *		we dropped its pi_lock. Is never dereferenced, only used for
360  *		comparison to detect lock chain changes.
361  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
362  *		its priority to the mutex owner (can be NULL in the case
363  *		depicted above or if the top waiter is gone away and we are
364  *		actually deboosting the owner)
365  * @top_task:	the current top waiter
366  *
367  * Returns 0 or -EDEADLK.
368  *
369  * Chain walk basics and protection scope
370  *
371  * [R] refcount on task
372  * [P] task->pi_lock held
373  * [L] rtmutex->wait_lock held
374  *
375  * Step	Description				Protected by
376  *	function arguments:
377  *	@task					[R]
378  *	@orig_lock if != NULL			@top_task is blocked on it
379  *	@next_lock				Unprotected. Cannot be
380  *						dereferenced. Only used for
381  *						comparison.
382  *	@orig_waiter if != NULL			@top_task is blocked on it
383  *	@top_task				current, or in case of proxy
384  *						locking protected by calling
385  *						code
386  *	again:
387  *	  loop_sanity_check();
388  *	retry:
389  * [1]	  lock(task->pi_lock);			[R] acquire [P]
390  * [2]	  waiter = task->pi_blocked_on;		[P]
391  * [3]	  check_exit_conditions_1();		[P]
392  * [4]	  lock = waiter->lock;			[P]
393  * [5]	  if (!try_lock(lock->wait_lock)) {	[P] try to acquire [L]
394  *	    unlock(task->pi_lock);		release [P]
395  *	    goto retry;
396  *	  }
397  * [6]	  check_exit_conditions_2();		[P] + [L]
398  * [7]	  requeue_lock_waiter(lock, waiter);	[P] + [L]
399  * [8]	  unlock(task->pi_lock);		release [P]
400  *	  put_task_struct(task);		release [R]
401  * [9]	  check_exit_conditions_3();		[L]
402  * [10]	  task = owner(lock);			[L]
403  *	  get_task_struct(task);		[L] acquire [R]
404  *	  lock(task->pi_lock);			[L] acquire [P]
405  * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
406  * [12]	  check_exit_conditions_4();		[P] + [L]
407  * [13]	  unlock(task->pi_lock);		release [P]
408  *	  unlock(lock->wait_lock);		release [L]
409  *	  goto again;
410  */
rt_mutex_adjust_prio_chain(struct task_struct * task,enum rtmutex_chainwalk chwalk,struct rt_mutex * orig_lock,struct rt_mutex * next_lock,struct rt_mutex_waiter * orig_waiter,struct task_struct * top_task)411 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
412 				      enum rtmutex_chainwalk chwalk,
413 				      struct rt_mutex *orig_lock,
414 				      struct rt_mutex *next_lock,
415 				      struct rt_mutex_waiter *orig_waiter,
416 				      struct task_struct *top_task)
417 {
418 	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
419 	struct rt_mutex_waiter *prerequeue_top_waiter;
420 	int ret = 0, depth = 0;
421 	struct rt_mutex *lock;
422 	bool detect_deadlock;
423 	unsigned long flags;
424 	bool requeue = true;
425 
426 	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
427 
428 	/*
429 	 * The (de)boosting is a step by step approach with a lot of
430 	 * pitfalls. We want this to be preemptible and we want hold a
431 	 * maximum of two locks per step. So we have to check
432 	 * carefully whether things change under us.
433 	 */
434  again:
435 	/*
436 	 * We limit the lock chain length for each invocation.
437 	 */
438 	if (++depth > max_lock_depth) {
439 		static int prev_max;
440 
441 		/*
442 		 * Print this only once. If the admin changes the limit,
443 		 * print a new message when reaching the limit again.
444 		 */
445 		if (prev_max != max_lock_depth) {
446 			prev_max = max_lock_depth;
447 			printk(KERN_WARNING "Maximum lock depth %d reached "
448 			       "task: %s (%d)\n", max_lock_depth,
449 			       top_task->comm, task_pid_nr(top_task));
450 		}
451 		put_task_struct(task);
452 
453 		return -EDEADLK;
454 	}
455 
456 	/*
457 	 * We are fully preemptible here and only hold the refcount on
458 	 * @task. So everything can have changed under us since the
459 	 * caller or our own code below (goto retry/again) dropped all
460 	 * locks.
461 	 */
462  retry:
463 	/*
464 	 * [1] Task cannot go away as we did a get_task() before !
465 	 */
466 	raw_spin_lock_irqsave(&task->pi_lock, flags);
467 
468 	/*
469 	 * [2] Get the waiter on which @task is blocked on.
470 	 */
471 	waiter = task->pi_blocked_on;
472 
473 	/*
474 	 * [3] check_exit_conditions_1() protected by task->pi_lock.
475 	 */
476 
477 	/*
478 	 * Check whether the end of the boosting chain has been
479 	 * reached or the state of the chain has changed while we
480 	 * dropped the locks.
481 	 */
482 	if (!waiter)
483 		goto out_unlock_pi;
484 
485 	/*
486 	 * Check the orig_waiter state. After we dropped the locks,
487 	 * the previous owner of the lock might have released the lock.
488 	 */
489 	if (orig_waiter && !rt_mutex_owner(orig_lock))
490 		goto out_unlock_pi;
491 
492 	/*
493 	 * We dropped all locks after taking a refcount on @task, so
494 	 * the task might have moved on in the lock chain or even left
495 	 * the chain completely and blocks now on an unrelated lock or
496 	 * on @orig_lock.
497 	 *
498 	 * We stored the lock on which @task was blocked in @next_lock,
499 	 * so we can detect the chain change.
500 	 */
501 	if (next_lock != waiter->lock)
502 		goto out_unlock_pi;
503 
504 	/*
505 	 * Drop out, when the task has no waiters. Note,
506 	 * top_waiter can be NULL, when we are in the deboosting
507 	 * mode!
508 	 */
509 	if (top_waiter) {
510 		if (!task_has_pi_waiters(task))
511 			goto out_unlock_pi;
512 		/*
513 		 * If deadlock detection is off, we stop here if we
514 		 * are not the top pi waiter of the task. If deadlock
515 		 * detection is enabled we continue, but stop the
516 		 * requeueing in the chain walk.
517 		 */
518 		if (top_waiter != task_top_pi_waiter(task)) {
519 			if (!detect_deadlock)
520 				goto out_unlock_pi;
521 			else
522 				requeue = false;
523 		}
524 	}
525 
526 	/*
527 	 * If the waiter priority is the same as the task priority
528 	 * then there is no further priority adjustment necessary.  If
529 	 * deadlock detection is off, we stop the chain walk. If its
530 	 * enabled we continue, but stop the requeueing in the chain
531 	 * walk.
532 	 */
533 	if (waiter->prio == task->prio) {
534 		if (!detect_deadlock)
535 			goto out_unlock_pi;
536 		else
537 			requeue = false;
538 	}
539 
540 	/*
541 	 * [4] Get the next lock
542 	 */
543 	lock = waiter->lock;
544 	/*
545 	 * [5] We need to trylock here as we are holding task->pi_lock,
546 	 * which is the reverse lock order versus the other rtmutex
547 	 * operations.
548 	 */
549 	if (!raw_spin_trylock(&lock->wait_lock)) {
550 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
551 		cpu_relax();
552 		goto retry;
553 	}
554 
555 	/*
556 	 * [6] check_exit_conditions_2() protected by task->pi_lock and
557 	 * lock->wait_lock.
558 	 *
559 	 * Deadlock detection. If the lock is the same as the original
560 	 * lock which caused us to walk the lock chain or if the
561 	 * current lock is owned by the task which initiated the chain
562 	 * walk, we detected a deadlock.
563 	 */
564 	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
565 		debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
566 		raw_spin_unlock(&lock->wait_lock);
567 		ret = -EDEADLK;
568 		goto out_unlock_pi;
569 	}
570 
571 	/*
572 	 * If we just follow the lock chain for deadlock detection, no
573 	 * need to do all the requeue operations. To avoid a truckload
574 	 * of conditionals around the various places below, just do the
575 	 * minimum chain walk checks.
576 	 */
577 	if (!requeue) {
578 		/*
579 		 * No requeue[7] here. Just release @task [8]
580 		 */
581 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
582 		put_task_struct(task);
583 
584 		/*
585 		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
586 		 * If there is no owner of the lock, end of chain.
587 		 */
588 		if (!rt_mutex_owner(lock)) {
589 			raw_spin_unlock(&lock->wait_lock);
590 			return 0;
591 		}
592 
593 		/* [10] Grab the next task, i.e. owner of @lock */
594 		task = rt_mutex_owner(lock);
595 		get_task_struct(task);
596 		raw_spin_lock_irqsave(&task->pi_lock, flags);
597 
598 		/*
599 		 * No requeue [11] here. We just do deadlock detection.
600 		 *
601 		 * [12] Store whether owner is blocked
602 		 * itself. Decision is made after dropping the locks
603 		 */
604 		next_lock = task_blocked_on_lock(task);
605 		/*
606 		 * Get the top waiter for the next iteration
607 		 */
608 		top_waiter = rt_mutex_top_waiter(lock);
609 
610 		/* [13] Drop locks */
611 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
612 		raw_spin_unlock(&lock->wait_lock);
613 
614 		/* If owner is not blocked, end of chain. */
615 		if (!next_lock)
616 			goto out_put_task;
617 		goto again;
618 	}
619 
620 	/*
621 	 * Store the current top waiter before doing the requeue
622 	 * operation on @lock. We need it for the boost/deboost
623 	 * decision below.
624 	 */
625 	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
626 
627 	/* [7] Requeue the waiter in the lock waiter list. */
628 	rt_mutex_dequeue(lock, waiter);
629 	waiter->prio = task->prio;
630 	rt_mutex_enqueue(lock, waiter);
631 
632 	/* [8] Release the task */
633 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
634 	put_task_struct(task);
635 
636 	/*
637 	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
638 	 *
639 	 * We must abort the chain walk if there is no lock owner even
640 	 * in the dead lock detection case, as we have nothing to
641 	 * follow here. This is the end of the chain we are walking.
642 	 */
643 	if (!rt_mutex_owner(lock)) {
644 		/*
645 		 * If the requeue [7] above changed the top waiter,
646 		 * then we need to wake the new top waiter up to try
647 		 * to get the lock.
648 		 */
649 		if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
650 			wake_up_process(rt_mutex_top_waiter(lock)->task);
651 		raw_spin_unlock(&lock->wait_lock);
652 		return 0;
653 	}
654 
655 	/* [10] Grab the next task, i.e. the owner of @lock */
656 	task = rt_mutex_owner(lock);
657 	get_task_struct(task);
658 	raw_spin_lock_irqsave(&task->pi_lock, flags);
659 
660 	/* [11] requeue the pi waiters if necessary */
661 	if (waiter == rt_mutex_top_waiter(lock)) {
662 		/*
663 		 * The waiter became the new top (highest priority)
664 		 * waiter on the lock. Replace the previous top waiter
665 		 * in the owner tasks pi waiters list with this waiter
666 		 * and adjust the priority of the owner.
667 		 */
668 		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
669 		rt_mutex_enqueue_pi(task, waiter);
670 		__rt_mutex_adjust_prio(task);
671 
672 	} else if (prerequeue_top_waiter == waiter) {
673 		/*
674 		 * The waiter was the top waiter on the lock, but is
675 		 * no longer the top prority waiter. Replace waiter in
676 		 * the owner tasks pi waiters list with the new top
677 		 * (highest priority) waiter and adjust the priority
678 		 * of the owner.
679 		 * The new top waiter is stored in @waiter so that
680 		 * @waiter == @top_waiter evaluates to true below and
681 		 * we continue to deboost the rest of the chain.
682 		 */
683 		rt_mutex_dequeue_pi(task, waiter);
684 		waiter = rt_mutex_top_waiter(lock);
685 		rt_mutex_enqueue_pi(task, waiter);
686 		__rt_mutex_adjust_prio(task);
687 	} else {
688 		/*
689 		 * Nothing changed. No need to do any priority
690 		 * adjustment.
691 		 */
692 	}
693 
694 	/*
695 	 * [12] check_exit_conditions_4() protected by task->pi_lock
696 	 * and lock->wait_lock. The actual decisions are made after we
697 	 * dropped the locks.
698 	 *
699 	 * Check whether the task which owns the current lock is pi
700 	 * blocked itself. If yes we store a pointer to the lock for
701 	 * the lock chain change detection above. After we dropped
702 	 * task->pi_lock next_lock cannot be dereferenced anymore.
703 	 */
704 	next_lock = task_blocked_on_lock(task);
705 	/*
706 	 * Store the top waiter of @lock for the end of chain walk
707 	 * decision below.
708 	 */
709 	top_waiter = rt_mutex_top_waiter(lock);
710 
711 	/* [13] Drop the locks */
712 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
713 	raw_spin_unlock(&lock->wait_lock);
714 
715 	/*
716 	 * Make the actual exit decisions [12], based on the stored
717 	 * values.
718 	 *
719 	 * We reached the end of the lock chain. Stop right here. No
720 	 * point to go back just to figure that out.
721 	 */
722 	if (!next_lock)
723 		goto out_put_task;
724 
725 	/*
726 	 * If the current waiter is not the top waiter on the lock,
727 	 * then we can stop the chain walk here if we are not in full
728 	 * deadlock detection mode.
729 	 */
730 	if (!detect_deadlock && waiter != top_waiter)
731 		goto out_put_task;
732 
733 	goto again;
734 
735  out_unlock_pi:
736 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
737  out_put_task:
738 	put_task_struct(task);
739 
740 	return ret;
741 }
742 
743 /*
744  * Try to take an rt-mutex
745  *
746  * Must be called with lock->wait_lock held.
747  *
748  * @lock:   The lock to be acquired.
749  * @task:   The task which wants to acquire the lock
750  * @waiter: The waiter that is queued to the lock's wait list if the
751  *	    callsite called task_blocked_on_lock(), otherwise NULL
752  */
try_to_take_rt_mutex(struct rt_mutex * lock,struct task_struct * task,struct rt_mutex_waiter * waiter)753 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
754 				struct rt_mutex_waiter *waiter)
755 {
756 	unsigned long flags;
757 
758 	/*
759 	 * Before testing whether we can acquire @lock, we set the
760 	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
761 	 * other tasks which try to modify @lock into the slow path
762 	 * and they serialize on @lock->wait_lock.
763 	 *
764 	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
765 	 * as explained at the top of this file if and only if:
766 	 *
767 	 * - There is a lock owner. The caller must fixup the
768 	 *   transient state if it does a trylock or leaves the lock
769 	 *   function due to a signal or timeout.
770 	 *
771 	 * - @task acquires the lock and there are no other
772 	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
773 	 *   the end of this function.
774 	 */
775 	mark_rt_mutex_waiters(lock);
776 
777 	/*
778 	 * If @lock has an owner, give up.
779 	 */
780 	if (rt_mutex_owner(lock))
781 		return 0;
782 
783 	/*
784 	 * If @waiter != NULL, @task has already enqueued the waiter
785 	 * into @lock waiter list. If @waiter == NULL then this is a
786 	 * trylock attempt.
787 	 */
788 	if (waiter) {
789 		/*
790 		 * If waiter is not the highest priority waiter of
791 		 * @lock, give up.
792 		 */
793 		if (waiter != rt_mutex_top_waiter(lock))
794 			return 0;
795 
796 		/*
797 		 * We can acquire the lock. Remove the waiter from the
798 		 * lock waiters list.
799 		 */
800 		rt_mutex_dequeue(lock, waiter);
801 
802 	} else {
803 		/*
804 		 * If the lock has waiters already we check whether @task is
805 		 * eligible to take over the lock.
806 		 *
807 		 * If there are no other waiters, @task can acquire
808 		 * the lock.  @task->pi_blocked_on is NULL, so it does
809 		 * not need to be dequeued.
810 		 */
811 		if (rt_mutex_has_waiters(lock)) {
812 			/*
813 			 * If @task->prio is greater than or equal to
814 			 * the top waiter priority (kernel view),
815 			 * @task lost.
816 			 */
817 			if (task->prio >= rt_mutex_top_waiter(lock)->prio)
818 				return 0;
819 
820 			/*
821 			 * The current top waiter stays enqueued. We
822 			 * don't have to change anything in the lock
823 			 * waiters order.
824 			 */
825 		} else {
826 			/*
827 			 * No waiters. Take the lock without the
828 			 * pi_lock dance.@task->pi_blocked_on is NULL
829 			 * and we have no waiters to enqueue in @task
830 			 * pi waiters list.
831 			 */
832 			goto takeit;
833 		}
834 	}
835 
836 	/*
837 	 * Clear @task->pi_blocked_on. Requires protection by
838 	 * @task->pi_lock. Redundant operation for the @waiter == NULL
839 	 * case, but conditionals are more expensive than a redundant
840 	 * store.
841 	 */
842 	raw_spin_lock_irqsave(&task->pi_lock, flags);
843 	task->pi_blocked_on = NULL;
844 	/*
845 	 * Finish the lock acquisition. @task is the new owner. If
846 	 * other waiters exist we have to insert the highest priority
847 	 * waiter into @task->pi_waiters list.
848 	 */
849 	if (rt_mutex_has_waiters(lock))
850 		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
851 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
852 
853 takeit:
854 	/* We got the lock. */
855 	debug_rt_mutex_lock(lock);
856 
857 	/*
858 	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
859 	 * are still waiters or clears it.
860 	 */
861 	rt_mutex_set_owner(lock, task);
862 
863 	rt_mutex_deadlock_account_lock(lock, task);
864 
865 	return 1;
866 }
867 
868 /*
869  * Task blocks on lock.
870  *
871  * Prepare waiter and propagate pi chain
872  *
873  * This must be called with lock->wait_lock held.
874  */
task_blocks_on_rt_mutex(struct rt_mutex * lock,struct rt_mutex_waiter * waiter,struct task_struct * task,enum rtmutex_chainwalk chwalk)875 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
876 				   struct rt_mutex_waiter *waiter,
877 				   struct task_struct *task,
878 				   enum rtmutex_chainwalk chwalk)
879 {
880 	struct task_struct *owner = rt_mutex_owner(lock);
881 	struct rt_mutex_waiter *top_waiter = waiter;
882 	struct rt_mutex *next_lock;
883 	int chain_walk = 0, res;
884 	unsigned long flags;
885 
886 	/*
887 	 * Early deadlock detection. We really don't want the task to
888 	 * enqueue on itself just to untangle the mess later. It's not
889 	 * only an optimization. We drop the locks, so another waiter
890 	 * can come in before the chain walk detects the deadlock. So
891 	 * the other will detect the deadlock and return -EDEADLOCK,
892 	 * which is wrong, as the other waiter is not in a deadlock
893 	 * situation.
894 	 */
895 	if (owner == task)
896 		return -EDEADLK;
897 
898 	raw_spin_lock_irqsave(&task->pi_lock, flags);
899 	__rt_mutex_adjust_prio(task);
900 	waiter->task = task;
901 	waiter->lock = lock;
902 	waiter->prio = task->prio;
903 
904 	/* Get the top priority waiter on the lock */
905 	if (rt_mutex_has_waiters(lock))
906 		top_waiter = rt_mutex_top_waiter(lock);
907 	rt_mutex_enqueue(lock, waiter);
908 
909 	task->pi_blocked_on = waiter;
910 
911 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
912 
913 	if (!owner)
914 		return 0;
915 
916 	raw_spin_lock_irqsave(&owner->pi_lock, flags);
917 	if (waiter == rt_mutex_top_waiter(lock)) {
918 		rt_mutex_dequeue_pi(owner, top_waiter);
919 		rt_mutex_enqueue_pi(owner, waiter);
920 
921 		__rt_mutex_adjust_prio(owner);
922 		if (owner->pi_blocked_on)
923 			chain_walk = 1;
924 	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
925 		chain_walk = 1;
926 	}
927 
928 	/* Store the lock on which owner is blocked or NULL */
929 	next_lock = task_blocked_on_lock(owner);
930 
931 	raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
932 	/*
933 	 * Even if full deadlock detection is on, if the owner is not
934 	 * blocked itself, we can avoid finding this out in the chain
935 	 * walk.
936 	 */
937 	if (!chain_walk || !next_lock)
938 		return 0;
939 
940 	/*
941 	 * The owner can't disappear while holding a lock,
942 	 * so the owner struct is protected by wait_lock.
943 	 * Gets dropped in rt_mutex_adjust_prio_chain()!
944 	 */
945 	get_task_struct(owner);
946 
947 	raw_spin_unlock(&lock->wait_lock);
948 
949 	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
950 					 next_lock, waiter, task);
951 
952 	raw_spin_lock(&lock->wait_lock);
953 
954 	return res;
955 }
956 
957 /*
958  * Wake up the next waiter on the lock.
959  *
960  * Remove the top waiter from the current tasks pi waiter list and
961  * wake it up.
962  *
963  * Called with lock->wait_lock held.
964  */
wakeup_next_waiter(struct rt_mutex * lock)965 static void wakeup_next_waiter(struct rt_mutex *lock)
966 {
967 	struct rt_mutex_waiter *waiter;
968 	unsigned long flags;
969 
970 	raw_spin_lock_irqsave(&current->pi_lock, flags);
971 
972 	waiter = rt_mutex_top_waiter(lock);
973 
974 	/*
975 	 * Remove it from current->pi_waiters. We do not adjust a
976 	 * possible priority boost right now. We execute wakeup in the
977 	 * boosted mode and go back to normal after releasing
978 	 * lock->wait_lock.
979 	 */
980 	rt_mutex_dequeue_pi(current, waiter);
981 
982 	/*
983 	 * As we are waking up the top waiter, and the waiter stays
984 	 * queued on the lock until it gets the lock, this lock
985 	 * obviously has waiters. Just set the bit here and this has
986 	 * the added benefit of forcing all new tasks into the
987 	 * slow path making sure no task of lower priority than
988 	 * the top waiter can steal this lock.
989 	 */
990 	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
991 
992 	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
993 
994 	/*
995 	 * It's safe to dereference waiter as it cannot go away as
996 	 * long as we hold lock->wait_lock. The waiter task needs to
997 	 * acquire it in order to dequeue the waiter.
998 	 */
999 	wake_up_process(waiter->task);
1000 }
1001 
1002 /*
1003  * Remove a waiter from a lock and give up
1004  *
1005  * Must be called with lock->wait_lock held and
1006  * have just failed to try_to_take_rt_mutex().
1007  */
remove_waiter(struct rt_mutex * lock,struct rt_mutex_waiter * waiter)1008 static void remove_waiter(struct rt_mutex *lock,
1009 			  struct rt_mutex_waiter *waiter)
1010 {
1011 	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1012 	struct task_struct *owner = rt_mutex_owner(lock);
1013 	struct rt_mutex *next_lock;
1014 	unsigned long flags;
1015 
1016 	raw_spin_lock_irqsave(&current->pi_lock, flags);
1017 	rt_mutex_dequeue(lock, waiter);
1018 	current->pi_blocked_on = NULL;
1019 	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
1020 
1021 	/*
1022 	 * Only update priority if the waiter was the highest priority
1023 	 * waiter of the lock and there is an owner to update.
1024 	 */
1025 	if (!owner || !is_top_waiter)
1026 		return;
1027 
1028 	raw_spin_lock_irqsave(&owner->pi_lock, flags);
1029 
1030 	rt_mutex_dequeue_pi(owner, waiter);
1031 
1032 	if (rt_mutex_has_waiters(lock))
1033 		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1034 
1035 	__rt_mutex_adjust_prio(owner);
1036 
1037 	/* Store the lock on which owner is blocked or NULL */
1038 	next_lock = task_blocked_on_lock(owner);
1039 
1040 	raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
1041 
1042 	/*
1043 	 * Don't walk the chain, if the owner task is not blocked
1044 	 * itself.
1045 	 */
1046 	if (!next_lock)
1047 		return;
1048 
1049 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1050 	get_task_struct(owner);
1051 
1052 	raw_spin_unlock(&lock->wait_lock);
1053 
1054 	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1055 				   next_lock, NULL, current);
1056 
1057 	raw_spin_lock(&lock->wait_lock);
1058 }
1059 
1060 /*
1061  * Recheck the pi chain, in case we got a priority setting
1062  *
1063  * Called from sched_setscheduler
1064  */
rt_mutex_adjust_pi(struct task_struct * task)1065 void rt_mutex_adjust_pi(struct task_struct *task)
1066 {
1067 	struct rt_mutex_waiter *waiter;
1068 	struct rt_mutex *next_lock;
1069 	unsigned long flags;
1070 
1071 	raw_spin_lock_irqsave(&task->pi_lock, flags);
1072 
1073 	waiter = task->pi_blocked_on;
1074 	if (!waiter || (waiter->prio == task->prio &&
1075 			!dl_prio(task->prio))) {
1076 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1077 		return;
1078 	}
1079 	next_lock = waiter->lock;
1080 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1081 
1082 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1083 	get_task_struct(task);
1084 
1085 	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1086 				   next_lock, NULL, task);
1087 }
1088 
1089 /**
1090  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1091  * @lock:		 the rt_mutex to take
1092  * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1093  * 			 or TASK_UNINTERRUPTIBLE)
1094  * @timeout:		 the pre-initialized and started timer, or NULL for none
1095  * @waiter:		 the pre-initialized rt_mutex_waiter
1096  *
1097  * lock->wait_lock must be held by the caller.
1098  */
1099 static int __sched
__rt_mutex_slowlock(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,struct rt_mutex_waiter * waiter)1100 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1101 		    struct hrtimer_sleeper *timeout,
1102 		    struct rt_mutex_waiter *waiter)
1103 {
1104 	int ret = 0;
1105 
1106 	for (;;) {
1107 		/* Try to acquire the lock: */
1108 		if (try_to_take_rt_mutex(lock, current, waiter))
1109 			break;
1110 
1111 		/*
1112 		 * TASK_INTERRUPTIBLE checks for signals and
1113 		 * timeout. Ignored otherwise.
1114 		 */
1115 		if (unlikely(state == TASK_INTERRUPTIBLE)) {
1116 			/* Signal pending? */
1117 			if (signal_pending(current))
1118 				ret = -EINTR;
1119 			if (timeout && !timeout->task)
1120 				ret = -ETIMEDOUT;
1121 			if (ret)
1122 				break;
1123 		}
1124 
1125 		raw_spin_unlock(&lock->wait_lock);
1126 
1127 		debug_rt_mutex_print_deadlock(waiter);
1128 
1129 		schedule_rt_mutex(lock);
1130 
1131 		raw_spin_lock(&lock->wait_lock);
1132 		set_current_state(state);
1133 	}
1134 
1135 	return ret;
1136 }
1137 
rt_mutex_handle_deadlock(int res,int detect_deadlock,struct rt_mutex_waiter * w)1138 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1139 				     struct rt_mutex_waiter *w)
1140 {
1141 	/*
1142 	 * If the result is not -EDEADLOCK or the caller requested
1143 	 * deadlock detection, nothing to do here.
1144 	 */
1145 	if (res != -EDEADLOCK || detect_deadlock)
1146 		return;
1147 
1148 	/*
1149 	 * Yell lowdly and stop the task right here.
1150 	 */
1151 	rt_mutex_print_deadlock(w);
1152 	while (1) {
1153 		set_current_state(TASK_INTERRUPTIBLE);
1154 		schedule();
1155 	}
1156 }
1157 
1158 /*
1159  * Slow path lock function:
1160  */
1161 static int __sched
rt_mutex_slowlock(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,enum rtmutex_chainwalk chwalk)1162 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1163 		  struct hrtimer_sleeper *timeout,
1164 		  enum rtmutex_chainwalk chwalk)
1165 {
1166 	struct rt_mutex_waiter waiter;
1167 	int ret = 0;
1168 
1169 	debug_rt_mutex_init_waiter(&waiter);
1170 	RB_CLEAR_NODE(&waiter.pi_tree_entry);
1171 	RB_CLEAR_NODE(&waiter.tree_entry);
1172 
1173 	raw_spin_lock(&lock->wait_lock);
1174 
1175 	/* Try to acquire the lock again: */
1176 	if (try_to_take_rt_mutex(lock, current, NULL)) {
1177 		raw_spin_unlock(&lock->wait_lock);
1178 		return 0;
1179 	}
1180 
1181 	set_current_state(state);
1182 
1183 	/* Setup the timer, when timeout != NULL */
1184 	if (unlikely(timeout)) {
1185 		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1186 		if (!hrtimer_active(&timeout->timer))
1187 			timeout->task = NULL;
1188 	}
1189 
1190 	ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1191 
1192 	if (likely(!ret))
1193 		ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1194 
1195 	set_current_state(TASK_RUNNING);
1196 
1197 	if (unlikely(ret)) {
1198 		if (rt_mutex_has_waiters(lock))
1199 			remove_waiter(lock, &waiter);
1200 		rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1201 	}
1202 
1203 	/*
1204 	 * try_to_take_rt_mutex() sets the waiter bit
1205 	 * unconditionally. We might have to fix that up.
1206 	 */
1207 	fixup_rt_mutex_waiters(lock);
1208 
1209 	raw_spin_unlock(&lock->wait_lock);
1210 
1211 	/* Remove pending timer: */
1212 	if (unlikely(timeout))
1213 		hrtimer_cancel(&timeout->timer);
1214 
1215 	debug_rt_mutex_free_waiter(&waiter);
1216 
1217 	return ret;
1218 }
1219 
1220 /*
1221  * Slow path try-lock function:
1222  */
rt_mutex_slowtrylock(struct rt_mutex * lock)1223 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1224 {
1225 	int ret;
1226 
1227 	/*
1228 	 * If the lock already has an owner we fail to get the lock.
1229 	 * This can be done without taking the @lock->wait_lock as
1230 	 * it is only being read, and this is a trylock anyway.
1231 	 */
1232 	if (rt_mutex_owner(lock))
1233 		return 0;
1234 
1235 	/*
1236 	 * The mutex has currently no owner. Lock the wait lock and
1237 	 * try to acquire the lock.
1238 	 */
1239 	raw_spin_lock(&lock->wait_lock);
1240 
1241 	ret = try_to_take_rt_mutex(lock, current, NULL);
1242 
1243 	/*
1244 	 * try_to_take_rt_mutex() sets the lock waiters bit
1245 	 * unconditionally. Clean this up.
1246 	 */
1247 	fixup_rt_mutex_waiters(lock);
1248 
1249 	raw_spin_unlock(&lock->wait_lock);
1250 
1251 	return ret;
1252 }
1253 
1254 /*
1255  * Slow path to release a rt-mutex:
1256  */
1257 static void __sched
rt_mutex_slowunlock(struct rt_mutex * lock)1258 rt_mutex_slowunlock(struct rt_mutex *lock)
1259 {
1260 	raw_spin_lock(&lock->wait_lock);
1261 
1262 	debug_rt_mutex_unlock(lock);
1263 
1264 	rt_mutex_deadlock_account_unlock(current);
1265 
1266 	/*
1267 	 * We must be careful here if the fast path is enabled. If we
1268 	 * have no waiters queued we cannot set owner to NULL here
1269 	 * because of:
1270 	 *
1271 	 * foo->lock->owner = NULL;
1272 	 *			rtmutex_lock(foo->lock);   <- fast path
1273 	 *			free = atomic_dec_and_test(foo->refcnt);
1274 	 *			rtmutex_unlock(foo->lock); <- fast path
1275 	 *			if (free)
1276 	 *				kfree(foo);
1277 	 * raw_spin_unlock(foo->lock->wait_lock);
1278 	 *
1279 	 * So for the fastpath enabled kernel:
1280 	 *
1281 	 * Nothing can set the waiters bit as long as we hold
1282 	 * lock->wait_lock. So we do the following sequence:
1283 	 *
1284 	 *	owner = rt_mutex_owner(lock);
1285 	 *	clear_rt_mutex_waiters(lock);
1286 	 *	raw_spin_unlock(&lock->wait_lock);
1287 	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
1288 	 *		return;
1289 	 *	goto retry;
1290 	 *
1291 	 * The fastpath disabled variant is simple as all access to
1292 	 * lock->owner is serialized by lock->wait_lock:
1293 	 *
1294 	 *	lock->owner = NULL;
1295 	 *	raw_spin_unlock(&lock->wait_lock);
1296 	 */
1297 	while (!rt_mutex_has_waiters(lock)) {
1298 		/* Drops lock->wait_lock ! */
1299 		if (unlock_rt_mutex_safe(lock) == true)
1300 			return;
1301 		/* Relock the rtmutex and try again */
1302 		raw_spin_lock(&lock->wait_lock);
1303 	}
1304 
1305 	/*
1306 	 * The wakeup next waiter path does not suffer from the above
1307 	 * race. See the comments there.
1308 	 */
1309 	wakeup_next_waiter(lock);
1310 
1311 	raw_spin_unlock(&lock->wait_lock);
1312 
1313 	/* Undo pi boosting if necessary: */
1314 	rt_mutex_adjust_prio(current);
1315 }
1316 
1317 /*
1318  * debug aware fast / slowpath lock,trylock,unlock
1319  *
1320  * The atomic acquire/release ops are compiled away, when either the
1321  * architecture does not support cmpxchg or when debugging is enabled.
1322  */
1323 static inline int
rt_mutex_fastlock(struct rt_mutex * lock,int state,int (* slowfn)(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,enum rtmutex_chainwalk chwalk))1324 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1325 		  int (*slowfn)(struct rt_mutex *lock, int state,
1326 				struct hrtimer_sleeper *timeout,
1327 				enum rtmutex_chainwalk chwalk))
1328 {
1329 	if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1330 		rt_mutex_deadlock_account_lock(lock, current);
1331 		return 0;
1332 	} else
1333 		return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1334 }
1335 
1336 static inline int
rt_mutex_timed_fastlock(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,enum rtmutex_chainwalk chwalk,int (* slowfn)(struct rt_mutex * lock,int state,struct hrtimer_sleeper * timeout,enum rtmutex_chainwalk chwalk))1337 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1338 			struct hrtimer_sleeper *timeout,
1339 			enum rtmutex_chainwalk chwalk,
1340 			int (*slowfn)(struct rt_mutex *lock, int state,
1341 				      struct hrtimer_sleeper *timeout,
1342 				      enum rtmutex_chainwalk chwalk))
1343 {
1344 	if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1345 	    likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1346 		rt_mutex_deadlock_account_lock(lock, current);
1347 		return 0;
1348 	} else
1349 		return slowfn(lock, state, timeout, chwalk);
1350 }
1351 
1352 static inline int
rt_mutex_fasttrylock(struct rt_mutex * lock,int (* slowfn)(struct rt_mutex * lock))1353 rt_mutex_fasttrylock(struct rt_mutex *lock,
1354 		     int (*slowfn)(struct rt_mutex *lock))
1355 {
1356 	if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1357 		rt_mutex_deadlock_account_lock(lock, current);
1358 		return 1;
1359 	}
1360 	return slowfn(lock);
1361 }
1362 
1363 static inline void
rt_mutex_fastunlock(struct rt_mutex * lock,void (* slowfn)(struct rt_mutex * lock))1364 rt_mutex_fastunlock(struct rt_mutex *lock,
1365 		    void (*slowfn)(struct rt_mutex *lock))
1366 {
1367 	if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
1368 		rt_mutex_deadlock_account_unlock(current);
1369 	else
1370 		slowfn(lock);
1371 }
1372 
1373 /**
1374  * rt_mutex_lock - lock a rt_mutex
1375  *
1376  * @lock: the rt_mutex to be locked
1377  */
rt_mutex_lock(struct rt_mutex * lock)1378 void __sched rt_mutex_lock(struct rt_mutex *lock)
1379 {
1380 	might_sleep();
1381 
1382 	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1383 }
1384 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1385 
1386 /**
1387  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1388  *
1389  * @lock:		the rt_mutex to be locked
1390  *
1391  * Returns:
1392  *  0		on success
1393  * -EINTR	when interrupted by a signal
1394  */
rt_mutex_lock_interruptible(struct rt_mutex * lock)1395 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1396 {
1397 	might_sleep();
1398 
1399 	return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1400 }
1401 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1402 
1403 /*
1404  * Futex variant with full deadlock detection.
1405  */
rt_mutex_timed_futex_lock(struct rt_mutex * lock,struct hrtimer_sleeper * timeout)1406 int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
1407 			      struct hrtimer_sleeper *timeout)
1408 {
1409 	might_sleep();
1410 
1411 	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1412 				       RT_MUTEX_FULL_CHAINWALK,
1413 				       rt_mutex_slowlock);
1414 }
1415 
1416 /**
1417  * rt_mutex_timed_lock - lock a rt_mutex interruptible
1418  *			the timeout structure is provided
1419  *			by the caller
1420  *
1421  * @lock:		the rt_mutex to be locked
1422  * @timeout:		timeout structure or NULL (no timeout)
1423  *
1424  * Returns:
1425  *  0		on success
1426  * -EINTR	when interrupted by a signal
1427  * -ETIMEDOUT	when the timeout expired
1428  */
1429 int
rt_mutex_timed_lock(struct rt_mutex * lock,struct hrtimer_sleeper * timeout)1430 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1431 {
1432 	might_sleep();
1433 
1434 	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1435 				       RT_MUTEX_MIN_CHAINWALK,
1436 				       rt_mutex_slowlock);
1437 }
1438 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1439 
1440 /**
1441  * rt_mutex_trylock - try to lock a rt_mutex
1442  *
1443  * @lock:	the rt_mutex to be locked
1444  *
1445  * Returns 1 on success and 0 on contention
1446  */
rt_mutex_trylock(struct rt_mutex * lock)1447 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1448 {
1449 	return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1450 }
1451 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1452 
1453 /**
1454  * rt_mutex_unlock - unlock a rt_mutex
1455  *
1456  * @lock: the rt_mutex to be unlocked
1457  */
rt_mutex_unlock(struct rt_mutex * lock)1458 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1459 {
1460 	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1461 }
1462 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1463 
1464 /**
1465  * rt_mutex_destroy - mark a mutex unusable
1466  * @lock: the mutex to be destroyed
1467  *
1468  * This function marks the mutex uninitialized, and any subsequent
1469  * use of the mutex is forbidden. The mutex must not be locked when
1470  * this function is called.
1471  */
rt_mutex_destroy(struct rt_mutex * lock)1472 void rt_mutex_destroy(struct rt_mutex *lock)
1473 {
1474 	WARN_ON(rt_mutex_is_locked(lock));
1475 #ifdef CONFIG_DEBUG_RT_MUTEXES
1476 	lock->magic = NULL;
1477 #endif
1478 }
1479 
1480 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1481 
1482 /**
1483  * __rt_mutex_init - initialize the rt lock
1484  *
1485  * @lock: the rt lock to be initialized
1486  *
1487  * Initialize the rt lock to unlocked state.
1488  *
1489  * Initializing of a locked rt lock is not allowed
1490  */
__rt_mutex_init(struct rt_mutex * lock,const char * name)1491 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1492 {
1493 	lock->owner = NULL;
1494 	raw_spin_lock_init(&lock->wait_lock);
1495 	lock->waiters = RB_ROOT;
1496 	lock->waiters_leftmost = NULL;
1497 
1498 	debug_rt_mutex_init(lock, name);
1499 }
1500 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1501 
1502 /**
1503  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1504  *				proxy owner
1505  *
1506  * @lock: 	the rt_mutex to be locked
1507  * @proxy_owner:the task to set as owner
1508  *
1509  * No locking. Caller has to do serializing itself
1510  * Special API call for PI-futex support
1511  */
rt_mutex_init_proxy_locked(struct rt_mutex * lock,struct task_struct * proxy_owner)1512 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1513 				struct task_struct *proxy_owner)
1514 {
1515 	__rt_mutex_init(lock, NULL);
1516 	debug_rt_mutex_proxy_lock(lock, proxy_owner);
1517 	rt_mutex_set_owner(lock, proxy_owner);
1518 	rt_mutex_deadlock_account_lock(lock, proxy_owner);
1519 }
1520 
1521 /**
1522  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1523  *
1524  * @lock: 	the rt_mutex to be locked
1525  *
1526  * No locking. Caller has to do serializing itself
1527  * Special API call for PI-futex support
1528  */
rt_mutex_proxy_unlock(struct rt_mutex * lock,struct task_struct * proxy_owner)1529 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1530 			   struct task_struct *proxy_owner)
1531 {
1532 	debug_rt_mutex_proxy_unlock(lock);
1533 	rt_mutex_set_owner(lock, NULL);
1534 	rt_mutex_deadlock_account_unlock(proxy_owner);
1535 }
1536 
1537 /**
1538  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1539  * @lock:		the rt_mutex to take
1540  * @waiter:		the pre-initialized rt_mutex_waiter
1541  * @task:		the task to prepare
1542  *
1543  * Returns:
1544  *  0 - task blocked on lock
1545  *  1 - acquired the lock for task, caller should wake it up
1546  * <0 - error
1547  *
1548  * Special API call for FUTEX_REQUEUE_PI support.
1549  */
rt_mutex_start_proxy_lock(struct rt_mutex * lock,struct rt_mutex_waiter * waiter,struct task_struct * task)1550 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1551 			      struct rt_mutex_waiter *waiter,
1552 			      struct task_struct *task)
1553 {
1554 	int ret;
1555 
1556 	raw_spin_lock(&lock->wait_lock);
1557 
1558 	if (try_to_take_rt_mutex(lock, task, NULL)) {
1559 		raw_spin_unlock(&lock->wait_lock);
1560 		return 1;
1561 	}
1562 
1563 	/* We enforce deadlock detection for futexes */
1564 	ret = task_blocks_on_rt_mutex(lock, waiter, task,
1565 				      RT_MUTEX_FULL_CHAINWALK);
1566 
1567 	if (ret && !rt_mutex_owner(lock)) {
1568 		/*
1569 		 * Reset the return value. We might have
1570 		 * returned with -EDEADLK and the owner
1571 		 * released the lock while we were walking the
1572 		 * pi chain.  Let the waiter sort it out.
1573 		 */
1574 		ret = 0;
1575 	}
1576 
1577 	if (unlikely(ret))
1578 		remove_waiter(lock, waiter);
1579 
1580 	raw_spin_unlock(&lock->wait_lock);
1581 
1582 	debug_rt_mutex_print_deadlock(waiter);
1583 
1584 	return ret;
1585 }
1586 
1587 /**
1588  * rt_mutex_next_owner - return the next owner of the lock
1589  *
1590  * @lock: the rt lock query
1591  *
1592  * Returns the next owner of the lock or NULL
1593  *
1594  * Caller has to serialize against other accessors to the lock
1595  * itself.
1596  *
1597  * Special API call for PI-futex support
1598  */
rt_mutex_next_owner(struct rt_mutex * lock)1599 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1600 {
1601 	if (!rt_mutex_has_waiters(lock))
1602 		return NULL;
1603 
1604 	return rt_mutex_top_waiter(lock)->task;
1605 }
1606 
1607 /**
1608  * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1609  * @lock:		the rt_mutex we were woken on
1610  * @to:			the timeout, null if none. hrtimer should already have
1611  *			been started.
1612  * @waiter:		the pre-initialized rt_mutex_waiter
1613  *
1614  * Complete the lock acquisition started our behalf by another thread.
1615  *
1616  * Returns:
1617  *  0 - success
1618  * <0 - error, one of -EINTR, -ETIMEDOUT
1619  *
1620  * Special API call for PI-futex requeue support
1621  */
rt_mutex_finish_proxy_lock(struct rt_mutex * lock,struct hrtimer_sleeper * to,struct rt_mutex_waiter * waiter)1622 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1623 			       struct hrtimer_sleeper *to,
1624 			       struct rt_mutex_waiter *waiter)
1625 {
1626 	int ret;
1627 
1628 	raw_spin_lock(&lock->wait_lock);
1629 
1630 	set_current_state(TASK_INTERRUPTIBLE);
1631 
1632 	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1633 
1634 	set_current_state(TASK_RUNNING);
1635 
1636 	if (unlikely(ret))
1637 		remove_waiter(lock, waiter);
1638 
1639 	/*
1640 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1641 	 * have to fix that up.
1642 	 */
1643 	fixup_rt_mutex_waiters(lock);
1644 
1645 	raw_spin_unlock(&lock->wait_lock);
1646 
1647 	return ret;
1648 }
1649