1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <linux-sctp@vger.kernel.org>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Narasimha Budihal <narsi@refcode.org>
41 * Karl Knutson <karl@athena.chicago.il.us>
42 * Jon Grimm <jgrimm@us.ibm.com>
43 * Xingang Guo <xingang.guo@intel.com>
44 * Daisy Chang <daisyc@us.ibm.com>
45 * Sridhar Samudrala <samudrala@us.ibm.com>
46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
47 * Ardelle Fan <ardelle.fan@intel.com>
48 * Ryan Layer <rmlayer@us.ibm.com>
49 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
50 * Kevin Gao <kevin.gao@intel.com>
51 */
52
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/wait.h>
58 #include <linux/time.h>
59 #include <linux/ip.h>
60 #include <linux/capability.h>
61 #include <linux/fcntl.h>
62 #include <linux/poll.h>
63 #include <linux/init.h>
64 #include <linux/crypto.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 #include <net/busy_poll.h>
75
76 #include <linux/socket.h> /* for sa_family_t */
77 #include <linux/export.h>
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81
82 /* Forward declarations for internal helper functions. */
83 static int sctp_writeable(struct sock *sk);
84 static void sctp_wfree(struct sk_buff *skb);
85 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
86 size_t msg_len);
87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89 static int sctp_wait_for_accept(struct sock *sk, long timeo);
90 static void sctp_wait_for_close(struct sock *sk, long timeo);
91 static void sctp_destruct_sock(struct sock *sk);
92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 union sctp_addr *addr, int len);
94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf(struct sctp_association *asoc,
99 struct sctp_chunk *chunk);
100 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101 static int sctp_autobind(struct sock *sk);
102 static void sctp_sock_migrate(struct sock *, struct sock *,
103 struct sctp_association *, sctp_socket_type_t);
104
105 extern struct kmem_cache *sctp_bucket_cachep;
106 extern long sysctl_sctp_mem[3];
107 extern int sysctl_sctp_rmem[3];
108 extern int sysctl_sctp_wmem[3];
109
110 static int sctp_memory_pressure;
111 static atomic_long_t sctp_memory_allocated;
112 struct percpu_counter sctp_sockets_allocated;
113
sctp_enter_memory_pressure(struct sock * sk)114 static void sctp_enter_memory_pressure(struct sock *sk)
115 {
116 sctp_memory_pressure = 1;
117 }
118
119
120 /* Get the sndbuf space available at the time on the association. */
sctp_wspace(struct sctp_association * asoc)121 static inline int sctp_wspace(struct sctp_association *asoc)
122 {
123 int amt;
124
125 if (asoc->ep->sndbuf_policy)
126 amt = asoc->sndbuf_used;
127 else
128 amt = sk_wmem_alloc_get(asoc->base.sk);
129
130 if (amt >= asoc->base.sk->sk_sndbuf) {
131 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
132 amt = 0;
133 else {
134 amt = sk_stream_wspace(asoc->base.sk);
135 if (amt < 0)
136 amt = 0;
137 }
138 } else {
139 amt = asoc->base.sk->sk_sndbuf - amt;
140 }
141 return amt;
142 }
143
144 /* Increment the used sndbuf space count of the corresponding association by
145 * the size of the outgoing data chunk.
146 * Also, set the skb destructor for sndbuf accounting later.
147 *
148 * Since it is always 1-1 between chunk and skb, and also a new skb is always
149 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
150 * destructor in the data chunk skb for the purpose of the sndbuf space
151 * tracking.
152 */
sctp_set_owner_w(struct sctp_chunk * chunk)153 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
154 {
155 struct sctp_association *asoc = chunk->asoc;
156 struct sock *sk = asoc->base.sk;
157
158 /* The sndbuf space is tracked per association. */
159 sctp_association_hold(asoc);
160
161 skb_set_owner_w(chunk->skb, sk);
162
163 chunk->skb->destructor = sctp_wfree;
164 /* Save the chunk pointer in skb for sctp_wfree to use later. */
165 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
166
167 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
168 sizeof(struct sk_buff) +
169 sizeof(struct sctp_chunk);
170
171 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
172 sk->sk_wmem_queued += chunk->skb->truesize;
173 sk_mem_charge(sk, chunk->skb->truesize);
174 }
175
sctp_clear_owner_w(struct sctp_chunk * chunk)176 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
177 {
178 skb_orphan(chunk->skb);
179 }
180
sctp_for_each_tx_datachunk(struct sctp_association * asoc,void (* cb)(struct sctp_chunk *))181 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
182 void (*cb)(struct sctp_chunk *))
183
184 {
185 struct sctp_outq *q = &asoc->outqueue;
186 struct sctp_transport *t;
187 struct sctp_chunk *chunk;
188
189 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
190 list_for_each_entry(chunk, &t->transmitted, transmitted_list)
191 cb(chunk);
192
193 list_for_each_entry(chunk, &q->retransmit, list)
194 cb(chunk);
195
196 list_for_each_entry(chunk, &q->sacked, list)
197 cb(chunk);
198
199 list_for_each_entry(chunk, &q->abandoned, list)
200 cb(chunk);
201
202 list_for_each_entry(chunk, &q->out_chunk_list, list)
203 cb(chunk);
204 }
205
206 /* Verify that this is a valid address. */
sctp_verify_addr(struct sock * sk,union sctp_addr * addr,int len)207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 int len)
209 {
210 struct sctp_af *af;
211
212 /* Verify basic sockaddr. */
213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 if (!af)
215 return -EINVAL;
216
217 /* Is this a valid SCTP address? */
218 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 return -EINVAL;
220
221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 return -EINVAL;
223
224 return 0;
225 }
226
227 /* Look up the association by its id. If this is not a UDP-style
228 * socket, the ID field is always ignored.
229 */
sctp_id2assoc(struct sock * sk,sctp_assoc_t id)230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 struct sctp_association *asoc = NULL;
233
234 /* If this is not a UDP-style socket, assoc id should be ignored. */
235 if (!sctp_style(sk, UDP)) {
236 /* Return NULL if the socket state is not ESTABLISHED. It
237 * could be a TCP-style listening socket or a socket which
238 * hasn't yet called connect() to establish an association.
239 */
240 if (!sctp_sstate(sk, ESTABLISHED))
241 return NULL;
242
243 /* Get the first and the only association from the list. */
244 if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 struct sctp_association, asocs);
247 return asoc;
248 }
249
250 /* Otherwise this is a UDP-style socket. */
251 if (!id || (id == (sctp_assoc_t)-1))
252 return NULL;
253
254 spin_lock_bh(&sctp_assocs_id_lock);
255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 spin_unlock_bh(&sctp_assocs_id_lock);
257
258 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
259 return NULL;
260
261 return asoc;
262 }
263
264 /* Look up the transport from an address and an assoc id. If both address and
265 * id are specified, the associations matching the address and the id should be
266 * the same.
267 */
sctp_addr_id2transport(struct sock * sk,struct sockaddr_storage * addr,sctp_assoc_t id)268 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
269 struct sockaddr_storage *addr,
270 sctp_assoc_t id)
271 {
272 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
273 struct sctp_transport *transport;
274 union sctp_addr *laddr = (union sctp_addr *)addr;
275
276 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
277 laddr,
278 &transport);
279
280 if (!addr_asoc)
281 return NULL;
282
283 id_asoc = sctp_id2assoc(sk, id);
284 if (id_asoc && (id_asoc != addr_asoc))
285 return NULL;
286
287 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
288 (union sctp_addr *)addr);
289
290 return transport;
291 }
292
293 /* API 3.1.2 bind() - UDP Style Syntax
294 * The syntax of bind() is,
295 *
296 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
297 *
298 * sd - the socket descriptor returned by socket().
299 * addr - the address structure (struct sockaddr_in or struct
300 * sockaddr_in6 [RFC 2553]),
301 * addr_len - the size of the address structure.
302 */
sctp_bind(struct sock * sk,struct sockaddr * addr,int addr_len)303 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
304 {
305 int retval = 0;
306
307 lock_sock(sk);
308
309 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
310 addr, addr_len);
311
312 /* Disallow binding twice. */
313 if (!sctp_sk(sk)->ep->base.bind_addr.port)
314 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
315 addr_len);
316 else
317 retval = -EINVAL;
318
319 release_sock(sk);
320
321 return retval;
322 }
323
324 static long sctp_get_port_local(struct sock *, union sctp_addr *);
325
326 /* Verify this is a valid sockaddr. */
sctp_sockaddr_af(struct sctp_sock * opt,union sctp_addr * addr,int len)327 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
328 union sctp_addr *addr, int len)
329 {
330 struct sctp_af *af;
331
332 /* Check minimum size. */
333 if (len < sizeof (struct sockaddr))
334 return NULL;
335
336 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
337 return NULL;
338
339 /* V4 mapped address are really of AF_INET family */
340 if (addr->sa.sa_family == AF_INET6 &&
341 ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
342 !opt->pf->af_supported(AF_INET, opt))
343 return NULL;
344
345 /* If we get this far, af is valid. */
346 af = sctp_get_af_specific(addr->sa.sa_family);
347
348 if (len < af->sockaddr_len)
349 return NULL;
350
351 return af;
352 }
353
354 /* Bind a local address either to an endpoint or to an association. */
sctp_do_bind(struct sock * sk,union sctp_addr * addr,int len)355 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
356 {
357 struct net *net = sock_net(sk);
358 struct sctp_sock *sp = sctp_sk(sk);
359 struct sctp_endpoint *ep = sp->ep;
360 struct sctp_bind_addr *bp = &ep->base.bind_addr;
361 struct sctp_af *af;
362 unsigned short snum;
363 int ret = 0;
364
365 /* Common sockaddr verification. */
366 af = sctp_sockaddr_af(sp, addr, len);
367 if (!af) {
368 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
369 __func__, sk, addr, len);
370 return -EINVAL;
371 }
372
373 snum = ntohs(addr->v4.sin_port);
374
375 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
376 __func__, sk, &addr->sa, bp->port, snum, len);
377
378 /* PF specific bind() address verification. */
379 if (!sp->pf->bind_verify(sp, addr))
380 return -EADDRNOTAVAIL;
381
382 /* We must either be unbound, or bind to the same port.
383 * It's OK to allow 0 ports if we are already bound.
384 * We'll just inhert an already bound port in this case
385 */
386 if (bp->port) {
387 if (!snum)
388 snum = bp->port;
389 else if (snum != bp->port) {
390 pr_debug("%s: new port %d doesn't match existing port "
391 "%d\n", __func__, snum, bp->port);
392 return -EINVAL;
393 }
394 }
395
396 if (snum && snum < PROT_SOCK &&
397 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
398 return -EACCES;
399
400 /* See if the address matches any of the addresses we may have
401 * already bound before checking against other endpoints.
402 */
403 if (sctp_bind_addr_match(bp, addr, sp))
404 return -EINVAL;
405
406 /* Make sure we are allowed to bind here.
407 * The function sctp_get_port_local() does duplicate address
408 * detection.
409 */
410 addr->v4.sin_port = htons(snum);
411 if ((ret = sctp_get_port_local(sk, addr))) {
412 return -EADDRINUSE;
413 }
414
415 /* Refresh ephemeral port. */
416 if (!bp->port)
417 bp->port = inet_sk(sk)->inet_num;
418
419 /* Add the address to the bind address list.
420 * Use GFP_ATOMIC since BHs will be disabled.
421 */
422 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
423
424 /* Copy back into socket for getsockname() use. */
425 if (!ret) {
426 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
427 sp->pf->to_sk_saddr(addr, sk);
428 }
429
430 return ret;
431 }
432
433 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
434 *
435 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
436 * at any one time. If a sender, after sending an ASCONF chunk, decides
437 * it needs to transfer another ASCONF Chunk, it MUST wait until the
438 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
439 * subsequent ASCONF. Note this restriction binds each side, so at any
440 * time two ASCONF may be in-transit on any given association (one sent
441 * from each endpoint).
442 */
sctp_send_asconf(struct sctp_association * asoc,struct sctp_chunk * chunk)443 static int sctp_send_asconf(struct sctp_association *asoc,
444 struct sctp_chunk *chunk)
445 {
446 struct net *net = sock_net(asoc->base.sk);
447 int retval = 0;
448
449 /* If there is an outstanding ASCONF chunk, queue it for later
450 * transmission.
451 */
452 if (asoc->addip_last_asconf) {
453 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
454 goto out;
455 }
456
457 /* Hold the chunk until an ASCONF_ACK is received. */
458 sctp_chunk_hold(chunk);
459 retval = sctp_primitive_ASCONF(net, asoc, chunk);
460 if (retval)
461 sctp_chunk_free(chunk);
462 else
463 asoc->addip_last_asconf = chunk;
464
465 out:
466 return retval;
467 }
468
469 /* Add a list of addresses as bind addresses to local endpoint or
470 * association.
471 *
472 * Basically run through each address specified in the addrs/addrcnt
473 * array/length pair, determine if it is IPv6 or IPv4 and call
474 * sctp_do_bind() on it.
475 *
476 * If any of them fails, then the operation will be reversed and the
477 * ones that were added will be removed.
478 *
479 * Only sctp_setsockopt_bindx() is supposed to call this function.
480 */
sctp_bindx_add(struct sock * sk,struct sockaddr * addrs,int addrcnt)481 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
482 {
483 int cnt;
484 int retval = 0;
485 void *addr_buf;
486 struct sockaddr *sa_addr;
487 struct sctp_af *af;
488
489 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
490 addrs, addrcnt);
491
492 addr_buf = addrs;
493 for (cnt = 0; cnt < addrcnt; cnt++) {
494 /* The list may contain either IPv4 or IPv6 address;
495 * determine the address length for walking thru the list.
496 */
497 sa_addr = addr_buf;
498 af = sctp_get_af_specific(sa_addr->sa_family);
499 if (!af) {
500 retval = -EINVAL;
501 goto err_bindx_add;
502 }
503
504 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
505 af->sockaddr_len);
506
507 addr_buf += af->sockaddr_len;
508
509 err_bindx_add:
510 if (retval < 0) {
511 /* Failed. Cleanup the ones that have been added */
512 if (cnt > 0)
513 sctp_bindx_rem(sk, addrs, cnt);
514 return retval;
515 }
516 }
517
518 return retval;
519 }
520
521 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
522 * associations that are part of the endpoint indicating that a list of local
523 * addresses are added to the endpoint.
524 *
525 * If any of the addresses is already in the bind address list of the
526 * association, we do not send the chunk for that association. But it will not
527 * affect other associations.
528 *
529 * Only sctp_setsockopt_bindx() is supposed to call this function.
530 */
sctp_send_asconf_add_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)531 static int sctp_send_asconf_add_ip(struct sock *sk,
532 struct sockaddr *addrs,
533 int addrcnt)
534 {
535 struct net *net = sock_net(sk);
536 struct sctp_sock *sp;
537 struct sctp_endpoint *ep;
538 struct sctp_association *asoc;
539 struct sctp_bind_addr *bp;
540 struct sctp_chunk *chunk;
541 struct sctp_sockaddr_entry *laddr;
542 union sctp_addr *addr;
543 union sctp_addr saveaddr;
544 void *addr_buf;
545 struct sctp_af *af;
546 struct list_head *p;
547 int i;
548 int retval = 0;
549
550 if (!net->sctp.addip_enable)
551 return retval;
552
553 sp = sctp_sk(sk);
554 ep = sp->ep;
555
556 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
557 __func__, sk, addrs, addrcnt);
558
559 list_for_each_entry(asoc, &ep->asocs, asocs) {
560 if (!asoc->peer.asconf_capable)
561 continue;
562
563 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
564 continue;
565
566 if (!sctp_state(asoc, ESTABLISHED))
567 continue;
568
569 /* Check if any address in the packed array of addresses is
570 * in the bind address list of the association. If so,
571 * do not send the asconf chunk to its peer, but continue with
572 * other associations.
573 */
574 addr_buf = addrs;
575 for (i = 0; i < addrcnt; i++) {
576 addr = addr_buf;
577 af = sctp_get_af_specific(addr->v4.sin_family);
578 if (!af) {
579 retval = -EINVAL;
580 goto out;
581 }
582
583 if (sctp_assoc_lookup_laddr(asoc, addr))
584 break;
585
586 addr_buf += af->sockaddr_len;
587 }
588 if (i < addrcnt)
589 continue;
590
591 /* Use the first valid address in bind addr list of
592 * association as Address Parameter of ASCONF CHUNK.
593 */
594 bp = &asoc->base.bind_addr;
595 p = bp->address_list.next;
596 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
597 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
598 addrcnt, SCTP_PARAM_ADD_IP);
599 if (!chunk) {
600 retval = -ENOMEM;
601 goto out;
602 }
603
604 /* Add the new addresses to the bind address list with
605 * use_as_src set to 0.
606 */
607 addr_buf = addrs;
608 for (i = 0; i < addrcnt; i++) {
609 addr = addr_buf;
610 af = sctp_get_af_specific(addr->v4.sin_family);
611 memcpy(&saveaddr, addr, af->sockaddr_len);
612 retval = sctp_add_bind_addr(bp, &saveaddr,
613 SCTP_ADDR_NEW, GFP_ATOMIC);
614 addr_buf += af->sockaddr_len;
615 }
616 if (asoc->src_out_of_asoc_ok) {
617 struct sctp_transport *trans;
618
619 list_for_each_entry(trans,
620 &asoc->peer.transport_addr_list, transports) {
621 /* Clear the source and route cache */
622 dst_release(trans->dst);
623 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
624 2*asoc->pathmtu, 4380));
625 trans->ssthresh = asoc->peer.i.a_rwnd;
626 trans->rto = asoc->rto_initial;
627 sctp_max_rto(asoc, trans);
628 trans->rtt = trans->srtt = trans->rttvar = 0;
629 sctp_transport_route(trans, NULL,
630 sctp_sk(asoc->base.sk));
631 }
632 }
633 retval = sctp_send_asconf(asoc, chunk);
634 }
635
636 out:
637 return retval;
638 }
639
640 /* Remove a list of addresses from bind addresses list. Do not remove the
641 * last address.
642 *
643 * Basically run through each address specified in the addrs/addrcnt
644 * array/length pair, determine if it is IPv6 or IPv4 and call
645 * sctp_del_bind() on it.
646 *
647 * If any of them fails, then the operation will be reversed and the
648 * ones that were removed will be added back.
649 *
650 * At least one address has to be left; if only one address is
651 * available, the operation will return -EBUSY.
652 *
653 * Only sctp_setsockopt_bindx() is supposed to call this function.
654 */
sctp_bindx_rem(struct sock * sk,struct sockaddr * addrs,int addrcnt)655 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
656 {
657 struct sctp_sock *sp = sctp_sk(sk);
658 struct sctp_endpoint *ep = sp->ep;
659 int cnt;
660 struct sctp_bind_addr *bp = &ep->base.bind_addr;
661 int retval = 0;
662 void *addr_buf;
663 union sctp_addr *sa_addr;
664 struct sctp_af *af;
665
666 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
667 __func__, sk, addrs, addrcnt);
668
669 addr_buf = addrs;
670 for (cnt = 0; cnt < addrcnt; cnt++) {
671 /* If the bind address list is empty or if there is only one
672 * bind address, there is nothing more to be removed (we need
673 * at least one address here).
674 */
675 if (list_empty(&bp->address_list) ||
676 (sctp_list_single_entry(&bp->address_list))) {
677 retval = -EBUSY;
678 goto err_bindx_rem;
679 }
680
681 sa_addr = addr_buf;
682 af = sctp_get_af_specific(sa_addr->sa.sa_family);
683 if (!af) {
684 retval = -EINVAL;
685 goto err_bindx_rem;
686 }
687
688 if (!af->addr_valid(sa_addr, sp, NULL)) {
689 retval = -EADDRNOTAVAIL;
690 goto err_bindx_rem;
691 }
692
693 if (sa_addr->v4.sin_port &&
694 sa_addr->v4.sin_port != htons(bp->port)) {
695 retval = -EINVAL;
696 goto err_bindx_rem;
697 }
698
699 if (!sa_addr->v4.sin_port)
700 sa_addr->v4.sin_port = htons(bp->port);
701
702 /* FIXME - There is probably a need to check if sk->sk_saddr and
703 * sk->sk_rcv_addr are currently set to one of the addresses to
704 * be removed. This is something which needs to be looked into
705 * when we are fixing the outstanding issues with multi-homing
706 * socket routing and failover schemes. Refer to comments in
707 * sctp_do_bind(). -daisy
708 */
709 retval = sctp_del_bind_addr(bp, sa_addr);
710
711 addr_buf += af->sockaddr_len;
712 err_bindx_rem:
713 if (retval < 0) {
714 /* Failed. Add the ones that has been removed back */
715 if (cnt > 0)
716 sctp_bindx_add(sk, addrs, cnt);
717 return retval;
718 }
719 }
720
721 return retval;
722 }
723
724 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
725 * the associations that are part of the endpoint indicating that a list of
726 * local addresses are removed from the endpoint.
727 *
728 * If any of the addresses is already in the bind address list of the
729 * association, we do not send the chunk for that association. But it will not
730 * affect other associations.
731 *
732 * Only sctp_setsockopt_bindx() is supposed to call this function.
733 */
sctp_send_asconf_del_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)734 static int sctp_send_asconf_del_ip(struct sock *sk,
735 struct sockaddr *addrs,
736 int addrcnt)
737 {
738 struct net *net = sock_net(sk);
739 struct sctp_sock *sp;
740 struct sctp_endpoint *ep;
741 struct sctp_association *asoc;
742 struct sctp_transport *transport;
743 struct sctp_bind_addr *bp;
744 struct sctp_chunk *chunk;
745 union sctp_addr *laddr;
746 void *addr_buf;
747 struct sctp_af *af;
748 struct sctp_sockaddr_entry *saddr;
749 int i;
750 int retval = 0;
751 int stored = 0;
752
753 chunk = NULL;
754 if (!net->sctp.addip_enable)
755 return retval;
756
757 sp = sctp_sk(sk);
758 ep = sp->ep;
759
760 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
761 __func__, sk, addrs, addrcnt);
762
763 list_for_each_entry(asoc, &ep->asocs, asocs) {
764
765 if (!asoc->peer.asconf_capable)
766 continue;
767
768 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
769 continue;
770
771 if (!sctp_state(asoc, ESTABLISHED))
772 continue;
773
774 /* Check if any address in the packed array of addresses is
775 * not present in the bind address list of the association.
776 * If so, do not send the asconf chunk to its peer, but
777 * continue with other associations.
778 */
779 addr_buf = addrs;
780 for (i = 0; i < addrcnt; i++) {
781 laddr = addr_buf;
782 af = sctp_get_af_specific(laddr->v4.sin_family);
783 if (!af) {
784 retval = -EINVAL;
785 goto out;
786 }
787
788 if (!sctp_assoc_lookup_laddr(asoc, laddr))
789 break;
790
791 addr_buf += af->sockaddr_len;
792 }
793 if (i < addrcnt)
794 continue;
795
796 /* Find one address in the association's bind address list
797 * that is not in the packed array of addresses. This is to
798 * make sure that we do not delete all the addresses in the
799 * association.
800 */
801 bp = &asoc->base.bind_addr;
802 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
803 addrcnt, sp);
804 if ((laddr == NULL) && (addrcnt == 1)) {
805 if (asoc->asconf_addr_del_pending)
806 continue;
807 asoc->asconf_addr_del_pending =
808 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
809 if (asoc->asconf_addr_del_pending == NULL) {
810 retval = -ENOMEM;
811 goto out;
812 }
813 asoc->asconf_addr_del_pending->sa.sa_family =
814 addrs->sa_family;
815 asoc->asconf_addr_del_pending->v4.sin_port =
816 htons(bp->port);
817 if (addrs->sa_family == AF_INET) {
818 struct sockaddr_in *sin;
819
820 sin = (struct sockaddr_in *)addrs;
821 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
822 } else if (addrs->sa_family == AF_INET6) {
823 struct sockaddr_in6 *sin6;
824
825 sin6 = (struct sockaddr_in6 *)addrs;
826 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
827 }
828
829 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
830 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
831 asoc->asconf_addr_del_pending);
832
833 asoc->src_out_of_asoc_ok = 1;
834 stored = 1;
835 goto skip_mkasconf;
836 }
837
838 if (laddr == NULL)
839 return -EINVAL;
840
841 /* We do not need RCU protection throughout this loop
842 * because this is done under a socket lock from the
843 * setsockopt call.
844 */
845 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
846 SCTP_PARAM_DEL_IP);
847 if (!chunk) {
848 retval = -ENOMEM;
849 goto out;
850 }
851
852 skip_mkasconf:
853 /* Reset use_as_src flag for the addresses in the bind address
854 * list that are to be deleted.
855 */
856 addr_buf = addrs;
857 for (i = 0; i < addrcnt; i++) {
858 laddr = addr_buf;
859 af = sctp_get_af_specific(laddr->v4.sin_family);
860 list_for_each_entry(saddr, &bp->address_list, list) {
861 if (sctp_cmp_addr_exact(&saddr->a, laddr))
862 saddr->state = SCTP_ADDR_DEL;
863 }
864 addr_buf += af->sockaddr_len;
865 }
866
867 /* Update the route and saddr entries for all the transports
868 * as some of the addresses in the bind address list are
869 * about to be deleted and cannot be used as source addresses.
870 */
871 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
872 transports) {
873 dst_release(transport->dst);
874 sctp_transport_route(transport, NULL,
875 sctp_sk(asoc->base.sk));
876 }
877
878 if (stored)
879 /* We don't need to transmit ASCONF */
880 continue;
881 retval = sctp_send_asconf(asoc, chunk);
882 }
883 out:
884 return retval;
885 }
886
887 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
sctp_asconf_mgmt(struct sctp_sock * sp,struct sctp_sockaddr_entry * addrw)888 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
889 {
890 struct sock *sk = sctp_opt2sk(sp);
891 union sctp_addr *addr;
892 struct sctp_af *af;
893
894 /* It is safe to write port space in caller. */
895 addr = &addrw->a;
896 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
897 af = sctp_get_af_specific(addr->sa.sa_family);
898 if (!af)
899 return -EINVAL;
900 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
901 return -EINVAL;
902
903 if (addrw->state == SCTP_ADDR_NEW)
904 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
905 else
906 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
907 }
908
909 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
910 *
911 * API 8.1
912 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
913 * int flags);
914 *
915 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
916 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
917 * or IPv6 addresses.
918 *
919 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
920 * Section 3.1.2 for this usage.
921 *
922 * addrs is a pointer to an array of one or more socket addresses. Each
923 * address is contained in its appropriate structure (i.e. struct
924 * sockaddr_in or struct sockaddr_in6) the family of the address type
925 * must be used to distinguish the address length (note that this
926 * representation is termed a "packed array" of addresses). The caller
927 * specifies the number of addresses in the array with addrcnt.
928 *
929 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
930 * -1, and sets errno to the appropriate error code.
931 *
932 * For SCTP, the port given in each socket address must be the same, or
933 * sctp_bindx() will fail, setting errno to EINVAL.
934 *
935 * The flags parameter is formed from the bitwise OR of zero or more of
936 * the following currently defined flags:
937 *
938 * SCTP_BINDX_ADD_ADDR
939 *
940 * SCTP_BINDX_REM_ADDR
941 *
942 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
943 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
944 * addresses from the association. The two flags are mutually exclusive;
945 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
946 * not remove all addresses from an association; sctp_bindx() will
947 * reject such an attempt with EINVAL.
948 *
949 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
950 * additional addresses with an endpoint after calling bind(). Or use
951 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
952 * socket is associated with so that no new association accepted will be
953 * associated with those addresses. If the endpoint supports dynamic
954 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
955 * endpoint to send the appropriate message to the peer to change the
956 * peers address lists.
957 *
958 * Adding and removing addresses from a connected association is
959 * optional functionality. Implementations that do not support this
960 * functionality should return EOPNOTSUPP.
961 *
962 * Basically do nothing but copying the addresses from user to kernel
963 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
964 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
965 * from userspace.
966 *
967 * We don't use copy_from_user() for optimization: we first do the
968 * sanity checks (buffer size -fast- and access check-healthy
969 * pointer); if all of those succeed, then we can alloc the memory
970 * (expensive operation) needed to copy the data to kernel. Then we do
971 * the copying without checking the user space area
972 * (__copy_from_user()).
973 *
974 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
975 * it.
976 *
977 * sk The sk of the socket
978 * addrs The pointer to the addresses in user land
979 * addrssize Size of the addrs buffer
980 * op Operation to perform (add or remove, see the flags of
981 * sctp_bindx)
982 *
983 * Returns 0 if ok, <0 errno code on error.
984 */
sctp_setsockopt_bindx(struct sock * sk,struct sockaddr __user * addrs,int addrs_size,int op)985 static int sctp_setsockopt_bindx(struct sock *sk,
986 struct sockaddr __user *addrs,
987 int addrs_size, int op)
988 {
989 struct sockaddr *kaddrs;
990 int err;
991 int addrcnt = 0;
992 int walk_size = 0;
993 struct sockaddr *sa_addr;
994 void *addr_buf;
995 struct sctp_af *af;
996
997 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
998 __func__, sk, addrs, addrs_size, op);
999
1000 if (unlikely(addrs_size <= 0))
1001 return -EINVAL;
1002
1003 /* Check the user passed a healthy pointer. */
1004 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1005 return -EFAULT;
1006
1007 /* Alloc space for the address array in kernel memory. */
1008 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1009 if (unlikely(!kaddrs))
1010 return -ENOMEM;
1011
1012 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1013 kfree(kaddrs);
1014 return -EFAULT;
1015 }
1016
1017 /* Walk through the addrs buffer and count the number of addresses. */
1018 addr_buf = kaddrs;
1019 while (walk_size < addrs_size) {
1020 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1021 kfree(kaddrs);
1022 return -EINVAL;
1023 }
1024
1025 sa_addr = addr_buf;
1026 af = sctp_get_af_specific(sa_addr->sa_family);
1027
1028 /* If the address family is not supported or if this address
1029 * causes the address buffer to overflow return EINVAL.
1030 */
1031 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1032 kfree(kaddrs);
1033 return -EINVAL;
1034 }
1035 addrcnt++;
1036 addr_buf += af->sockaddr_len;
1037 walk_size += af->sockaddr_len;
1038 }
1039
1040 /* Do the work. */
1041 switch (op) {
1042 case SCTP_BINDX_ADD_ADDR:
1043 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1044 if (err)
1045 goto out;
1046 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1047 break;
1048
1049 case SCTP_BINDX_REM_ADDR:
1050 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1051 if (err)
1052 goto out;
1053 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1054 break;
1055
1056 default:
1057 err = -EINVAL;
1058 break;
1059 }
1060
1061 out:
1062 kfree(kaddrs);
1063
1064 return err;
1065 }
1066
1067 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1068 *
1069 * Common routine for handling connect() and sctp_connectx().
1070 * Connect will come in with just a single address.
1071 */
__sctp_connect(struct sock * sk,struct sockaddr * kaddrs,int addrs_size,sctp_assoc_t * assoc_id)1072 static int __sctp_connect(struct sock *sk,
1073 struct sockaddr *kaddrs,
1074 int addrs_size,
1075 sctp_assoc_t *assoc_id)
1076 {
1077 struct net *net = sock_net(sk);
1078 struct sctp_sock *sp;
1079 struct sctp_endpoint *ep;
1080 struct sctp_association *asoc = NULL;
1081 struct sctp_association *asoc2;
1082 struct sctp_transport *transport;
1083 union sctp_addr to;
1084 sctp_scope_t scope;
1085 long timeo;
1086 int err = 0;
1087 int addrcnt = 0;
1088 int walk_size = 0;
1089 union sctp_addr *sa_addr = NULL;
1090 void *addr_buf;
1091 unsigned short port;
1092 unsigned int f_flags = 0;
1093
1094 sp = sctp_sk(sk);
1095 ep = sp->ep;
1096
1097 /* connect() cannot be done on a socket that is already in ESTABLISHED
1098 * state - UDP-style peeled off socket or a TCP-style socket that
1099 * is already connected.
1100 * It cannot be done even on a TCP-style listening socket.
1101 */
1102 if (sctp_sstate(sk, ESTABLISHED) ||
1103 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1104 err = -EISCONN;
1105 goto out_free;
1106 }
1107
1108 /* Walk through the addrs buffer and count the number of addresses. */
1109 addr_buf = kaddrs;
1110 while (walk_size < addrs_size) {
1111 struct sctp_af *af;
1112
1113 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1114 err = -EINVAL;
1115 goto out_free;
1116 }
1117
1118 sa_addr = addr_buf;
1119 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1120
1121 /* If the address family is not supported or if this address
1122 * causes the address buffer to overflow return EINVAL.
1123 */
1124 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1125 err = -EINVAL;
1126 goto out_free;
1127 }
1128
1129 port = ntohs(sa_addr->v4.sin_port);
1130
1131 /* Save current address so we can work with it */
1132 memcpy(&to, sa_addr, af->sockaddr_len);
1133
1134 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1135 if (err)
1136 goto out_free;
1137
1138 /* Make sure the destination port is correctly set
1139 * in all addresses.
1140 */
1141 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1142 err = -EINVAL;
1143 goto out_free;
1144 }
1145
1146 /* Check if there already is a matching association on the
1147 * endpoint (other than the one created here).
1148 */
1149 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1150 if (asoc2 && asoc2 != asoc) {
1151 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1152 err = -EISCONN;
1153 else
1154 err = -EALREADY;
1155 goto out_free;
1156 }
1157
1158 /* If we could not find a matching association on the endpoint,
1159 * make sure that there is no peeled-off association matching
1160 * the peer address even on another socket.
1161 */
1162 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1163 err = -EADDRNOTAVAIL;
1164 goto out_free;
1165 }
1166
1167 if (!asoc) {
1168 /* If a bind() or sctp_bindx() is not called prior to
1169 * an sctp_connectx() call, the system picks an
1170 * ephemeral port and will choose an address set
1171 * equivalent to binding with a wildcard address.
1172 */
1173 if (!ep->base.bind_addr.port) {
1174 if (sctp_autobind(sk)) {
1175 err = -EAGAIN;
1176 goto out_free;
1177 }
1178 } else {
1179 /*
1180 * If an unprivileged user inherits a 1-many
1181 * style socket with open associations on a
1182 * privileged port, it MAY be permitted to
1183 * accept new associations, but it SHOULD NOT
1184 * be permitted to open new associations.
1185 */
1186 if (ep->base.bind_addr.port < PROT_SOCK &&
1187 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1188 err = -EACCES;
1189 goto out_free;
1190 }
1191 }
1192
1193 scope = sctp_scope(&to);
1194 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1195 if (!asoc) {
1196 err = -ENOMEM;
1197 goto out_free;
1198 }
1199
1200 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1201 GFP_KERNEL);
1202 if (err < 0) {
1203 goto out_free;
1204 }
1205
1206 }
1207
1208 /* Prime the peer's transport structures. */
1209 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1210 SCTP_UNKNOWN);
1211 if (!transport) {
1212 err = -ENOMEM;
1213 goto out_free;
1214 }
1215
1216 addrcnt++;
1217 addr_buf += af->sockaddr_len;
1218 walk_size += af->sockaddr_len;
1219 }
1220
1221 /* In case the user of sctp_connectx() wants an association
1222 * id back, assign one now.
1223 */
1224 if (assoc_id) {
1225 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1226 if (err < 0)
1227 goto out_free;
1228 }
1229
1230 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1231 if (err < 0) {
1232 goto out_free;
1233 }
1234
1235 /* Initialize sk's dport and daddr for getpeername() */
1236 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1237 sp->pf->to_sk_daddr(sa_addr, sk);
1238 sk->sk_err = 0;
1239
1240 /* in-kernel sockets don't generally have a file allocated to them
1241 * if all they do is call sock_create_kern().
1242 */
1243 if (sk->sk_socket->file)
1244 f_flags = sk->sk_socket->file->f_flags;
1245
1246 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1247
1248 err = sctp_wait_for_connect(asoc, &timeo);
1249 if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1250 *assoc_id = asoc->assoc_id;
1251
1252 /* Don't free association on exit. */
1253 asoc = NULL;
1254
1255 out_free:
1256 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1257 __func__, asoc, kaddrs, err);
1258
1259 if (asoc) {
1260 /* sctp_primitive_ASSOCIATE may have added this association
1261 * To the hash table, try to unhash it, just in case, its a noop
1262 * if it wasn't hashed so we're safe
1263 */
1264 sctp_unhash_established(asoc);
1265 sctp_association_free(asoc);
1266 }
1267 return err;
1268 }
1269
1270 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1271 *
1272 * API 8.9
1273 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1274 * sctp_assoc_t *asoc);
1275 *
1276 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1277 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1278 * or IPv6 addresses.
1279 *
1280 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1281 * Section 3.1.2 for this usage.
1282 *
1283 * addrs is a pointer to an array of one or more socket addresses. Each
1284 * address is contained in its appropriate structure (i.e. struct
1285 * sockaddr_in or struct sockaddr_in6) the family of the address type
1286 * must be used to distengish the address length (note that this
1287 * representation is termed a "packed array" of addresses). The caller
1288 * specifies the number of addresses in the array with addrcnt.
1289 *
1290 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1291 * the association id of the new association. On failure, sctp_connectx()
1292 * returns -1, and sets errno to the appropriate error code. The assoc_id
1293 * is not touched by the kernel.
1294 *
1295 * For SCTP, the port given in each socket address must be the same, or
1296 * sctp_connectx() will fail, setting errno to EINVAL.
1297 *
1298 * An application can use sctp_connectx to initiate an association with
1299 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1300 * allows a caller to specify multiple addresses at which a peer can be
1301 * reached. The way the SCTP stack uses the list of addresses to set up
1302 * the association is implementation dependent. This function only
1303 * specifies that the stack will try to make use of all the addresses in
1304 * the list when needed.
1305 *
1306 * Note that the list of addresses passed in is only used for setting up
1307 * the association. It does not necessarily equal the set of addresses
1308 * the peer uses for the resulting association. If the caller wants to
1309 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1310 * retrieve them after the association has been set up.
1311 *
1312 * Basically do nothing but copying the addresses from user to kernel
1313 * land and invoking either sctp_connectx(). This is used for tunneling
1314 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1315 *
1316 * We don't use copy_from_user() for optimization: we first do the
1317 * sanity checks (buffer size -fast- and access check-healthy
1318 * pointer); if all of those succeed, then we can alloc the memory
1319 * (expensive operation) needed to copy the data to kernel. Then we do
1320 * the copying without checking the user space area
1321 * (__copy_from_user()).
1322 *
1323 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1324 * it.
1325 *
1326 * sk The sk of the socket
1327 * addrs The pointer to the addresses in user land
1328 * addrssize Size of the addrs buffer
1329 *
1330 * Returns >=0 if ok, <0 errno code on error.
1331 */
__sctp_setsockopt_connectx(struct sock * sk,struct sockaddr __user * addrs,int addrs_size,sctp_assoc_t * assoc_id)1332 static int __sctp_setsockopt_connectx(struct sock *sk,
1333 struct sockaddr __user *addrs,
1334 int addrs_size,
1335 sctp_assoc_t *assoc_id)
1336 {
1337 int err = 0;
1338 struct sockaddr *kaddrs;
1339
1340 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1341 __func__, sk, addrs, addrs_size);
1342
1343 if (unlikely(addrs_size <= 0))
1344 return -EINVAL;
1345
1346 /* Check the user passed a healthy pointer. */
1347 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1348 return -EFAULT;
1349
1350 /* Alloc space for the address array in kernel memory. */
1351 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1352 if (unlikely(!kaddrs))
1353 return -ENOMEM;
1354
1355 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1356 err = -EFAULT;
1357 } else {
1358 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1359 }
1360
1361 kfree(kaddrs);
1362
1363 return err;
1364 }
1365
1366 /*
1367 * This is an older interface. It's kept for backward compatibility
1368 * to the option that doesn't provide association id.
1369 */
sctp_setsockopt_connectx_old(struct sock * sk,struct sockaddr __user * addrs,int addrs_size)1370 static int sctp_setsockopt_connectx_old(struct sock *sk,
1371 struct sockaddr __user *addrs,
1372 int addrs_size)
1373 {
1374 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1375 }
1376
1377 /*
1378 * New interface for the API. The since the API is done with a socket
1379 * option, to make it simple we feed back the association id is as a return
1380 * indication to the call. Error is always negative and association id is
1381 * always positive.
1382 */
sctp_setsockopt_connectx(struct sock * sk,struct sockaddr __user * addrs,int addrs_size)1383 static int sctp_setsockopt_connectx(struct sock *sk,
1384 struct sockaddr __user *addrs,
1385 int addrs_size)
1386 {
1387 sctp_assoc_t assoc_id = 0;
1388 int err = 0;
1389
1390 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1391
1392 if (err)
1393 return err;
1394 else
1395 return assoc_id;
1396 }
1397
1398 /*
1399 * New (hopefully final) interface for the API.
1400 * We use the sctp_getaddrs_old structure so that use-space library
1401 * can avoid any unnecessary allocations. The only different part
1402 * is that we store the actual length of the address buffer into the
1403 * addrs_num structure member. That way we can re-use the existing
1404 * code.
1405 */
1406 #ifdef CONFIG_COMPAT
1407 struct compat_sctp_getaddrs_old {
1408 sctp_assoc_t assoc_id;
1409 s32 addr_num;
1410 compat_uptr_t addrs; /* struct sockaddr * */
1411 };
1412 #endif
1413
sctp_getsockopt_connectx3(struct sock * sk,int len,char __user * optval,int __user * optlen)1414 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1415 char __user *optval,
1416 int __user *optlen)
1417 {
1418 struct sctp_getaddrs_old param;
1419 sctp_assoc_t assoc_id = 0;
1420 int err = 0;
1421
1422 #ifdef CONFIG_COMPAT
1423 if (is_compat_task()) {
1424 struct compat_sctp_getaddrs_old param32;
1425
1426 if (len < sizeof(param32))
1427 return -EINVAL;
1428 if (copy_from_user(¶m32, optval, sizeof(param32)))
1429 return -EFAULT;
1430
1431 param.assoc_id = param32.assoc_id;
1432 param.addr_num = param32.addr_num;
1433 param.addrs = compat_ptr(param32.addrs);
1434 } else
1435 #endif
1436 {
1437 if (len < sizeof(param))
1438 return -EINVAL;
1439 if (copy_from_user(¶m, optval, sizeof(param)))
1440 return -EFAULT;
1441 }
1442
1443 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1444 param.addrs, param.addr_num,
1445 &assoc_id);
1446 if (err == 0 || err == -EINPROGRESS) {
1447 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1448 return -EFAULT;
1449 if (put_user(sizeof(assoc_id), optlen))
1450 return -EFAULT;
1451 }
1452
1453 return err;
1454 }
1455
1456 /* API 3.1.4 close() - UDP Style Syntax
1457 * Applications use close() to perform graceful shutdown (as described in
1458 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1459 * by a UDP-style socket.
1460 *
1461 * The syntax is
1462 *
1463 * ret = close(int sd);
1464 *
1465 * sd - the socket descriptor of the associations to be closed.
1466 *
1467 * To gracefully shutdown a specific association represented by the
1468 * UDP-style socket, an application should use the sendmsg() call,
1469 * passing no user data, but including the appropriate flag in the
1470 * ancillary data (see Section xxxx).
1471 *
1472 * If sd in the close() call is a branched-off socket representing only
1473 * one association, the shutdown is performed on that association only.
1474 *
1475 * 4.1.6 close() - TCP Style Syntax
1476 *
1477 * Applications use close() to gracefully close down an association.
1478 *
1479 * The syntax is:
1480 *
1481 * int close(int sd);
1482 *
1483 * sd - the socket descriptor of the association to be closed.
1484 *
1485 * After an application calls close() on a socket descriptor, no further
1486 * socket operations will succeed on that descriptor.
1487 *
1488 * API 7.1.4 SO_LINGER
1489 *
1490 * An application using the TCP-style socket can use this option to
1491 * perform the SCTP ABORT primitive. The linger option structure is:
1492 *
1493 * struct linger {
1494 * int l_onoff; // option on/off
1495 * int l_linger; // linger time
1496 * };
1497 *
1498 * To enable the option, set l_onoff to 1. If the l_linger value is set
1499 * to 0, calling close() is the same as the ABORT primitive. If the
1500 * value is set to a negative value, the setsockopt() call will return
1501 * an error. If the value is set to a positive value linger_time, the
1502 * close() can be blocked for at most linger_time ms. If the graceful
1503 * shutdown phase does not finish during this period, close() will
1504 * return but the graceful shutdown phase continues in the system.
1505 */
sctp_close(struct sock * sk,long timeout)1506 static void sctp_close(struct sock *sk, long timeout)
1507 {
1508 struct net *net = sock_net(sk);
1509 struct sctp_endpoint *ep;
1510 struct sctp_association *asoc;
1511 struct list_head *pos, *temp;
1512 unsigned int data_was_unread;
1513
1514 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1515
1516 lock_sock(sk);
1517 sk->sk_shutdown = SHUTDOWN_MASK;
1518 sk->sk_state = SCTP_SS_CLOSING;
1519
1520 ep = sctp_sk(sk)->ep;
1521
1522 /* Clean up any skbs sitting on the receive queue. */
1523 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1524 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1525
1526 /* Walk all associations on an endpoint. */
1527 list_for_each_safe(pos, temp, &ep->asocs) {
1528 asoc = list_entry(pos, struct sctp_association, asocs);
1529
1530 if (sctp_style(sk, TCP)) {
1531 /* A closed association can still be in the list if
1532 * it belongs to a TCP-style listening socket that is
1533 * not yet accepted. If so, free it. If not, send an
1534 * ABORT or SHUTDOWN based on the linger options.
1535 */
1536 if (sctp_state(asoc, CLOSED)) {
1537 sctp_unhash_established(asoc);
1538 sctp_association_free(asoc);
1539 continue;
1540 }
1541 }
1542
1543 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1544 !skb_queue_empty(&asoc->ulpq.reasm) ||
1545 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1546 struct sctp_chunk *chunk;
1547
1548 chunk = sctp_make_abort_user(asoc, NULL, 0);
1549 sctp_primitive_ABORT(net, asoc, chunk);
1550 } else
1551 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1552 }
1553
1554 /* On a TCP-style socket, block for at most linger_time if set. */
1555 if (sctp_style(sk, TCP) && timeout)
1556 sctp_wait_for_close(sk, timeout);
1557
1558 /* This will run the backlog queue. */
1559 release_sock(sk);
1560
1561 /* Supposedly, no process has access to the socket, but
1562 * the net layers still may.
1563 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1564 * held and that should be grabbed before socket lock.
1565 */
1566 spin_lock_bh(&net->sctp.addr_wq_lock);
1567 bh_lock_sock(sk);
1568
1569 /* Hold the sock, since sk_common_release() will put sock_put()
1570 * and we have just a little more cleanup.
1571 */
1572 sock_hold(sk);
1573 sk_common_release(sk);
1574
1575 bh_unlock_sock(sk);
1576 spin_unlock_bh(&net->sctp.addr_wq_lock);
1577
1578 sock_put(sk);
1579
1580 SCTP_DBG_OBJCNT_DEC(sock);
1581 }
1582
1583 /* Handle EPIPE error. */
sctp_error(struct sock * sk,int flags,int err)1584 static int sctp_error(struct sock *sk, int flags, int err)
1585 {
1586 if (err == -EPIPE)
1587 err = sock_error(sk) ? : -EPIPE;
1588 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1589 send_sig(SIGPIPE, current, 0);
1590 return err;
1591 }
1592
1593 /* API 3.1.3 sendmsg() - UDP Style Syntax
1594 *
1595 * An application uses sendmsg() and recvmsg() calls to transmit data to
1596 * and receive data from its peer.
1597 *
1598 * ssize_t sendmsg(int socket, const struct msghdr *message,
1599 * int flags);
1600 *
1601 * socket - the socket descriptor of the endpoint.
1602 * message - pointer to the msghdr structure which contains a single
1603 * user message and possibly some ancillary data.
1604 *
1605 * See Section 5 for complete description of the data
1606 * structures.
1607 *
1608 * flags - flags sent or received with the user message, see Section
1609 * 5 for complete description of the flags.
1610 *
1611 * Note: This function could use a rewrite especially when explicit
1612 * connect support comes in.
1613 */
1614 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1615
1616 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1617
sctp_sendmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t msg_len)1618 static int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1619 struct msghdr *msg, size_t msg_len)
1620 {
1621 struct net *net = sock_net(sk);
1622 struct sctp_sock *sp;
1623 struct sctp_endpoint *ep;
1624 struct sctp_association *new_asoc = NULL, *asoc = NULL;
1625 struct sctp_transport *transport, *chunk_tp;
1626 struct sctp_chunk *chunk;
1627 union sctp_addr to;
1628 struct sockaddr *msg_name = NULL;
1629 struct sctp_sndrcvinfo default_sinfo;
1630 struct sctp_sndrcvinfo *sinfo;
1631 struct sctp_initmsg *sinit;
1632 sctp_assoc_t associd = 0;
1633 sctp_cmsgs_t cmsgs = { NULL };
1634 sctp_scope_t scope;
1635 bool fill_sinfo_ttl = false, wait_connect = false;
1636 struct sctp_datamsg *datamsg;
1637 int msg_flags = msg->msg_flags;
1638 __u16 sinfo_flags = 0;
1639 long timeo;
1640 int err;
1641
1642 err = 0;
1643 sp = sctp_sk(sk);
1644 ep = sp->ep;
1645
1646 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1647 msg, msg_len, ep);
1648
1649 /* We cannot send a message over a TCP-style listening socket. */
1650 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1651 err = -EPIPE;
1652 goto out_nounlock;
1653 }
1654
1655 /* Parse out the SCTP CMSGs. */
1656 err = sctp_msghdr_parse(msg, &cmsgs);
1657 if (err) {
1658 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1659 goto out_nounlock;
1660 }
1661
1662 /* Fetch the destination address for this packet. This
1663 * address only selects the association--it is not necessarily
1664 * the address we will send to.
1665 * For a peeled-off socket, msg_name is ignored.
1666 */
1667 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1668 int msg_namelen = msg->msg_namelen;
1669
1670 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1671 msg_namelen);
1672 if (err)
1673 return err;
1674
1675 if (msg_namelen > sizeof(to))
1676 msg_namelen = sizeof(to);
1677 memcpy(&to, msg->msg_name, msg_namelen);
1678 msg_name = msg->msg_name;
1679 }
1680
1681 sinit = cmsgs.init;
1682 if (cmsgs.sinfo != NULL) {
1683 memset(&default_sinfo, 0, sizeof(default_sinfo));
1684 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1685 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1686 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1687 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1688 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1689
1690 sinfo = &default_sinfo;
1691 fill_sinfo_ttl = true;
1692 } else {
1693 sinfo = cmsgs.srinfo;
1694 }
1695 /* Did the user specify SNDINFO/SNDRCVINFO? */
1696 if (sinfo) {
1697 sinfo_flags = sinfo->sinfo_flags;
1698 associd = sinfo->sinfo_assoc_id;
1699 }
1700
1701 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1702 msg_len, sinfo_flags);
1703
1704 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1705 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1706 err = -EINVAL;
1707 goto out_nounlock;
1708 }
1709
1710 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1711 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1712 * If SCTP_ABORT is set, the message length could be non zero with
1713 * the msg_iov set to the user abort reason.
1714 */
1715 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1716 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1717 err = -EINVAL;
1718 goto out_nounlock;
1719 }
1720
1721 /* If SCTP_ADDR_OVER is set, there must be an address
1722 * specified in msg_name.
1723 */
1724 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1725 err = -EINVAL;
1726 goto out_nounlock;
1727 }
1728
1729 transport = NULL;
1730
1731 pr_debug("%s: about to look up association\n", __func__);
1732
1733 lock_sock(sk);
1734
1735 /* If a msg_name has been specified, assume this is to be used. */
1736 if (msg_name) {
1737 /* Look for a matching association on the endpoint. */
1738 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1739 if (!asoc) {
1740 /* If we could not find a matching association on the
1741 * endpoint, make sure that it is not a TCP-style
1742 * socket that already has an association or there is
1743 * no peeled-off association on another socket.
1744 */
1745 if ((sctp_style(sk, TCP) &&
1746 sctp_sstate(sk, ESTABLISHED)) ||
1747 sctp_endpoint_is_peeled_off(ep, &to)) {
1748 err = -EADDRNOTAVAIL;
1749 goto out_unlock;
1750 }
1751 }
1752 } else {
1753 asoc = sctp_id2assoc(sk, associd);
1754 if (!asoc) {
1755 err = -EPIPE;
1756 goto out_unlock;
1757 }
1758 }
1759
1760 if (asoc) {
1761 pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1762
1763 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1764 * socket that has an association in CLOSED state. This can
1765 * happen when an accepted socket has an association that is
1766 * already CLOSED.
1767 */
1768 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1769 err = -EPIPE;
1770 goto out_unlock;
1771 }
1772
1773 if (sinfo_flags & SCTP_EOF) {
1774 pr_debug("%s: shutting down association:%p\n",
1775 __func__, asoc);
1776
1777 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1778 err = 0;
1779 goto out_unlock;
1780 }
1781 if (sinfo_flags & SCTP_ABORT) {
1782
1783 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1784 if (!chunk) {
1785 err = -ENOMEM;
1786 goto out_unlock;
1787 }
1788
1789 pr_debug("%s: aborting association:%p\n",
1790 __func__, asoc);
1791
1792 sctp_primitive_ABORT(net, asoc, chunk);
1793 err = 0;
1794 goto out_unlock;
1795 }
1796 }
1797
1798 /* Do we need to create the association? */
1799 if (!asoc) {
1800 pr_debug("%s: there is no association yet\n", __func__);
1801
1802 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1803 err = -EINVAL;
1804 goto out_unlock;
1805 }
1806
1807 /* Check for invalid stream against the stream counts,
1808 * either the default or the user specified stream counts.
1809 */
1810 if (sinfo) {
1811 if (!sinit || !sinit->sinit_num_ostreams) {
1812 /* Check against the defaults. */
1813 if (sinfo->sinfo_stream >=
1814 sp->initmsg.sinit_num_ostreams) {
1815 err = -EINVAL;
1816 goto out_unlock;
1817 }
1818 } else {
1819 /* Check against the requested. */
1820 if (sinfo->sinfo_stream >=
1821 sinit->sinit_num_ostreams) {
1822 err = -EINVAL;
1823 goto out_unlock;
1824 }
1825 }
1826 }
1827
1828 /*
1829 * API 3.1.2 bind() - UDP Style Syntax
1830 * If a bind() or sctp_bindx() is not called prior to a
1831 * sendmsg() call that initiates a new association, the
1832 * system picks an ephemeral port and will choose an address
1833 * set equivalent to binding with a wildcard address.
1834 */
1835 if (!ep->base.bind_addr.port) {
1836 if (sctp_autobind(sk)) {
1837 err = -EAGAIN;
1838 goto out_unlock;
1839 }
1840 } else {
1841 /*
1842 * If an unprivileged user inherits a one-to-many
1843 * style socket with open associations on a privileged
1844 * port, it MAY be permitted to accept new associations,
1845 * but it SHOULD NOT be permitted to open new
1846 * associations.
1847 */
1848 if (ep->base.bind_addr.port < PROT_SOCK &&
1849 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1850 err = -EACCES;
1851 goto out_unlock;
1852 }
1853 }
1854
1855 scope = sctp_scope(&to);
1856 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1857 if (!new_asoc) {
1858 err = -ENOMEM;
1859 goto out_unlock;
1860 }
1861 asoc = new_asoc;
1862 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1863 if (err < 0) {
1864 err = -ENOMEM;
1865 goto out_free;
1866 }
1867
1868 /* If the SCTP_INIT ancillary data is specified, set all
1869 * the association init values accordingly.
1870 */
1871 if (sinit) {
1872 if (sinit->sinit_num_ostreams) {
1873 asoc->c.sinit_num_ostreams =
1874 sinit->sinit_num_ostreams;
1875 }
1876 if (sinit->sinit_max_instreams) {
1877 asoc->c.sinit_max_instreams =
1878 sinit->sinit_max_instreams;
1879 }
1880 if (sinit->sinit_max_attempts) {
1881 asoc->max_init_attempts
1882 = sinit->sinit_max_attempts;
1883 }
1884 if (sinit->sinit_max_init_timeo) {
1885 asoc->max_init_timeo =
1886 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1887 }
1888 }
1889
1890 /* Prime the peer's transport structures. */
1891 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1892 if (!transport) {
1893 err = -ENOMEM;
1894 goto out_free;
1895 }
1896 }
1897
1898 /* ASSERT: we have a valid association at this point. */
1899 pr_debug("%s: we have a valid association\n", __func__);
1900
1901 if (!sinfo) {
1902 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1903 * one with some defaults.
1904 */
1905 memset(&default_sinfo, 0, sizeof(default_sinfo));
1906 default_sinfo.sinfo_stream = asoc->default_stream;
1907 default_sinfo.sinfo_flags = asoc->default_flags;
1908 default_sinfo.sinfo_ppid = asoc->default_ppid;
1909 default_sinfo.sinfo_context = asoc->default_context;
1910 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1911 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1912
1913 sinfo = &default_sinfo;
1914 } else if (fill_sinfo_ttl) {
1915 /* In case SNDINFO was specified, we still need to fill
1916 * it with a default ttl from the assoc here.
1917 */
1918 sinfo->sinfo_timetolive = asoc->default_timetolive;
1919 }
1920
1921 /* API 7.1.7, the sndbuf size per association bounds the
1922 * maximum size of data that can be sent in a single send call.
1923 */
1924 if (msg_len > sk->sk_sndbuf) {
1925 err = -EMSGSIZE;
1926 goto out_free;
1927 }
1928
1929 if (asoc->pmtu_pending)
1930 sctp_assoc_pending_pmtu(sk, asoc);
1931
1932 /* If fragmentation is disabled and the message length exceeds the
1933 * association fragmentation point, return EMSGSIZE. The I-D
1934 * does not specify what this error is, but this looks like
1935 * a great fit.
1936 */
1937 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1938 err = -EMSGSIZE;
1939 goto out_free;
1940 }
1941
1942 /* Check for invalid stream. */
1943 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1944 err = -EINVAL;
1945 goto out_free;
1946 }
1947
1948 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1949 if (!sctp_wspace(asoc)) {
1950 /* sk can be changed by peel off when waiting for buf. */
1951 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1952 if (err) {
1953 if (err == -ESRCH) {
1954 /* asoc is already dead. */
1955 new_asoc = NULL;
1956 err = -EPIPE;
1957 }
1958 goto out_free;
1959 }
1960 }
1961
1962 /* If an address is passed with the sendto/sendmsg call, it is used
1963 * to override the primary destination address in the TCP model, or
1964 * when SCTP_ADDR_OVER flag is set in the UDP model.
1965 */
1966 if ((sctp_style(sk, TCP) && msg_name) ||
1967 (sinfo_flags & SCTP_ADDR_OVER)) {
1968 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1969 if (!chunk_tp) {
1970 err = -EINVAL;
1971 goto out_free;
1972 }
1973 } else
1974 chunk_tp = NULL;
1975
1976 /* Auto-connect, if we aren't connected already. */
1977 if (sctp_state(asoc, CLOSED)) {
1978 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1979 if (err < 0)
1980 goto out_free;
1981
1982 wait_connect = true;
1983 pr_debug("%s: we associated primitively\n", __func__);
1984 }
1985
1986 /* Break the message into multiple chunks of maximum size. */
1987 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1988 if (IS_ERR(datamsg)) {
1989 err = PTR_ERR(datamsg);
1990 goto out_free;
1991 }
1992
1993 /* Now send the (possibly) fragmented message. */
1994 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1995 sctp_chunk_hold(chunk);
1996
1997 /* Do accounting for the write space. */
1998 sctp_set_owner_w(chunk);
1999
2000 chunk->transport = chunk_tp;
2001 }
2002
2003 /* Send it to the lower layers. Note: all chunks
2004 * must either fail or succeed. The lower layer
2005 * works that way today. Keep it that way or this
2006 * breaks.
2007 */
2008 err = sctp_primitive_SEND(net, asoc, datamsg);
2009 /* Did the lower layer accept the chunk? */
2010 if (err) {
2011 sctp_datamsg_free(datamsg);
2012 goto out_free;
2013 }
2014
2015 pr_debug("%s: we sent primitively\n", __func__);
2016
2017 sctp_datamsg_put(datamsg);
2018 err = msg_len;
2019
2020 if (unlikely(wait_connect)) {
2021 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
2022 sctp_wait_for_connect(asoc, &timeo);
2023 }
2024
2025 /* If we are already past ASSOCIATE, the lower
2026 * layers are responsible for association cleanup.
2027 */
2028 goto out_unlock;
2029
2030 out_free:
2031 if (new_asoc) {
2032 sctp_unhash_established(asoc);
2033 sctp_association_free(asoc);
2034 }
2035 out_unlock:
2036 release_sock(sk);
2037
2038 out_nounlock:
2039 return sctp_error(sk, msg_flags, err);
2040
2041 #if 0
2042 do_sock_err:
2043 if (msg_len)
2044 err = msg_len;
2045 else
2046 err = sock_error(sk);
2047 goto out;
2048
2049 do_interrupted:
2050 if (msg_len)
2051 err = msg_len;
2052 goto out;
2053 #endif /* 0 */
2054 }
2055
2056 /* This is an extended version of skb_pull() that removes the data from the
2057 * start of a skb even when data is spread across the list of skb's in the
2058 * frag_list. len specifies the total amount of data that needs to be removed.
2059 * when 'len' bytes could be removed from the skb, it returns 0.
2060 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2061 * could not be removed.
2062 */
sctp_skb_pull(struct sk_buff * skb,int len)2063 static int sctp_skb_pull(struct sk_buff *skb, int len)
2064 {
2065 struct sk_buff *list;
2066 int skb_len = skb_headlen(skb);
2067 int rlen;
2068
2069 if (len <= skb_len) {
2070 __skb_pull(skb, len);
2071 return 0;
2072 }
2073 len -= skb_len;
2074 __skb_pull(skb, skb_len);
2075
2076 skb_walk_frags(skb, list) {
2077 rlen = sctp_skb_pull(list, len);
2078 skb->len -= (len-rlen);
2079 skb->data_len -= (len-rlen);
2080
2081 if (!rlen)
2082 return 0;
2083
2084 len = rlen;
2085 }
2086
2087 return len;
2088 }
2089
2090 /* API 3.1.3 recvmsg() - UDP Style Syntax
2091 *
2092 * ssize_t recvmsg(int socket, struct msghdr *message,
2093 * int flags);
2094 *
2095 * socket - the socket descriptor of the endpoint.
2096 * message - pointer to the msghdr structure which contains a single
2097 * user message and possibly some ancillary data.
2098 *
2099 * See Section 5 for complete description of the data
2100 * structures.
2101 *
2102 * flags - flags sent or received with the user message, see Section
2103 * 5 for complete description of the flags.
2104 */
sctp_recvmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)2105 static int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
2106 struct msghdr *msg, size_t len, int noblock,
2107 int flags, int *addr_len)
2108 {
2109 struct sctp_ulpevent *event = NULL;
2110 struct sctp_sock *sp = sctp_sk(sk);
2111 struct sk_buff *skb;
2112 int copied;
2113 int err = 0;
2114 int skb_len;
2115
2116 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2117 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2118 addr_len);
2119
2120 lock_sock(sk);
2121
2122 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2123 err = -ENOTCONN;
2124 goto out;
2125 }
2126
2127 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2128 if (!skb)
2129 goto out;
2130
2131 /* Get the total length of the skb including any skb's in the
2132 * frag_list.
2133 */
2134 skb_len = skb->len;
2135
2136 copied = skb_len;
2137 if (copied > len)
2138 copied = len;
2139
2140 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2141
2142 event = sctp_skb2event(skb);
2143
2144 if (err)
2145 goto out_free;
2146
2147 sock_recv_ts_and_drops(msg, sk, skb);
2148 if (sctp_ulpevent_is_notification(event)) {
2149 msg->msg_flags |= MSG_NOTIFICATION;
2150 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2151 } else {
2152 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2153 }
2154
2155 /* Check if we allow SCTP_NXTINFO. */
2156 if (sp->recvnxtinfo)
2157 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2158 /* Check if we allow SCTP_RCVINFO. */
2159 if (sp->recvrcvinfo)
2160 sctp_ulpevent_read_rcvinfo(event, msg);
2161 /* Check if we allow SCTP_SNDRCVINFO. */
2162 if (sp->subscribe.sctp_data_io_event)
2163 sctp_ulpevent_read_sndrcvinfo(event, msg);
2164
2165 #if 0
2166 /* FIXME: we should be calling IP/IPv6 layers. */
2167 if (sk->sk_protinfo.af_inet.cmsg_flags)
2168 ip_cmsg_recv(msg, skb);
2169 #endif
2170
2171 err = copied;
2172
2173 /* If skb's length exceeds the user's buffer, update the skb and
2174 * push it back to the receive_queue so that the next call to
2175 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2176 */
2177 if (skb_len > copied) {
2178 msg->msg_flags &= ~MSG_EOR;
2179 if (flags & MSG_PEEK)
2180 goto out_free;
2181 sctp_skb_pull(skb, copied);
2182 skb_queue_head(&sk->sk_receive_queue, skb);
2183
2184 /* When only partial message is copied to the user, increase
2185 * rwnd by that amount. If all the data in the skb is read,
2186 * rwnd is updated when the event is freed.
2187 */
2188 if (!sctp_ulpevent_is_notification(event))
2189 sctp_assoc_rwnd_increase(event->asoc, copied);
2190 goto out;
2191 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2192 (event->msg_flags & MSG_EOR))
2193 msg->msg_flags |= MSG_EOR;
2194 else
2195 msg->msg_flags &= ~MSG_EOR;
2196
2197 out_free:
2198 if (flags & MSG_PEEK) {
2199 /* Release the skb reference acquired after peeking the skb in
2200 * sctp_skb_recv_datagram().
2201 */
2202 kfree_skb(skb);
2203 } else {
2204 /* Free the event which includes releasing the reference to
2205 * the owner of the skb, freeing the skb and updating the
2206 * rwnd.
2207 */
2208 sctp_ulpevent_free(event);
2209 }
2210 out:
2211 release_sock(sk);
2212 return err;
2213 }
2214
2215 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2216 *
2217 * This option is a on/off flag. If enabled no SCTP message
2218 * fragmentation will be performed. Instead if a message being sent
2219 * exceeds the current PMTU size, the message will NOT be sent and
2220 * instead a error will be indicated to the user.
2221 */
sctp_setsockopt_disable_fragments(struct sock * sk,char __user * optval,unsigned int optlen)2222 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2223 char __user *optval,
2224 unsigned int optlen)
2225 {
2226 int val;
2227
2228 if (optlen < sizeof(int))
2229 return -EINVAL;
2230
2231 if (get_user(val, (int __user *)optval))
2232 return -EFAULT;
2233
2234 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2235
2236 return 0;
2237 }
2238
sctp_setsockopt_events(struct sock * sk,char __user * optval,unsigned int optlen)2239 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2240 unsigned int optlen)
2241 {
2242 struct sctp_association *asoc;
2243 struct sctp_ulpevent *event;
2244
2245 if (optlen > sizeof(struct sctp_event_subscribe))
2246 return -EINVAL;
2247 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2248 return -EFAULT;
2249
2250 if (sctp_sk(sk)->subscribe.sctp_data_io_event)
2251 pr_warn_ratelimited(DEPRECATED "%s (pid %d) "
2252 "Requested SCTP_SNDRCVINFO event.\n"
2253 "Use SCTP_RCVINFO through SCTP_RECVRCVINFO option instead.\n",
2254 current->comm, task_pid_nr(current));
2255
2256 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2257 * if there is no data to be sent or retransmit, the stack will
2258 * immediately send up this notification.
2259 */
2260 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2261 &sctp_sk(sk)->subscribe)) {
2262 asoc = sctp_id2assoc(sk, 0);
2263
2264 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2265 event = sctp_ulpevent_make_sender_dry_event(asoc,
2266 GFP_ATOMIC);
2267 if (!event)
2268 return -ENOMEM;
2269
2270 sctp_ulpq_tail_event(&asoc->ulpq, event);
2271 }
2272 }
2273
2274 return 0;
2275 }
2276
2277 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2278 *
2279 * This socket option is applicable to the UDP-style socket only. When
2280 * set it will cause associations that are idle for more than the
2281 * specified number of seconds to automatically close. An association
2282 * being idle is defined an association that has NOT sent or received
2283 * user data. The special value of '0' indicates that no automatic
2284 * close of any associations should be performed. The option expects an
2285 * integer defining the number of seconds of idle time before an
2286 * association is closed.
2287 */
sctp_setsockopt_autoclose(struct sock * sk,char __user * optval,unsigned int optlen)2288 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2289 unsigned int optlen)
2290 {
2291 struct sctp_sock *sp = sctp_sk(sk);
2292 struct net *net = sock_net(sk);
2293
2294 /* Applicable to UDP-style socket only */
2295 if (sctp_style(sk, TCP))
2296 return -EOPNOTSUPP;
2297 if (optlen != sizeof(int))
2298 return -EINVAL;
2299 if (copy_from_user(&sp->autoclose, optval, optlen))
2300 return -EFAULT;
2301
2302 if (sp->autoclose > net->sctp.max_autoclose)
2303 sp->autoclose = net->sctp.max_autoclose;
2304
2305 return 0;
2306 }
2307
2308 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2309 *
2310 * Applications can enable or disable heartbeats for any peer address of
2311 * an association, modify an address's heartbeat interval, force a
2312 * heartbeat to be sent immediately, and adjust the address's maximum
2313 * number of retransmissions sent before an address is considered
2314 * unreachable. The following structure is used to access and modify an
2315 * address's parameters:
2316 *
2317 * struct sctp_paddrparams {
2318 * sctp_assoc_t spp_assoc_id;
2319 * struct sockaddr_storage spp_address;
2320 * uint32_t spp_hbinterval;
2321 * uint16_t spp_pathmaxrxt;
2322 * uint32_t spp_pathmtu;
2323 * uint32_t spp_sackdelay;
2324 * uint32_t spp_flags;
2325 * };
2326 *
2327 * spp_assoc_id - (one-to-many style socket) This is filled in the
2328 * application, and identifies the association for
2329 * this query.
2330 * spp_address - This specifies which address is of interest.
2331 * spp_hbinterval - This contains the value of the heartbeat interval,
2332 * in milliseconds. If a value of zero
2333 * is present in this field then no changes are to
2334 * be made to this parameter.
2335 * spp_pathmaxrxt - This contains the maximum number of
2336 * retransmissions before this address shall be
2337 * considered unreachable. If a value of zero
2338 * is present in this field then no changes are to
2339 * be made to this parameter.
2340 * spp_pathmtu - When Path MTU discovery is disabled the value
2341 * specified here will be the "fixed" path mtu.
2342 * Note that if the spp_address field is empty
2343 * then all associations on this address will
2344 * have this fixed path mtu set upon them.
2345 *
2346 * spp_sackdelay - When delayed sack is enabled, this value specifies
2347 * the number of milliseconds that sacks will be delayed
2348 * for. This value will apply to all addresses of an
2349 * association if the spp_address field is empty. Note
2350 * also, that if delayed sack is enabled and this
2351 * value is set to 0, no change is made to the last
2352 * recorded delayed sack timer value.
2353 *
2354 * spp_flags - These flags are used to control various features
2355 * on an association. The flag field may contain
2356 * zero or more of the following options.
2357 *
2358 * SPP_HB_ENABLE - Enable heartbeats on the
2359 * specified address. Note that if the address
2360 * field is empty all addresses for the association
2361 * have heartbeats enabled upon them.
2362 *
2363 * SPP_HB_DISABLE - Disable heartbeats on the
2364 * speicifed address. Note that if the address
2365 * field is empty all addresses for the association
2366 * will have their heartbeats disabled. Note also
2367 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2368 * mutually exclusive, only one of these two should
2369 * be specified. Enabling both fields will have
2370 * undetermined results.
2371 *
2372 * SPP_HB_DEMAND - Request a user initiated heartbeat
2373 * to be made immediately.
2374 *
2375 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2376 * heartbeat delayis to be set to the value of 0
2377 * milliseconds.
2378 *
2379 * SPP_PMTUD_ENABLE - This field will enable PMTU
2380 * discovery upon the specified address. Note that
2381 * if the address feild is empty then all addresses
2382 * on the association are effected.
2383 *
2384 * SPP_PMTUD_DISABLE - This field will disable PMTU
2385 * discovery upon the specified address. Note that
2386 * if the address feild is empty then all addresses
2387 * on the association are effected. Not also that
2388 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2389 * exclusive. Enabling both will have undetermined
2390 * results.
2391 *
2392 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2393 * on delayed sack. The time specified in spp_sackdelay
2394 * is used to specify the sack delay for this address. Note
2395 * that if spp_address is empty then all addresses will
2396 * enable delayed sack and take on the sack delay
2397 * value specified in spp_sackdelay.
2398 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2399 * off delayed sack. If the spp_address field is blank then
2400 * delayed sack is disabled for the entire association. Note
2401 * also that this field is mutually exclusive to
2402 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2403 * results.
2404 */
sctp_apply_peer_addr_params(struct sctp_paddrparams * params,struct sctp_transport * trans,struct sctp_association * asoc,struct sctp_sock * sp,int hb_change,int pmtud_change,int sackdelay_change)2405 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2406 struct sctp_transport *trans,
2407 struct sctp_association *asoc,
2408 struct sctp_sock *sp,
2409 int hb_change,
2410 int pmtud_change,
2411 int sackdelay_change)
2412 {
2413 int error;
2414
2415 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2416 struct net *net = sock_net(trans->asoc->base.sk);
2417
2418 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2419 if (error)
2420 return error;
2421 }
2422
2423 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2424 * this field is ignored. Note also that a value of zero indicates
2425 * the current setting should be left unchanged.
2426 */
2427 if (params->spp_flags & SPP_HB_ENABLE) {
2428
2429 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2430 * set. This lets us use 0 value when this flag
2431 * is set.
2432 */
2433 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2434 params->spp_hbinterval = 0;
2435
2436 if (params->spp_hbinterval ||
2437 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2438 if (trans) {
2439 trans->hbinterval =
2440 msecs_to_jiffies(params->spp_hbinterval);
2441 } else if (asoc) {
2442 asoc->hbinterval =
2443 msecs_to_jiffies(params->spp_hbinterval);
2444 } else {
2445 sp->hbinterval = params->spp_hbinterval;
2446 }
2447 }
2448 }
2449
2450 if (hb_change) {
2451 if (trans) {
2452 trans->param_flags =
2453 (trans->param_flags & ~SPP_HB) | hb_change;
2454 } else if (asoc) {
2455 asoc->param_flags =
2456 (asoc->param_flags & ~SPP_HB) | hb_change;
2457 } else {
2458 sp->param_flags =
2459 (sp->param_flags & ~SPP_HB) | hb_change;
2460 }
2461 }
2462
2463 /* When Path MTU discovery is disabled the value specified here will
2464 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2465 * include the flag SPP_PMTUD_DISABLE for this field to have any
2466 * effect).
2467 */
2468 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2469 if (trans) {
2470 trans->pathmtu = params->spp_pathmtu;
2471 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2472 } else if (asoc) {
2473 asoc->pathmtu = params->spp_pathmtu;
2474 sctp_frag_point(asoc, params->spp_pathmtu);
2475 } else {
2476 sp->pathmtu = params->spp_pathmtu;
2477 }
2478 }
2479
2480 if (pmtud_change) {
2481 if (trans) {
2482 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2483 (params->spp_flags & SPP_PMTUD_ENABLE);
2484 trans->param_flags =
2485 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2486 if (update) {
2487 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2488 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2489 }
2490 } else if (asoc) {
2491 asoc->param_flags =
2492 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2493 } else {
2494 sp->param_flags =
2495 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2496 }
2497 }
2498
2499 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2500 * value of this field is ignored. Note also that a value of zero
2501 * indicates the current setting should be left unchanged.
2502 */
2503 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2504 if (trans) {
2505 trans->sackdelay =
2506 msecs_to_jiffies(params->spp_sackdelay);
2507 } else if (asoc) {
2508 asoc->sackdelay =
2509 msecs_to_jiffies(params->spp_sackdelay);
2510 } else {
2511 sp->sackdelay = params->spp_sackdelay;
2512 }
2513 }
2514
2515 if (sackdelay_change) {
2516 if (trans) {
2517 trans->param_flags =
2518 (trans->param_flags & ~SPP_SACKDELAY) |
2519 sackdelay_change;
2520 } else if (asoc) {
2521 asoc->param_flags =
2522 (asoc->param_flags & ~SPP_SACKDELAY) |
2523 sackdelay_change;
2524 } else {
2525 sp->param_flags =
2526 (sp->param_flags & ~SPP_SACKDELAY) |
2527 sackdelay_change;
2528 }
2529 }
2530
2531 /* Note that a value of zero indicates the current setting should be
2532 left unchanged.
2533 */
2534 if (params->spp_pathmaxrxt) {
2535 if (trans) {
2536 trans->pathmaxrxt = params->spp_pathmaxrxt;
2537 } else if (asoc) {
2538 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2539 } else {
2540 sp->pathmaxrxt = params->spp_pathmaxrxt;
2541 }
2542 }
2543
2544 return 0;
2545 }
2546
sctp_setsockopt_peer_addr_params(struct sock * sk,char __user * optval,unsigned int optlen)2547 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2548 char __user *optval,
2549 unsigned int optlen)
2550 {
2551 struct sctp_paddrparams params;
2552 struct sctp_transport *trans = NULL;
2553 struct sctp_association *asoc = NULL;
2554 struct sctp_sock *sp = sctp_sk(sk);
2555 int error;
2556 int hb_change, pmtud_change, sackdelay_change;
2557
2558 if (optlen != sizeof(struct sctp_paddrparams))
2559 return -EINVAL;
2560
2561 if (copy_from_user(¶ms, optval, optlen))
2562 return -EFAULT;
2563
2564 /* Validate flags and value parameters. */
2565 hb_change = params.spp_flags & SPP_HB;
2566 pmtud_change = params.spp_flags & SPP_PMTUD;
2567 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2568
2569 if (hb_change == SPP_HB ||
2570 pmtud_change == SPP_PMTUD ||
2571 sackdelay_change == SPP_SACKDELAY ||
2572 params.spp_sackdelay > 500 ||
2573 (params.spp_pathmtu &&
2574 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2575 return -EINVAL;
2576
2577 /* If an address other than INADDR_ANY is specified, and
2578 * no transport is found, then the request is invalid.
2579 */
2580 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
2581 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
2582 params.spp_assoc_id);
2583 if (!trans)
2584 return -EINVAL;
2585 }
2586
2587 /* Get association, if assoc_id != 0 and the socket is a one
2588 * to many style socket, and an association was not found, then
2589 * the id was invalid.
2590 */
2591 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2592 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2593 return -EINVAL;
2594
2595 /* Heartbeat demand can only be sent on a transport or
2596 * association, but not a socket.
2597 */
2598 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2599 return -EINVAL;
2600
2601 /* Process parameters. */
2602 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp,
2603 hb_change, pmtud_change,
2604 sackdelay_change);
2605
2606 if (error)
2607 return error;
2608
2609 /* If changes are for association, also apply parameters to each
2610 * transport.
2611 */
2612 if (!trans && asoc) {
2613 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2614 transports) {
2615 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp,
2616 hb_change, pmtud_change,
2617 sackdelay_change);
2618 }
2619 }
2620
2621 return 0;
2622 }
2623
sctp_spp_sackdelay_enable(__u32 param_flags)2624 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2625 {
2626 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2627 }
2628
sctp_spp_sackdelay_disable(__u32 param_flags)2629 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2630 {
2631 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2632 }
2633
2634 /*
2635 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2636 *
2637 * This option will effect the way delayed acks are performed. This
2638 * option allows you to get or set the delayed ack time, in
2639 * milliseconds. It also allows changing the delayed ack frequency.
2640 * Changing the frequency to 1 disables the delayed sack algorithm. If
2641 * the assoc_id is 0, then this sets or gets the endpoints default
2642 * values. If the assoc_id field is non-zero, then the set or get
2643 * effects the specified association for the one to many model (the
2644 * assoc_id field is ignored by the one to one model). Note that if
2645 * sack_delay or sack_freq are 0 when setting this option, then the
2646 * current values will remain unchanged.
2647 *
2648 * struct sctp_sack_info {
2649 * sctp_assoc_t sack_assoc_id;
2650 * uint32_t sack_delay;
2651 * uint32_t sack_freq;
2652 * };
2653 *
2654 * sack_assoc_id - This parameter, indicates which association the user
2655 * is performing an action upon. Note that if this field's value is
2656 * zero then the endpoints default value is changed (effecting future
2657 * associations only).
2658 *
2659 * sack_delay - This parameter contains the number of milliseconds that
2660 * the user is requesting the delayed ACK timer be set to. Note that
2661 * this value is defined in the standard to be between 200 and 500
2662 * milliseconds.
2663 *
2664 * sack_freq - This parameter contains the number of packets that must
2665 * be received before a sack is sent without waiting for the delay
2666 * timer to expire. The default value for this is 2, setting this
2667 * value to 1 will disable the delayed sack algorithm.
2668 */
2669
sctp_setsockopt_delayed_ack(struct sock * sk,char __user * optval,unsigned int optlen)2670 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2671 char __user *optval, unsigned int optlen)
2672 {
2673 struct sctp_sack_info params;
2674 struct sctp_transport *trans = NULL;
2675 struct sctp_association *asoc = NULL;
2676 struct sctp_sock *sp = sctp_sk(sk);
2677
2678 if (optlen == sizeof(struct sctp_sack_info)) {
2679 if (copy_from_user(¶ms, optval, optlen))
2680 return -EFAULT;
2681
2682 if (params.sack_delay == 0 && params.sack_freq == 0)
2683 return 0;
2684 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2685 pr_warn_ratelimited(DEPRECATED
2686 "%s (pid %d) "
2687 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2688 "Use struct sctp_sack_info instead\n",
2689 current->comm, task_pid_nr(current));
2690 if (copy_from_user(¶ms, optval, optlen))
2691 return -EFAULT;
2692
2693 if (params.sack_delay == 0)
2694 params.sack_freq = 1;
2695 else
2696 params.sack_freq = 0;
2697 } else
2698 return -EINVAL;
2699
2700 /* Validate value parameter. */
2701 if (params.sack_delay > 500)
2702 return -EINVAL;
2703
2704 /* Get association, if sack_assoc_id != 0 and the socket is a one
2705 * to many style socket, and an association was not found, then
2706 * the id was invalid.
2707 */
2708 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2709 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2710 return -EINVAL;
2711
2712 if (params.sack_delay) {
2713 if (asoc) {
2714 asoc->sackdelay =
2715 msecs_to_jiffies(params.sack_delay);
2716 asoc->param_flags =
2717 sctp_spp_sackdelay_enable(asoc->param_flags);
2718 } else {
2719 sp->sackdelay = params.sack_delay;
2720 sp->param_flags =
2721 sctp_spp_sackdelay_enable(sp->param_flags);
2722 }
2723 }
2724
2725 if (params.sack_freq == 1) {
2726 if (asoc) {
2727 asoc->param_flags =
2728 sctp_spp_sackdelay_disable(asoc->param_flags);
2729 } else {
2730 sp->param_flags =
2731 sctp_spp_sackdelay_disable(sp->param_flags);
2732 }
2733 } else if (params.sack_freq > 1) {
2734 if (asoc) {
2735 asoc->sackfreq = params.sack_freq;
2736 asoc->param_flags =
2737 sctp_spp_sackdelay_enable(asoc->param_flags);
2738 } else {
2739 sp->sackfreq = params.sack_freq;
2740 sp->param_flags =
2741 sctp_spp_sackdelay_enable(sp->param_flags);
2742 }
2743 }
2744
2745 /* If change is for association, also apply to each transport. */
2746 if (asoc) {
2747 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2748 transports) {
2749 if (params.sack_delay) {
2750 trans->sackdelay =
2751 msecs_to_jiffies(params.sack_delay);
2752 trans->param_flags =
2753 sctp_spp_sackdelay_enable(trans->param_flags);
2754 }
2755 if (params.sack_freq == 1) {
2756 trans->param_flags =
2757 sctp_spp_sackdelay_disable(trans->param_flags);
2758 } else if (params.sack_freq > 1) {
2759 trans->sackfreq = params.sack_freq;
2760 trans->param_flags =
2761 sctp_spp_sackdelay_enable(trans->param_flags);
2762 }
2763 }
2764 }
2765
2766 return 0;
2767 }
2768
2769 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2770 *
2771 * Applications can specify protocol parameters for the default association
2772 * initialization. The option name argument to setsockopt() and getsockopt()
2773 * is SCTP_INITMSG.
2774 *
2775 * Setting initialization parameters is effective only on an unconnected
2776 * socket (for UDP-style sockets only future associations are effected
2777 * by the change). With TCP-style sockets, this option is inherited by
2778 * sockets derived from a listener socket.
2779 */
sctp_setsockopt_initmsg(struct sock * sk,char __user * optval,unsigned int optlen)2780 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2781 {
2782 struct sctp_initmsg sinit;
2783 struct sctp_sock *sp = sctp_sk(sk);
2784
2785 if (optlen != sizeof(struct sctp_initmsg))
2786 return -EINVAL;
2787 if (copy_from_user(&sinit, optval, optlen))
2788 return -EFAULT;
2789
2790 if (sinit.sinit_num_ostreams)
2791 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2792 if (sinit.sinit_max_instreams)
2793 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2794 if (sinit.sinit_max_attempts)
2795 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2796 if (sinit.sinit_max_init_timeo)
2797 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2798
2799 return 0;
2800 }
2801
2802 /*
2803 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2804 *
2805 * Applications that wish to use the sendto() system call may wish to
2806 * specify a default set of parameters that would normally be supplied
2807 * through the inclusion of ancillary data. This socket option allows
2808 * such an application to set the default sctp_sndrcvinfo structure.
2809 * The application that wishes to use this socket option simply passes
2810 * in to this call the sctp_sndrcvinfo structure defined in Section
2811 * 5.2.2) The input parameters accepted by this call include
2812 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2813 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2814 * to this call if the caller is using the UDP model.
2815 */
sctp_setsockopt_default_send_param(struct sock * sk,char __user * optval,unsigned int optlen)2816 static int sctp_setsockopt_default_send_param(struct sock *sk,
2817 char __user *optval,
2818 unsigned int optlen)
2819 {
2820 struct sctp_sock *sp = sctp_sk(sk);
2821 struct sctp_association *asoc;
2822 struct sctp_sndrcvinfo info;
2823
2824 if (optlen != sizeof(info))
2825 return -EINVAL;
2826 if (copy_from_user(&info, optval, optlen))
2827 return -EFAULT;
2828 if (info.sinfo_flags &
2829 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2830 SCTP_ABORT | SCTP_EOF))
2831 return -EINVAL;
2832
2833 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2834 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2835 return -EINVAL;
2836 if (asoc) {
2837 asoc->default_stream = info.sinfo_stream;
2838 asoc->default_flags = info.sinfo_flags;
2839 asoc->default_ppid = info.sinfo_ppid;
2840 asoc->default_context = info.sinfo_context;
2841 asoc->default_timetolive = info.sinfo_timetolive;
2842 } else {
2843 sp->default_stream = info.sinfo_stream;
2844 sp->default_flags = info.sinfo_flags;
2845 sp->default_ppid = info.sinfo_ppid;
2846 sp->default_context = info.sinfo_context;
2847 sp->default_timetolive = info.sinfo_timetolive;
2848 }
2849
2850 return 0;
2851 }
2852
2853 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2854 * (SCTP_DEFAULT_SNDINFO)
2855 */
sctp_setsockopt_default_sndinfo(struct sock * sk,char __user * optval,unsigned int optlen)2856 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2857 char __user *optval,
2858 unsigned int optlen)
2859 {
2860 struct sctp_sock *sp = sctp_sk(sk);
2861 struct sctp_association *asoc;
2862 struct sctp_sndinfo info;
2863
2864 if (optlen != sizeof(info))
2865 return -EINVAL;
2866 if (copy_from_user(&info, optval, optlen))
2867 return -EFAULT;
2868 if (info.snd_flags &
2869 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2870 SCTP_ABORT | SCTP_EOF))
2871 return -EINVAL;
2872
2873 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2874 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2875 return -EINVAL;
2876 if (asoc) {
2877 asoc->default_stream = info.snd_sid;
2878 asoc->default_flags = info.snd_flags;
2879 asoc->default_ppid = info.snd_ppid;
2880 asoc->default_context = info.snd_context;
2881 } else {
2882 sp->default_stream = info.snd_sid;
2883 sp->default_flags = info.snd_flags;
2884 sp->default_ppid = info.snd_ppid;
2885 sp->default_context = info.snd_context;
2886 }
2887
2888 return 0;
2889 }
2890
2891 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2892 *
2893 * Requests that the local SCTP stack use the enclosed peer address as
2894 * the association primary. The enclosed address must be one of the
2895 * association peer's addresses.
2896 */
sctp_setsockopt_primary_addr(struct sock * sk,char __user * optval,unsigned int optlen)2897 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2898 unsigned int optlen)
2899 {
2900 struct sctp_prim prim;
2901 struct sctp_transport *trans;
2902
2903 if (optlen != sizeof(struct sctp_prim))
2904 return -EINVAL;
2905
2906 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2907 return -EFAULT;
2908
2909 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2910 if (!trans)
2911 return -EINVAL;
2912
2913 sctp_assoc_set_primary(trans->asoc, trans);
2914
2915 return 0;
2916 }
2917
2918 /*
2919 * 7.1.5 SCTP_NODELAY
2920 *
2921 * Turn on/off any Nagle-like algorithm. This means that packets are
2922 * generally sent as soon as possible and no unnecessary delays are
2923 * introduced, at the cost of more packets in the network. Expects an
2924 * integer boolean flag.
2925 */
sctp_setsockopt_nodelay(struct sock * sk,char __user * optval,unsigned int optlen)2926 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2927 unsigned int optlen)
2928 {
2929 int val;
2930
2931 if (optlen < sizeof(int))
2932 return -EINVAL;
2933 if (get_user(val, (int __user *)optval))
2934 return -EFAULT;
2935
2936 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2937 return 0;
2938 }
2939
2940 /*
2941 *
2942 * 7.1.1 SCTP_RTOINFO
2943 *
2944 * The protocol parameters used to initialize and bound retransmission
2945 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2946 * and modify these parameters.
2947 * All parameters are time values, in milliseconds. A value of 0, when
2948 * modifying the parameters, indicates that the current value should not
2949 * be changed.
2950 *
2951 */
sctp_setsockopt_rtoinfo(struct sock * sk,char __user * optval,unsigned int optlen)2952 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2953 {
2954 struct sctp_rtoinfo rtoinfo;
2955 struct sctp_association *asoc;
2956 unsigned long rto_min, rto_max;
2957 struct sctp_sock *sp = sctp_sk(sk);
2958
2959 if (optlen != sizeof (struct sctp_rtoinfo))
2960 return -EINVAL;
2961
2962 if (copy_from_user(&rtoinfo, optval, optlen))
2963 return -EFAULT;
2964
2965 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2966
2967 /* Set the values to the specific association */
2968 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2969 return -EINVAL;
2970
2971 rto_max = rtoinfo.srto_max;
2972 rto_min = rtoinfo.srto_min;
2973
2974 if (rto_max)
2975 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2976 else
2977 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2978
2979 if (rto_min)
2980 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2981 else
2982 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2983
2984 if (rto_min > rto_max)
2985 return -EINVAL;
2986
2987 if (asoc) {
2988 if (rtoinfo.srto_initial != 0)
2989 asoc->rto_initial =
2990 msecs_to_jiffies(rtoinfo.srto_initial);
2991 asoc->rto_max = rto_max;
2992 asoc->rto_min = rto_min;
2993 } else {
2994 /* If there is no association or the association-id = 0
2995 * set the values to the endpoint.
2996 */
2997 if (rtoinfo.srto_initial != 0)
2998 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2999 sp->rtoinfo.srto_max = rto_max;
3000 sp->rtoinfo.srto_min = rto_min;
3001 }
3002
3003 return 0;
3004 }
3005
3006 /*
3007 *
3008 * 7.1.2 SCTP_ASSOCINFO
3009 *
3010 * This option is used to tune the maximum retransmission attempts
3011 * of the association.
3012 * Returns an error if the new association retransmission value is
3013 * greater than the sum of the retransmission value of the peer.
3014 * See [SCTP] for more information.
3015 *
3016 */
sctp_setsockopt_associnfo(struct sock * sk,char __user * optval,unsigned int optlen)3017 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
3018 {
3019
3020 struct sctp_assocparams assocparams;
3021 struct sctp_association *asoc;
3022
3023 if (optlen != sizeof(struct sctp_assocparams))
3024 return -EINVAL;
3025 if (copy_from_user(&assocparams, optval, optlen))
3026 return -EFAULT;
3027
3028 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3029
3030 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
3031 return -EINVAL;
3032
3033 /* Set the values to the specific association */
3034 if (asoc) {
3035 if (assocparams.sasoc_asocmaxrxt != 0) {
3036 __u32 path_sum = 0;
3037 int paths = 0;
3038 struct sctp_transport *peer_addr;
3039
3040 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3041 transports) {
3042 path_sum += peer_addr->pathmaxrxt;
3043 paths++;
3044 }
3045
3046 /* Only validate asocmaxrxt if we have more than
3047 * one path/transport. We do this because path
3048 * retransmissions are only counted when we have more
3049 * then one path.
3050 */
3051 if (paths > 1 &&
3052 assocparams.sasoc_asocmaxrxt > path_sum)
3053 return -EINVAL;
3054
3055 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3056 }
3057
3058 if (assocparams.sasoc_cookie_life != 0)
3059 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3060 } else {
3061 /* Set the values to the endpoint */
3062 struct sctp_sock *sp = sctp_sk(sk);
3063
3064 if (assocparams.sasoc_asocmaxrxt != 0)
3065 sp->assocparams.sasoc_asocmaxrxt =
3066 assocparams.sasoc_asocmaxrxt;
3067 if (assocparams.sasoc_cookie_life != 0)
3068 sp->assocparams.sasoc_cookie_life =
3069 assocparams.sasoc_cookie_life;
3070 }
3071 return 0;
3072 }
3073
3074 /*
3075 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3076 *
3077 * This socket option is a boolean flag which turns on or off mapped V4
3078 * addresses. If this option is turned on and the socket is type
3079 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3080 * If this option is turned off, then no mapping will be done of V4
3081 * addresses and a user will receive both PF_INET6 and PF_INET type
3082 * addresses on the socket.
3083 */
sctp_setsockopt_mappedv4(struct sock * sk,char __user * optval,unsigned int optlen)3084 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3085 {
3086 int val;
3087 struct sctp_sock *sp = sctp_sk(sk);
3088
3089 if (optlen < sizeof(int))
3090 return -EINVAL;
3091 if (get_user(val, (int __user *)optval))
3092 return -EFAULT;
3093 if (val)
3094 sp->v4mapped = 1;
3095 else
3096 sp->v4mapped = 0;
3097
3098 return 0;
3099 }
3100
3101 /*
3102 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3103 * This option will get or set the maximum size to put in any outgoing
3104 * SCTP DATA chunk. If a message is larger than this size it will be
3105 * fragmented by SCTP into the specified size. Note that the underlying
3106 * SCTP implementation may fragment into smaller sized chunks when the
3107 * PMTU of the underlying association is smaller than the value set by
3108 * the user. The default value for this option is '0' which indicates
3109 * the user is NOT limiting fragmentation and only the PMTU will effect
3110 * SCTP's choice of DATA chunk size. Note also that values set larger
3111 * than the maximum size of an IP datagram will effectively let SCTP
3112 * control fragmentation (i.e. the same as setting this option to 0).
3113 *
3114 * The following structure is used to access and modify this parameter:
3115 *
3116 * struct sctp_assoc_value {
3117 * sctp_assoc_t assoc_id;
3118 * uint32_t assoc_value;
3119 * };
3120 *
3121 * assoc_id: This parameter is ignored for one-to-one style sockets.
3122 * For one-to-many style sockets this parameter indicates which
3123 * association the user is performing an action upon. Note that if
3124 * this field's value is zero then the endpoints default value is
3125 * changed (effecting future associations only).
3126 * assoc_value: This parameter specifies the maximum size in bytes.
3127 */
sctp_setsockopt_maxseg(struct sock * sk,char __user * optval,unsigned int optlen)3128 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3129 {
3130 struct sctp_assoc_value params;
3131 struct sctp_association *asoc;
3132 struct sctp_sock *sp = sctp_sk(sk);
3133 int val;
3134
3135 if (optlen == sizeof(int)) {
3136 pr_warn_ratelimited(DEPRECATED
3137 "%s (pid %d) "
3138 "Use of int in maxseg socket option.\n"
3139 "Use struct sctp_assoc_value instead\n",
3140 current->comm, task_pid_nr(current));
3141 if (copy_from_user(&val, optval, optlen))
3142 return -EFAULT;
3143 params.assoc_id = 0;
3144 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3145 if (copy_from_user(¶ms, optval, optlen))
3146 return -EFAULT;
3147 val = params.assoc_value;
3148 } else
3149 return -EINVAL;
3150
3151 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3152 return -EINVAL;
3153
3154 asoc = sctp_id2assoc(sk, params.assoc_id);
3155 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3156 return -EINVAL;
3157
3158 if (asoc) {
3159 if (val == 0) {
3160 val = asoc->pathmtu;
3161 val -= sp->pf->af->net_header_len;
3162 val -= sizeof(struct sctphdr) +
3163 sizeof(struct sctp_data_chunk);
3164 }
3165 asoc->user_frag = val;
3166 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3167 } else {
3168 sp->user_frag = val;
3169 }
3170
3171 return 0;
3172 }
3173
3174
3175 /*
3176 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3177 *
3178 * Requests that the peer mark the enclosed address as the association
3179 * primary. The enclosed address must be one of the association's
3180 * locally bound addresses. The following structure is used to make a
3181 * set primary request:
3182 */
sctp_setsockopt_peer_primary_addr(struct sock * sk,char __user * optval,unsigned int optlen)3183 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3184 unsigned int optlen)
3185 {
3186 struct net *net = sock_net(sk);
3187 struct sctp_sock *sp;
3188 struct sctp_association *asoc = NULL;
3189 struct sctp_setpeerprim prim;
3190 struct sctp_chunk *chunk;
3191 struct sctp_af *af;
3192 int err;
3193
3194 sp = sctp_sk(sk);
3195
3196 if (!net->sctp.addip_enable)
3197 return -EPERM;
3198
3199 if (optlen != sizeof(struct sctp_setpeerprim))
3200 return -EINVAL;
3201
3202 if (copy_from_user(&prim, optval, optlen))
3203 return -EFAULT;
3204
3205 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3206 if (!asoc)
3207 return -EINVAL;
3208
3209 if (!asoc->peer.asconf_capable)
3210 return -EPERM;
3211
3212 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3213 return -EPERM;
3214
3215 if (!sctp_state(asoc, ESTABLISHED))
3216 return -ENOTCONN;
3217
3218 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3219 if (!af)
3220 return -EINVAL;
3221
3222 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3223 return -EADDRNOTAVAIL;
3224
3225 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3226 return -EADDRNOTAVAIL;
3227
3228 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3229 chunk = sctp_make_asconf_set_prim(asoc,
3230 (union sctp_addr *)&prim.sspp_addr);
3231 if (!chunk)
3232 return -ENOMEM;
3233
3234 err = sctp_send_asconf(asoc, chunk);
3235
3236 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3237
3238 return err;
3239 }
3240
sctp_setsockopt_adaptation_layer(struct sock * sk,char __user * optval,unsigned int optlen)3241 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3242 unsigned int optlen)
3243 {
3244 struct sctp_setadaptation adaptation;
3245
3246 if (optlen != sizeof(struct sctp_setadaptation))
3247 return -EINVAL;
3248 if (copy_from_user(&adaptation, optval, optlen))
3249 return -EFAULT;
3250
3251 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3252
3253 return 0;
3254 }
3255
3256 /*
3257 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3258 *
3259 * The context field in the sctp_sndrcvinfo structure is normally only
3260 * used when a failed message is retrieved holding the value that was
3261 * sent down on the actual send call. This option allows the setting of
3262 * a default context on an association basis that will be received on
3263 * reading messages from the peer. This is especially helpful in the
3264 * one-2-many model for an application to keep some reference to an
3265 * internal state machine that is processing messages on the
3266 * association. Note that the setting of this value only effects
3267 * received messages from the peer and does not effect the value that is
3268 * saved with outbound messages.
3269 */
sctp_setsockopt_context(struct sock * sk,char __user * optval,unsigned int optlen)3270 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3271 unsigned int optlen)
3272 {
3273 struct sctp_assoc_value params;
3274 struct sctp_sock *sp;
3275 struct sctp_association *asoc;
3276
3277 if (optlen != sizeof(struct sctp_assoc_value))
3278 return -EINVAL;
3279 if (copy_from_user(¶ms, optval, optlen))
3280 return -EFAULT;
3281
3282 sp = sctp_sk(sk);
3283
3284 if (params.assoc_id != 0) {
3285 asoc = sctp_id2assoc(sk, params.assoc_id);
3286 if (!asoc)
3287 return -EINVAL;
3288 asoc->default_rcv_context = params.assoc_value;
3289 } else {
3290 sp->default_rcv_context = params.assoc_value;
3291 }
3292
3293 return 0;
3294 }
3295
3296 /*
3297 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3298 *
3299 * This options will at a minimum specify if the implementation is doing
3300 * fragmented interleave. Fragmented interleave, for a one to many
3301 * socket, is when subsequent calls to receive a message may return
3302 * parts of messages from different associations. Some implementations
3303 * may allow you to turn this value on or off. If so, when turned off,
3304 * no fragment interleave will occur (which will cause a head of line
3305 * blocking amongst multiple associations sharing the same one to many
3306 * socket). When this option is turned on, then each receive call may
3307 * come from a different association (thus the user must receive data
3308 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3309 * association each receive belongs to.
3310 *
3311 * This option takes a boolean value. A non-zero value indicates that
3312 * fragmented interleave is on. A value of zero indicates that
3313 * fragmented interleave is off.
3314 *
3315 * Note that it is important that an implementation that allows this
3316 * option to be turned on, have it off by default. Otherwise an unaware
3317 * application using the one to many model may become confused and act
3318 * incorrectly.
3319 */
sctp_setsockopt_fragment_interleave(struct sock * sk,char __user * optval,unsigned int optlen)3320 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3321 char __user *optval,
3322 unsigned int optlen)
3323 {
3324 int val;
3325
3326 if (optlen != sizeof(int))
3327 return -EINVAL;
3328 if (get_user(val, (int __user *)optval))
3329 return -EFAULT;
3330
3331 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3332
3333 return 0;
3334 }
3335
3336 /*
3337 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3338 * (SCTP_PARTIAL_DELIVERY_POINT)
3339 *
3340 * This option will set or get the SCTP partial delivery point. This
3341 * point is the size of a message where the partial delivery API will be
3342 * invoked to help free up rwnd space for the peer. Setting this to a
3343 * lower value will cause partial deliveries to happen more often. The
3344 * calls argument is an integer that sets or gets the partial delivery
3345 * point. Note also that the call will fail if the user attempts to set
3346 * this value larger than the socket receive buffer size.
3347 *
3348 * Note that any single message having a length smaller than or equal to
3349 * the SCTP partial delivery point will be delivered in one single read
3350 * call as long as the user provided buffer is large enough to hold the
3351 * message.
3352 */
sctp_setsockopt_partial_delivery_point(struct sock * sk,char __user * optval,unsigned int optlen)3353 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3354 char __user *optval,
3355 unsigned int optlen)
3356 {
3357 u32 val;
3358
3359 if (optlen != sizeof(u32))
3360 return -EINVAL;
3361 if (get_user(val, (int __user *)optval))
3362 return -EFAULT;
3363
3364 /* Note: We double the receive buffer from what the user sets
3365 * it to be, also initial rwnd is based on rcvbuf/2.
3366 */
3367 if (val > (sk->sk_rcvbuf >> 1))
3368 return -EINVAL;
3369
3370 sctp_sk(sk)->pd_point = val;
3371
3372 return 0; /* is this the right error code? */
3373 }
3374
3375 /*
3376 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3377 *
3378 * This option will allow a user to change the maximum burst of packets
3379 * that can be emitted by this association. Note that the default value
3380 * is 4, and some implementations may restrict this setting so that it
3381 * can only be lowered.
3382 *
3383 * NOTE: This text doesn't seem right. Do this on a socket basis with
3384 * future associations inheriting the socket value.
3385 */
sctp_setsockopt_maxburst(struct sock * sk,char __user * optval,unsigned int optlen)3386 static int sctp_setsockopt_maxburst(struct sock *sk,
3387 char __user *optval,
3388 unsigned int optlen)
3389 {
3390 struct sctp_assoc_value params;
3391 struct sctp_sock *sp;
3392 struct sctp_association *asoc;
3393 int val;
3394 int assoc_id = 0;
3395
3396 if (optlen == sizeof(int)) {
3397 pr_warn_ratelimited(DEPRECATED
3398 "%s (pid %d) "
3399 "Use of int in max_burst socket option deprecated.\n"
3400 "Use struct sctp_assoc_value instead\n",
3401 current->comm, task_pid_nr(current));
3402 if (copy_from_user(&val, optval, optlen))
3403 return -EFAULT;
3404 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3405 if (copy_from_user(¶ms, optval, optlen))
3406 return -EFAULT;
3407 val = params.assoc_value;
3408 assoc_id = params.assoc_id;
3409 } else
3410 return -EINVAL;
3411
3412 sp = sctp_sk(sk);
3413
3414 if (assoc_id != 0) {
3415 asoc = sctp_id2assoc(sk, assoc_id);
3416 if (!asoc)
3417 return -EINVAL;
3418 asoc->max_burst = val;
3419 } else
3420 sp->max_burst = val;
3421
3422 return 0;
3423 }
3424
3425 /*
3426 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3427 *
3428 * This set option adds a chunk type that the user is requesting to be
3429 * received only in an authenticated way. Changes to the list of chunks
3430 * will only effect future associations on the socket.
3431 */
sctp_setsockopt_auth_chunk(struct sock * sk,char __user * optval,unsigned int optlen)3432 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3433 char __user *optval,
3434 unsigned int optlen)
3435 {
3436 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3437 struct sctp_authchunk val;
3438
3439 if (!ep->auth_enable)
3440 return -EACCES;
3441
3442 if (optlen != sizeof(struct sctp_authchunk))
3443 return -EINVAL;
3444 if (copy_from_user(&val, optval, optlen))
3445 return -EFAULT;
3446
3447 switch (val.sauth_chunk) {
3448 case SCTP_CID_INIT:
3449 case SCTP_CID_INIT_ACK:
3450 case SCTP_CID_SHUTDOWN_COMPLETE:
3451 case SCTP_CID_AUTH:
3452 return -EINVAL;
3453 }
3454
3455 /* add this chunk id to the endpoint */
3456 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3457 }
3458
3459 /*
3460 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3461 *
3462 * This option gets or sets the list of HMAC algorithms that the local
3463 * endpoint requires the peer to use.
3464 */
sctp_setsockopt_hmac_ident(struct sock * sk,char __user * optval,unsigned int optlen)3465 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3466 char __user *optval,
3467 unsigned int optlen)
3468 {
3469 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3470 struct sctp_hmacalgo *hmacs;
3471 u32 idents;
3472 int err;
3473
3474 if (!ep->auth_enable)
3475 return -EACCES;
3476
3477 if (optlen < sizeof(struct sctp_hmacalgo))
3478 return -EINVAL;
3479
3480 hmacs = memdup_user(optval, optlen);
3481 if (IS_ERR(hmacs))
3482 return PTR_ERR(hmacs);
3483
3484 idents = hmacs->shmac_num_idents;
3485 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3486 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3487 err = -EINVAL;
3488 goto out;
3489 }
3490
3491 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3492 out:
3493 kfree(hmacs);
3494 return err;
3495 }
3496
3497 /*
3498 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3499 *
3500 * This option will set a shared secret key which is used to build an
3501 * association shared key.
3502 */
sctp_setsockopt_auth_key(struct sock * sk,char __user * optval,unsigned int optlen)3503 static int sctp_setsockopt_auth_key(struct sock *sk,
3504 char __user *optval,
3505 unsigned int optlen)
3506 {
3507 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3508 struct sctp_authkey *authkey;
3509 struct sctp_association *asoc;
3510 int ret;
3511
3512 if (!ep->auth_enable)
3513 return -EACCES;
3514
3515 if (optlen <= sizeof(struct sctp_authkey))
3516 return -EINVAL;
3517
3518 authkey = memdup_user(optval, optlen);
3519 if (IS_ERR(authkey))
3520 return PTR_ERR(authkey);
3521
3522 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3523 ret = -EINVAL;
3524 goto out;
3525 }
3526
3527 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3528 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3529 ret = -EINVAL;
3530 goto out;
3531 }
3532
3533 ret = sctp_auth_set_key(ep, asoc, authkey);
3534 out:
3535 kzfree(authkey);
3536 return ret;
3537 }
3538
3539 /*
3540 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3541 *
3542 * This option will get or set the active shared key to be used to build
3543 * the association shared key.
3544 */
sctp_setsockopt_active_key(struct sock * sk,char __user * optval,unsigned int optlen)3545 static int sctp_setsockopt_active_key(struct sock *sk,
3546 char __user *optval,
3547 unsigned int optlen)
3548 {
3549 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3550 struct sctp_authkeyid val;
3551 struct sctp_association *asoc;
3552
3553 if (!ep->auth_enable)
3554 return -EACCES;
3555
3556 if (optlen != sizeof(struct sctp_authkeyid))
3557 return -EINVAL;
3558 if (copy_from_user(&val, optval, optlen))
3559 return -EFAULT;
3560
3561 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3562 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3563 return -EINVAL;
3564
3565 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3566 }
3567
3568 /*
3569 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3570 *
3571 * This set option will delete a shared secret key from use.
3572 */
sctp_setsockopt_del_key(struct sock * sk,char __user * optval,unsigned int optlen)3573 static int sctp_setsockopt_del_key(struct sock *sk,
3574 char __user *optval,
3575 unsigned int optlen)
3576 {
3577 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3578 struct sctp_authkeyid val;
3579 struct sctp_association *asoc;
3580
3581 if (!ep->auth_enable)
3582 return -EACCES;
3583
3584 if (optlen != sizeof(struct sctp_authkeyid))
3585 return -EINVAL;
3586 if (copy_from_user(&val, optval, optlen))
3587 return -EFAULT;
3588
3589 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3590 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3591 return -EINVAL;
3592
3593 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3594
3595 }
3596
3597 /*
3598 * 8.1.23 SCTP_AUTO_ASCONF
3599 *
3600 * This option will enable or disable the use of the automatic generation of
3601 * ASCONF chunks to add and delete addresses to an existing association. Note
3602 * that this option has two caveats namely: a) it only affects sockets that
3603 * are bound to all addresses available to the SCTP stack, and b) the system
3604 * administrator may have an overriding control that turns the ASCONF feature
3605 * off no matter what setting the socket option may have.
3606 * This option expects an integer boolean flag, where a non-zero value turns on
3607 * the option, and a zero value turns off the option.
3608 * Note. In this implementation, socket operation overrides default parameter
3609 * being set by sysctl as well as FreeBSD implementation
3610 */
sctp_setsockopt_auto_asconf(struct sock * sk,char __user * optval,unsigned int optlen)3611 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3612 unsigned int optlen)
3613 {
3614 int val;
3615 struct sctp_sock *sp = sctp_sk(sk);
3616
3617 if (optlen < sizeof(int))
3618 return -EINVAL;
3619 if (get_user(val, (int __user *)optval))
3620 return -EFAULT;
3621 if (!sctp_is_ep_boundall(sk) && val)
3622 return -EINVAL;
3623 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3624 return 0;
3625
3626 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3627 if (val == 0 && sp->do_auto_asconf) {
3628 list_del(&sp->auto_asconf_list);
3629 sp->do_auto_asconf = 0;
3630 } else if (val && !sp->do_auto_asconf) {
3631 list_add_tail(&sp->auto_asconf_list,
3632 &sock_net(sk)->sctp.auto_asconf_splist);
3633 sp->do_auto_asconf = 1;
3634 }
3635 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3636 return 0;
3637 }
3638
3639 /*
3640 * SCTP_PEER_ADDR_THLDS
3641 *
3642 * This option allows us to alter the partially failed threshold for one or all
3643 * transports in an association. See Section 6.1 of:
3644 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3645 */
sctp_setsockopt_paddr_thresholds(struct sock * sk,char __user * optval,unsigned int optlen)3646 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3647 char __user *optval,
3648 unsigned int optlen)
3649 {
3650 struct sctp_paddrthlds val;
3651 struct sctp_transport *trans;
3652 struct sctp_association *asoc;
3653
3654 if (optlen < sizeof(struct sctp_paddrthlds))
3655 return -EINVAL;
3656 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3657 sizeof(struct sctp_paddrthlds)))
3658 return -EFAULT;
3659
3660
3661 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3662 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3663 if (!asoc)
3664 return -ENOENT;
3665 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3666 transports) {
3667 if (val.spt_pathmaxrxt)
3668 trans->pathmaxrxt = val.spt_pathmaxrxt;
3669 trans->pf_retrans = val.spt_pathpfthld;
3670 }
3671
3672 if (val.spt_pathmaxrxt)
3673 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3674 asoc->pf_retrans = val.spt_pathpfthld;
3675 } else {
3676 trans = sctp_addr_id2transport(sk, &val.spt_address,
3677 val.spt_assoc_id);
3678 if (!trans)
3679 return -ENOENT;
3680
3681 if (val.spt_pathmaxrxt)
3682 trans->pathmaxrxt = val.spt_pathmaxrxt;
3683 trans->pf_retrans = val.spt_pathpfthld;
3684 }
3685
3686 return 0;
3687 }
3688
sctp_setsockopt_recvrcvinfo(struct sock * sk,char __user * optval,unsigned int optlen)3689 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3690 char __user *optval,
3691 unsigned int optlen)
3692 {
3693 int val;
3694
3695 if (optlen < sizeof(int))
3696 return -EINVAL;
3697 if (get_user(val, (int __user *) optval))
3698 return -EFAULT;
3699
3700 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3701
3702 return 0;
3703 }
3704
sctp_setsockopt_recvnxtinfo(struct sock * sk,char __user * optval,unsigned int optlen)3705 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3706 char __user *optval,
3707 unsigned int optlen)
3708 {
3709 int val;
3710
3711 if (optlen < sizeof(int))
3712 return -EINVAL;
3713 if (get_user(val, (int __user *) optval))
3714 return -EFAULT;
3715
3716 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3717
3718 return 0;
3719 }
3720
3721 /* API 6.2 setsockopt(), getsockopt()
3722 *
3723 * Applications use setsockopt() and getsockopt() to set or retrieve
3724 * socket options. Socket options are used to change the default
3725 * behavior of sockets calls. They are described in Section 7.
3726 *
3727 * The syntax is:
3728 *
3729 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3730 * int __user *optlen);
3731 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3732 * int optlen);
3733 *
3734 * sd - the socket descript.
3735 * level - set to IPPROTO_SCTP for all SCTP options.
3736 * optname - the option name.
3737 * optval - the buffer to store the value of the option.
3738 * optlen - the size of the buffer.
3739 */
sctp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)3740 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3741 char __user *optval, unsigned int optlen)
3742 {
3743 int retval = 0;
3744
3745 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3746
3747 /* I can hardly begin to describe how wrong this is. This is
3748 * so broken as to be worse than useless. The API draft
3749 * REALLY is NOT helpful here... I am not convinced that the
3750 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3751 * are at all well-founded.
3752 */
3753 if (level != SOL_SCTP) {
3754 struct sctp_af *af = sctp_sk(sk)->pf->af;
3755 retval = af->setsockopt(sk, level, optname, optval, optlen);
3756 goto out_nounlock;
3757 }
3758
3759 lock_sock(sk);
3760
3761 switch (optname) {
3762 case SCTP_SOCKOPT_BINDX_ADD:
3763 /* 'optlen' is the size of the addresses buffer. */
3764 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3765 optlen, SCTP_BINDX_ADD_ADDR);
3766 break;
3767
3768 case SCTP_SOCKOPT_BINDX_REM:
3769 /* 'optlen' is the size of the addresses buffer. */
3770 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3771 optlen, SCTP_BINDX_REM_ADDR);
3772 break;
3773
3774 case SCTP_SOCKOPT_CONNECTX_OLD:
3775 /* 'optlen' is the size of the addresses buffer. */
3776 retval = sctp_setsockopt_connectx_old(sk,
3777 (struct sockaddr __user *)optval,
3778 optlen);
3779 break;
3780
3781 case SCTP_SOCKOPT_CONNECTX:
3782 /* 'optlen' is the size of the addresses buffer. */
3783 retval = sctp_setsockopt_connectx(sk,
3784 (struct sockaddr __user *)optval,
3785 optlen);
3786 break;
3787
3788 case SCTP_DISABLE_FRAGMENTS:
3789 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3790 break;
3791
3792 case SCTP_EVENTS:
3793 retval = sctp_setsockopt_events(sk, optval, optlen);
3794 break;
3795
3796 case SCTP_AUTOCLOSE:
3797 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3798 break;
3799
3800 case SCTP_PEER_ADDR_PARAMS:
3801 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3802 break;
3803
3804 case SCTP_DELAYED_SACK:
3805 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3806 break;
3807 case SCTP_PARTIAL_DELIVERY_POINT:
3808 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3809 break;
3810
3811 case SCTP_INITMSG:
3812 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3813 break;
3814 case SCTP_DEFAULT_SEND_PARAM:
3815 retval = sctp_setsockopt_default_send_param(sk, optval,
3816 optlen);
3817 break;
3818 case SCTP_DEFAULT_SNDINFO:
3819 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3820 break;
3821 case SCTP_PRIMARY_ADDR:
3822 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3823 break;
3824 case SCTP_SET_PEER_PRIMARY_ADDR:
3825 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3826 break;
3827 case SCTP_NODELAY:
3828 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3829 break;
3830 case SCTP_RTOINFO:
3831 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3832 break;
3833 case SCTP_ASSOCINFO:
3834 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3835 break;
3836 case SCTP_I_WANT_MAPPED_V4_ADDR:
3837 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3838 break;
3839 case SCTP_MAXSEG:
3840 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3841 break;
3842 case SCTP_ADAPTATION_LAYER:
3843 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3844 break;
3845 case SCTP_CONTEXT:
3846 retval = sctp_setsockopt_context(sk, optval, optlen);
3847 break;
3848 case SCTP_FRAGMENT_INTERLEAVE:
3849 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3850 break;
3851 case SCTP_MAX_BURST:
3852 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3853 break;
3854 case SCTP_AUTH_CHUNK:
3855 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3856 break;
3857 case SCTP_HMAC_IDENT:
3858 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3859 break;
3860 case SCTP_AUTH_KEY:
3861 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3862 break;
3863 case SCTP_AUTH_ACTIVE_KEY:
3864 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3865 break;
3866 case SCTP_AUTH_DELETE_KEY:
3867 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3868 break;
3869 case SCTP_AUTO_ASCONF:
3870 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3871 break;
3872 case SCTP_PEER_ADDR_THLDS:
3873 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3874 break;
3875 case SCTP_RECVRCVINFO:
3876 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3877 break;
3878 case SCTP_RECVNXTINFO:
3879 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3880 break;
3881 default:
3882 retval = -ENOPROTOOPT;
3883 break;
3884 }
3885
3886 release_sock(sk);
3887
3888 out_nounlock:
3889 return retval;
3890 }
3891
3892 /* API 3.1.6 connect() - UDP Style Syntax
3893 *
3894 * An application may use the connect() call in the UDP model to initiate an
3895 * association without sending data.
3896 *
3897 * The syntax is:
3898 *
3899 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3900 *
3901 * sd: the socket descriptor to have a new association added to.
3902 *
3903 * nam: the address structure (either struct sockaddr_in or struct
3904 * sockaddr_in6 defined in RFC2553 [7]).
3905 *
3906 * len: the size of the address.
3907 */
sctp_connect(struct sock * sk,struct sockaddr * addr,int addr_len)3908 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3909 int addr_len)
3910 {
3911 int err = 0;
3912 struct sctp_af *af;
3913
3914 lock_sock(sk);
3915
3916 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3917 addr, addr_len);
3918
3919 /* Validate addr_len before calling common connect/connectx routine. */
3920 af = sctp_get_af_specific(addr->sa_family);
3921 if (!af || addr_len < af->sockaddr_len) {
3922 err = -EINVAL;
3923 } else {
3924 /* Pass correct addr len to common routine (so it knows there
3925 * is only one address being passed.
3926 */
3927 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3928 }
3929
3930 release_sock(sk);
3931 return err;
3932 }
3933
3934 /* FIXME: Write comments. */
sctp_disconnect(struct sock * sk,int flags)3935 static int sctp_disconnect(struct sock *sk, int flags)
3936 {
3937 return -EOPNOTSUPP; /* STUB */
3938 }
3939
3940 /* 4.1.4 accept() - TCP Style Syntax
3941 *
3942 * Applications use accept() call to remove an established SCTP
3943 * association from the accept queue of the endpoint. A new socket
3944 * descriptor will be returned from accept() to represent the newly
3945 * formed association.
3946 */
sctp_accept(struct sock * sk,int flags,int * err)3947 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3948 {
3949 struct sctp_sock *sp;
3950 struct sctp_endpoint *ep;
3951 struct sock *newsk = NULL;
3952 struct sctp_association *asoc;
3953 long timeo;
3954 int error = 0;
3955
3956 lock_sock(sk);
3957
3958 sp = sctp_sk(sk);
3959 ep = sp->ep;
3960
3961 if (!sctp_style(sk, TCP)) {
3962 error = -EOPNOTSUPP;
3963 goto out;
3964 }
3965
3966 if (!sctp_sstate(sk, LISTENING)) {
3967 error = -EINVAL;
3968 goto out;
3969 }
3970
3971 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3972
3973 error = sctp_wait_for_accept(sk, timeo);
3974 if (error)
3975 goto out;
3976
3977 /* We treat the list of associations on the endpoint as the accept
3978 * queue and pick the first association on the list.
3979 */
3980 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3981
3982 newsk = sp->pf->create_accept_sk(sk, asoc);
3983 if (!newsk) {
3984 error = -ENOMEM;
3985 goto out;
3986 }
3987
3988 /* Populate the fields of the newsk from the oldsk and migrate the
3989 * asoc to the newsk.
3990 */
3991 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3992
3993 out:
3994 release_sock(sk);
3995 *err = error;
3996 return newsk;
3997 }
3998
3999 /* The SCTP ioctl handler. */
sctp_ioctl(struct sock * sk,int cmd,unsigned long arg)4000 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4001 {
4002 int rc = -ENOTCONN;
4003
4004 lock_sock(sk);
4005
4006 /*
4007 * SEQPACKET-style sockets in LISTENING state are valid, for
4008 * SCTP, so only discard TCP-style sockets in LISTENING state.
4009 */
4010 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4011 goto out;
4012
4013 switch (cmd) {
4014 case SIOCINQ: {
4015 struct sk_buff *skb;
4016 unsigned int amount = 0;
4017
4018 skb = skb_peek(&sk->sk_receive_queue);
4019 if (skb != NULL) {
4020 /*
4021 * We will only return the amount of this packet since
4022 * that is all that will be read.
4023 */
4024 amount = skb->len;
4025 }
4026 rc = put_user(amount, (int __user *)arg);
4027 break;
4028 }
4029 default:
4030 rc = -ENOIOCTLCMD;
4031 break;
4032 }
4033 out:
4034 release_sock(sk);
4035 return rc;
4036 }
4037
4038 /* This is the function which gets called during socket creation to
4039 * initialized the SCTP-specific portion of the sock.
4040 * The sock structure should already be zero-filled memory.
4041 */
sctp_init_sock(struct sock * sk)4042 static int sctp_init_sock(struct sock *sk)
4043 {
4044 struct net *net = sock_net(sk);
4045 struct sctp_sock *sp;
4046
4047 pr_debug("%s: sk:%p\n", __func__, sk);
4048
4049 sp = sctp_sk(sk);
4050
4051 /* Initialize the SCTP per socket area. */
4052 switch (sk->sk_type) {
4053 case SOCK_SEQPACKET:
4054 sp->type = SCTP_SOCKET_UDP;
4055 break;
4056 case SOCK_STREAM:
4057 sp->type = SCTP_SOCKET_TCP;
4058 break;
4059 default:
4060 return -ESOCKTNOSUPPORT;
4061 }
4062
4063 /* Initialize default send parameters. These parameters can be
4064 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4065 */
4066 sp->default_stream = 0;
4067 sp->default_ppid = 0;
4068 sp->default_flags = 0;
4069 sp->default_context = 0;
4070 sp->default_timetolive = 0;
4071
4072 sp->default_rcv_context = 0;
4073 sp->max_burst = net->sctp.max_burst;
4074
4075 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4076
4077 /* Initialize default setup parameters. These parameters
4078 * can be modified with the SCTP_INITMSG socket option or
4079 * overridden by the SCTP_INIT CMSG.
4080 */
4081 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4082 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4083 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4084 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4085
4086 /* Initialize default RTO related parameters. These parameters can
4087 * be modified for with the SCTP_RTOINFO socket option.
4088 */
4089 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4090 sp->rtoinfo.srto_max = net->sctp.rto_max;
4091 sp->rtoinfo.srto_min = net->sctp.rto_min;
4092
4093 /* Initialize default association related parameters. These parameters
4094 * can be modified with the SCTP_ASSOCINFO socket option.
4095 */
4096 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4097 sp->assocparams.sasoc_number_peer_destinations = 0;
4098 sp->assocparams.sasoc_peer_rwnd = 0;
4099 sp->assocparams.sasoc_local_rwnd = 0;
4100 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4101
4102 /* Initialize default event subscriptions. By default, all the
4103 * options are off.
4104 */
4105 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4106
4107 /* Default Peer Address Parameters. These defaults can
4108 * be modified via SCTP_PEER_ADDR_PARAMS
4109 */
4110 sp->hbinterval = net->sctp.hb_interval;
4111 sp->pathmaxrxt = net->sctp.max_retrans_path;
4112 sp->pathmtu = 0; /* allow default discovery */
4113 sp->sackdelay = net->sctp.sack_timeout;
4114 sp->sackfreq = 2;
4115 sp->param_flags = SPP_HB_ENABLE |
4116 SPP_PMTUD_ENABLE |
4117 SPP_SACKDELAY_ENABLE;
4118
4119 /* If enabled no SCTP message fragmentation will be performed.
4120 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4121 */
4122 sp->disable_fragments = 0;
4123
4124 /* Enable Nagle algorithm by default. */
4125 sp->nodelay = 0;
4126
4127 sp->recvrcvinfo = 0;
4128 sp->recvnxtinfo = 0;
4129
4130 /* Enable by default. */
4131 sp->v4mapped = 1;
4132
4133 /* Auto-close idle associations after the configured
4134 * number of seconds. A value of 0 disables this
4135 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4136 * for UDP-style sockets only.
4137 */
4138 sp->autoclose = 0;
4139
4140 /* User specified fragmentation limit. */
4141 sp->user_frag = 0;
4142
4143 sp->adaptation_ind = 0;
4144
4145 sp->pf = sctp_get_pf_specific(sk->sk_family);
4146
4147 /* Control variables for partial data delivery. */
4148 atomic_set(&sp->pd_mode, 0);
4149 skb_queue_head_init(&sp->pd_lobby);
4150 sp->frag_interleave = 0;
4151
4152 /* Create a per socket endpoint structure. Even if we
4153 * change the data structure relationships, this may still
4154 * be useful for storing pre-connect address information.
4155 */
4156 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4157 if (!sp->ep)
4158 return -ENOMEM;
4159
4160 sp->hmac = NULL;
4161
4162 sk->sk_destruct = sctp_destruct_sock;
4163
4164 SCTP_DBG_OBJCNT_INC(sock);
4165
4166 local_bh_disable();
4167 sk_sockets_allocated_inc(sk);
4168 sock_prot_inuse_add(net, sk->sk_prot, 1);
4169
4170 /* Nothing can fail after this block, otherwise
4171 * sctp_destroy_sock() will be called without addr_wq_lock held
4172 */
4173 if (net->sctp.default_auto_asconf) {
4174 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4175 list_add_tail(&sp->auto_asconf_list,
4176 &net->sctp.auto_asconf_splist);
4177 sp->do_auto_asconf = 1;
4178 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4179 } else {
4180 sp->do_auto_asconf = 0;
4181 }
4182
4183 local_bh_enable();
4184
4185 return 0;
4186 }
4187
4188 /* Cleanup any SCTP per socket resources. Must be called with
4189 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4190 */
sctp_destroy_sock(struct sock * sk)4191 static void sctp_destroy_sock(struct sock *sk)
4192 {
4193 struct sctp_sock *sp;
4194
4195 pr_debug("%s: sk:%p\n", __func__, sk);
4196
4197 /* Release our hold on the endpoint. */
4198 sp = sctp_sk(sk);
4199 /* This could happen during socket init, thus we bail out
4200 * early, since the rest of the below is not setup either.
4201 */
4202 if (sp->ep == NULL)
4203 return;
4204
4205 if (sp->do_auto_asconf) {
4206 sp->do_auto_asconf = 0;
4207 list_del(&sp->auto_asconf_list);
4208 }
4209 sctp_endpoint_free(sp->ep);
4210 local_bh_disable();
4211 sk_sockets_allocated_dec(sk);
4212 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4213 local_bh_enable();
4214 }
4215
4216 /* Triggered when there are no references on the socket anymore */
sctp_destruct_sock(struct sock * sk)4217 static void sctp_destruct_sock(struct sock *sk)
4218 {
4219 struct sctp_sock *sp = sctp_sk(sk);
4220
4221 /* Free up the HMAC transform. */
4222 crypto_free_hash(sp->hmac);
4223
4224 inet_sock_destruct(sk);
4225 }
4226
4227 /* API 4.1.7 shutdown() - TCP Style Syntax
4228 * int shutdown(int socket, int how);
4229 *
4230 * sd - the socket descriptor of the association to be closed.
4231 * how - Specifies the type of shutdown. The values are
4232 * as follows:
4233 * SHUT_RD
4234 * Disables further receive operations. No SCTP
4235 * protocol action is taken.
4236 * SHUT_WR
4237 * Disables further send operations, and initiates
4238 * the SCTP shutdown sequence.
4239 * SHUT_RDWR
4240 * Disables further send and receive operations
4241 * and initiates the SCTP shutdown sequence.
4242 */
sctp_shutdown(struct sock * sk,int how)4243 static void sctp_shutdown(struct sock *sk, int how)
4244 {
4245 struct net *net = sock_net(sk);
4246 struct sctp_endpoint *ep;
4247 struct sctp_association *asoc;
4248
4249 if (!sctp_style(sk, TCP))
4250 return;
4251
4252 if (how & SEND_SHUTDOWN) {
4253 ep = sctp_sk(sk)->ep;
4254 if (!list_empty(&ep->asocs)) {
4255 asoc = list_entry(ep->asocs.next,
4256 struct sctp_association, asocs);
4257 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4258 }
4259 }
4260 }
4261
4262 /* 7.2.1 Association Status (SCTP_STATUS)
4263
4264 * Applications can retrieve current status information about an
4265 * association, including association state, peer receiver window size,
4266 * number of unacked data chunks, and number of data chunks pending
4267 * receipt. This information is read-only.
4268 */
sctp_getsockopt_sctp_status(struct sock * sk,int len,char __user * optval,int __user * optlen)4269 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4270 char __user *optval,
4271 int __user *optlen)
4272 {
4273 struct sctp_status status;
4274 struct sctp_association *asoc = NULL;
4275 struct sctp_transport *transport;
4276 sctp_assoc_t associd;
4277 int retval = 0;
4278
4279 if (len < sizeof(status)) {
4280 retval = -EINVAL;
4281 goto out;
4282 }
4283
4284 len = sizeof(status);
4285 if (copy_from_user(&status, optval, len)) {
4286 retval = -EFAULT;
4287 goto out;
4288 }
4289
4290 associd = status.sstat_assoc_id;
4291 asoc = sctp_id2assoc(sk, associd);
4292 if (!asoc) {
4293 retval = -EINVAL;
4294 goto out;
4295 }
4296
4297 transport = asoc->peer.primary_path;
4298
4299 status.sstat_assoc_id = sctp_assoc2id(asoc);
4300 status.sstat_state = sctp_assoc_to_state(asoc);
4301 status.sstat_rwnd = asoc->peer.rwnd;
4302 status.sstat_unackdata = asoc->unack_data;
4303
4304 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4305 status.sstat_instrms = asoc->c.sinit_max_instreams;
4306 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4307 status.sstat_fragmentation_point = asoc->frag_point;
4308 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4309 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4310 transport->af_specific->sockaddr_len);
4311 /* Map ipv4 address into v4-mapped-on-v6 address. */
4312 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4313 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4314 status.sstat_primary.spinfo_state = transport->state;
4315 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4316 status.sstat_primary.spinfo_srtt = transport->srtt;
4317 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4318 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4319
4320 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4321 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4322
4323 if (put_user(len, optlen)) {
4324 retval = -EFAULT;
4325 goto out;
4326 }
4327
4328 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4329 __func__, len, status.sstat_state, status.sstat_rwnd,
4330 status.sstat_assoc_id);
4331
4332 if (copy_to_user(optval, &status, len)) {
4333 retval = -EFAULT;
4334 goto out;
4335 }
4336
4337 out:
4338 return retval;
4339 }
4340
4341
4342 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4343 *
4344 * Applications can retrieve information about a specific peer address
4345 * of an association, including its reachability state, congestion
4346 * window, and retransmission timer values. This information is
4347 * read-only.
4348 */
sctp_getsockopt_peer_addr_info(struct sock * sk,int len,char __user * optval,int __user * optlen)4349 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4350 char __user *optval,
4351 int __user *optlen)
4352 {
4353 struct sctp_paddrinfo pinfo;
4354 struct sctp_transport *transport;
4355 int retval = 0;
4356
4357 if (len < sizeof(pinfo)) {
4358 retval = -EINVAL;
4359 goto out;
4360 }
4361
4362 len = sizeof(pinfo);
4363 if (copy_from_user(&pinfo, optval, len)) {
4364 retval = -EFAULT;
4365 goto out;
4366 }
4367
4368 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4369 pinfo.spinfo_assoc_id);
4370 if (!transport)
4371 return -EINVAL;
4372
4373 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4374 pinfo.spinfo_state = transport->state;
4375 pinfo.spinfo_cwnd = transport->cwnd;
4376 pinfo.spinfo_srtt = transport->srtt;
4377 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4378 pinfo.spinfo_mtu = transport->pathmtu;
4379
4380 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4381 pinfo.spinfo_state = SCTP_ACTIVE;
4382
4383 if (put_user(len, optlen)) {
4384 retval = -EFAULT;
4385 goto out;
4386 }
4387
4388 if (copy_to_user(optval, &pinfo, len)) {
4389 retval = -EFAULT;
4390 goto out;
4391 }
4392
4393 out:
4394 return retval;
4395 }
4396
4397 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4398 *
4399 * This option is a on/off flag. If enabled no SCTP message
4400 * fragmentation will be performed. Instead if a message being sent
4401 * exceeds the current PMTU size, the message will NOT be sent and
4402 * instead a error will be indicated to the user.
4403 */
sctp_getsockopt_disable_fragments(struct sock * sk,int len,char __user * optval,int __user * optlen)4404 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4405 char __user *optval, int __user *optlen)
4406 {
4407 int val;
4408
4409 if (len < sizeof(int))
4410 return -EINVAL;
4411
4412 len = sizeof(int);
4413 val = (sctp_sk(sk)->disable_fragments == 1);
4414 if (put_user(len, optlen))
4415 return -EFAULT;
4416 if (copy_to_user(optval, &val, len))
4417 return -EFAULT;
4418 return 0;
4419 }
4420
4421 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4422 *
4423 * This socket option is used to specify various notifications and
4424 * ancillary data the user wishes to receive.
4425 */
sctp_getsockopt_events(struct sock * sk,int len,char __user * optval,int __user * optlen)4426 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4427 int __user *optlen)
4428 {
4429 if (len == 0)
4430 return -EINVAL;
4431 if (len > sizeof(struct sctp_event_subscribe))
4432 len = sizeof(struct sctp_event_subscribe);
4433 if (put_user(len, optlen))
4434 return -EFAULT;
4435 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4436 return -EFAULT;
4437 return 0;
4438 }
4439
4440 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4441 *
4442 * This socket option is applicable to the UDP-style socket only. When
4443 * set it will cause associations that are idle for more than the
4444 * specified number of seconds to automatically close. An association
4445 * being idle is defined an association that has NOT sent or received
4446 * user data. The special value of '0' indicates that no automatic
4447 * close of any associations should be performed. The option expects an
4448 * integer defining the number of seconds of idle time before an
4449 * association is closed.
4450 */
sctp_getsockopt_autoclose(struct sock * sk,int len,char __user * optval,int __user * optlen)4451 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4452 {
4453 /* Applicable to UDP-style socket only */
4454 if (sctp_style(sk, TCP))
4455 return -EOPNOTSUPP;
4456 if (len < sizeof(int))
4457 return -EINVAL;
4458 len = sizeof(int);
4459 if (put_user(len, optlen))
4460 return -EFAULT;
4461 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4462 return -EFAULT;
4463 return 0;
4464 }
4465
4466 /* Helper routine to branch off an association to a new socket. */
sctp_do_peeloff(struct sock * sk,sctp_assoc_t id,struct socket ** sockp)4467 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4468 {
4469 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4470 struct sctp_sock *sp = sctp_sk(sk);
4471 struct socket *sock;
4472 int err = 0;
4473
4474 /* Do not peel off from one netns to another one. */
4475 if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
4476 return -EINVAL;
4477
4478 if (!asoc)
4479 return -EINVAL;
4480
4481 /* An association cannot be branched off from an already peeled-off
4482 * socket, nor is this supported for tcp style sockets.
4483 */
4484 if (!sctp_style(sk, UDP))
4485 return -EINVAL;
4486
4487 /* Create a new socket. */
4488 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4489 if (err < 0)
4490 return err;
4491
4492 sctp_copy_sock(sock->sk, sk, asoc);
4493
4494 /* Make peeled-off sockets more like 1-1 accepted sockets.
4495 * Set the daddr and initialize id to something more random
4496 */
4497 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4498
4499 /* Populate the fields of the newsk from the oldsk and migrate the
4500 * asoc to the newsk.
4501 */
4502 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4503
4504 *sockp = sock;
4505
4506 return err;
4507 }
4508 EXPORT_SYMBOL(sctp_do_peeloff);
4509
sctp_getsockopt_peeloff(struct sock * sk,int len,char __user * optval,int __user * optlen)4510 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4511 {
4512 sctp_peeloff_arg_t peeloff;
4513 struct socket *newsock;
4514 struct file *newfile;
4515 int retval = 0;
4516
4517 if (len < sizeof(sctp_peeloff_arg_t))
4518 return -EINVAL;
4519 len = sizeof(sctp_peeloff_arg_t);
4520 if (copy_from_user(&peeloff, optval, len))
4521 return -EFAULT;
4522
4523 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4524 if (retval < 0)
4525 goto out;
4526
4527 /* Map the socket to an unused fd that can be returned to the user. */
4528 retval = get_unused_fd_flags(0);
4529 if (retval < 0) {
4530 sock_release(newsock);
4531 goto out;
4532 }
4533
4534 newfile = sock_alloc_file(newsock, 0, NULL);
4535 if (unlikely(IS_ERR(newfile))) {
4536 put_unused_fd(retval);
4537 sock_release(newsock);
4538 return PTR_ERR(newfile);
4539 }
4540
4541 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4542 retval);
4543
4544 /* Return the fd mapped to the new socket. */
4545 if (put_user(len, optlen)) {
4546 fput(newfile);
4547 put_unused_fd(retval);
4548 return -EFAULT;
4549 }
4550 peeloff.sd = retval;
4551 if (copy_to_user(optval, &peeloff, len)) {
4552 fput(newfile);
4553 put_unused_fd(retval);
4554 return -EFAULT;
4555 }
4556 fd_install(retval, newfile);
4557 out:
4558 return retval;
4559 }
4560
4561 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4562 *
4563 * Applications can enable or disable heartbeats for any peer address of
4564 * an association, modify an address's heartbeat interval, force a
4565 * heartbeat to be sent immediately, and adjust the address's maximum
4566 * number of retransmissions sent before an address is considered
4567 * unreachable. The following structure is used to access and modify an
4568 * address's parameters:
4569 *
4570 * struct sctp_paddrparams {
4571 * sctp_assoc_t spp_assoc_id;
4572 * struct sockaddr_storage spp_address;
4573 * uint32_t spp_hbinterval;
4574 * uint16_t spp_pathmaxrxt;
4575 * uint32_t spp_pathmtu;
4576 * uint32_t spp_sackdelay;
4577 * uint32_t spp_flags;
4578 * };
4579 *
4580 * spp_assoc_id - (one-to-many style socket) This is filled in the
4581 * application, and identifies the association for
4582 * this query.
4583 * spp_address - This specifies which address is of interest.
4584 * spp_hbinterval - This contains the value of the heartbeat interval,
4585 * in milliseconds. If a value of zero
4586 * is present in this field then no changes are to
4587 * be made to this parameter.
4588 * spp_pathmaxrxt - This contains the maximum number of
4589 * retransmissions before this address shall be
4590 * considered unreachable. If a value of zero
4591 * is present in this field then no changes are to
4592 * be made to this parameter.
4593 * spp_pathmtu - When Path MTU discovery is disabled the value
4594 * specified here will be the "fixed" path mtu.
4595 * Note that if the spp_address field is empty
4596 * then all associations on this address will
4597 * have this fixed path mtu set upon them.
4598 *
4599 * spp_sackdelay - When delayed sack is enabled, this value specifies
4600 * the number of milliseconds that sacks will be delayed
4601 * for. This value will apply to all addresses of an
4602 * association if the spp_address field is empty. Note
4603 * also, that if delayed sack is enabled and this
4604 * value is set to 0, no change is made to the last
4605 * recorded delayed sack timer value.
4606 *
4607 * spp_flags - These flags are used to control various features
4608 * on an association. The flag field may contain
4609 * zero or more of the following options.
4610 *
4611 * SPP_HB_ENABLE - Enable heartbeats on the
4612 * specified address. Note that if the address
4613 * field is empty all addresses for the association
4614 * have heartbeats enabled upon them.
4615 *
4616 * SPP_HB_DISABLE - Disable heartbeats on the
4617 * speicifed address. Note that if the address
4618 * field is empty all addresses for the association
4619 * will have their heartbeats disabled. Note also
4620 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4621 * mutually exclusive, only one of these two should
4622 * be specified. Enabling both fields will have
4623 * undetermined results.
4624 *
4625 * SPP_HB_DEMAND - Request a user initiated heartbeat
4626 * to be made immediately.
4627 *
4628 * SPP_PMTUD_ENABLE - This field will enable PMTU
4629 * discovery upon the specified address. Note that
4630 * if the address feild is empty then all addresses
4631 * on the association are effected.
4632 *
4633 * SPP_PMTUD_DISABLE - This field will disable PMTU
4634 * discovery upon the specified address. Note that
4635 * if the address feild is empty then all addresses
4636 * on the association are effected. Not also that
4637 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4638 * exclusive. Enabling both will have undetermined
4639 * results.
4640 *
4641 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4642 * on delayed sack. The time specified in spp_sackdelay
4643 * is used to specify the sack delay for this address. Note
4644 * that if spp_address is empty then all addresses will
4645 * enable delayed sack and take on the sack delay
4646 * value specified in spp_sackdelay.
4647 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4648 * off delayed sack. If the spp_address field is blank then
4649 * delayed sack is disabled for the entire association. Note
4650 * also that this field is mutually exclusive to
4651 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4652 * results.
4653 */
sctp_getsockopt_peer_addr_params(struct sock * sk,int len,char __user * optval,int __user * optlen)4654 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4655 char __user *optval, int __user *optlen)
4656 {
4657 struct sctp_paddrparams params;
4658 struct sctp_transport *trans = NULL;
4659 struct sctp_association *asoc = NULL;
4660 struct sctp_sock *sp = sctp_sk(sk);
4661
4662 if (len < sizeof(struct sctp_paddrparams))
4663 return -EINVAL;
4664 len = sizeof(struct sctp_paddrparams);
4665 if (copy_from_user(¶ms, optval, len))
4666 return -EFAULT;
4667
4668 /* If an address other than INADDR_ANY is specified, and
4669 * no transport is found, then the request is invalid.
4670 */
4671 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
4672 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
4673 params.spp_assoc_id);
4674 if (!trans) {
4675 pr_debug("%s: failed no transport\n", __func__);
4676 return -EINVAL;
4677 }
4678 }
4679
4680 /* Get association, if assoc_id != 0 and the socket is a one
4681 * to many style socket, and an association was not found, then
4682 * the id was invalid.
4683 */
4684 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4685 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4686 pr_debug("%s: failed no association\n", __func__);
4687 return -EINVAL;
4688 }
4689
4690 if (trans) {
4691 /* Fetch transport values. */
4692 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4693 params.spp_pathmtu = trans->pathmtu;
4694 params.spp_pathmaxrxt = trans->pathmaxrxt;
4695 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4696
4697 /*draft-11 doesn't say what to return in spp_flags*/
4698 params.spp_flags = trans->param_flags;
4699 } else if (asoc) {
4700 /* Fetch association values. */
4701 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4702 params.spp_pathmtu = asoc->pathmtu;
4703 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4704 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4705
4706 /*draft-11 doesn't say what to return in spp_flags*/
4707 params.spp_flags = asoc->param_flags;
4708 } else {
4709 /* Fetch socket values. */
4710 params.spp_hbinterval = sp->hbinterval;
4711 params.spp_pathmtu = sp->pathmtu;
4712 params.spp_sackdelay = sp->sackdelay;
4713 params.spp_pathmaxrxt = sp->pathmaxrxt;
4714
4715 /*draft-11 doesn't say what to return in spp_flags*/
4716 params.spp_flags = sp->param_flags;
4717 }
4718
4719 if (copy_to_user(optval, ¶ms, len))
4720 return -EFAULT;
4721
4722 if (put_user(len, optlen))
4723 return -EFAULT;
4724
4725 return 0;
4726 }
4727
4728 /*
4729 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4730 *
4731 * This option will effect the way delayed acks are performed. This
4732 * option allows you to get or set the delayed ack time, in
4733 * milliseconds. It also allows changing the delayed ack frequency.
4734 * Changing the frequency to 1 disables the delayed sack algorithm. If
4735 * the assoc_id is 0, then this sets or gets the endpoints default
4736 * values. If the assoc_id field is non-zero, then the set or get
4737 * effects the specified association for the one to many model (the
4738 * assoc_id field is ignored by the one to one model). Note that if
4739 * sack_delay or sack_freq are 0 when setting this option, then the
4740 * current values will remain unchanged.
4741 *
4742 * struct sctp_sack_info {
4743 * sctp_assoc_t sack_assoc_id;
4744 * uint32_t sack_delay;
4745 * uint32_t sack_freq;
4746 * };
4747 *
4748 * sack_assoc_id - This parameter, indicates which association the user
4749 * is performing an action upon. Note that if this field's value is
4750 * zero then the endpoints default value is changed (effecting future
4751 * associations only).
4752 *
4753 * sack_delay - This parameter contains the number of milliseconds that
4754 * the user is requesting the delayed ACK timer be set to. Note that
4755 * this value is defined in the standard to be between 200 and 500
4756 * milliseconds.
4757 *
4758 * sack_freq - This parameter contains the number of packets that must
4759 * be received before a sack is sent without waiting for the delay
4760 * timer to expire. The default value for this is 2, setting this
4761 * value to 1 will disable the delayed sack algorithm.
4762 */
sctp_getsockopt_delayed_ack(struct sock * sk,int len,char __user * optval,int __user * optlen)4763 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4764 char __user *optval,
4765 int __user *optlen)
4766 {
4767 struct sctp_sack_info params;
4768 struct sctp_association *asoc = NULL;
4769 struct sctp_sock *sp = sctp_sk(sk);
4770
4771 if (len >= sizeof(struct sctp_sack_info)) {
4772 len = sizeof(struct sctp_sack_info);
4773
4774 if (copy_from_user(¶ms, optval, len))
4775 return -EFAULT;
4776 } else if (len == sizeof(struct sctp_assoc_value)) {
4777 pr_warn_ratelimited(DEPRECATED
4778 "%s (pid %d) "
4779 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
4780 "Use struct sctp_sack_info instead\n",
4781 current->comm, task_pid_nr(current));
4782 if (copy_from_user(¶ms, optval, len))
4783 return -EFAULT;
4784 } else
4785 return -EINVAL;
4786
4787 /* Get association, if sack_assoc_id != 0 and the socket is a one
4788 * to many style socket, and an association was not found, then
4789 * the id was invalid.
4790 */
4791 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4792 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4793 return -EINVAL;
4794
4795 if (asoc) {
4796 /* Fetch association values. */
4797 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4798 params.sack_delay = jiffies_to_msecs(
4799 asoc->sackdelay);
4800 params.sack_freq = asoc->sackfreq;
4801
4802 } else {
4803 params.sack_delay = 0;
4804 params.sack_freq = 1;
4805 }
4806 } else {
4807 /* Fetch socket values. */
4808 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4809 params.sack_delay = sp->sackdelay;
4810 params.sack_freq = sp->sackfreq;
4811 } else {
4812 params.sack_delay = 0;
4813 params.sack_freq = 1;
4814 }
4815 }
4816
4817 if (copy_to_user(optval, ¶ms, len))
4818 return -EFAULT;
4819
4820 if (put_user(len, optlen))
4821 return -EFAULT;
4822
4823 return 0;
4824 }
4825
4826 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4827 *
4828 * Applications can specify protocol parameters for the default association
4829 * initialization. The option name argument to setsockopt() and getsockopt()
4830 * is SCTP_INITMSG.
4831 *
4832 * Setting initialization parameters is effective only on an unconnected
4833 * socket (for UDP-style sockets only future associations are effected
4834 * by the change). With TCP-style sockets, this option is inherited by
4835 * sockets derived from a listener socket.
4836 */
sctp_getsockopt_initmsg(struct sock * sk,int len,char __user * optval,int __user * optlen)4837 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4838 {
4839 if (len < sizeof(struct sctp_initmsg))
4840 return -EINVAL;
4841 len = sizeof(struct sctp_initmsg);
4842 if (put_user(len, optlen))
4843 return -EFAULT;
4844 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4845 return -EFAULT;
4846 return 0;
4847 }
4848
4849
sctp_getsockopt_peer_addrs(struct sock * sk,int len,char __user * optval,int __user * optlen)4850 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4851 char __user *optval, int __user *optlen)
4852 {
4853 struct sctp_association *asoc;
4854 int cnt = 0;
4855 struct sctp_getaddrs getaddrs;
4856 struct sctp_transport *from;
4857 void __user *to;
4858 union sctp_addr temp;
4859 struct sctp_sock *sp = sctp_sk(sk);
4860 int addrlen;
4861 size_t space_left;
4862 int bytes_copied;
4863
4864 if (len < sizeof(struct sctp_getaddrs))
4865 return -EINVAL;
4866
4867 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4868 return -EFAULT;
4869
4870 /* For UDP-style sockets, id specifies the association to query. */
4871 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4872 if (!asoc)
4873 return -EINVAL;
4874
4875 to = optval + offsetof(struct sctp_getaddrs, addrs);
4876 space_left = len - offsetof(struct sctp_getaddrs, addrs);
4877
4878 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4879 transports) {
4880 memcpy(&temp, &from->ipaddr, sizeof(temp));
4881 addrlen = sctp_get_pf_specific(sk->sk_family)
4882 ->addr_to_user(sp, &temp);
4883 if (space_left < addrlen)
4884 return -ENOMEM;
4885 if (copy_to_user(to, &temp, addrlen))
4886 return -EFAULT;
4887 to += addrlen;
4888 cnt++;
4889 space_left -= addrlen;
4890 }
4891
4892 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4893 return -EFAULT;
4894 bytes_copied = ((char __user *)to) - optval;
4895 if (put_user(bytes_copied, optlen))
4896 return -EFAULT;
4897
4898 return 0;
4899 }
4900
sctp_copy_laddrs(struct sock * sk,__u16 port,void * to,size_t space_left,int * bytes_copied)4901 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4902 size_t space_left, int *bytes_copied)
4903 {
4904 struct sctp_sockaddr_entry *addr;
4905 union sctp_addr temp;
4906 int cnt = 0;
4907 int addrlen;
4908 struct net *net = sock_net(sk);
4909
4910 rcu_read_lock();
4911 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4912 if (!addr->valid)
4913 continue;
4914
4915 if ((PF_INET == sk->sk_family) &&
4916 (AF_INET6 == addr->a.sa.sa_family))
4917 continue;
4918 if ((PF_INET6 == sk->sk_family) &&
4919 inet_v6_ipv6only(sk) &&
4920 (AF_INET == addr->a.sa.sa_family))
4921 continue;
4922 memcpy(&temp, &addr->a, sizeof(temp));
4923 if (!temp.v4.sin_port)
4924 temp.v4.sin_port = htons(port);
4925
4926 addrlen = sctp_get_pf_specific(sk->sk_family)
4927 ->addr_to_user(sctp_sk(sk), &temp);
4928
4929 if (space_left < addrlen) {
4930 cnt = -ENOMEM;
4931 break;
4932 }
4933 memcpy(to, &temp, addrlen);
4934
4935 to += addrlen;
4936 cnt++;
4937 space_left -= addrlen;
4938 *bytes_copied += addrlen;
4939 }
4940 rcu_read_unlock();
4941
4942 return cnt;
4943 }
4944
4945
sctp_getsockopt_local_addrs(struct sock * sk,int len,char __user * optval,int __user * optlen)4946 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4947 char __user *optval, int __user *optlen)
4948 {
4949 struct sctp_bind_addr *bp;
4950 struct sctp_association *asoc;
4951 int cnt = 0;
4952 struct sctp_getaddrs getaddrs;
4953 struct sctp_sockaddr_entry *addr;
4954 void __user *to;
4955 union sctp_addr temp;
4956 struct sctp_sock *sp = sctp_sk(sk);
4957 int addrlen;
4958 int err = 0;
4959 size_t space_left;
4960 int bytes_copied = 0;
4961 void *addrs;
4962 void *buf;
4963
4964 if (len < sizeof(struct sctp_getaddrs))
4965 return -EINVAL;
4966
4967 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4968 return -EFAULT;
4969
4970 /*
4971 * For UDP-style sockets, id specifies the association to query.
4972 * If the id field is set to the value '0' then the locally bound
4973 * addresses are returned without regard to any particular
4974 * association.
4975 */
4976 if (0 == getaddrs.assoc_id) {
4977 bp = &sctp_sk(sk)->ep->base.bind_addr;
4978 } else {
4979 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4980 if (!asoc)
4981 return -EINVAL;
4982 bp = &asoc->base.bind_addr;
4983 }
4984
4985 to = optval + offsetof(struct sctp_getaddrs, addrs);
4986 space_left = len - offsetof(struct sctp_getaddrs, addrs);
4987
4988 addrs = kmalloc(space_left, GFP_KERNEL);
4989 if (!addrs)
4990 return -ENOMEM;
4991
4992 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4993 * addresses from the global local address list.
4994 */
4995 if (sctp_list_single_entry(&bp->address_list)) {
4996 addr = list_entry(bp->address_list.next,
4997 struct sctp_sockaddr_entry, list);
4998 if (sctp_is_any(sk, &addr->a)) {
4999 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5000 space_left, &bytes_copied);
5001 if (cnt < 0) {
5002 err = cnt;
5003 goto out;
5004 }
5005 goto copy_getaddrs;
5006 }
5007 }
5008
5009 buf = addrs;
5010 /* Protection on the bound address list is not needed since
5011 * in the socket option context we hold a socket lock and
5012 * thus the bound address list can't change.
5013 */
5014 list_for_each_entry(addr, &bp->address_list, list) {
5015 memcpy(&temp, &addr->a, sizeof(temp));
5016 addrlen = sctp_get_pf_specific(sk->sk_family)
5017 ->addr_to_user(sp, &temp);
5018 if (space_left < addrlen) {
5019 err = -ENOMEM; /*fixme: right error?*/
5020 goto out;
5021 }
5022 memcpy(buf, &temp, addrlen);
5023 buf += addrlen;
5024 bytes_copied += addrlen;
5025 cnt++;
5026 space_left -= addrlen;
5027 }
5028
5029 copy_getaddrs:
5030 if (copy_to_user(to, addrs, bytes_copied)) {
5031 err = -EFAULT;
5032 goto out;
5033 }
5034 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
5035 err = -EFAULT;
5036 goto out;
5037 }
5038 if (put_user(bytes_copied, optlen))
5039 err = -EFAULT;
5040 out:
5041 kfree(addrs);
5042 return err;
5043 }
5044
5045 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5046 *
5047 * Requests that the local SCTP stack use the enclosed peer address as
5048 * the association primary. The enclosed address must be one of the
5049 * association peer's addresses.
5050 */
sctp_getsockopt_primary_addr(struct sock * sk,int len,char __user * optval,int __user * optlen)5051 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5052 char __user *optval, int __user *optlen)
5053 {
5054 struct sctp_prim prim;
5055 struct sctp_association *asoc;
5056 struct sctp_sock *sp = sctp_sk(sk);
5057
5058 if (len < sizeof(struct sctp_prim))
5059 return -EINVAL;
5060
5061 len = sizeof(struct sctp_prim);
5062
5063 if (copy_from_user(&prim, optval, len))
5064 return -EFAULT;
5065
5066 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5067 if (!asoc)
5068 return -EINVAL;
5069
5070 if (!asoc->peer.primary_path)
5071 return -ENOTCONN;
5072
5073 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5074 asoc->peer.primary_path->af_specific->sockaddr_len);
5075
5076 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5077 (union sctp_addr *)&prim.ssp_addr);
5078
5079 if (put_user(len, optlen))
5080 return -EFAULT;
5081 if (copy_to_user(optval, &prim, len))
5082 return -EFAULT;
5083
5084 return 0;
5085 }
5086
5087 /*
5088 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5089 *
5090 * Requests that the local endpoint set the specified Adaptation Layer
5091 * Indication parameter for all future INIT and INIT-ACK exchanges.
5092 */
sctp_getsockopt_adaptation_layer(struct sock * sk,int len,char __user * optval,int __user * optlen)5093 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5094 char __user *optval, int __user *optlen)
5095 {
5096 struct sctp_setadaptation adaptation;
5097
5098 if (len < sizeof(struct sctp_setadaptation))
5099 return -EINVAL;
5100
5101 len = sizeof(struct sctp_setadaptation);
5102
5103 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5104
5105 if (put_user(len, optlen))
5106 return -EFAULT;
5107 if (copy_to_user(optval, &adaptation, len))
5108 return -EFAULT;
5109
5110 return 0;
5111 }
5112
5113 /*
5114 *
5115 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5116 *
5117 * Applications that wish to use the sendto() system call may wish to
5118 * specify a default set of parameters that would normally be supplied
5119 * through the inclusion of ancillary data. This socket option allows
5120 * such an application to set the default sctp_sndrcvinfo structure.
5121
5122
5123 * The application that wishes to use this socket option simply passes
5124 * in to this call the sctp_sndrcvinfo structure defined in Section
5125 * 5.2.2) The input parameters accepted by this call include
5126 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5127 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
5128 * to this call if the caller is using the UDP model.
5129 *
5130 * For getsockopt, it get the default sctp_sndrcvinfo structure.
5131 */
sctp_getsockopt_default_send_param(struct sock * sk,int len,char __user * optval,int __user * optlen)5132 static int sctp_getsockopt_default_send_param(struct sock *sk,
5133 int len, char __user *optval,
5134 int __user *optlen)
5135 {
5136 struct sctp_sock *sp = sctp_sk(sk);
5137 struct sctp_association *asoc;
5138 struct sctp_sndrcvinfo info;
5139
5140 if (len < sizeof(info))
5141 return -EINVAL;
5142
5143 len = sizeof(info);
5144
5145 if (copy_from_user(&info, optval, len))
5146 return -EFAULT;
5147
5148 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5149 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5150 return -EINVAL;
5151 if (asoc) {
5152 info.sinfo_stream = asoc->default_stream;
5153 info.sinfo_flags = asoc->default_flags;
5154 info.sinfo_ppid = asoc->default_ppid;
5155 info.sinfo_context = asoc->default_context;
5156 info.sinfo_timetolive = asoc->default_timetolive;
5157 } else {
5158 info.sinfo_stream = sp->default_stream;
5159 info.sinfo_flags = sp->default_flags;
5160 info.sinfo_ppid = sp->default_ppid;
5161 info.sinfo_context = sp->default_context;
5162 info.sinfo_timetolive = sp->default_timetolive;
5163 }
5164
5165 if (put_user(len, optlen))
5166 return -EFAULT;
5167 if (copy_to_user(optval, &info, len))
5168 return -EFAULT;
5169
5170 return 0;
5171 }
5172
5173 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5174 * (SCTP_DEFAULT_SNDINFO)
5175 */
sctp_getsockopt_default_sndinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)5176 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5177 char __user *optval,
5178 int __user *optlen)
5179 {
5180 struct sctp_sock *sp = sctp_sk(sk);
5181 struct sctp_association *asoc;
5182 struct sctp_sndinfo info;
5183
5184 if (len < sizeof(info))
5185 return -EINVAL;
5186
5187 len = sizeof(info);
5188
5189 if (copy_from_user(&info, optval, len))
5190 return -EFAULT;
5191
5192 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5193 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5194 return -EINVAL;
5195 if (asoc) {
5196 info.snd_sid = asoc->default_stream;
5197 info.snd_flags = asoc->default_flags;
5198 info.snd_ppid = asoc->default_ppid;
5199 info.snd_context = asoc->default_context;
5200 } else {
5201 info.snd_sid = sp->default_stream;
5202 info.snd_flags = sp->default_flags;
5203 info.snd_ppid = sp->default_ppid;
5204 info.snd_context = sp->default_context;
5205 }
5206
5207 if (put_user(len, optlen))
5208 return -EFAULT;
5209 if (copy_to_user(optval, &info, len))
5210 return -EFAULT;
5211
5212 return 0;
5213 }
5214
5215 /*
5216 *
5217 * 7.1.5 SCTP_NODELAY
5218 *
5219 * Turn on/off any Nagle-like algorithm. This means that packets are
5220 * generally sent as soon as possible and no unnecessary delays are
5221 * introduced, at the cost of more packets in the network. Expects an
5222 * integer boolean flag.
5223 */
5224
sctp_getsockopt_nodelay(struct sock * sk,int len,char __user * optval,int __user * optlen)5225 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5226 char __user *optval, int __user *optlen)
5227 {
5228 int val;
5229
5230 if (len < sizeof(int))
5231 return -EINVAL;
5232
5233 len = sizeof(int);
5234 val = (sctp_sk(sk)->nodelay == 1);
5235 if (put_user(len, optlen))
5236 return -EFAULT;
5237 if (copy_to_user(optval, &val, len))
5238 return -EFAULT;
5239 return 0;
5240 }
5241
5242 /*
5243 *
5244 * 7.1.1 SCTP_RTOINFO
5245 *
5246 * The protocol parameters used to initialize and bound retransmission
5247 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5248 * and modify these parameters.
5249 * All parameters are time values, in milliseconds. A value of 0, when
5250 * modifying the parameters, indicates that the current value should not
5251 * be changed.
5252 *
5253 */
sctp_getsockopt_rtoinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)5254 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5255 char __user *optval,
5256 int __user *optlen) {
5257 struct sctp_rtoinfo rtoinfo;
5258 struct sctp_association *asoc;
5259
5260 if (len < sizeof (struct sctp_rtoinfo))
5261 return -EINVAL;
5262
5263 len = sizeof(struct sctp_rtoinfo);
5264
5265 if (copy_from_user(&rtoinfo, optval, len))
5266 return -EFAULT;
5267
5268 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5269
5270 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5271 return -EINVAL;
5272
5273 /* Values corresponding to the specific association. */
5274 if (asoc) {
5275 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5276 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5277 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5278 } else {
5279 /* Values corresponding to the endpoint. */
5280 struct sctp_sock *sp = sctp_sk(sk);
5281
5282 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5283 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5284 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5285 }
5286
5287 if (put_user(len, optlen))
5288 return -EFAULT;
5289
5290 if (copy_to_user(optval, &rtoinfo, len))
5291 return -EFAULT;
5292
5293 return 0;
5294 }
5295
5296 /*
5297 *
5298 * 7.1.2 SCTP_ASSOCINFO
5299 *
5300 * This option is used to tune the maximum retransmission attempts
5301 * of the association.
5302 * Returns an error if the new association retransmission value is
5303 * greater than the sum of the retransmission value of the peer.
5304 * See [SCTP] for more information.
5305 *
5306 */
sctp_getsockopt_associnfo(struct sock * sk,int len,char __user * optval,int __user * optlen)5307 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5308 char __user *optval,
5309 int __user *optlen)
5310 {
5311
5312 struct sctp_assocparams assocparams;
5313 struct sctp_association *asoc;
5314 struct list_head *pos;
5315 int cnt = 0;
5316
5317 if (len < sizeof (struct sctp_assocparams))
5318 return -EINVAL;
5319
5320 len = sizeof(struct sctp_assocparams);
5321
5322 if (copy_from_user(&assocparams, optval, len))
5323 return -EFAULT;
5324
5325 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5326
5327 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5328 return -EINVAL;
5329
5330 /* Values correspoinding to the specific association */
5331 if (asoc) {
5332 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5333 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5334 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5335 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5336
5337 list_for_each(pos, &asoc->peer.transport_addr_list) {
5338 cnt++;
5339 }
5340
5341 assocparams.sasoc_number_peer_destinations = cnt;
5342 } else {
5343 /* Values corresponding to the endpoint */
5344 struct sctp_sock *sp = sctp_sk(sk);
5345
5346 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5347 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5348 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5349 assocparams.sasoc_cookie_life =
5350 sp->assocparams.sasoc_cookie_life;
5351 assocparams.sasoc_number_peer_destinations =
5352 sp->assocparams.
5353 sasoc_number_peer_destinations;
5354 }
5355
5356 if (put_user(len, optlen))
5357 return -EFAULT;
5358
5359 if (copy_to_user(optval, &assocparams, len))
5360 return -EFAULT;
5361
5362 return 0;
5363 }
5364
5365 /*
5366 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5367 *
5368 * This socket option is a boolean flag which turns on or off mapped V4
5369 * addresses. If this option is turned on and the socket is type
5370 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5371 * If this option is turned off, then no mapping will be done of V4
5372 * addresses and a user will receive both PF_INET6 and PF_INET type
5373 * addresses on the socket.
5374 */
sctp_getsockopt_mappedv4(struct sock * sk,int len,char __user * optval,int __user * optlen)5375 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5376 char __user *optval, int __user *optlen)
5377 {
5378 int val;
5379 struct sctp_sock *sp = sctp_sk(sk);
5380
5381 if (len < sizeof(int))
5382 return -EINVAL;
5383
5384 len = sizeof(int);
5385 val = sp->v4mapped;
5386 if (put_user(len, optlen))
5387 return -EFAULT;
5388 if (copy_to_user(optval, &val, len))
5389 return -EFAULT;
5390
5391 return 0;
5392 }
5393
5394 /*
5395 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5396 * (chapter and verse is quoted at sctp_setsockopt_context())
5397 */
sctp_getsockopt_context(struct sock * sk,int len,char __user * optval,int __user * optlen)5398 static int sctp_getsockopt_context(struct sock *sk, int len,
5399 char __user *optval, int __user *optlen)
5400 {
5401 struct sctp_assoc_value params;
5402 struct sctp_sock *sp;
5403 struct sctp_association *asoc;
5404
5405 if (len < sizeof(struct sctp_assoc_value))
5406 return -EINVAL;
5407
5408 len = sizeof(struct sctp_assoc_value);
5409
5410 if (copy_from_user(¶ms, optval, len))
5411 return -EFAULT;
5412
5413 sp = sctp_sk(sk);
5414
5415 if (params.assoc_id != 0) {
5416 asoc = sctp_id2assoc(sk, params.assoc_id);
5417 if (!asoc)
5418 return -EINVAL;
5419 params.assoc_value = asoc->default_rcv_context;
5420 } else {
5421 params.assoc_value = sp->default_rcv_context;
5422 }
5423
5424 if (put_user(len, optlen))
5425 return -EFAULT;
5426 if (copy_to_user(optval, ¶ms, len))
5427 return -EFAULT;
5428
5429 return 0;
5430 }
5431
5432 /*
5433 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5434 * This option will get or set the maximum size to put in any outgoing
5435 * SCTP DATA chunk. If a message is larger than this size it will be
5436 * fragmented by SCTP into the specified size. Note that the underlying
5437 * SCTP implementation may fragment into smaller sized chunks when the
5438 * PMTU of the underlying association is smaller than the value set by
5439 * the user. The default value for this option is '0' which indicates
5440 * the user is NOT limiting fragmentation and only the PMTU will effect
5441 * SCTP's choice of DATA chunk size. Note also that values set larger
5442 * than the maximum size of an IP datagram will effectively let SCTP
5443 * control fragmentation (i.e. the same as setting this option to 0).
5444 *
5445 * The following structure is used to access and modify this parameter:
5446 *
5447 * struct sctp_assoc_value {
5448 * sctp_assoc_t assoc_id;
5449 * uint32_t assoc_value;
5450 * };
5451 *
5452 * assoc_id: This parameter is ignored for one-to-one style sockets.
5453 * For one-to-many style sockets this parameter indicates which
5454 * association the user is performing an action upon. Note that if
5455 * this field's value is zero then the endpoints default value is
5456 * changed (effecting future associations only).
5457 * assoc_value: This parameter specifies the maximum size in bytes.
5458 */
sctp_getsockopt_maxseg(struct sock * sk,int len,char __user * optval,int __user * optlen)5459 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5460 char __user *optval, int __user *optlen)
5461 {
5462 struct sctp_assoc_value params;
5463 struct sctp_association *asoc;
5464
5465 if (len == sizeof(int)) {
5466 pr_warn_ratelimited(DEPRECATED
5467 "%s (pid %d) "
5468 "Use of int in maxseg socket option.\n"
5469 "Use struct sctp_assoc_value instead\n",
5470 current->comm, task_pid_nr(current));
5471 params.assoc_id = 0;
5472 } else if (len >= sizeof(struct sctp_assoc_value)) {
5473 len = sizeof(struct sctp_assoc_value);
5474 if (copy_from_user(¶ms, optval, sizeof(params)))
5475 return -EFAULT;
5476 } else
5477 return -EINVAL;
5478
5479 asoc = sctp_id2assoc(sk, params.assoc_id);
5480 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5481 return -EINVAL;
5482
5483 if (asoc)
5484 params.assoc_value = asoc->frag_point;
5485 else
5486 params.assoc_value = sctp_sk(sk)->user_frag;
5487
5488 if (put_user(len, optlen))
5489 return -EFAULT;
5490 if (len == sizeof(int)) {
5491 if (copy_to_user(optval, ¶ms.assoc_value, len))
5492 return -EFAULT;
5493 } else {
5494 if (copy_to_user(optval, ¶ms, len))
5495 return -EFAULT;
5496 }
5497
5498 return 0;
5499 }
5500
5501 /*
5502 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5503 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5504 */
sctp_getsockopt_fragment_interleave(struct sock * sk,int len,char __user * optval,int __user * optlen)5505 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5506 char __user *optval, int __user *optlen)
5507 {
5508 int val;
5509
5510 if (len < sizeof(int))
5511 return -EINVAL;
5512
5513 len = sizeof(int);
5514
5515 val = sctp_sk(sk)->frag_interleave;
5516 if (put_user(len, optlen))
5517 return -EFAULT;
5518 if (copy_to_user(optval, &val, len))
5519 return -EFAULT;
5520
5521 return 0;
5522 }
5523
5524 /*
5525 * 7.1.25. Set or Get the sctp partial delivery point
5526 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5527 */
sctp_getsockopt_partial_delivery_point(struct sock * sk,int len,char __user * optval,int __user * optlen)5528 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5529 char __user *optval,
5530 int __user *optlen)
5531 {
5532 u32 val;
5533
5534 if (len < sizeof(u32))
5535 return -EINVAL;
5536
5537 len = sizeof(u32);
5538
5539 val = sctp_sk(sk)->pd_point;
5540 if (put_user(len, optlen))
5541 return -EFAULT;
5542 if (copy_to_user(optval, &val, len))
5543 return -EFAULT;
5544
5545 return 0;
5546 }
5547
5548 /*
5549 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5550 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5551 */
sctp_getsockopt_maxburst(struct sock * sk,int len,char __user * optval,int __user * optlen)5552 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5553 char __user *optval,
5554 int __user *optlen)
5555 {
5556 struct sctp_assoc_value params;
5557 struct sctp_sock *sp;
5558 struct sctp_association *asoc;
5559
5560 if (len == sizeof(int)) {
5561 pr_warn_ratelimited(DEPRECATED
5562 "%s (pid %d) "
5563 "Use of int in max_burst socket option.\n"
5564 "Use struct sctp_assoc_value instead\n",
5565 current->comm, task_pid_nr(current));
5566 params.assoc_id = 0;
5567 } else if (len >= sizeof(struct sctp_assoc_value)) {
5568 len = sizeof(struct sctp_assoc_value);
5569 if (copy_from_user(¶ms, optval, len))
5570 return -EFAULT;
5571 } else
5572 return -EINVAL;
5573
5574 sp = sctp_sk(sk);
5575
5576 if (params.assoc_id != 0) {
5577 asoc = sctp_id2assoc(sk, params.assoc_id);
5578 if (!asoc)
5579 return -EINVAL;
5580 params.assoc_value = asoc->max_burst;
5581 } else
5582 params.assoc_value = sp->max_burst;
5583
5584 if (len == sizeof(int)) {
5585 if (copy_to_user(optval, ¶ms.assoc_value, len))
5586 return -EFAULT;
5587 } else {
5588 if (copy_to_user(optval, ¶ms, len))
5589 return -EFAULT;
5590 }
5591
5592 return 0;
5593
5594 }
5595
sctp_getsockopt_hmac_ident(struct sock * sk,int len,char __user * optval,int __user * optlen)5596 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5597 char __user *optval, int __user *optlen)
5598 {
5599 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5600 struct sctp_hmacalgo __user *p = (void __user *)optval;
5601 struct sctp_hmac_algo_param *hmacs;
5602 __u16 data_len = 0;
5603 u32 num_idents;
5604
5605 if (!ep->auth_enable)
5606 return -EACCES;
5607
5608 hmacs = ep->auth_hmacs_list;
5609 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5610
5611 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5612 return -EINVAL;
5613
5614 len = sizeof(struct sctp_hmacalgo) + data_len;
5615 num_idents = data_len / sizeof(u16);
5616
5617 if (put_user(len, optlen))
5618 return -EFAULT;
5619 if (put_user(num_idents, &p->shmac_num_idents))
5620 return -EFAULT;
5621 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5622 return -EFAULT;
5623 return 0;
5624 }
5625
sctp_getsockopt_active_key(struct sock * sk,int len,char __user * optval,int __user * optlen)5626 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5627 char __user *optval, int __user *optlen)
5628 {
5629 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5630 struct sctp_authkeyid val;
5631 struct sctp_association *asoc;
5632
5633 if (!ep->auth_enable)
5634 return -EACCES;
5635
5636 if (len < sizeof(struct sctp_authkeyid))
5637 return -EINVAL;
5638 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5639 return -EFAULT;
5640
5641 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5642 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5643 return -EINVAL;
5644
5645 if (asoc)
5646 val.scact_keynumber = asoc->active_key_id;
5647 else
5648 val.scact_keynumber = ep->active_key_id;
5649
5650 len = sizeof(struct sctp_authkeyid);
5651 if (put_user(len, optlen))
5652 return -EFAULT;
5653 if (copy_to_user(optval, &val, len))
5654 return -EFAULT;
5655
5656 return 0;
5657 }
5658
sctp_getsockopt_peer_auth_chunks(struct sock * sk,int len,char __user * optval,int __user * optlen)5659 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5660 char __user *optval, int __user *optlen)
5661 {
5662 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5663 struct sctp_authchunks __user *p = (void __user *)optval;
5664 struct sctp_authchunks val;
5665 struct sctp_association *asoc;
5666 struct sctp_chunks_param *ch;
5667 u32 num_chunks = 0;
5668 char __user *to;
5669
5670 if (!ep->auth_enable)
5671 return -EACCES;
5672
5673 if (len < sizeof(struct sctp_authchunks))
5674 return -EINVAL;
5675
5676 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5677 return -EFAULT;
5678
5679 to = p->gauth_chunks;
5680 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5681 if (!asoc)
5682 return -EINVAL;
5683
5684 ch = asoc->peer.peer_chunks;
5685 if (!ch)
5686 goto num;
5687
5688 /* See if the user provided enough room for all the data */
5689 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5690 if (len < num_chunks)
5691 return -EINVAL;
5692
5693 if (copy_to_user(to, ch->chunks, num_chunks))
5694 return -EFAULT;
5695 num:
5696 len = sizeof(struct sctp_authchunks) + num_chunks;
5697 if (put_user(len, optlen))
5698 return -EFAULT;
5699 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5700 return -EFAULT;
5701 return 0;
5702 }
5703
sctp_getsockopt_local_auth_chunks(struct sock * sk,int len,char __user * optval,int __user * optlen)5704 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5705 char __user *optval, int __user *optlen)
5706 {
5707 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5708 struct sctp_authchunks __user *p = (void __user *)optval;
5709 struct sctp_authchunks val;
5710 struct sctp_association *asoc;
5711 struct sctp_chunks_param *ch;
5712 u32 num_chunks = 0;
5713 char __user *to;
5714
5715 if (!ep->auth_enable)
5716 return -EACCES;
5717
5718 if (len < sizeof(struct sctp_authchunks))
5719 return -EINVAL;
5720
5721 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5722 return -EFAULT;
5723
5724 to = p->gauth_chunks;
5725 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5726 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5727 return -EINVAL;
5728
5729 if (asoc)
5730 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5731 else
5732 ch = ep->auth_chunk_list;
5733
5734 if (!ch)
5735 goto num;
5736
5737 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5738 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5739 return -EINVAL;
5740
5741 if (copy_to_user(to, ch->chunks, num_chunks))
5742 return -EFAULT;
5743 num:
5744 len = sizeof(struct sctp_authchunks) + num_chunks;
5745 if (put_user(len, optlen))
5746 return -EFAULT;
5747 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5748 return -EFAULT;
5749
5750 return 0;
5751 }
5752
5753 /*
5754 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5755 * This option gets the current number of associations that are attached
5756 * to a one-to-many style socket. The option value is an uint32_t.
5757 */
sctp_getsockopt_assoc_number(struct sock * sk,int len,char __user * optval,int __user * optlen)5758 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5759 char __user *optval, int __user *optlen)
5760 {
5761 struct sctp_sock *sp = sctp_sk(sk);
5762 struct sctp_association *asoc;
5763 u32 val = 0;
5764
5765 if (sctp_style(sk, TCP))
5766 return -EOPNOTSUPP;
5767
5768 if (len < sizeof(u32))
5769 return -EINVAL;
5770
5771 len = sizeof(u32);
5772
5773 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5774 val++;
5775 }
5776
5777 if (put_user(len, optlen))
5778 return -EFAULT;
5779 if (copy_to_user(optval, &val, len))
5780 return -EFAULT;
5781
5782 return 0;
5783 }
5784
5785 /*
5786 * 8.1.23 SCTP_AUTO_ASCONF
5787 * See the corresponding setsockopt entry as description
5788 */
sctp_getsockopt_auto_asconf(struct sock * sk,int len,char __user * optval,int __user * optlen)5789 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5790 char __user *optval, int __user *optlen)
5791 {
5792 int val = 0;
5793
5794 if (len < sizeof(int))
5795 return -EINVAL;
5796
5797 len = sizeof(int);
5798 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5799 val = 1;
5800 if (put_user(len, optlen))
5801 return -EFAULT;
5802 if (copy_to_user(optval, &val, len))
5803 return -EFAULT;
5804 return 0;
5805 }
5806
5807 /*
5808 * 8.2.6. Get the Current Identifiers of Associations
5809 * (SCTP_GET_ASSOC_ID_LIST)
5810 *
5811 * This option gets the current list of SCTP association identifiers of
5812 * the SCTP associations handled by a one-to-many style socket.
5813 */
sctp_getsockopt_assoc_ids(struct sock * sk,int len,char __user * optval,int __user * optlen)5814 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5815 char __user *optval, int __user *optlen)
5816 {
5817 struct sctp_sock *sp = sctp_sk(sk);
5818 struct sctp_association *asoc;
5819 struct sctp_assoc_ids *ids;
5820 u32 num = 0;
5821
5822 if (sctp_style(sk, TCP))
5823 return -EOPNOTSUPP;
5824
5825 if (len < sizeof(struct sctp_assoc_ids))
5826 return -EINVAL;
5827
5828 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5829 num++;
5830 }
5831
5832 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5833 return -EINVAL;
5834
5835 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5836
5837 ids = kmalloc(len, GFP_KERNEL);
5838 if (unlikely(!ids))
5839 return -ENOMEM;
5840
5841 ids->gaids_number_of_ids = num;
5842 num = 0;
5843 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5844 ids->gaids_assoc_id[num++] = asoc->assoc_id;
5845 }
5846
5847 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5848 kfree(ids);
5849 return -EFAULT;
5850 }
5851
5852 kfree(ids);
5853 return 0;
5854 }
5855
5856 /*
5857 * SCTP_PEER_ADDR_THLDS
5858 *
5859 * This option allows us to fetch the partially failed threshold for one or all
5860 * transports in an association. See Section 6.1 of:
5861 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5862 */
sctp_getsockopt_paddr_thresholds(struct sock * sk,char __user * optval,int len,int __user * optlen)5863 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5864 char __user *optval,
5865 int len,
5866 int __user *optlen)
5867 {
5868 struct sctp_paddrthlds val;
5869 struct sctp_transport *trans;
5870 struct sctp_association *asoc;
5871
5872 if (len < sizeof(struct sctp_paddrthlds))
5873 return -EINVAL;
5874 len = sizeof(struct sctp_paddrthlds);
5875 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5876 return -EFAULT;
5877
5878 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5879 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5880 if (!asoc)
5881 return -ENOENT;
5882
5883 val.spt_pathpfthld = asoc->pf_retrans;
5884 val.spt_pathmaxrxt = asoc->pathmaxrxt;
5885 } else {
5886 trans = sctp_addr_id2transport(sk, &val.spt_address,
5887 val.spt_assoc_id);
5888 if (!trans)
5889 return -ENOENT;
5890
5891 val.spt_pathmaxrxt = trans->pathmaxrxt;
5892 val.spt_pathpfthld = trans->pf_retrans;
5893 }
5894
5895 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5896 return -EFAULT;
5897
5898 return 0;
5899 }
5900
5901 /*
5902 * SCTP_GET_ASSOC_STATS
5903 *
5904 * This option retrieves local per endpoint statistics. It is modeled
5905 * after OpenSolaris' implementation
5906 */
sctp_getsockopt_assoc_stats(struct sock * sk,int len,char __user * optval,int __user * optlen)5907 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5908 char __user *optval,
5909 int __user *optlen)
5910 {
5911 struct sctp_assoc_stats sas;
5912 struct sctp_association *asoc = NULL;
5913
5914 /* User must provide at least the assoc id */
5915 if (len < sizeof(sctp_assoc_t))
5916 return -EINVAL;
5917
5918 /* Allow the struct to grow and fill in as much as possible */
5919 len = min_t(size_t, len, sizeof(sas));
5920
5921 if (copy_from_user(&sas, optval, len))
5922 return -EFAULT;
5923
5924 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5925 if (!asoc)
5926 return -EINVAL;
5927
5928 sas.sas_rtxchunks = asoc->stats.rtxchunks;
5929 sas.sas_gapcnt = asoc->stats.gapcnt;
5930 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5931 sas.sas_osacks = asoc->stats.osacks;
5932 sas.sas_isacks = asoc->stats.isacks;
5933 sas.sas_octrlchunks = asoc->stats.octrlchunks;
5934 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5935 sas.sas_oodchunks = asoc->stats.oodchunks;
5936 sas.sas_iodchunks = asoc->stats.iodchunks;
5937 sas.sas_ouodchunks = asoc->stats.ouodchunks;
5938 sas.sas_iuodchunks = asoc->stats.iuodchunks;
5939 sas.sas_idupchunks = asoc->stats.idupchunks;
5940 sas.sas_opackets = asoc->stats.opackets;
5941 sas.sas_ipackets = asoc->stats.ipackets;
5942
5943 /* New high max rto observed, will return 0 if not a single
5944 * RTO update took place. obs_rto_ipaddr will be bogus
5945 * in such a case
5946 */
5947 sas.sas_maxrto = asoc->stats.max_obs_rto;
5948 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5949 sizeof(struct sockaddr_storage));
5950
5951 /* Mark beginning of a new observation period */
5952 asoc->stats.max_obs_rto = asoc->rto_min;
5953
5954 if (put_user(len, optlen))
5955 return -EFAULT;
5956
5957 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5958
5959 if (copy_to_user(optval, &sas, len))
5960 return -EFAULT;
5961
5962 return 0;
5963 }
5964
sctp_getsockopt_recvrcvinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)5965 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
5966 char __user *optval,
5967 int __user *optlen)
5968 {
5969 int val = 0;
5970
5971 if (len < sizeof(int))
5972 return -EINVAL;
5973
5974 len = sizeof(int);
5975 if (sctp_sk(sk)->recvrcvinfo)
5976 val = 1;
5977 if (put_user(len, optlen))
5978 return -EFAULT;
5979 if (copy_to_user(optval, &val, len))
5980 return -EFAULT;
5981
5982 return 0;
5983 }
5984
sctp_getsockopt_recvnxtinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)5985 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
5986 char __user *optval,
5987 int __user *optlen)
5988 {
5989 int val = 0;
5990
5991 if (len < sizeof(int))
5992 return -EINVAL;
5993
5994 len = sizeof(int);
5995 if (sctp_sk(sk)->recvnxtinfo)
5996 val = 1;
5997 if (put_user(len, optlen))
5998 return -EFAULT;
5999 if (copy_to_user(optval, &val, len))
6000 return -EFAULT;
6001
6002 return 0;
6003 }
6004
sctp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)6005 static int sctp_getsockopt(struct sock *sk, int level, int optname,
6006 char __user *optval, int __user *optlen)
6007 {
6008 int retval = 0;
6009 int len;
6010
6011 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
6012
6013 /* I can hardly begin to describe how wrong this is. This is
6014 * so broken as to be worse than useless. The API draft
6015 * REALLY is NOT helpful here... I am not convinced that the
6016 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
6017 * are at all well-founded.
6018 */
6019 if (level != SOL_SCTP) {
6020 struct sctp_af *af = sctp_sk(sk)->pf->af;
6021
6022 retval = af->getsockopt(sk, level, optname, optval, optlen);
6023 return retval;
6024 }
6025
6026 if (get_user(len, optlen))
6027 return -EFAULT;
6028
6029 if (len < 0)
6030 return -EINVAL;
6031
6032 lock_sock(sk);
6033
6034 switch (optname) {
6035 case SCTP_STATUS:
6036 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
6037 break;
6038 case SCTP_DISABLE_FRAGMENTS:
6039 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
6040 optlen);
6041 break;
6042 case SCTP_EVENTS:
6043 retval = sctp_getsockopt_events(sk, len, optval, optlen);
6044 break;
6045 case SCTP_AUTOCLOSE:
6046 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
6047 break;
6048 case SCTP_SOCKOPT_PEELOFF:
6049 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
6050 break;
6051 case SCTP_PEER_ADDR_PARAMS:
6052 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
6053 optlen);
6054 break;
6055 case SCTP_DELAYED_SACK:
6056 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
6057 optlen);
6058 break;
6059 case SCTP_INITMSG:
6060 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6061 break;
6062 case SCTP_GET_PEER_ADDRS:
6063 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6064 optlen);
6065 break;
6066 case SCTP_GET_LOCAL_ADDRS:
6067 retval = sctp_getsockopt_local_addrs(sk, len, optval,
6068 optlen);
6069 break;
6070 case SCTP_SOCKOPT_CONNECTX3:
6071 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6072 break;
6073 case SCTP_DEFAULT_SEND_PARAM:
6074 retval = sctp_getsockopt_default_send_param(sk, len,
6075 optval, optlen);
6076 break;
6077 case SCTP_DEFAULT_SNDINFO:
6078 retval = sctp_getsockopt_default_sndinfo(sk, len,
6079 optval, optlen);
6080 break;
6081 case SCTP_PRIMARY_ADDR:
6082 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6083 break;
6084 case SCTP_NODELAY:
6085 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6086 break;
6087 case SCTP_RTOINFO:
6088 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6089 break;
6090 case SCTP_ASSOCINFO:
6091 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6092 break;
6093 case SCTP_I_WANT_MAPPED_V4_ADDR:
6094 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6095 break;
6096 case SCTP_MAXSEG:
6097 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6098 break;
6099 case SCTP_GET_PEER_ADDR_INFO:
6100 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6101 optlen);
6102 break;
6103 case SCTP_ADAPTATION_LAYER:
6104 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6105 optlen);
6106 break;
6107 case SCTP_CONTEXT:
6108 retval = sctp_getsockopt_context(sk, len, optval, optlen);
6109 break;
6110 case SCTP_FRAGMENT_INTERLEAVE:
6111 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6112 optlen);
6113 break;
6114 case SCTP_PARTIAL_DELIVERY_POINT:
6115 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6116 optlen);
6117 break;
6118 case SCTP_MAX_BURST:
6119 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6120 break;
6121 case SCTP_AUTH_KEY:
6122 case SCTP_AUTH_CHUNK:
6123 case SCTP_AUTH_DELETE_KEY:
6124 retval = -EOPNOTSUPP;
6125 break;
6126 case SCTP_HMAC_IDENT:
6127 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6128 break;
6129 case SCTP_AUTH_ACTIVE_KEY:
6130 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6131 break;
6132 case SCTP_PEER_AUTH_CHUNKS:
6133 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6134 optlen);
6135 break;
6136 case SCTP_LOCAL_AUTH_CHUNKS:
6137 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6138 optlen);
6139 break;
6140 case SCTP_GET_ASSOC_NUMBER:
6141 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6142 break;
6143 case SCTP_GET_ASSOC_ID_LIST:
6144 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6145 break;
6146 case SCTP_AUTO_ASCONF:
6147 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6148 break;
6149 case SCTP_PEER_ADDR_THLDS:
6150 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6151 break;
6152 case SCTP_GET_ASSOC_STATS:
6153 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6154 break;
6155 case SCTP_RECVRCVINFO:
6156 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6157 break;
6158 case SCTP_RECVNXTINFO:
6159 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6160 break;
6161 default:
6162 retval = -ENOPROTOOPT;
6163 break;
6164 }
6165
6166 release_sock(sk);
6167 return retval;
6168 }
6169
sctp_hash(struct sock * sk)6170 static void sctp_hash(struct sock *sk)
6171 {
6172 /* STUB */
6173 }
6174
sctp_unhash(struct sock * sk)6175 static void sctp_unhash(struct sock *sk)
6176 {
6177 /* STUB */
6178 }
6179
6180 /* Check if port is acceptable. Possibly find first available port.
6181 *
6182 * The port hash table (contained in the 'global' SCTP protocol storage
6183 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6184 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6185 * list (the list number is the port number hashed out, so as you
6186 * would expect from a hash function, all the ports in a given list have
6187 * such a number that hashes out to the same list number; you were
6188 * expecting that, right?); so each list has a set of ports, with a
6189 * link to the socket (struct sock) that uses it, the port number and
6190 * a fastreuse flag (FIXME: NPI ipg).
6191 */
6192 static struct sctp_bind_bucket *sctp_bucket_create(
6193 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6194
sctp_get_port_local(struct sock * sk,union sctp_addr * addr)6195 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6196 {
6197 struct sctp_bind_hashbucket *head; /* hash list */
6198 struct sctp_bind_bucket *pp;
6199 unsigned short snum;
6200 int ret;
6201
6202 snum = ntohs(addr->v4.sin_port);
6203
6204 pr_debug("%s: begins, snum:%d\n", __func__, snum);
6205
6206 local_bh_disable();
6207
6208 if (snum == 0) {
6209 /* Search for an available port. */
6210 int low, high, remaining, index;
6211 unsigned int rover;
6212 struct net *net = sock_net(sk);
6213
6214 inet_get_local_port_range(net, &low, &high);
6215 remaining = (high - low) + 1;
6216 rover = prandom_u32() % remaining + low;
6217
6218 do {
6219 rover++;
6220 if ((rover < low) || (rover > high))
6221 rover = low;
6222 if (inet_is_local_reserved_port(net, rover))
6223 continue;
6224 index = sctp_phashfn(sock_net(sk), rover);
6225 head = &sctp_port_hashtable[index];
6226 spin_lock(&head->lock);
6227 sctp_for_each_hentry(pp, &head->chain)
6228 if ((pp->port == rover) &&
6229 net_eq(sock_net(sk), pp->net))
6230 goto next;
6231 break;
6232 next:
6233 spin_unlock(&head->lock);
6234 } while (--remaining > 0);
6235
6236 /* Exhausted local port range during search? */
6237 ret = 1;
6238 if (remaining <= 0)
6239 goto fail;
6240
6241 /* OK, here is the one we will use. HEAD (the port
6242 * hash table list entry) is non-NULL and we hold it's
6243 * mutex.
6244 */
6245 snum = rover;
6246 } else {
6247 /* We are given an specific port number; we verify
6248 * that it is not being used. If it is used, we will
6249 * exahust the search in the hash list corresponding
6250 * to the port number (snum) - we detect that with the
6251 * port iterator, pp being NULL.
6252 */
6253 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6254 spin_lock(&head->lock);
6255 sctp_for_each_hentry(pp, &head->chain) {
6256 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6257 goto pp_found;
6258 }
6259 }
6260 pp = NULL;
6261 goto pp_not_found;
6262 pp_found:
6263 if (!hlist_empty(&pp->owner)) {
6264 /* We had a port hash table hit - there is an
6265 * available port (pp != NULL) and it is being
6266 * used by other socket (pp->owner not empty); that other
6267 * socket is going to be sk2.
6268 */
6269 int reuse = sk->sk_reuse;
6270 struct sock *sk2;
6271
6272 pr_debug("%s: found a possible match\n", __func__);
6273
6274 if (pp->fastreuse && sk->sk_reuse &&
6275 sk->sk_state != SCTP_SS_LISTENING)
6276 goto success;
6277
6278 /* Run through the list of sockets bound to the port
6279 * (pp->port) [via the pointers bind_next and
6280 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6281 * we get the endpoint they describe and run through
6282 * the endpoint's list of IP (v4 or v6) addresses,
6283 * comparing each of the addresses with the address of
6284 * the socket sk. If we find a match, then that means
6285 * that this port/socket (sk) combination are already
6286 * in an endpoint.
6287 */
6288 sk_for_each_bound(sk2, &pp->owner) {
6289 struct sctp_endpoint *ep2;
6290 ep2 = sctp_sk(sk2)->ep;
6291
6292 if (sk == sk2 ||
6293 (reuse && sk2->sk_reuse &&
6294 sk2->sk_state != SCTP_SS_LISTENING))
6295 continue;
6296
6297 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6298 sctp_sk(sk2), sctp_sk(sk))) {
6299 ret = (long)sk2;
6300 goto fail_unlock;
6301 }
6302 }
6303
6304 pr_debug("%s: found a match\n", __func__);
6305 }
6306 pp_not_found:
6307 /* If there was a hash table miss, create a new port. */
6308 ret = 1;
6309 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6310 goto fail_unlock;
6311
6312 /* In either case (hit or miss), make sure fastreuse is 1 only
6313 * if sk->sk_reuse is too (that is, if the caller requested
6314 * SO_REUSEADDR on this socket -sk-).
6315 */
6316 if (hlist_empty(&pp->owner)) {
6317 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6318 pp->fastreuse = 1;
6319 else
6320 pp->fastreuse = 0;
6321 } else if (pp->fastreuse &&
6322 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6323 pp->fastreuse = 0;
6324
6325 /* We are set, so fill up all the data in the hash table
6326 * entry, tie the socket list information with the rest of the
6327 * sockets FIXME: Blurry, NPI (ipg).
6328 */
6329 success:
6330 if (!sctp_sk(sk)->bind_hash) {
6331 inet_sk(sk)->inet_num = snum;
6332 sk_add_bind_node(sk, &pp->owner);
6333 sctp_sk(sk)->bind_hash = pp;
6334 }
6335 ret = 0;
6336
6337 fail_unlock:
6338 spin_unlock(&head->lock);
6339
6340 fail:
6341 local_bh_enable();
6342 return ret;
6343 }
6344
6345 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
6346 * port is requested.
6347 */
sctp_get_port(struct sock * sk,unsigned short snum)6348 static int sctp_get_port(struct sock *sk, unsigned short snum)
6349 {
6350 union sctp_addr addr;
6351 struct sctp_af *af = sctp_sk(sk)->pf->af;
6352
6353 /* Set up a dummy address struct from the sk. */
6354 af->from_sk(&addr, sk);
6355 addr.v4.sin_port = htons(snum);
6356
6357 /* Note: sk->sk_num gets filled in if ephemeral port request. */
6358 return !!sctp_get_port_local(sk, &addr);
6359 }
6360
6361 /*
6362 * Move a socket to LISTENING state.
6363 */
sctp_listen_start(struct sock * sk,int backlog)6364 static int sctp_listen_start(struct sock *sk, int backlog)
6365 {
6366 struct sctp_sock *sp = sctp_sk(sk);
6367 struct sctp_endpoint *ep = sp->ep;
6368 struct crypto_hash *tfm = NULL;
6369 char alg[32];
6370
6371 /* Allocate HMAC for generating cookie. */
6372 if (!sp->hmac && sp->sctp_hmac_alg) {
6373 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6374 tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6375 if (IS_ERR(tfm)) {
6376 net_info_ratelimited("failed to load transform for %s: %ld\n",
6377 sp->sctp_hmac_alg, PTR_ERR(tfm));
6378 return -ENOSYS;
6379 }
6380 sctp_sk(sk)->hmac = tfm;
6381 }
6382
6383 /*
6384 * If a bind() or sctp_bindx() is not called prior to a listen()
6385 * call that allows new associations to be accepted, the system
6386 * picks an ephemeral port and will choose an address set equivalent
6387 * to binding with a wildcard address.
6388 *
6389 * This is not currently spelled out in the SCTP sockets
6390 * extensions draft, but follows the practice as seen in TCP
6391 * sockets.
6392 *
6393 */
6394 sk->sk_state = SCTP_SS_LISTENING;
6395 if (!ep->base.bind_addr.port) {
6396 if (sctp_autobind(sk))
6397 return -EAGAIN;
6398 } else {
6399 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6400 sk->sk_state = SCTP_SS_CLOSED;
6401 return -EADDRINUSE;
6402 }
6403 }
6404
6405 sk->sk_max_ack_backlog = backlog;
6406 sctp_hash_endpoint(ep);
6407 return 0;
6408 }
6409
6410 /*
6411 * 4.1.3 / 5.1.3 listen()
6412 *
6413 * By default, new associations are not accepted for UDP style sockets.
6414 * An application uses listen() to mark a socket as being able to
6415 * accept new associations.
6416 *
6417 * On TCP style sockets, applications use listen() to ready the SCTP
6418 * endpoint for accepting inbound associations.
6419 *
6420 * On both types of endpoints a backlog of '0' disables listening.
6421 *
6422 * Move a socket to LISTENING state.
6423 */
sctp_inet_listen(struct socket * sock,int backlog)6424 int sctp_inet_listen(struct socket *sock, int backlog)
6425 {
6426 struct sock *sk = sock->sk;
6427 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6428 int err = -EINVAL;
6429
6430 if (unlikely(backlog < 0))
6431 return err;
6432
6433 lock_sock(sk);
6434
6435 /* Peeled-off sockets are not allowed to listen(). */
6436 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6437 goto out;
6438
6439 if (sock->state != SS_UNCONNECTED)
6440 goto out;
6441
6442 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
6443 goto out;
6444
6445 /* If backlog is zero, disable listening. */
6446 if (!backlog) {
6447 if (sctp_sstate(sk, CLOSED))
6448 goto out;
6449
6450 err = 0;
6451 sctp_unhash_endpoint(ep);
6452 sk->sk_state = SCTP_SS_CLOSED;
6453 if (sk->sk_reuse)
6454 sctp_sk(sk)->bind_hash->fastreuse = 1;
6455 goto out;
6456 }
6457
6458 /* If we are already listening, just update the backlog */
6459 if (sctp_sstate(sk, LISTENING))
6460 sk->sk_max_ack_backlog = backlog;
6461 else {
6462 err = sctp_listen_start(sk, backlog);
6463 if (err)
6464 goto out;
6465 }
6466
6467 err = 0;
6468 out:
6469 release_sock(sk);
6470 return err;
6471 }
6472
6473 /*
6474 * This function is done by modeling the current datagram_poll() and the
6475 * tcp_poll(). Note that, based on these implementations, we don't
6476 * lock the socket in this function, even though it seems that,
6477 * ideally, locking or some other mechanisms can be used to ensure
6478 * the integrity of the counters (sndbuf and wmem_alloc) used
6479 * in this place. We assume that we don't need locks either until proven
6480 * otherwise.
6481 *
6482 * Another thing to note is that we include the Async I/O support
6483 * here, again, by modeling the current TCP/UDP code. We don't have
6484 * a good way to test with it yet.
6485 */
sctp_poll(struct file * file,struct socket * sock,poll_table * wait)6486 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6487 {
6488 struct sock *sk = sock->sk;
6489 struct sctp_sock *sp = sctp_sk(sk);
6490 unsigned int mask;
6491
6492 poll_wait(file, sk_sleep(sk), wait);
6493
6494 /* A TCP-style listening socket becomes readable when the accept queue
6495 * is not empty.
6496 */
6497 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6498 return (!list_empty(&sp->ep->asocs)) ?
6499 (POLLIN | POLLRDNORM) : 0;
6500
6501 mask = 0;
6502
6503 /* Is there any exceptional events? */
6504 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6505 mask |= POLLERR |
6506 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6507 if (sk->sk_shutdown & RCV_SHUTDOWN)
6508 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6509 if (sk->sk_shutdown == SHUTDOWN_MASK)
6510 mask |= POLLHUP;
6511
6512 /* Is it readable? Reconsider this code with TCP-style support. */
6513 if (!skb_queue_empty(&sk->sk_receive_queue))
6514 mask |= POLLIN | POLLRDNORM;
6515
6516 /* The association is either gone or not ready. */
6517 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6518 return mask;
6519
6520 /* Is it writable? */
6521 if (sctp_writeable(sk)) {
6522 mask |= POLLOUT | POLLWRNORM;
6523 } else {
6524 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6525 /*
6526 * Since the socket is not locked, the buffer
6527 * might be made available after the writeable check and
6528 * before the bit is set. This could cause a lost I/O
6529 * signal. tcp_poll() has a race breaker for this race
6530 * condition. Based on their implementation, we put
6531 * in the following code to cover it as well.
6532 */
6533 if (sctp_writeable(sk))
6534 mask |= POLLOUT | POLLWRNORM;
6535 }
6536 return mask;
6537 }
6538
6539 /********************************************************************
6540 * 2nd Level Abstractions
6541 ********************************************************************/
6542
sctp_bucket_create(struct sctp_bind_hashbucket * head,struct net * net,unsigned short snum)6543 static struct sctp_bind_bucket *sctp_bucket_create(
6544 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6545 {
6546 struct sctp_bind_bucket *pp;
6547
6548 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6549 if (pp) {
6550 SCTP_DBG_OBJCNT_INC(bind_bucket);
6551 pp->port = snum;
6552 pp->fastreuse = 0;
6553 INIT_HLIST_HEAD(&pp->owner);
6554 pp->net = net;
6555 hlist_add_head(&pp->node, &head->chain);
6556 }
6557 return pp;
6558 }
6559
6560 /* Caller must hold hashbucket lock for this tb with local BH disabled */
sctp_bucket_destroy(struct sctp_bind_bucket * pp)6561 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6562 {
6563 if (pp && hlist_empty(&pp->owner)) {
6564 __hlist_del(&pp->node);
6565 kmem_cache_free(sctp_bucket_cachep, pp);
6566 SCTP_DBG_OBJCNT_DEC(bind_bucket);
6567 }
6568 }
6569
6570 /* Release this socket's reference to a local port. */
__sctp_put_port(struct sock * sk)6571 static inline void __sctp_put_port(struct sock *sk)
6572 {
6573 struct sctp_bind_hashbucket *head =
6574 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6575 inet_sk(sk)->inet_num)];
6576 struct sctp_bind_bucket *pp;
6577
6578 spin_lock(&head->lock);
6579 pp = sctp_sk(sk)->bind_hash;
6580 __sk_del_bind_node(sk);
6581 sctp_sk(sk)->bind_hash = NULL;
6582 inet_sk(sk)->inet_num = 0;
6583 sctp_bucket_destroy(pp);
6584 spin_unlock(&head->lock);
6585 }
6586
sctp_put_port(struct sock * sk)6587 void sctp_put_port(struct sock *sk)
6588 {
6589 local_bh_disable();
6590 __sctp_put_port(sk);
6591 local_bh_enable();
6592 }
6593
6594 /*
6595 * The system picks an ephemeral port and choose an address set equivalent
6596 * to binding with a wildcard address.
6597 * One of those addresses will be the primary address for the association.
6598 * This automatically enables the multihoming capability of SCTP.
6599 */
sctp_autobind(struct sock * sk)6600 static int sctp_autobind(struct sock *sk)
6601 {
6602 union sctp_addr autoaddr;
6603 struct sctp_af *af;
6604 __be16 port;
6605
6606 /* Initialize a local sockaddr structure to INADDR_ANY. */
6607 af = sctp_sk(sk)->pf->af;
6608
6609 port = htons(inet_sk(sk)->inet_num);
6610 af->inaddr_any(&autoaddr, port);
6611
6612 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6613 }
6614
6615 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
6616 *
6617 * From RFC 2292
6618 * 4.2 The cmsghdr Structure *
6619 *
6620 * When ancillary data is sent or received, any number of ancillary data
6621 * objects can be specified by the msg_control and msg_controllen members of
6622 * the msghdr structure, because each object is preceded by
6623 * a cmsghdr structure defining the object's length (the cmsg_len member).
6624 * Historically Berkeley-derived implementations have passed only one object
6625 * at a time, but this API allows multiple objects to be
6626 * passed in a single call to sendmsg() or recvmsg(). The following example
6627 * shows two ancillary data objects in a control buffer.
6628 *
6629 * |<--------------------------- msg_controllen -------------------------->|
6630 * | |
6631 *
6632 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
6633 *
6634 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6635 * | | |
6636 *
6637 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
6638 *
6639 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
6640 * | | | | |
6641 *
6642 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6643 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
6644 *
6645 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
6646 *
6647 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6648 * ^
6649 * |
6650 *
6651 * msg_control
6652 * points here
6653 */
sctp_msghdr_parse(const struct msghdr * msg,sctp_cmsgs_t * cmsgs)6654 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6655 {
6656 struct cmsghdr *cmsg;
6657 struct msghdr *my_msg = (struct msghdr *)msg;
6658
6659 for (cmsg = CMSG_FIRSTHDR(msg); cmsg != NULL;
6660 cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
6661 if (!CMSG_OK(my_msg, cmsg))
6662 return -EINVAL;
6663
6664 /* Should we parse this header or ignore? */
6665 if (cmsg->cmsg_level != IPPROTO_SCTP)
6666 continue;
6667
6668 /* Strictly check lengths following example in SCM code. */
6669 switch (cmsg->cmsg_type) {
6670 case SCTP_INIT:
6671 /* SCTP Socket API Extension
6672 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
6673 *
6674 * This cmsghdr structure provides information for
6675 * initializing new SCTP associations with sendmsg().
6676 * The SCTP_INITMSG socket option uses this same data
6677 * structure. This structure is not used for
6678 * recvmsg().
6679 *
6680 * cmsg_level cmsg_type cmsg_data[]
6681 * ------------ ------------ ----------------------
6682 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
6683 */
6684 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
6685 return -EINVAL;
6686
6687 cmsgs->init = CMSG_DATA(cmsg);
6688 break;
6689
6690 case SCTP_SNDRCV:
6691 /* SCTP Socket API Extension
6692 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
6693 *
6694 * This cmsghdr structure specifies SCTP options for
6695 * sendmsg() and describes SCTP header information
6696 * about a received message through recvmsg().
6697 *
6698 * cmsg_level cmsg_type cmsg_data[]
6699 * ------------ ------------ ----------------------
6700 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
6701 */
6702 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6703 return -EINVAL;
6704
6705 cmsgs->srinfo = CMSG_DATA(cmsg);
6706
6707 if (cmsgs->srinfo->sinfo_flags &
6708 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6709 SCTP_ABORT | SCTP_EOF))
6710 return -EINVAL;
6711 break;
6712
6713 case SCTP_SNDINFO:
6714 /* SCTP Socket API Extension
6715 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
6716 *
6717 * This cmsghdr structure specifies SCTP options for
6718 * sendmsg(). This structure and SCTP_RCVINFO replaces
6719 * SCTP_SNDRCV which has been deprecated.
6720 *
6721 * cmsg_level cmsg_type cmsg_data[]
6722 * ------------ ------------ ---------------------
6723 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
6724 */
6725 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
6726 return -EINVAL;
6727
6728 cmsgs->sinfo = CMSG_DATA(cmsg);
6729
6730 if (cmsgs->sinfo->snd_flags &
6731 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6732 SCTP_ABORT | SCTP_EOF))
6733 return -EINVAL;
6734 break;
6735 default:
6736 return -EINVAL;
6737 }
6738 }
6739
6740 return 0;
6741 }
6742
6743 /*
6744 * Wait for a packet..
6745 * Note: This function is the same function as in core/datagram.c
6746 * with a few modifications to make lksctp work.
6747 */
sctp_wait_for_packet(struct sock * sk,int * err,long * timeo_p)6748 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
6749 {
6750 int error;
6751 DEFINE_WAIT(wait);
6752
6753 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6754
6755 /* Socket errors? */
6756 error = sock_error(sk);
6757 if (error)
6758 goto out;
6759
6760 if (!skb_queue_empty(&sk->sk_receive_queue))
6761 goto ready;
6762
6763 /* Socket shut down? */
6764 if (sk->sk_shutdown & RCV_SHUTDOWN)
6765 goto out;
6766
6767 /* Sequenced packets can come disconnected. If so we report the
6768 * problem.
6769 */
6770 error = -ENOTCONN;
6771
6772 /* Is there a good reason to think that we may receive some data? */
6773 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6774 goto out;
6775
6776 /* Handle signals. */
6777 if (signal_pending(current))
6778 goto interrupted;
6779
6780 /* Let another process have a go. Since we are going to sleep
6781 * anyway. Note: This may cause odd behaviors if the message
6782 * does not fit in the user's buffer, but this seems to be the
6783 * only way to honor MSG_DONTWAIT realistically.
6784 */
6785 release_sock(sk);
6786 *timeo_p = schedule_timeout(*timeo_p);
6787 lock_sock(sk);
6788
6789 ready:
6790 finish_wait(sk_sleep(sk), &wait);
6791 return 0;
6792
6793 interrupted:
6794 error = sock_intr_errno(*timeo_p);
6795
6796 out:
6797 finish_wait(sk_sleep(sk), &wait);
6798 *err = error;
6799 return error;
6800 }
6801
6802 /* Receive a datagram.
6803 * Note: This is pretty much the same routine as in core/datagram.c
6804 * with a few changes to make lksctp work.
6805 */
sctp_skb_recv_datagram(struct sock * sk,int flags,int noblock,int * err)6806 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6807 int noblock, int *err)
6808 {
6809 int error;
6810 struct sk_buff *skb;
6811 long timeo;
6812
6813 timeo = sock_rcvtimeo(sk, noblock);
6814
6815 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6816 MAX_SCHEDULE_TIMEOUT);
6817
6818 do {
6819 /* Again only user level code calls this function,
6820 * so nothing interrupt level
6821 * will suddenly eat the receive_queue.
6822 *
6823 * Look at current nfs client by the way...
6824 * However, this function was correct in any case. 8)
6825 */
6826 if (flags & MSG_PEEK) {
6827 spin_lock_bh(&sk->sk_receive_queue.lock);
6828 skb = skb_peek(&sk->sk_receive_queue);
6829 if (skb)
6830 atomic_inc(&skb->users);
6831 spin_unlock_bh(&sk->sk_receive_queue.lock);
6832 } else {
6833 skb = skb_dequeue(&sk->sk_receive_queue);
6834 }
6835
6836 if (skb)
6837 return skb;
6838
6839 /* Caller is allowed not to check sk->sk_err before calling. */
6840 error = sock_error(sk);
6841 if (error)
6842 goto no_packet;
6843
6844 if (sk->sk_shutdown & RCV_SHUTDOWN)
6845 break;
6846
6847 if (sk_can_busy_loop(sk) &&
6848 sk_busy_loop(sk, noblock))
6849 continue;
6850
6851 /* User doesn't want to wait. */
6852 error = -EAGAIN;
6853 if (!timeo)
6854 goto no_packet;
6855 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6856
6857 return NULL;
6858
6859 no_packet:
6860 *err = error;
6861 return NULL;
6862 }
6863
6864 /* If sndbuf has changed, wake up per association sndbuf waiters. */
__sctp_write_space(struct sctp_association * asoc)6865 static void __sctp_write_space(struct sctp_association *asoc)
6866 {
6867 struct sock *sk = asoc->base.sk;
6868 struct socket *sock = sk->sk_socket;
6869
6870 if ((sctp_wspace(asoc) > 0) && sock) {
6871 if (waitqueue_active(&asoc->wait))
6872 wake_up_interruptible(&asoc->wait);
6873
6874 if (sctp_writeable(sk)) {
6875 wait_queue_head_t *wq = sk_sleep(sk);
6876
6877 if (wq && waitqueue_active(wq))
6878 wake_up_interruptible(wq);
6879
6880 /* Note that we try to include the Async I/O support
6881 * here by modeling from the current TCP/UDP code.
6882 * We have not tested with it yet.
6883 */
6884 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6885 sock_wake_async(sock,
6886 SOCK_WAKE_SPACE, POLL_OUT);
6887 }
6888 }
6889 }
6890
sctp_wake_up_waiters(struct sock * sk,struct sctp_association * asoc)6891 static void sctp_wake_up_waiters(struct sock *sk,
6892 struct sctp_association *asoc)
6893 {
6894 struct sctp_association *tmp = asoc;
6895
6896 /* We do accounting for the sndbuf space per association,
6897 * so we only need to wake our own association.
6898 */
6899 if (asoc->ep->sndbuf_policy)
6900 return __sctp_write_space(asoc);
6901
6902 /* If association goes down and is just flushing its
6903 * outq, then just normally notify others.
6904 */
6905 if (asoc->base.dead)
6906 return sctp_write_space(sk);
6907
6908 /* Accounting for the sndbuf space is per socket, so we
6909 * need to wake up others, try to be fair and in case of
6910 * other associations, let them have a go first instead
6911 * of just doing a sctp_write_space() call.
6912 *
6913 * Note that we reach sctp_wake_up_waiters() only when
6914 * associations free up queued chunks, thus we are under
6915 * lock and the list of associations on a socket is
6916 * guaranteed not to change.
6917 */
6918 for (tmp = list_next_entry(tmp, asocs); 1;
6919 tmp = list_next_entry(tmp, asocs)) {
6920 /* Manually skip the head element. */
6921 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
6922 continue;
6923 /* Wake up association. */
6924 __sctp_write_space(tmp);
6925 /* We've reached the end. */
6926 if (tmp == asoc)
6927 break;
6928 }
6929 }
6930
6931 /* Do accounting for the sndbuf space.
6932 * Decrement the used sndbuf space of the corresponding association by the
6933 * data size which was just transmitted(freed).
6934 */
sctp_wfree(struct sk_buff * skb)6935 static void sctp_wfree(struct sk_buff *skb)
6936 {
6937 struct sctp_association *asoc;
6938 struct sctp_chunk *chunk;
6939 struct sock *sk;
6940
6941 /* Get the saved chunk pointer. */
6942 chunk = *((struct sctp_chunk **)(skb->cb));
6943 asoc = chunk->asoc;
6944 sk = asoc->base.sk;
6945 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6946 sizeof(struct sk_buff) +
6947 sizeof(struct sctp_chunk);
6948
6949 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6950
6951 /*
6952 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6953 */
6954 sk->sk_wmem_queued -= skb->truesize;
6955 sk_mem_uncharge(sk, skb->truesize);
6956
6957 sock_wfree(skb);
6958 sctp_wake_up_waiters(sk, asoc);
6959
6960 sctp_association_put(asoc);
6961 }
6962
6963 /* Do accounting for the receive space on the socket.
6964 * Accounting for the association is done in ulpevent.c
6965 * We set this as a destructor for the cloned data skbs so that
6966 * accounting is done at the correct time.
6967 */
sctp_sock_rfree(struct sk_buff * skb)6968 void sctp_sock_rfree(struct sk_buff *skb)
6969 {
6970 struct sock *sk = skb->sk;
6971 struct sctp_ulpevent *event = sctp_skb2event(skb);
6972
6973 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6974
6975 /*
6976 * Mimic the behavior of sock_rfree
6977 */
6978 sk_mem_uncharge(sk, event->rmem_len);
6979 }
6980
6981
6982 /* Helper function to wait for space in the sndbuf. */
sctp_wait_for_sndbuf(struct sctp_association * asoc,long * timeo_p,size_t msg_len)6983 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6984 size_t msg_len)
6985 {
6986 struct sock *sk = asoc->base.sk;
6987 long current_timeo = *timeo_p;
6988 DEFINE_WAIT(wait);
6989 int err = 0;
6990
6991 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6992 *timeo_p, msg_len);
6993
6994 /* Increment the association's refcnt. */
6995 sctp_association_hold(asoc);
6996
6997 /* Wait on the association specific sndbuf space. */
6998 for (;;) {
6999 prepare_to_wait_exclusive(&asoc->wait, &wait,
7000 TASK_INTERRUPTIBLE);
7001 if (asoc->base.dead)
7002 goto do_dead;
7003 if (!*timeo_p)
7004 goto do_nonblock;
7005 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
7006 goto do_error;
7007 if (signal_pending(current))
7008 goto do_interrupted;
7009 if (msg_len <= sctp_wspace(asoc))
7010 break;
7011
7012 /* Let another process have a go. Since we are going
7013 * to sleep anyway.
7014 */
7015 release_sock(sk);
7016 current_timeo = schedule_timeout(current_timeo);
7017 lock_sock(sk);
7018 if (sk != asoc->base.sk)
7019 goto do_error;
7020
7021 *timeo_p = current_timeo;
7022 }
7023
7024 out:
7025 finish_wait(&asoc->wait, &wait);
7026
7027 /* Release the association's refcnt. */
7028 sctp_association_put(asoc);
7029
7030 return err;
7031
7032 do_dead:
7033 err = -ESRCH;
7034 goto out;
7035
7036 do_error:
7037 err = -EPIPE;
7038 goto out;
7039
7040 do_interrupted:
7041 err = sock_intr_errno(*timeo_p);
7042 goto out;
7043
7044 do_nonblock:
7045 err = -EAGAIN;
7046 goto out;
7047 }
7048
sctp_data_ready(struct sock * sk)7049 void sctp_data_ready(struct sock *sk)
7050 {
7051 struct socket_wq *wq;
7052
7053 rcu_read_lock();
7054 wq = rcu_dereference(sk->sk_wq);
7055 if (wq_has_sleeper(wq))
7056 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
7057 POLLRDNORM | POLLRDBAND);
7058 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
7059 rcu_read_unlock();
7060 }
7061
7062 /* If socket sndbuf has changed, wake up all per association waiters. */
sctp_write_space(struct sock * sk)7063 void sctp_write_space(struct sock *sk)
7064 {
7065 struct sctp_association *asoc;
7066
7067 /* Wake up the tasks in each wait queue. */
7068 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7069 __sctp_write_space(asoc);
7070 }
7071 }
7072
7073 /* Is there any sndbuf space available on the socket?
7074 *
7075 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7076 * associations on the same socket. For a UDP-style socket with
7077 * multiple associations, it is possible for it to be "unwriteable"
7078 * prematurely. I assume that this is acceptable because
7079 * a premature "unwriteable" is better than an accidental "writeable" which
7080 * would cause an unwanted block under certain circumstances. For the 1-1
7081 * UDP-style sockets or TCP-style sockets, this code should work.
7082 * - Daisy
7083 */
sctp_writeable(struct sock * sk)7084 static int sctp_writeable(struct sock *sk)
7085 {
7086 int amt = 0;
7087
7088 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7089 if (amt < 0)
7090 amt = 0;
7091 return amt;
7092 }
7093
7094 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7095 * returns immediately with EINPROGRESS.
7096 */
sctp_wait_for_connect(struct sctp_association * asoc,long * timeo_p)7097 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7098 {
7099 struct sock *sk = asoc->base.sk;
7100 int err = 0;
7101 long current_timeo = *timeo_p;
7102 DEFINE_WAIT(wait);
7103
7104 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7105
7106 /* Increment the association's refcnt. */
7107 sctp_association_hold(asoc);
7108
7109 for (;;) {
7110 prepare_to_wait_exclusive(&asoc->wait, &wait,
7111 TASK_INTERRUPTIBLE);
7112 if (!*timeo_p)
7113 goto do_nonblock;
7114 if (sk->sk_shutdown & RCV_SHUTDOWN)
7115 break;
7116 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7117 asoc->base.dead)
7118 goto do_error;
7119 if (signal_pending(current))
7120 goto do_interrupted;
7121
7122 if (sctp_state(asoc, ESTABLISHED))
7123 break;
7124
7125 /* Let another process have a go. Since we are going
7126 * to sleep anyway.
7127 */
7128 release_sock(sk);
7129 current_timeo = schedule_timeout(current_timeo);
7130 lock_sock(sk);
7131
7132 *timeo_p = current_timeo;
7133 }
7134
7135 out:
7136 finish_wait(&asoc->wait, &wait);
7137
7138 /* Release the association's refcnt. */
7139 sctp_association_put(asoc);
7140
7141 return err;
7142
7143 do_error:
7144 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7145 err = -ETIMEDOUT;
7146 else
7147 err = -ECONNREFUSED;
7148 goto out;
7149
7150 do_interrupted:
7151 err = sock_intr_errno(*timeo_p);
7152 goto out;
7153
7154 do_nonblock:
7155 err = -EINPROGRESS;
7156 goto out;
7157 }
7158
sctp_wait_for_accept(struct sock * sk,long timeo)7159 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7160 {
7161 struct sctp_endpoint *ep;
7162 int err = 0;
7163 DEFINE_WAIT(wait);
7164
7165 ep = sctp_sk(sk)->ep;
7166
7167
7168 for (;;) {
7169 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7170 TASK_INTERRUPTIBLE);
7171
7172 if (list_empty(&ep->asocs)) {
7173 release_sock(sk);
7174 timeo = schedule_timeout(timeo);
7175 lock_sock(sk);
7176 }
7177
7178 err = -EINVAL;
7179 if (!sctp_sstate(sk, LISTENING))
7180 break;
7181
7182 err = 0;
7183 if (!list_empty(&ep->asocs))
7184 break;
7185
7186 err = sock_intr_errno(timeo);
7187 if (signal_pending(current))
7188 break;
7189
7190 err = -EAGAIN;
7191 if (!timeo)
7192 break;
7193 }
7194
7195 finish_wait(sk_sleep(sk), &wait);
7196
7197 return err;
7198 }
7199
sctp_wait_for_close(struct sock * sk,long timeout)7200 static void sctp_wait_for_close(struct sock *sk, long timeout)
7201 {
7202 DEFINE_WAIT(wait);
7203
7204 do {
7205 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7206 if (list_empty(&sctp_sk(sk)->ep->asocs))
7207 break;
7208 release_sock(sk);
7209 timeout = schedule_timeout(timeout);
7210 lock_sock(sk);
7211 } while (!signal_pending(current) && timeout);
7212
7213 finish_wait(sk_sleep(sk), &wait);
7214 }
7215
sctp_skb_set_owner_r_frag(struct sk_buff * skb,struct sock * sk)7216 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7217 {
7218 struct sk_buff *frag;
7219
7220 if (!skb->data_len)
7221 goto done;
7222
7223 /* Don't forget the fragments. */
7224 skb_walk_frags(skb, frag)
7225 sctp_skb_set_owner_r_frag(frag, sk);
7226
7227 done:
7228 sctp_skb_set_owner_r(skb, sk);
7229 }
7230
sctp_copy_sock(struct sock * newsk,struct sock * sk,struct sctp_association * asoc)7231 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7232 struct sctp_association *asoc)
7233 {
7234 struct inet_sock *inet = inet_sk(sk);
7235 struct inet_sock *newinet;
7236
7237 newsk->sk_type = sk->sk_type;
7238 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7239 newsk->sk_flags = sk->sk_flags;
7240 newsk->sk_tsflags = sk->sk_tsflags;
7241 newsk->sk_no_check_tx = sk->sk_no_check_tx;
7242 newsk->sk_no_check_rx = sk->sk_no_check_rx;
7243 newsk->sk_reuse = sk->sk_reuse;
7244
7245 newsk->sk_shutdown = sk->sk_shutdown;
7246 newsk->sk_destruct = sctp_destruct_sock;
7247 newsk->sk_family = sk->sk_family;
7248 newsk->sk_protocol = IPPROTO_SCTP;
7249 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7250 newsk->sk_sndbuf = sk->sk_sndbuf;
7251 newsk->sk_rcvbuf = sk->sk_rcvbuf;
7252 newsk->sk_lingertime = sk->sk_lingertime;
7253 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7254 newsk->sk_sndtimeo = sk->sk_sndtimeo;
7255
7256 newinet = inet_sk(newsk);
7257
7258 /* Initialize sk's sport, dport, rcv_saddr and daddr for
7259 * getsockname() and getpeername()
7260 */
7261 newinet->inet_sport = inet->inet_sport;
7262 newinet->inet_saddr = inet->inet_saddr;
7263 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7264 newinet->inet_dport = htons(asoc->peer.port);
7265 newinet->pmtudisc = inet->pmtudisc;
7266 newinet->inet_id = asoc->next_tsn ^ jiffies;
7267
7268 newinet->uc_ttl = inet->uc_ttl;
7269 newinet->mc_loop = 1;
7270 newinet->mc_ttl = 1;
7271 newinet->mc_index = 0;
7272 newinet->mc_list = NULL;
7273
7274 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
7275 net_enable_timestamp();
7276 }
7277
sctp_copy_descendant(struct sock * sk_to,const struct sock * sk_from)7278 static inline void sctp_copy_descendant(struct sock *sk_to,
7279 const struct sock *sk_from)
7280 {
7281 int ancestor_size = sizeof(struct inet_sock) +
7282 sizeof(struct sctp_sock) -
7283 offsetof(struct sctp_sock, auto_asconf_list);
7284
7285 if (sk_from->sk_family == PF_INET6)
7286 ancestor_size += sizeof(struct ipv6_pinfo);
7287
7288 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7289 }
7290
7291 /* Populate the fields of the newsk from the oldsk and migrate the assoc
7292 * and its messages to the newsk.
7293 */
sctp_sock_migrate(struct sock * oldsk,struct sock * newsk,struct sctp_association * assoc,sctp_socket_type_t type)7294 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7295 struct sctp_association *assoc,
7296 sctp_socket_type_t type)
7297 {
7298 struct sctp_sock *oldsp = sctp_sk(oldsk);
7299 struct sctp_sock *newsp = sctp_sk(newsk);
7300 struct sctp_bind_bucket *pp; /* hash list port iterator */
7301 struct sctp_endpoint *newep = newsp->ep;
7302 struct sk_buff *skb, *tmp;
7303 struct sctp_ulpevent *event;
7304 struct sctp_bind_hashbucket *head;
7305
7306 /* Migrate socket buffer sizes and all the socket level options to the
7307 * new socket.
7308 */
7309 newsk->sk_sndbuf = oldsk->sk_sndbuf;
7310 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7311 /* Brute force copy old sctp opt. */
7312 sctp_copy_descendant(newsk, oldsk);
7313
7314 /* Restore the ep value that was overwritten with the above structure
7315 * copy.
7316 */
7317 newsp->ep = newep;
7318 newsp->hmac = NULL;
7319
7320 /* Hook this new socket in to the bind_hash list. */
7321 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7322 inet_sk(oldsk)->inet_num)];
7323 local_bh_disable();
7324 spin_lock(&head->lock);
7325 pp = sctp_sk(oldsk)->bind_hash;
7326 sk_add_bind_node(newsk, &pp->owner);
7327 sctp_sk(newsk)->bind_hash = pp;
7328 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7329 spin_unlock(&head->lock);
7330 local_bh_enable();
7331
7332 /* Copy the bind_addr list from the original endpoint to the new
7333 * endpoint so that we can handle restarts properly
7334 */
7335 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7336 &oldsp->ep->base.bind_addr, GFP_KERNEL);
7337
7338 /* Move any messages in the old socket's receive queue that are for the
7339 * peeled off association to the new socket's receive queue.
7340 */
7341 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7342 event = sctp_skb2event(skb);
7343 if (event->asoc == assoc) {
7344 __skb_unlink(skb, &oldsk->sk_receive_queue);
7345 __skb_queue_tail(&newsk->sk_receive_queue, skb);
7346 sctp_skb_set_owner_r_frag(skb, newsk);
7347 }
7348 }
7349
7350 /* Clean up any messages pending delivery due to partial
7351 * delivery. Three cases:
7352 * 1) No partial deliver; no work.
7353 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7354 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7355 */
7356 skb_queue_head_init(&newsp->pd_lobby);
7357 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7358
7359 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7360 struct sk_buff_head *queue;
7361
7362 /* Decide which queue to move pd_lobby skbs to. */
7363 if (assoc->ulpq.pd_mode) {
7364 queue = &newsp->pd_lobby;
7365 } else
7366 queue = &newsk->sk_receive_queue;
7367
7368 /* Walk through the pd_lobby, looking for skbs that
7369 * need moved to the new socket.
7370 */
7371 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7372 event = sctp_skb2event(skb);
7373 if (event->asoc == assoc) {
7374 __skb_unlink(skb, &oldsp->pd_lobby);
7375 __skb_queue_tail(queue, skb);
7376 sctp_skb_set_owner_r_frag(skb, newsk);
7377 }
7378 }
7379
7380 /* Clear up any skbs waiting for the partial
7381 * delivery to finish.
7382 */
7383 if (assoc->ulpq.pd_mode)
7384 sctp_clear_pd(oldsk, NULL);
7385
7386 }
7387
7388 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7389 sctp_skb_set_owner_r_frag(skb, newsk);
7390
7391 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7392 sctp_skb_set_owner_r_frag(skb, newsk);
7393
7394 /* Set the type of socket to indicate that it is peeled off from the
7395 * original UDP-style socket or created with the accept() call on a
7396 * TCP-style socket..
7397 */
7398 newsp->type = type;
7399
7400 /* Mark the new socket "in-use" by the user so that any packets
7401 * that may arrive on the association after we've moved it are
7402 * queued to the backlog. This prevents a potential race between
7403 * backlog processing on the old socket and new-packet processing
7404 * on the new socket.
7405 *
7406 * The caller has just allocated newsk so we can guarantee that other
7407 * paths won't try to lock it and then oldsk.
7408 */
7409 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7410 sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w);
7411 sctp_assoc_migrate(assoc, newsk);
7412 sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w);
7413
7414 /* If the association on the newsk is already closed before accept()
7415 * is called, set RCV_SHUTDOWN flag.
7416 */
7417 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7418 newsk->sk_shutdown |= RCV_SHUTDOWN;
7419
7420 newsk->sk_state = SCTP_SS_ESTABLISHED;
7421 release_sock(newsk);
7422 }
7423
7424
7425 /* This proto struct describes the ULP interface for SCTP. */
7426 struct proto sctp_prot = {
7427 .name = "SCTP",
7428 .owner = THIS_MODULE,
7429 .close = sctp_close,
7430 .connect = sctp_connect,
7431 .disconnect = sctp_disconnect,
7432 .accept = sctp_accept,
7433 .ioctl = sctp_ioctl,
7434 .init = sctp_init_sock,
7435 .destroy = sctp_destroy_sock,
7436 .shutdown = sctp_shutdown,
7437 .setsockopt = sctp_setsockopt,
7438 .getsockopt = sctp_getsockopt,
7439 .sendmsg = sctp_sendmsg,
7440 .recvmsg = sctp_recvmsg,
7441 .bind = sctp_bind,
7442 .backlog_rcv = sctp_backlog_rcv,
7443 .hash = sctp_hash,
7444 .unhash = sctp_unhash,
7445 .get_port = sctp_get_port,
7446 .obj_size = sizeof(struct sctp_sock),
7447 .sysctl_mem = sysctl_sctp_mem,
7448 .sysctl_rmem = sysctl_sctp_rmem,
7449 .sysctl_wmem = sysctl_sctp_wmem,
7450 .memory_pressure = &sctp_memory_pressure,
7451 .enter_memory_pressure = sctp_enter_memory_pressure,
7452 .memory_allocated = &sctp_memory_allocated,
7453 .sockets_allocated = &sctp_sockets_allocated,
7454 };
7455
7456 #if IS_ENABLED(CONFIG_IPV6)
7457
7458 #include <net/transp_v6.h>
sctp_v6_destroy_sock(struct sock * sk)7459 static void sctp_v6_destroy_sock(struct sock *sk)
7460 {
7461 sctp_destroy_sock(sk);
7462 inet6_destroy_sock(sk);
7463 }
7464
7465 struct proto sctpv6_prot = {
7466 .name = "SCTPv6",
7467 .owner = THIS_MODULE,
7468 .close = sctp_close,
7469 .connect = sctp_connect,
7470 .disconnect = sctp_disconnect,
7471 .accept = sctp_accept,
7472 .ioctl = sctp_ioctl,
7473 .init = sctp_init_sock,
7474 .destroy = sctp_v6_destroy_sock,
7475 .shutdown = sctp_shutdown,
7476 .setsockopt = sctp_setsockopt,
7477 .getsockopt = sctp_getsockopt,
7478 .sendmsg = sctp_sendmsg,
7479 .recvmsg = sctp_recvmsg,
7480 .bind = sctp_bind,
7481 .backlog_rcv = sctp_backlog_rcv,
7482 .hash = sctp_hash,
7483 .unhash = sctp_unhash,
7484 .get_port = sctp_get_port,
7485 .obj_size = sizeof(struct sctp6_sock),
7486 .sysctl_mem = sysctl_sctp_mem,
7487 .sysctl_rmem = sysctl_sctp_rmem,
7488 .sysctl_wmem = sysctl_sctp_wmem,
7489 .memory_pressure = &sctp_memory_pressure,
7490 .enter_memory_pressure = sctp_enter_memory_pressure,
7491 .memory_allocated = &sctp_memory_allocated,
7492 .sockets_allocated = &sctp_sockets_allocated,
7493 };
7494 #endif /* IS_ENABLED(CONFIG_IPV6) */
7495