• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SCTP kernel implementation
2  * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
3  *
4  * This file is part of the SCTP kernel implementation
5  *
6  * This SCTP implementation is free software;
7  * you can redistribute it and/or modify it under the terms of
8  * the GNU General Public License as published by
9  * the Free Software Foundation; either version 2, or (at your option)
10  * any later version.
11  *
12  * This SCTP implementation is distributed in the hope that it
13  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
14  *                 ************************
15  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
16  * See the GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with GNU CC; see the file COPYING.  If not, see
20  * <http://www.gnu.org/licenses/>.
21  *
22  * Please send any bug reports or fixes you make to the
23  * email address(es):
24  *    lksctp developers <linux-sctp@vger.kernel.org>
25  *
26  * Written or modified by:
27  *   Vlad Yasevich     <vladislav.yasevich@hp.com>
28  */
29 
30 #include <linux/slab.h>
31 #include <linux/types.h>
32 #include <linux/crypto.h>
33 #include <linux/scatterlist.h>
34 #include <net/sctp/sctp.h>
35 #include <net/sctp/auth.h>
36 
37 static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
38 	{
39 		/* id 0 is reserved.  as all 0 */
40 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
41 	},
42 	{
43 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
44 		.hmac_name = "hmac(sha1)",
45 		.hmac_len = SCTP_SHA1_SIG_SIZE,
46 	},
47 	{
48 		/* id 2 is reserved as well */
49 		.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
50 	},
51 #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
52 	{
53 		.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
54 		.hmac_name = "hmac(sha256)",
55 		.hmac_len = SCTP_SHA256_SIG_SIZE,
56 	}
57 #endif
58 };
59 
60 
sctp_auth_key_put(struct sctp_auth_bytes * key)61 void sctp_auth_key_put(struct sctp_auth_bytes *key)
62 {
63 	if (!key)
64 		return;
65 
66 	if (atomic_dec_and_test(&key->refcnt)) {
67 		kzfree(key);
68 		SCTP_DBG_OBJCNT_DEC(keys);
69 	}
70 }
71 
72 /* Create a new key structure of a given length */
sctp_auth_create_key(__u32 key_len,gfp_t gfp)73 static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
74 {
75 	struct sctp_auth_bytes *key;
76 
77 	/* Verify that we are not going to overflow INT_MAX */
78 	if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
79 		return NULL;
80 
81 	/* Allocate the shared key */
82 	key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
83 	if (!key)
84 		return NULL;
85 
86 	key->len = key_len;
87 	atomic_set(&key->refcnt, 1);
88 	SCTP_DBG_OBJCNT_INC(keys);
89 
90 	return key;
91 }
92 
93 /* Create a new shared key container with a give key id */
sctp_auth_shkey_create(__u16 key_id,gfp_t gfp)94 struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
95 {
96 	struct sctp_shared_key *new;
97 
98 	/* Allocate the shared key container */
99 	new = kzalloc(sizeof(struct sctp_shared_key), gfp);
100 	if (!new)
101 		return NULL;
102 
103 	INIT_LIST_HEAD(&new->key_list);
104 	new->key_id = key_id;
105 
106 	return new;
107 }
108 
109 /* Free the shared key structure */
sctp_auth_shkey_free(struct sctp_shared_key * sh_key)110 static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
111 {
112 	BUG_ON(!list_empty(&sh_key->key_list));
113 	sctp_auth_key_put(sh_key->key);
114 	sh_key->key = NULL;
115 	kfree(sh_key);
116 }
117 
118 /* Destroy the entire key list.  This is done during the
119  * associon and endpoint free process.
120  */
sctp_auth_destroy_keys(struct list_head * keys)121 void sctp_auth_destroy_keys(struct list_head *keys)
122 {
123 	struct sctp_shared_key *ep_key;
124 	struct sctp_shared_key *tmp;
125 
126 	if (list_empty(keys))
127 		return;
128 
129 	key_for_each_safe(ep_key, tmp, keys) {
130 		list_del_init(&ep_key->key_list);
131 		sctp_auth_shkey_free(ep_key);
132 	}
133 }
134 
135 /* Compare two byte vectors as numbers.  Return values
136  * are:
137  * 	  0 - vectors are equal
138  * 	< 0 - vector 1 is smaller than vector2
139  * 	> 0 - vector 1 is greater than vector2
140  *
141  * Algorithm is:
142  * 	This is performed by selecting the numerically smaller key vector...
143  *	If the key vectors are equal as numbers but differ in length ...
144  *	the shorter vector is considered smaller
145  *
146  * Examples (with small values):
147  * 	000123456789 > 123456789 (first number is longer)
148  * 	000123456789 < 234567891 (second number is larger numerically)
149  * 	123456789 > 2345678 	 (first number is both larger & longer)
150  */
sctp_auth_compare_vectors(struct sctp_auth_bytes * vector1,struct sctp_auth_bytes * vector2)151 static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
152 			      struct sctp_auth_bytes *vector2)
153 {
154 	int diff;
155 	int i;
156 	const __u8 *longer;
157 
158 	diff = vector1->len - vector2->len;
159 	if (diff) {
160 		longer = (diff > 0) ? vector1->data : vector2->data;
161 
162 		/* Check to see if the longer number is
163 		 * lead-zero padded.  If it is not, it
164 		 * is automatically larger numerically.
165 		 */
166 		for (i = 0; i < abs(diff); i++) {
167 			if (longer[i] != 0)
168 				return diff;
169 		}
170 	}
171 
172 	/* lengths are the same, compare numbers */
173 	return memcmp(vector1->data, vector2->data, vector1->len);
174 }
175 
176 /*
177  * Create a key vector as described in SCTP-AUTH, Section 6.1
178  *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
179  *    parameter sent by each endpoint are concatenated as byte vectors.
180  *    These parameters include the parameter type, parameter length, and
181  *    the parameter value, but padding is omitted; all padding MUST be
182  *    removed from this concatenation before proceeding with further
183  *    computation of keys.  Parameters which were not sent are simply
184  *    omitted from the concatenation process.  The resulting two vectors
185  *    are called the two key vectors.
186  */
sctp_auth_make_key_vector(sctp_random_param_t * random,sctp_chunks_param_t * chunks,sctp_hmac_algo_param_t * hmacs,gfp_t gfp)187 static struct sctp_auth_bytes *sctp_auth_make_key_vector(
188 			sctp_random_param_t *random,
189 			sctp_chunks_param_t *chunks,
190 			sctp_hmac_algo_param_t *hmacs,
191 			gfp_t gfp)
192 {
193 	struct sctp_auth_bytes *new;
194 	__u32	len;
195 	__u32	offset = 0;
196 	__u16	random_len, hmacs_len, chunks_len = 0;
197 
198 	random_len = ntohs(random->param_hdr.length);
199 	hmacs_len = ntohs(hmacs->param_hdr.length);
200 	if (chunks)
201 		chunks_len = ntohs(chunks->param_hdr.length);
202 
203 	len = random_len + hmacs_len + chunks_len;
204 
205 	new = sctp_auth_create_key(len, gfp);
206 	if (!new)
207 		return NULL;
208 
209 	memcpy(new->data, random, random_len);
210 	offset += random_len;
211 
212 	if (chunks) {
213 		memcpy(new->data + offset, chunks, chunks_len);
214 		offset += chunks_len;
215 	}
216 
217 	memcpy(new->data + offset, hmacs, hmacs_len);
218 
219 	return new;
220 }
221 
222 
223 /* Make a key vector based on our local parameters */
sctp_auth_make_local_vector(const struct sctp_association * asoc,gfp_t gfp)224 static struct sctp_auth_bytes *sctp_auth_make_local_vector(
225 				    const struct sctp_association *asoc,
226 				    gfp_t gfp)
227 {
228 	return sctp_auth_make_key_vector(
229 				    (sctp_random_param_t *)asoc->c.auth_random,
230 				    (sctp_chunks_param_t *)asoc->c.auth_chunks,
231 				    (sctp_hmac_algo_param_t *)asoc->c.auth_hmacs,
232 				    gfp);
233 }
234 
235 /* Make a key vector based on peer's parameters */
sctp_auth_make_peer_vector(const struct sctp_association * asoc,gfp_t gfp)236 static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
237 				    const struct sctp_association *asoc,
238 				    gfp_t gfp)
239 {
240 	return sctp_auth_make_key_vector(asoc->peer.peer_random,
241 					 asoc->peer.peer_chunks,
242 					 asoc->peer.peer_hmacs,
243 					 gfp);
244 }
245 
246 
247 /* Set the value of the association shared key base on the parameters
248  * given.  The algorithm is:
249  *    From the endpoint pair shared keys and the key vectors the
250  *    association shared keys are computed.  This is performed by selecting
251  *    the numerically smaller key vector and concatenating it to the
252  *    endpoint pair shared key, and then concatenating the numerically
253  *    larger key vector to that.  The result of the concatenation is the
254  *    association shared key.
255  */
sctp_auth_asoc_set_secret(struct sctp_shared_key * ep_key,struct sctp_auth_bytes * first_vector,struct sctp_auth_bytes * last_vector,gfp_t gfp)256 static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
257 			struct sctp_shared_key *ep_key,
258 			struct sctp_auth_bytes *first_vector,
259 			struct sctp_auth_bytes *last_vector,
260 			gfp_t gfp)
261 {
262 	struct sctp_auth_bytes *secret;
263 	__u32 offset = 0;
264 	__u32 auth_len;
265 
266 	auth_len = first_vector->len + last_vector->len;
267 	if (ep_key->key)
268 		auth_len += ep_key->key->len;
269 
270 	secret = sctp_auth_create_key(auth_len, gfp);
271 	if (!secret)
272 		return NULL;
273 
274 	if (ep_key->key) {
275 		memcpy(secret->data, ep_key->key->data, ep_key->key->len);
276 		offset += ep_key->key->len;
277 	}
278 
279 	memcpy(secret->data + offset, first_vector->data, first_vector->len);
280 	offset += first_vector->len;
281 
282 	memcpy(secret->data + offset, last_vector->data, last_vector->len);
283 
284 	return secret;
285 }
286 
287 /* Create an association shared key.  Follow the algorithm
288  * described in SCTP-AUTH, Section 6.1
289  */
sctp_auth_asoc_create_secret(const struct sctp_association * asoc,struct sctp_shared_key * ep_key,gfp_t gfp)290 static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
291 				 const struct sctp_association *asoc,
292 				 struct sctp_shared_key *ep_key,
293 				 gfp_t gfp)
294 {
295 	struct sctp_auth_bytes *local_key_vector;
296 	struct sctp_auth_bytes *peer_key_vector;
297 	struct sctp_auth_bytes	*first_vector,
298 				*last_vector;
299 	struct sctp_auth_bytes	*secret = NULL;
300 	int	cmp;
301 
302 
303 	/* Now we need to build the key vectors
304 	 * SCTP-AUTH , Section 6.1
305 	 *    The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
306 	 *    parameter sent by each endpoint are concatenated as byte vectors.
307 	 *    These parameters include the parameter type, parameter length, and
308 	 *    the parameter value, but padding is omitted; all padding MUST be
309 	 *    removed from this concatenation before proceeding with further
310 	 *    computation of keys.  Parameters which were not sent are simply
311 	 *    omitted from the concatenation process.  The resulting two vectors
312 	 *    are called the two key vectors.
313 	 */
314 
315 	local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
316 	peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
317 
318 	if (!peer_key_vector || !local_key_vector)
319 		goto out;
320 
321 	/* Figure out the order in which the key_vectors will be
322 	 * added to the endpoint shared key.
323 	 * SCTP-AUTH, Section 6.1:
324 	 *   This is performed by selecting the numerically smaller key
325 	 *   vector and concatenating it to the endpoint pair shared
326 	 *   key, and then concatenating the numerically larger key
327 	 *   vector to that.  If the key vectors are equal as numbers
328 	 *   but differ in length, then the concatenation order is the
329 	 *   endpoint shared key, followed by the shorter key vector,
330 	 *   followed by the longer key vector.  Otherwise, the key
331 	 *   vectors are identical, and may be concatenated to the
332 	 *   endpoint pair key in any order.
333 	 */
334 	cmp = sctp_auth_compare_vectors(local_key_vector,
335 					peer_key_vector);
336 	if (cmp < 0) {
337 		first_vector = local_key_vector;
338 		last_vector = peer_key_vector;
339 	} else {
340 		first_vector = peer_key_vector;
341 		last_vector = local_key_vector;
342 	}
343 
344 	secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
345 					    gfp);
346 out:
347 	sctp_auth_key_put(local_key_vector);
348 	sctp_auth_key_put(peer_key_vector);
349 
350 	return secret;
351 }
352 
353 /*
354  * Populate the association overlay list with the list
355  * from the endpoint.
356  */
sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint * ep,struct sctp_association * asoc,gfp_t gfp)357 int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
358 				struct sctp_association *asoc,
359 				gfp_t gfp)
360 {
361 	struct sctp_shared_key *sh_key;
362 	struct sctp_shared_key *new;
363 
364 	BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
365 
366 	key_for_each(sh_key, &ep->endpoint_shared_keys) {
367 		new = sctp_auth_shkey_create(sh_key->key_id, gfp);
368 		if (!new)
369 			goto nomem;
370 
371 		new->key = sh_key->key;
372 		sctp_auth_key_hold(new->key);
373 		list_add(&new->key_list, &asoc->endpoint_shared_keys);
374 	}
375 
376 	return 0;
377 
378 nomem:
379 	sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
380 	return -ENOMEM;
381 }
382 
383 
384 /* Public interface to creat the association shared key.
385  * See code above for the algorithm.
386  */
sctp_auth_asoc_init_active_key(struct sctp_association * asoc,gfp_t gfp)387 int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
388 {
389 	struct sctp_auth_bytes	*secret;
390 	struct sctp_shared_key *ep_key;
391 
392 	/* If we don't support AUTH, or peer is not capable
393 	 * we don't need to do anything.
394 	 */
395 	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
396 		return 0;
397 
398 	/* If the key_id is non-zero and we couldn't find an
399 	 * endpoint pair shared key, we can't compute the
400 	 * secret.
401 	 * For key_id 0, endpoint pair shared key is a NULL key.
402 	 */
403 	ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
404 	BUG_ON(!ep_key);
405 
406 	secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
407 	if (!secret)
408 		return -ENOMEM;
409 
410 	sctp_auth_key_put(asoc->asoc_shared_key);
411 	asoc->asoc_shared_key = secret;
412 
413 	return 0;
414 }
415 
416 
417 /* Find the endpoint pair shared key based on the key_id */
sctp_auth_get_shkey(const struct sctp_association * asoc,__u16 key_id)418 struct sctp_shared_key *sctp_auth_get_shkey(
419 				const struct sctp_association *asoc,
420 				__u16 key_id)
421 {
422 	struct sctp_shared_key *key;
423 
424 	/* First search associations set of endpoint pair shared keys */
425 	key_for_each(key, &asoc->endpoint_shared_keys) {
426 		if (key->key_id == key_id)
427 			return key;
428 	}
429 
430 	return NULL;
431 }
432 
433 /*
434  * Initialize all the possible digest transforms that we can use.  Right now
435  * now, the supported digests are SHA1 and SHA256.  We do this here once
436  * because of the restrictiong that transforms may only be allocated in
437  * user context.  This forces us to pre-allocated all possible transforms
438  * at the endpoint init time.
439  */
sctp_auth_init_hmacs(struct sctp_endpoint * ep,gfp_t gfp)440 int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
441 {
442 	struct crypto_hash *tfm = NULL;
443 	__u16   id;
444 
445 	/* If AUTH extension is disabled, we are done */
446 	if (!ep->auth_enable) {
447 		ep->auth_hmacs = NULL;
448 		return 0;
449 	}
450 
451 	/* If the transforms are already allocated, we are done */
452 	if (ep->auth_hmacs)
453 		return 0;
454 
455 	/* Allocated the array of pointers to transorms */
456 	ep->auth_hmacs = kzalloc(
457 			    sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
458 			    gfp);
459 	if (!ep->auth_hmacs)
460 		return -ENOMEM;
461 
462 	for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
463 
464 		/* See is we support the id.  Supported IDs have name and
465 		 * length fields set, so that we can allocated and use
466 		 * them.  We can safely just check for name, for without the
467 		 * name, we can't allocate the TFM.
468 		 */
469 		if (!sctp_hmac_list[id].hmac_name)
470 			continue;
471 
472 		/* If this TFM has been allocated, we are all set */
473 		if (ep->auth_hmacs[id])
474 			continue;
475 
476 		/* Allocate the ID */
477 		tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
478 					CRYPTO_ALG_ASYNC);
479 		if (IS_ERR(tfm))
480 			goto out_err;
481 
482 		ep->auth_hmacs[id] = tfm;
483 	}
484 
485 	return 0;
486 
487 out_err:
488 	/* Clean up any successful allocations */
489 	sctp_auth_destroy_hmacs(ep->auth_hmacs);
490 	return -ENOMEM;
491 }
492 
493 /* Destroy the hmac tfm array */
sctp_auth_destroy_hmacs(struct crypto_hash * auth_hmacs[])494 void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
495 {
496 	int i;
497 
498 	if (!auth_hmacs)
499 		return;
500 
501 	for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++) {
502 		if (auth_hmacs[i])
503 			crypto_free_hash(auth_hmacs[i]);
504 	}
505 	kfree(auth_hmacs);
506 }
507 
508 
sctp_auth_get_hmac(__u16 hmac_id)509 struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
510 {
511 	return &sctp_hmac_list[hmac_id];
512 }
513 
514 /* Get an hmac description information that we can use to build
515  * the AUTH chunk
516  */
sctp_auth_asoc_get_hmac(const struct sctp_association * asoc)517 struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
518 {
519 	struct sctp_hmac_algo_param *hmacs;
520 	__u16 n_elt;
521 	__u16 id = 0;
522 	int i;
523 
524 	/* If we have a default entry, use it */
525 	if (asoc->default_hmac_id)
526 		return &sctp_hmac_list[asoc->default_hmac_id];
527 
528 	/* Since we do not have a default entry, find the first entry
529 	 * we support and return that.  Do not cache that id.
530 	 */
531 	hmacs = asoc->peer.peer_hmacs;
532 	if (!hmacs)
533 		return NULL;
534 
535 	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
536 	for (i = 0; i < n_elt; i++) {
537 		id = ntohs(hmacs->hmac_ids[i]);
538 
539 		/* Check the id is in the supported range. And
540 		 * see if we support the id.  Supported IDs have name and
541 		 * length fields set, so that we can allocate and use
542 		 * them.  We can safely just check for name, for without the
543 		 * name, we can't allocate the TFM.
544 		 */
545 		if (id > SCTP_AUTH_HMAC_ID_MAX ||
546 		    !sctp_hmac_list[id].hmac_name) {
547 			id = 0;
548 			continue;
549 		}
550 
551 		break;
552 	}
553 
554 	if (id == 0)
555 		return NULL;
556 
557 	return &sctp_hmac_list[id];
558 }
559 
__sctp_auth_find_hmacid(__be16 * hmacs,int n_elts,__be16 hmac_id)560 static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
561 {
562 	int  found = 0;
563 	int  i;
564 
565 	for (i = 0; i < n_elts; i++) {
566 		if (hmac_id == hmacs[i]) {
567 			found = 1;
568 			break;
569 		}
570 	}
571 
572 	return found;
573 }
574 
575 /* See if the HMAC_ID is one that we claim as supported */
sctp_auth_asoc_verify_hmac_id(const struct sctp_association * asoc,__be16 hmac_id)576 int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
577 				    __be16 hmac_id)
578 {
579 	struct sctp_hmac_algo_param *hmacs;
580 	__u16 n_elt;
581 
582 	if (!asoc)
583 		return 0;
584 
585 	hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
586 	n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
587 
588 	return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
589 }
590 
591 
592 /* Cache the default HMAC id.  This to follow this text from SCTP-AUTH:
593  * Section 6.1:
594  *   The receiver of a HMAC-ALGO parameter SHOULD use the first listed
595  *   algorithm it supports.
596  */
sctp_auth_asoc_set_default_hmac(struct sctp_association * asoc,struct sctp_hmac_algo_param * hmacs)597 void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
598 				     struct sctp_hmac_algo_param *hmacs)
599 {
600 	struct sctp_endpoint *ep;
601 	__u16   id;
602 	int	i;
603 	int	n_params;
604 
605 	/* if the default id is already set, use it */
606 	if (asoc->default_hmac_id)
607 		return;
608 
609 	n_params = (ntohs(hmacs->param_hdr.length)
610 				- sizeof(sctp_paramhdr_t)) >> 1;
611 	ep = asoc->ep;
612 	for (i = 0; i < n_params; i++) {
613 		id = ntohs(hmacs->hmac_ids[i]);
614 
615 		/* Check the id is in the supported range */
616 		if (id > SCTP_AUTH_HMAC_ID_MAX)
617 			continue;
618 
619 		/* If this TFM has been allocated, use this id */
620 		if (ep->auth_hmacs[id]) {
621 			asoc->default_hmac_id = id;
622 			break;
623 		}
624 	}
625 }
626 
627 
628 /* Check to see if the given chunk is supposed to be authenticated */
__sctp_auth_cid(sctp_cid_t chunk,struct sctp_chunks_param * param)629 static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
630 {
631 	unsigned short len;
632 	int found = 0;
633 	int i;
634 
635 	if (!param || param->param_hdr.length == 0)
636 		return 0;
637 
638 	len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
639 
640 	/* SCTP-AUTH, Section 3.2
641 	 *    The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
642 	 *    chunks MUST NOT be listed in the CHUNKS parameter.  However, if
643 	 *    a CHUNKS parameter is received then the types for INIT, INIT-ACK,
644 	 *    SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
645 	 */
646 	for (i = 0; !found && i < len; i++) {
647 		switch (param->chunks[i]) {
648 		case SCTP_CID_INIT:
649 		case SCTP_CID_INIT_ACK:
650 		case SCTP_CID_SHUTDOWN_COMPLETE:
651 		case SCTP_CID_AUTH:
652 			break;
653 
654 		default:
655 			if (param->chunks[i] == chunk)
656 				found = 1;
657 			break;
658 		}
659 	}
660 
661 	return found;
662 }
663 
664 /* Check if peer requested that this chunk is authenticated */
sctp_auth_send_cid(sctp_cid_t chunk,const struct sctp_association * asoc)665 int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
666 {
667 	if (!asoc)
668 		return 0;
669 
670 	if (!asoc->ep->auth_enable || !asoc->peer.auth_capable)
671 		return 0;
672 
673 	return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
674 }
675 
676 /* Check if we requested that peer authenticate this chunk. */
sctp_auth_recv_cid(sctp_cid_t chunk,const struct sctp_association * asoc)677 int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
678 {
679 	if (!asoc)
680 		return 0;
681 
682 	if (!asoc->ep->auth_enable)
683 		return 0;
684 
685 	return __sctp_auth_cid(chunk,
686 			      (struct sctp_chunks_param *)asoc->c.auth_chunks);
687 }
688 
689 /* SCTP-AUTH: Section 6.2:
690  *    The sender MUST calculate the MAC as described in RFC2104 [2] using
691  *    the hash function H as described by the MAC Identifier and the shared
692  *    association key K based on the endpoint pair shared key described by
693  *    the shared key identifier.  The 'data' used for the computation of
694  *    the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
695  *    zero (as shown in Figure 6) followed by all chunks that are placed
696  *    after the AUTH chunk in the SCTP packet.
697  */
sctp_auth_calculate_hmac(const struct sctp_association * asoc,struct sk_buff * skb,struct sctp_auth_chunk * auth,gfp_t gfp)698 void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
699 			      struct sk_buff *skb,
700 			      struct sctp_auth_chunk *auth,
701 			      gfp_t gfp)
702 {
703 	struct scatterlist sg;
704 	struct hash_desc desc;
705 	struct sctp_auth_bytes *asoc_key;
706 	__u16 key_id, hmac_id;
707 	__u8 *digest;
708 	unsigned char *end;
709 	int free_key = 0;
710 
711 	/* Extract the info we need:
712 	 * - hmac id
713 	 * - key id
714 	 */
715 	key_id = ntohs(auth->auth_hdr.shkey_id);
716 	hmac_id = ntohs(auth->auth_hdr.hmac_id);
717 
718 	if (key_id == asoc->active_key_id)
719 		asoc_key = asoc->asoc_shared_key;
720 	else {
721 		struct sctp_shared_key *ep_key;
722 
723 		ep_key = sctp_auth_get_shkey(asoc, key_id);
724 		if (!ep_key)
725 			return;
726 
727 		asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
728 		if (!asoc_key)
729 			return;
730 
731 		free_key = 1;
732 	}
733 
734 	/* set up scatter list */
735 	end = skb_tail_pointer(skb);
736 	sg_init_one(&sg, auth, end - (unsigned char *)auth);
737 
738 	desc.tfm = asoc->ep->auth_hmacs[hmac_id];
739 	desc.flags = 0;
740 
741 	digest = auth->auth_hdr.hmac;
742 	if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
743 		goto free;
744 
745 	crypto_hash_digest(&desc, &sg, sg.length, digest);
746 
747 free:
748 	if (free_key)
749 		sctp_auth_key_put(asoc_key);
750 }
751 
752 /* API Helpers */
753 
754 /* Add a chunk to the endpoint authenticated chunk list */
sctp_auth_ep_add_chunkid(struct sctp_endpoint * ep,__u8 chunk_id)755 int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
756 {
757 	struct sctp_chunks_param *p = ep->auth_chunk_list;
758 	__u16 nchunks;
759 	__u16 param_len;
760 
761 	/* If this chunk is already specified, we are done */
762 	if (__sctp_auth_cid(chunk_id, p))
763 		return 0;
764 
765 	/* Check if we can add this chunk to the array */
766 	param_len = ntohs(p->param_hdr.length);
767 	nchunks = param_len - sizeof(sctp_paramhdr_t);
768 	if (nchunks == SCTP_NUM_CHUNK_TYPES)
769 		return -EINVAL;
770 
771 	p->chunks[nchunks] = chunk_id;
772 	p->param_hdr.length = htons(param_len + 1);
773 	return 0;
774 }
775 
776 /* Add hmac identifires to the endpoint list of supported hmac ids */
sctp_auth_ep_set_hmacs(struct sctp_endpoint * ep,struct sctp_hmacalgo * hmacs)777 int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
778 			   struct sctp_hmacalgo *hmacs)
779 {
780 	int has_sha1 = 0;
781 	__u16 id;
782 	int i;
783 
784 	/* Scan the list looking for unsupported id.  Also make sure that
785 	 * SHA1 is specified.
786 	 */
787 	for (i = 0; i < hmacs->shmac_num_idents; i++) {
788 		id = hmacs->shmac_idents[i];
789 
790 		if (id > SCTP_AUTH_HMAC_ID_MAX)
791 			return -EOPNOTSUPP;
792 
793 		if (SCTP_AUTH_HMAC_ID_SHA1 == id)
794 			has_sha1 = 1;
795 
796 		if (!sctp_hmac_list[id].hmac_name)
797 			return -EOPNOTSUPP;
798 	}
799 
800 	if (!has_sha1)
801 		return -EINVAL;
802 
803 	for (i = 0; i < hmacs->shmac_num_idents; i++)
804 		ep->auth_hmacs_list->hmac_ids[i] = htons(hmacs->shmac_idents[i]);
805 	ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
806 				hmacs->shmac_num_idents * sizeof(__u16));
807 	return 0;
808 }
809 
810 /* Set a new shared key on either endpoint or association.  If the
811  * the key with a same ID already exists, replace the key (remove the
812  * old key and add a new one).
813  */
sctp_auth_set_key(struct sctp_endpoint * ep,struct sctp_association * asoc,struct sctp_authkey * auth_key)814 int sctp_auth_set_key(struct sctp_endpoint *ep,
815 		      struct sctp_association *asoc,
816 		      struct sctp_authkey *auth_key)
817 {
818 	struct sctp_shared_key *cur_key = NULL;
819 	struct sctp_auth_bytes *key;
820 	struct list_head *sh_keys;
821 	int replace = 0;
822 
823 	/* Try to find the given key id to see if
824 	 * we are doing a replace, or adding a new key
825 	 */
826 	if (asoc)
827 		sh_keys = &asoc->endpoint_shared_keys;
828 	else
829 		sh_keys = &ep->endpoint_shared_keys;
830 
831 	key_for_each(cur_key, sh_keys) {
832 		if (cur_key->key_id == auth_key->sca_keynumber) {
833 			replace = 1;
834 			break;
835 		}
836 	}
837 
838 	/* If we are not replacing a key id, we need to allocate
839 	 * a shared key.
840 	 */
841 	if (!replace) {
842 		cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
843 						 GFP_KERNEL);
844 		if (!cur_key)
845 			return -ENOMEM;
846 	}
847 
848 	/* Create a new key data based on the info passed in */
849 	key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
850 	if (!key)
851 		goto nomem;
852 
853 	memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
854 
855 	/* If we are replacing, remove the old keys data from the
856 	 * key id.  If we are adding new key id, add it to the
857 	 * list.
858 	 */
859 	if (replace)
860 		sctp_auth_key_put(cur_key->key);
861 	else
862 		list_add(&cur_key->key_list, sh_keys);
863 
864 	cur_key->key = key;
865 	return 0;
866 nomem:
867 	if (!replace)
868 		sctp_auth_shkey_free(cur_key);
869 
870 	return -ENOMEM;
871 }
872 
sctp_auth_set_active_key(struct sctp_endpoint * ep,struct sctp_association * asoc,__u16 key_id)873 int sctp_auth_set_active_key(struct sctp_endpoint *ep,
874 			     struct sctp_association *asoc,
875 			     __u16  key_id)
876 {
877 	struct sctp_shared_key *key;
878 	struct list_head *sh_keys;
879 	int found = 0;
880 
881 	/* The key identifier MUST correst to an existing key */
882 	if (asoc)
883 		sh_keys = &asoc->endpoint_shared_keys;
884 	else
885 		sh_keys = &ep->endpoint_shared_keys;
886 
887 	key_for_each(key, sh_keys) {
888 		if (key->key_id == key_id) {
889 			found = 1;
890 			break;
891 		}
892 	}
893 
894 	if (!found)
895 		return -EINVAL;
896 
897 	if (asoc) {
898 		asoc->active_key_id = key_id;
899 		sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
900 	} else
901 		ep->active_key_id = key_id;
902 
903 	return 0;
904 }
905 
sctp_auth_del_key_id(struct sctp_endpoint * ep,struct sctp_association * asoc,__u16 key_id)906 int sctp_auth_del_key_id(struct sctp_endpoint *ep,
907 			 struct sctp_association *asoc,
908 			 __u16  key_id)
909 {
910 	struct sctp_shared_key *key;
911 	struct list_head *sh_keys;
912 	int found = 0;
913 
914 	/* The key identifier MUST NOT be the current active key
915 	 * The key identifier MUST correst to an existing key
916 	 */
917 	if (asoc) {
918 		if (asoc->active_key_id == key_id)
919 			return -EINVAL;
920 
921 		sh_keys = &asoc->endpoint_shared_keys;
922 	} else {
923 		if (ep->active_key_id == key_id)
924 			return -EINVAL;
925 
926 		sh_keys = &ep->endpoint_shared_keys;
927 	}
928 
929 	key_for_each(key, sh_keys) {
930 		if (key->key_id == key_id) {
931 			found = 1;
932 			break;
933 		}
934 	}
935 
936 	if (!found)
937 		return -EINVAL;
938 
939 	/* Delete the shared key */
940 	list_del_init(&key->key_list);
941 	sctp_auth_shkey_free(key);
942 
943 	return 0;
944 }
945