1 /*
2 * Implementation of the security services.
3 *
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8 *
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
14 * Added conditional policy language extensions
15 *
16 * Updated: Hewlett-Packard <paul@paul-moore.com>
17 *
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
20 *
21 * Updated: Chad Sellers <csellers@tresys.com>
22 *
23 * Added validation of kernel classes and permissions
24 *
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26 *
27 * Added support for bounds domain and audit messaged on masked permissions
28 *
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
30 *
31 * Added support for runtime switching of the policy type
32 *
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
39 * it under the terms of the GNU General Public License as published by
40 * the Free Software Foundation, version 2.
41 */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
56
57 #include "flask.h"
58 #include "avc.h"
59 #include "avc_ss.h"
60 #include "security.h"
61 #include "context.h"
62 #include "policydb.h"
63 #include "sidtab.h"
64 #include "services.h"
65 #include "conditional.h"
66 #include "mls.h"
67 #include "objsec.h"
68 #include "netlabel.h"
69 #include "xfrm.h"
70 #include "ebitmap.h"
71 #include "audit.h"
72
73 int selinux_policycap_netpeer;
74 int selinux_policycap_openperm;
75 int selinux_policycap_alwaysnetwork;
76
77 static DEFINE_RWLOCK(policy_rwlock);
78
79 static struct sidtab sidtab;
80 struct policydb policydb;
81 int ss_initialized;
82
83 /*
84 * The largest sequence number that has been used when
85 * providing an access decision to the access vector cache.
86 * The sequence number only changes when a policy change
87 * occurs.
88 */
89 static u32 latest_granting;
90
91 /* Forward declaration. */
92 static int context_struct_to_string(struct context *context, char **scontext,
93 u32 *scontext_len);
94
95 static void context_struct_compute_av(struct context *scontext,
96 struct context *tcontext,
97 u16 tclass,
98 struct av_decision *avd,
99 struct extended_perms *xperms);
100
101 struct selinux_mapping {
102 u16 value; /* policy value */
103 unsigned num_perms;
104 u32 perms[sizeof(u32) * 8];
105 };
106
107 static struct selinux_mapping *current_mapping;
108 static u16 current_mapping_size;
109
selinux_set_mapping(struct policydb * pol,struct security_class_mapping * map,struct selinux_mapping ** out_map_p,u16 * out_map_size)110 static int selinux_set_mapping(struct policydb *pol,
111 struct security_class_mapping *map,
112 struct selinux_mapping **out_map_p,
113 u16 *out_map_size)
114 {
115 struct selinux_mapping *out_map = NULL;
116 size_t size = sizeof(struct selinux_mapping);
117 u16 i, j;
118 unsigned k;
119 bool print_unknown_handle = false;
120
121 /* Find number of classes in the input mapping */
122 if (!map)
123 return -EINVAL;
124 i = 0;
125 while (map[i].name)
126 i++;
127
128 /* Allocate space for the class records, plus one for class zero */
129 out_map = kcalloc(++i, size, GFP_ATOMIC);
130 if (!out_map)
131 return -ENOMEM;
132
133 /* Store the raw class and permission values */
134 j = 0;
135 while (map[j].name) {
136 struct security_class_mapping *p_in = map + (j++);
137 struct selinux_mapping *p_out = out_map + j;
138
139 /* An empty class string skips ahead */
140 if (!strcmp(p_in->name, "")) {
141 p_out->num_perms = 0;
142 continue;
143 }
144
145 p_out->value = string_to_security_class(pol, p_in->name);
146 if (!p_out->value) {
147 printk(KERN_INFO
148 "SELinux: Class %s not defined in policy.\n",
149 p_in->name);
150 if (pol->reject_unknown)
151 goto err;
152 p_out->num_perms = 0;
153 print_unknown_handle = true;
154 continue;
155 }
156
157 k = 0;
158 while (p_in->perms && p_in->perms[k]) {
159 /* An empty permission string skips ahead */
160 if (!*p_in->perms[k]) {
161 k++;
162 continue;
163 }
164 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
165 p_in->perms[k]);
166 if (!p_out->perms[k]) {
167 printk(KERN_INFO
168 "SELinux: Permission %s in class %s not defined in policy.\n",
169 p_in->perms[k], p_in->name);
170 if (pol->reject_unknown)
171 goto err;
172 print_unknown_handle = true;
173 }
174
175 k++;
176 }
177 p_out->num_perms = k;
178 }
179
180 if (print_unknown_handle)
181 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
182 pol->allow_unknown ? "allowed" : "denied");
183
184 *out_map_p = out_map;
185 *out_map_size = i;
186 return 0;
187 err:
188 kfree(out_map);
189 return -EINVAL;
190 }
191
192 /*
193 * Get real, policy values from mapped values
194 */
195
unmap_class(u16 tclass)196 static u16 unmap_class(u16 tclass)
197 {
198 if (tclass < current_mapping_size)
199 return current_mapping[tclass].value;
200
201 return tclass;
202 }
203
204 /*
205 * Get kernel value for class from its policy value
206 */
map_class(u16 pol_value)207 static u16 map_class(u16 pol_value)
208 {
209 u16 i;
210
211 for (i = 1; i < current_mapping_size; i++) {
212 if (current_mapping[i].value == pol_value)
213 return i;
214 }
215
216 return SECCLASS_NULL;
217 }
218
map_decision(u16 tclass,struct av_decision * avd,int allow_unknown)219 static void map_decision(u16 tclass, struct av_decision *avd,
220 int allow_unknown)
221 {
222 if (tclass < current_mapping_size) {
223 unsigned i, n = current_mapping[tclass].num_perms;
224 u32 result;
225
226 for (i = 0, result = 0; i < n; i++) {
227 if (avd->allowed & current_mapping[tclass].perms[i])
228 result |= 1<<i;
229 if (allow_unknown && !current_mapping[tclass].perms[i])
230 result |= 1<<i;
231 }
232 avd->allowed = result;
233
234 for (i = 0, result = 0; i < n; i++)
235 if (avd->auditallow & current_mapping[tclass].perms[i])
236 result |= 1<<i;
237 avd->auditallow = result;
238
239 for (i = 0, result = 0; i < n; i++) {
240 if (avd->auditdeny & current_mapping[tclass].perms[i])
241 result |= 1<<i;
242 if (!allow_unknown && !current_mapping[tclass].perms[i])
243 result |= 1<<i;
244 }
245 /*
246 * In case the kernel has a bug and requests a permission
247 * between num_perms and the maximum permission number, we
248 * should audit that denial
249 */
250 for (; i < (sizeof(u32)*8); i++)
251 result |= 1<<i;
252 avd->auditdeny = result;
253 }
254 }
255
security_mls_enabled(void)256 int security_mls_enabled(void)
257 {
258 return policydb.mls_enabled;
259 }
260
261 /*
262 * Return the boolean value of a constraint expression
263 * when it is applied to the specified source and target
264 * security contexts.
265 *
266 * xcontext is a special beast... It is used by the validatetrans rules
267 * only. For these rules, scontext is the context before the transition,
268 * tcontext is the context after the transition, and xcontext is the context
269 * of the process performing the transition. All other callers of
270 * constraint_expr_eval should pass in NULL for xcontext.
271 */
constraint_expr_eval(struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)272 static int constraint_expr_eval(struct context *scontext,
273 struct context *tcontext,
274 struct context *xcontext,
275 struct constraint_expr *cexpr)
276 {
277 u32 val1, val2;
278 struct context *c;
279 struct role_datum *r1, *r2;
280 struct mls_level *l1, *l2;
281 struct constraint_expr *e;
282 int s[CEXPR_MAXDEPTH];
283 int sp = -1;
284
285 for (e = cexpr; e; e = e->next) {
286 switch (e->expr_type) {
287 case CEXPR_NOT:
288 BUG_ON(sp < 0);
289 s[sp] = !s[sp];
290 break;
291 case CEXPR_AND:
292 BUG_ON(sp < 1);
293 sp--;
294 s[sp] &= s[sp + 1];
295 break;
296 case CEXPR_OR:
297 BUG_ON(sp < 1);
298 sp--;
299 s[sp] |= s[sp + 1];
300 break;
301 case CEXPR_ATTR:
302 if (sp == (CEXPR_MAXDEPTH - 1))
303 return 0;
304 switch (e->attr) {
305 case CEXPR_USER:
306 val1 = scontext->user;
307 val2 = tcontext->user;
308 break;
309 case CEXPR_TYPE:
310 val1 = scontext->type;
311 val2 = tcontext->type;
312 break;
313 case CEXPR_ROLE:
314 val1 = scontext->role;
315 val2 = tcontext->role;
316 r1 = policydb.role_val_to_struct[val1 - 1];
317 r2 = policydb.role_val_to_struct[val2 - 1];
318 switch (e->op) {
319 case CEXPR_DOM:
320 s[++sp] = ebitmap_get_bit(&r1->dominates,
321 val2 - 1);
322 continue;
323 case CEXPR_DOMBY:
324 s[++sp] = ebitmap_get_bit(&r2->dominates,
325 val1 - 1);
326 continue;
327 case CEXPR_INCOMP:
328 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
329 val2 - 1) &&
330 !ebitmap_get_bit(&r2->dominates,
331 val1 - 1));
332 continue;
333 default:
334 break;
335 }
336 break;
337 case CEXPR_L1L2:
338 l1 = &(scontext->range.level[0]);
339 l2 = &(tcontext->range.level[0]);
340 goto mls_ops;
341 case CEXPR_L1H2:
342 l1 = &(scontext->range.level[0]);
343 l2 = &(tcontext->range.level[1]);
344 goto mls_ops;
345 case CEXPR_H1L2:
346 l1 = &(scontext->range.level[1]);
347 l2 = &(tcontext->range.level[0]);
348 goto mls_ops;
349 case CEXPR_H1H2:
350 l1 = &(scontext->range.level[1]);
351 l2 = &(tcontext->range.level[1]);
352 goto mls_ops;
353 case CEXPR_L1H1:
354 l1 = &(scontext->range.level[0]);
355 l2 = &(scontext->range.level[1]);
356 goto mls_ops;
357 case CEXPR_L2H2:
358 l1 = &(tcontext->range.level[0]);
359 l2 = &(tcontext->range.level[1]);
360 goto mls_ops;
361 mls_ops:
362 switch (e->op) {
363 case CEXPR_EQ:
364 s[++sp] = mls_level_eq(l1, l2);
365 continue;
366 case CEXPR_NEQ:
367 s[++sp] = !mls_level_eq(l1, l2);
368 continue;
369 case CEXPR_DOM:
370 s[++sp] = mls_level_dom(l1, l2);
371 continue;
372 case CEXPR_DOMBY:
373 s[++sp] = mls_level_dom(l2, l1);
374 continue;
375 case CEXPR_INCOMP:
376 s[++sp] = mls_level_incomp(l2, l1);
377 continue;
378 default:
379 BUG();
380 return 0;
381 }
382 break;
383 default:
384 BUG();
385 return 0;
386 }
387
388 switch (e->op) {
389 case CEXPR_EQ:
390 s[++sp] = (val1 == val2);
391 break;
392 case CEXPR_NEQ:
393 s[++sp] = (val1 != val2);
394 break;
395 default:
396 BUG();
397 return 0;
398 }
399 break;
400 case CEXPR_NAMES:
401 if (sp == (CEXPR_MAXDEPTH-1))
402 return 0;
403 c = scontext;
404 if (e->attr & CEXPR_TARGET)
405 c = tcontext;
406 else if (e->attr & CEXPR_XTARGET) {
407 c = xcontext;
408 if (!c) {
409 BUG();
410 return 0;
411 }
412 }
413 if (e->attr & CEXPR_USER)
414 val1 = c->user;
415 else if (e->attr & CEXPR_ROLE)
416 val1 = c->role;
417 else if (e->attr & CEXPR_TYPE)
418 val1 = c->type;
419 else {
420 BUG();
421 return 0;
422 }
423
424 switch (e->op) {
425 case CEXPR_EQ:
426 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
427 break;
428 case CEXPR_NEQ:
429 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
430 break;
431 default:
432 BUG();
433 return 0;
434 }
435 break;
436 default:
437 BUG();
438 return 0;
439 }
440 }
441
442 BUG_ON(sp != 0);
443 return s[0];
444 }
445
446 /*
447 * security_dump_masked_av - dumps masked permissions during
448 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
449 */
dump_masked_av_helper(void * k,void * d,void * args)450 static int dump_masked_av_helper(void *k, void *d, void *args)
451 {
452 struct perm_datum *pdatum = d;
453 char **permission_names = args;
454
455 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
456
457 permission_names[pdatum->value - 1] = (char *)k;
458
459 return 0;
460 }
461
security_dump_masked_av(struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)462 static void security_dump_masked_av(struct context *scontext,
463 struct context *tcontext,
464 u16 tclass,
465 u32 permissions,
466 const char *reason)
467 {
468 struct common_datum *common_dat;
469 struct class_datum *tclass_dat;
470 struct audit_buffer *ab;
471 char *tclass_name;
472 char *scontext_name = NULL;
473 char *tcontext_name = NULL;
474 char *permission_names[32];
475 int index;
476 u32 length;
477 bool need_comma = false;
478
479 if (!permissions)
480 return;
481
482 tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
483 tclass_dat = policydb.class_val_to_struct[tclass - 1];
484 common_dat = tclass_dat->comdatum;
485
486 /* init permission_names */
487 if (common_dat &&
488 hashtab_map(common_dat->permissions.table,
489 dump_masked_av_helper, permission_names) < 0)
490 goto out;
491
492 if (hashtab_map(tclass_dat->permissions.table,
493 dump_masked_av_helper, permission_names) < 0)
494 goto out;
495
496 /* get scontext/tcontext in text form */
497 if (context_struct_to_string(scontext,
498 &scontext_name, &length) < 0)
499 goto out;
500
501 if (context_struct_to_string(tcontext,
502 &tcontext_name, &length) < 0)
503 goto out;
504
505 /* audit a message */
506 ab = audit_log_start(current->audit_context,
507 GFP_ATOMIC, AUDIT_SELINUX_ERR);
508 if (!ab)
509 goto out;
510
511 audit_log_format(ab, "op=security_compute_av reason=%s "
512 "scontext=%s tcontext=%s tclass=%s perms=",
513 reason, scontext_name, tcontext_name, tclass_name);
514
515 for (index = 0; index < 32; index++) {
516 u32 mask = (1 << index);
517
518 if ((mask & permissions) == 0)
519 continue;
520
521 audit_log_format(ab, "%s%s",
522 need_comma ? "," : "",
523 permission_names[index]
524 ? permission_names[index] : "????");
525 need_comma = true;
526 }
527 audit_log_end(ab);
528 out:
529 /* release scontext/tcontext */
530 kfree(tcontext_name);
531 kfree(scontext_name);
532
533 return;
534 }
535
536 /*
537 * security_boundary_permission - drops violated permissions
538 * on boundary constraint.
539 */
type_attribute_bounds_av(struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)540 static void type_attribute_bounds_av(struct context *scontext,
541 struct context *tcontext,
542 u16 tclass,
543 struct av_decision *avd)
544 {
545 struct context lo_scontext;
546 struct context lo_tcontext;
547 struct av_decision lo_avd;
548 struct type_datum *source;
549 struct type_datum *target;
550 u32 masked = 0;
551
552 source = flex_array_get_ptr(policydb.type_val_to_struct_array,
553 scontext->type - 1);
554 BUG_ON(!source);
555
556 target = flex_array_get_ptr(policydb.type_val_to_struct_array,
557 tcontext->type - 1);
558 BUG_ON(!target);
559
560 if (source->bounds) {
561 memset(&lo_avd, 0, sizeof(lo_avd));
562
563 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
564 lo_scontext.type = source->bounds;
565
566 context_struct_compute_av(&lo_scontext,
567 tcontext,
568 tclass,
569 &lo_avd,
570 NULL);
571 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
572 return; /* no masked permission */
573 masked = ~lo_avd.allowed & avd->allowed;
574 }
575
576 if (target->bounds) {
577 memset(&lo_avd, 0, sizeof(lo_avd));
578
579 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
580 lo_tcontext.type = target->bounds;
581
582 context_struct_compute_av(scontext,
583 &lo_tcontext,
584 tclass,
585 &lo_avd,
586 NULL);
587 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
588 return; /* no masked permission */
589 masked = ~lo_avd.allowed & avd->allowed;
590 }
591
592 if (source->bounds && target->bounds) {
593 memset(&lo_avd, 0, sizeof(lo_avd));
594 /*
595 * lo_scontext and lo_tcontext are already
596 * set up.
597 */
598
599 context_struct_compute_av(&lo_scontext,
600 &lo_tcontext,
601 tclass,
602 &lo_avd,
603 NULL);
604 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
605 return; /* no masked permission */
606 masked = ~lo_avd.allowed & avd->allowed;
607 }
608
609 if (masked) {
610 /* mask violated permissions */
611 avd->allowed &= ~masked;
612
613 /* audit masked permissions */
614 security_dump_masked_av(scontext, tcontext,
615 tclass, masked, "bounds");
616 }
617 }
618
619 /*
620 * flag which drivers have permissions
621 * only looking for ioctl based extended permssions
622 */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)623 void services_compute_xperms_drivers(
624 struct extended_perms *xperms,
625 struct avtab_node *node)
626 {
627 unsigned int i;
628
629 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
630 /* if one or more driver has all permissions allowed */
631 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
632 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
633 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
634 /* if allowing permissions within a driver */
635 security_xperm_set(xperms->drivers.p,
636 node->datum.u.xperms->driver);
637 }
638
639 /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
640 if (node->key.specified & AVTAB_XPERMS_ALLOWED)
641 xperms->len = 1;
642 }
643
644 /*
645 * Compute access vectors and extended permissions based on a context
646 * structure pair for the permissions in a particular class.
647 */
context_struct_compute_av(struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)648 static void context_struct_compute_av(struct context *scontext,
649 struct context *tcontext,
650 u16 tclass,
651 struct av_decision *avd,
652 struct extended_perms *xperms)
653 {
654 struct constraint_node *constraint;
655 struct role_allow *ra;
656 struct avtab_key avkey;
657 struct avtab_node *node;
658 struct class_datum *tclass_datum;
659 struct ebitmap *sattr, *tattr;
660 struct ebitmap_node *snode, *tnode;
661 unsigned int i, j;
662
663 avd->allowed = 0;
664 avd->auditallow = 0;
665 avd->auditdeny = 0xffffffff;
666 if (xperms) {
667 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
668 xperms->len = 0;
669 }
670
671 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
672 if (printk_ratelimit())
673 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass);
674 return;
675 }
676
677 tclass_datum = policydb.class_val_to_struct[tclass - 1];
678
679 /*
680 * If a specific type enforcement rule was defined for
681 * this permission check, then use it.
682 */
683 avkey.target_class = tclass;
684 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
685 sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
686 BUG_ON(!sattr);
687 tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
688 BUG_ON(!tattr);
689 ebitmap_for_each_positive_bit(sattr, snode, i) {
690 ebitmap_for_each_positive_bit(tattr, tnode, j) {
691 avkey.source_type = i + 1;
692 avkey.target_type = j + 1;
693 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
694 node;
695 node = avtab_search_node_next(node, avkey.specified)) {
696 if (node->key.specified == AVTAB_ALLOWED)
697 avd->allowed |= node->datum.u.data;
698 else if (node->key.specified == AVTAB_AUDITALLOW)
699 avd->auditallow |= node->datum.u.data;
700 else if (node->key.specified == AVTAB_AUDITDENY)
701 avd->auditdeny &= node->datum.u.data;
702 else if (xperms && (node->key.specified & AVTAB_XPERMS))
703 services_compute_xperms_drivers(xperms, node);
704 }
705
706 /* Check conditional av table for additional permissions */
707 cond_compute_av(&policydb.te_cond_avtab, &avkey,
708 avd, xperms);
709
710 }
711 }
712
713 /*
714 * Remove any permissions prohibited by a constraint (this includes
715 * the MLS policy).
716 */
717 constraint = tclass_datum->constraints;
718 while (constraint) {
719 if ((constraint->permissions & (avd->allowed)) &&
720 !constraint_expr_eval(scontext, tcontext, NULL,
721 constraint->expr)) {
722 avd->allowed &= ~(constraint->permissions);
723 }
724 constraint = constraint->next;
725 }
726
727 /*
728 * If checking process transition permission and the
729 * role is changing, then check the (current_role, new_role)
730 * pair.
731 */
732 if (tclass == policydb.process_class &&
733 (avd->allowed & policydb.process_trans_perms) &&
734 scontext->role != tcontext->role) {
735 for (ra = policydb.role_allow; ra; ra = ra->next) {
736 if (scontext->role == ra->role &&
737 tcontext->role == ra->new_role)
738 break;
739 }
740 if (!ra)
741 avd->allowed &= ~policydb.process_trans_perms;
742 }
743
744 /*
745 * If the given source and target types have boundary
746 * constraint, lazy checks have to mask any violated
747 * permission and notice it to userspace via audit.
748 */
749 type_attribute_bounds_av(scontext, tcontext,
750 tclass, avd);
751 }
752
security_validtrans_handle_fail(struct context * ocontext,struct context * ncontext,struct context * tcontext,u16 tclass)753 static int security_validtrans_handle_fail(struct context *ocontext,
754 struct context *ncontext,
755 struct context *tcontext,
756 u16 tclass)
757 {
758 char *o = NULL, *n = NULL, *t = NULL;
759 u32 olen, nlen, tlen;
760
761 if (context_struct_to_string(ocontext, &o, &olen))
762 goto out;
763 if (context_struct_to_string(ncontext, &n, &nlen))
764 goto out;
765 if (context_struct_to_string(tcontext, &t, &tlen))
766 goto out;
767 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
768 "op=security_validate_transition seresult=denied"
769 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
770 o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
771 out:
772 kfree(o);
773 kfree(n);
774 kfree(t);
775
776 if (!selinux_enforcing)
777 return 0;
778 return -EPERM;
779 }
780
security_validate_transition(u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)781 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
782 u16 orig_tclass)
783 {
784 struct context *ocontext;
785 struct context *ncontext;
786 struct context *tcontext;
787 struct class_datum *tclass_datum;
788 struct constraint_node *constraint;
789 u16 tclass;
790 int rc = 0;
791
792 if (!ss_initialized)
793 return 0;
794
795 read_lock(&policy_rwlock);
796
797 tclass = unmap_class(orig_tclass);
798
799 if (!tclass || tclass > policydb.p_classes.nprim) {
800 printk(KERN_ERR "SELinux: %s: unrecognized class %d\n",
801 __func__, tclass);
802 rc = -EINVAL;
803 goto out;
804 }
805 tclass_datum = policydb.class_val_to_struct[tclass - 1];
806
807 ocontext = sidtab_search(&sidtab, oldsid);
808 if (!ocontext) {
809 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
810 __func__, oldsid);
811 rc = -EINVAL;
812 goto out;
813 }
814
815 ncontext = sidtab_search(&sidtab, newsid);
816 if (!ncontext) {
817 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
818 __func__, newsid);
819 rc = -EINVAL;
820 goto out;
821 }
822
823 tcontext = sidtab_search(&sidtab, tasksid);
824 if (!tcontext) {
825 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
826 __func__, tasksid);
827 rc = -EINVAL;
828 goto out;
829 }
830
831 constraint = tclass_datum->validatetrans;
832 while (constraint) {
833 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
834 constraint->expr)) {
835 rc = security_validtrans_handle_fail(ocontext, ncontext,
836 tcontext, tclass);
837 goto out;
838 }
839 constraint = constraint->next;
840 }
841
842 out:
843 read_unlock(&policy_rwlock);
844 return rc;
845 }
846
847 /*
848 * security_bounded_transition - check whether the given
849 * transition is directed to bounded, or not.
850 * It returns 0, if @newsid is bounded by @oldsid.
851 * Otherwise, it returns error code.
852 *
853 * @oldsid : current security identifier
854 * @newsid : destinated security identifier
855 */
security_bounded_transition(u32 old_sid,u32 new_sid)856 int security_bounded_transition(u32 old_sid, u32 new_sid)
857 {
858 struct context *old_context, *new_context;
859 struct type_datum *type;
860 int index;
861 int rc;
862
863 read_lock(&policy_rwlock);
864
865 rc = -EINVAL;
866 old_context = sidtab_search(&sidtab, old_sid);
867 if (!old_context) {
868 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
869 __func__, old_sid);
870 goto out;
871 }
872
873 rc = -EINVAL;
874 new_context = sidtab_search(&sidtab, new_sid);
875 if (!new_context) {
876 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
877 __func__, new_sid);
878 goto out;
879 }
880
881 rc = 0;
882 /* type/domain unchanged */
883 if (old_context->type == new_context->type)
884 goto out;
885
886 index = new_context->type;
887 while (true) {
888 type = flex_array_get_ptr(policydb.type_val_to_struct_array,
889 index - 1);
890 BUG_ON(!type);
891
892 /* not bounded anymore */
893 rc = -EPERM;
894 if (!type->bounds)
895 break;
896
897 /* @newsid is bounded by @oldsid */
898 rc = 0;
899 if (type->bounds == old_context->type)
900 break;
901
902 index = type->bounds;
903 }
904
905 if (rc) {
906 char *old_name = NULL;
907 char *new_name = NULL;
908 u32 length;
909
910 if (!context_struct_to_string(old_context,
911 &old_name, &length) &&
912 !context_struct_to_string(new_context,
913 &new_name, &length)) {
914 audit_log(current->audit_context,
915 GFP_ATOMIC, AUDIT_SELINUX_ERR,
916 "op=security_bounded_transition "
917 "seresult=denied "
918 "oldcontext=%s newcontext=%s",
919 old_name, new_name);
920 }
921 kfree(new_name);
922 kfree(old_name);
923 }
924 out:
925 read_unlock(&policy_rwlock);
926
927 return rc;
928 }
929
avd_init(struct av_decision * avd)930 static void avd_init(struct av_decision *avd)
931 {
932 avd->allowed = 0;
933 avd->auditallow = 0;
934 avd->auditdeny = 0xffffffff;
935 avd->seqno = latest_granting;
936 avd->flags = 0;
937 }
938
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)939 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
940 struct avtab_node *node)
941 {
942 unsigned int i;
943
944 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
945 if (xpermd->driver != node->datum.u.xperms->driver)
946 return;
947 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
948 if (!security_xperm_test(node->datum.u.xperms->perms.p,
949 xpermd->driver))
950 return;
951 } else {
952 BUG();
953 }
954
955 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
956 xpermd->used |= XPERMS_ALLOWED;
957 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
958 memset(xpermd->allowed->p, 0xff,
959 sizeof(xpermd->allowed->p));
960 }
961 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
962 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
963 xpermd->allowed->p[i] |=
964 node->datum.u.xperms->perms.p[i];
965 }
966 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
967 xpermd->used |= XPERMS_AUDITALLOW;
968 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
969 memset(xpermd->auditallow->p, 0xff,
970 sizeof(xpermd->auditallow->p));
971 }
972 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
973 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
974 xpermd->auditallow->p[i] |=
975 node->datum.u.xperms->perms.p[i];
976 }
977 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
978 xpermd->used |= XPERMS_DONTAUDIT;
979 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
980 memset(xpermd->dontaudit->p, 0xff,
981 sizeof(xpermd->dontaudit->p));
982 }
983 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
984 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
985 xpermd->dontaudit->p[i] |=
986 node->datum.u.xperms->perms.p[i];
987 }
988 } else {
989 BUG();
990 }
991 }
992
security_compute_xperms_decision(u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)993 void security_compute_xperms_decision(u32 ssid,
994 u32 tsid,
995 u16 orig_tclass,
996 u8 driver,
997 struct extended_perms_decision *xpermd)
998 {
999 u16 tclass;
1000 struct context *scontext, *tcontext;
1001 struct avtab_key avkey;
1002 struct avtab_node *node;
1003 struct ebitmap *sattr, *tattr;
1004 struct ebitmap_node *snode, *tnode;
1005 unsigned int i, j;
1006
1007 xpermd->driver = driver;
1008 xpermd->used = 0;
1009 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1010 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1011 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1012
1013 read_lock(&policy_rwlock);
1014 if (!ss_initialized)
1015 goto allow;
1016
1017 scontext = sidtab_search(&sidtab, ssid);
1018 if (!scontext) {
1019 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1020 __func__, ssid);
1021 goto out;
1022 }
1023
1024 tcontext = sidtab_search(&sidtab, tsid);
1025 if (!tcontext) {
1026 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1027 __func__, tsid);
1028 goto out;
1029 }
1030
1031 tclass = unmap_class(orig_tclass);
1032 if (unlikely(orig_tclass && !tclass)) {
1033 if (policydb.allow_unknown)
1034 goto allow;
1035 goto out;
1036 }
1037
1038
1039 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
1040 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1041 goto out;
1042 }
1043
1044 avkey.target_class = tclass;
1045 avkey.specified = AVTAB_XPERMS;
1046 sattr = flex_array_get(policydb.type_attr_map_array,
1047 scontext->type - 1);
1048 BUG_ON(!sattr);
1049 tattr = flex_array_get(policydb.type_attr_map_array,
1050 tcontext->type - 1);
1051 BUG_ON(!tattr);
1052 ebitmap_for_each_positive_bit(sattr, snode, i) {
1053 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1054 avkey.source_type = i + 1;
1055 avkey.target_type = j + 1;
1056 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
1057 node;
1058 node = avtab_search_node_next(node, avkey.specified))
1059 services_compute_xperms_decision(xpermd, node);
1060
1061 cond_compute_xperms(&policydb.te_cond_avtab,
1062 &avkey, xpermd);
1063 }
1064 }
1065 out:
1066 read_unlock(&policy_rwlock);
1067 return;
1068 allow:
1069 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1070 goto out;
1071 }
1072
1073 /**
1074 * security_compute_av - Compute access vector decisions.
1075 * @ssid: source security identifier
1076 * @tsid: target security identifier
1077 * @tclass: target security class
1078 * @avd: access vector decisions
1079 * @xperms: extended permissions
1080 *
1081 * Compute a set of access vector decisions based on the
1082 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1083 */
security_compute_av(u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1084 void security_compute_av(u32 ssid,
1085 u32 tsid,
1086 u16 orig_tclass,
1087 struct av_decision *avd,
1088 struct extended_perms *xperms)
1089 {
1090 u16 tclass;
1091 struct context *scontext = NULL, *tcontext = NULL;
1092
1093 read_lock(&policy_rwlock);
1094 avd_init(avd);
1095 xperms->len = 0;
1096 if (!ss_initialized)
1097 goto allow;
1098
1099 scontext = sidtab_search(&sidtab, ssid);
1100 if (!scontext) {
1101 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1102 __func__, ssid);
1103 goto out;
1104 }
1105
1106 /* permissive domain? */
1107 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1108 avd->flags |= AVD_FLAGS_PERMISSIVE;
1109
1110 tcontext = sidtab_search(&sidtab, tsid);
1111 if (!tcontext) {
1112 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1113 __func__, tsid);
1114 goto out;
1115 }
1116
1117 tclass = unmap_class(orig_tclass);
1118 if (unlikely(orig_tclass && !tclass)) {
1119 if (policydb.allow_unknown)
1120 goto allow;
1121 goto out;
1122 }
1123 context_struct_compute_av(scontext, tcontext, tclass, avd, xperms);
1124 map_decision(orig_tclass, avd, policydb.allow_unknown);
1125 out:
1126 read_unlock(&policy_rwlock);
1127 return;
1128 allow:
1129 avd->allowed = 0xffffffff;
1130 goto out;
1131 }
1132
security_compute_av_user(u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1133 void security_compute_av_user(u32 ssid,
1134 u32 tsid,
1135 u16 tclass,
1136 struct av_decision *avd)
1137 {
1138 struct context *scontext = NULL, *tcontext = NULL;
1139
1140 read_lock(&policy_rwlock);
1141 avd_init(avd);
1142 if (!ss_initialized)
1143 goto allow;
1144
1145 scontext = sidtab_search(&sidtab, ssid);
1146 if (!scontext) {
1147 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1148 __func__, ssid);
1149 goto out;
1150 }
1151
1152 /* permissive domain? */
1153 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1154 avd->flags |= AVD_FLAGS_PERMISSIVE;
1155
1156 tcontext = sidtab_search(&sidtab, tsid);
1157 if (!tcontext) {
1158 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1159 __func__, tsid);
1160 goto out;
1161 }
1162
1163 if (unlikely(!tclass)) {
1164 if (policydb.allow_unknown)
1165 goto allow;
1166 goto out;
1167 }
1168
1169 context_struct_compute_av(scontext, tcontext, tclass, avd, NULL);
1170 out:
1171 read_unlock(&policy_rwlock);
1172 return;
1173 allow:
1174 avd->allowed = 0xffffffff;
1175 goto out;
1176 }
1177
1178 /*
1179 * Write the security context string representation of
1180 * the context structure `context' into a dynamically
1181 * allocated string of the correct size. Set `*scontext'
1182 * to point to this string and set `*scontext_len' to
1183 * the length of the string.
1184 */
context_struct_to_string(struct context * context,char ** scontext,u32 * scontext_len)1185 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1186 {
1187 char *scontextp;
1188
1189 if (scontext)
1190 *scontext = NULL;
1191 *scontext_len = 0;
1192
1193 if (context->len) {
1194 *scontext_len = context->len;
1195 if (scontext) {
1196 *scontext = kstrdup(context->str, GFP_ATOMIC);
1197 if (!(*scontext))
1198 return -ENOMEM;
1199 }
1200 return 0;
1201 }
1202
1203 /* Compute the size of the context. */
1204 *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1205 *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1206 *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1207 *scontext_len += mls_compute_context_len(context);
1208
1209 if (!scontext)
1210 return 0;
1211
1212 /* Allocate space for the context; caller must free this space. */
1213 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1214 if (!scontextp)
1215 return -ENOMEM;
1216 *scontext = scontextp;
1217
1218 /*
1219 * Copy the user name, role name and type name into the context.
1220 */
1221 sprintf(scontextp, "%s:%s:%s",
1222 sym_name(&policydb, SYM_USERS, context->user - 1),
1223 sym_name(&policydb, SYM_ROLES, context->role - 1),
1224 sym_name(&policydb, SYM_TYPES, context->type - 1));
1225 scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1226 1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1227 1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1228
1229 mls_sid_to_context(context, &scontextp);
1230
1231 *scontextp = 0;
1232
1233 return 0;
1234 }
1235
1236 #include "initial_sid_to_string.h"
1237
security_get_initial_sid_context(u32 sid)1238 const char *security_get_initial_sid_context(u32 sid)
1239 {
1240 if (unlikely(sid > SECINITSID_NUM))
1241 return NULL;
1242 return initial_sid_to_string[sid];
1243 }
1244
security_sid_to_context_core(u32 sid,char ** scontext,u32 * scontext_len,int force)1245 static int security_sid_to_context_core(u32 sid, char **scontext,
1246 u32 *scontext_len, int force)
1247 {
1248 struct context *context;
1249 int rc = 0;
1250
1251 if (scontext)
1252 *scontext = NULL;
1253 *scontext_len = 0;
1254
1255 if (!ss_initialized) {
1256 if (sid <= SECINITSID_NUM) {
1257 char *scontextp;
1258
1259 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1260 if (!scontext)
1261 goto out;
1262 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1263 if (!scontextp) {
1264 rc = -ENOMEM;
1265 goto out;
1266 }
1267 strcpy(scontextp, initial_sid_to_string[sid]);
1268 *scontext = scontextp;
1269 goto out;
1270 }
1271 printk(KERN_ERR "SELinux: %s: called before initial "
1272 "load_policy on unknown SID %d\n", __func__, sid);
1273 rc = -EINVAL;
1274 goto out;
1275 }
1276 read_lock(&policy_rwlock);
1277 if (force)
1278 context = sidtab_search_force(&sidtab, sid);
1279 else
1280 context = sidtab_search(&sidtab, sid);
1281 if (!context) {
1282 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1283 __func__, sid);
1284 rc = -EINVAL;
1285 goto out_unlock;
1286 }
1287 rc = context_struct_to_string(context, scontext, scontext_len);
1288 out_unlock:
1289 read_unlock(&policy_rwlock);
1290 out:
1291 return rc;
1292
1293 }
1294
1295 /**
1296 * security_sid_to_context - Obtain a context for a given SID.
1297 * @sid: security identifier, SID
1298 * @scontext: security context
1299 * @scontext_len: length in bytes
1300 *
1301 * Write the string representation of the context associated with @sid
1302 * into a dynamically allocated string of the correct size. Set @scontext
1303 * to point to this string and set @scontext_len to the length of the string.
1304 */
security_sid_to_context(u32 sid,char ** scontext,u32 * scontext_len)1305 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1306 {
1307 return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1308 }
1309
security_sid_to_context_force(u32 sid,char ** scontext,u32 * scontext_len)1310 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1311 {
1312 return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1313 }
1314
1315 /*
1316 * Caveat: Mutates scontext.
1317 */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,u32 scontext_len,struct context * ctx,u32 def_sid)1318 static int string_to_context_struct(struct policydb *pol,
1319 struct sidtab *sidtabp,
1320 char *scontext,
1321 u32 scontext_len,
1322 struct context *ctx,
1323 u32 def_sid)
1324 {
1325 struct role_datum *role;
1326 struct type_datum *typdatum;
1327 struct user_datum *usrdatum;
1328 char *scontextp, *p, oldc;
1329 int rc = 0;
1330
1331 context_init(ctx);
1332
1333 /* Parse the security context. */
1334
1335 rc = -EINVAL;
1336 scontextp = (char *) scontext;
1337
1338 /* Extract the user. */
1339 p = scontextp;
1340 while (*p && *p != ':')
1341 p++;
1342
1343 if (*p == 0)
1344 goto out;
1345
1346 *p++ = 0;
1347
1348 usrdatum = hashtab_search(pol->p_users.table, scontextp);
1349 if (!usrdatum)
1350 goto out;
1351
1352 ctx->user = usrdatum->value;
1353
1354 /* Extract role. */
1355 scontextp = p;
1356 while (*p && *p != ':')
1357 p++;
1358
1359 if (*p == 0)
1360 goto out;
1361
1362 *p++ = 0;
1363
1364 role = hashtab_search(pol->p_roles.table, scontextp);
1365 if (!role)
1366 goto out;
1367 ctx->role = role->value;
1368
1369 /* Extract type. */
1370 scontextp = p;
1371 while (*p && *p != ':')
1372 p++;
1373 oldc = *p;
1374 *p++ = 0;
1375
1376 typdatum = hashtab_search(pol->p_types.table, scontextp);
1377 if (!typdatum || typdatum->attribute)
1378 goto out;
1379
1380 ctx->type = typdatum->value;
1381
1382 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1383 if (rc)
1384 goto out;
1385
1386 rc = -EINVAL;
1387 if ((p - scontext) < scontext_len)
1388 goto out;
1389
1390 /* Check the validity of the new context. */
1391 if (!policydb_context_isvalid(pol, ctx))
1392 goto out;
1393 rc = 0;
1394 out:
1395 if (rc)
1396 context_destroy(ctx);
1397 return rc;
1398 }
1399
security_context_to_sid_core(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1400 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1401 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1402 int force)
1403 {
1404 char *scontext2, *str = NULL;
1405 struct context context;
1406 int rc = 0;
1407
1408 /* An empty security context is never valid. */
1409 if (!scontext_len)
1410 return -EINVAL;
1411
1412 if (!ss_initialized) {
1413 int i;
1414
1415 for (i = 1; i < SECINITSID_NUM; i++) {
1416 if (!strcmp(initial_sid_to_string[i], scontext)) {
1417 *sid = i;
1418 return 0;
1419 }
1420 }
1421 *sid = SECINITSID_KERNEL;
1422 return 0;
1423 }
1424 *sid = SECSID_NULL;
1425
1426 /* Copy the string so that we can modify the copy as we parse it. */
1427 scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1428 if (!scontext2)
1429 return -ENOMEM;
1430 memcpy(scontext2, scontext, scontext_len);
1431 scontext2[scontext_len] = 0;
1432
1433 if (force) {
1434 /* Save another copy for storing in uninterpreted form */
1435 rc = -ENOMEM;
1436 str = kstrdup(scontext2, gfp_flags);
1437 if (!str)
1438 goto out;
1439 }
1440
1441 read_lock(&policy_rwlock);
1442 rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1443 scontext_len, &context, def_sid);
1444 if (rc == -EINVAL && force) {
1445 context.str = str;
1446 context.len = scontext_len;
1447 str = NULL;
1448 } else if (rc)
1449 goto out_unlock;
1450 rc = sidtab_context_to_sid(&sidtab, &context, sid);
1451 context_destroy(&context);
1452 out_unlock:
1453 read_unlock(&policy_rwlock);
1454 out:
1455 kfree(scontext2);
1456 kfree(str);
1457 return rc;
1458 }
1459
1460 /**
1461 * security_context_to_sid - Obtain a SID for a given security context.
1462 * @scontext: security context
1463 * @scontext_len: length in bytes
1464 * @sid: security identifier, SID
1465 * @gfp: context for the allocation
1466 *
1467 * Obtains a SID associated with the security context that
1468 * has the string representation specified by @scontext.
1469 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1470 * memory is available, or 0 on success.
1471 */
security_context_to_sid(const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1472 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1473 gfp_t gfp)
1474 {
1475 return security_context_to_sid_core(scontext, scontext_len,
1476 sid, SECSID_NULL, gfp, 0);
1477 }
1478
1479 /**
1480 * security_context_to_sid_default - Obtain a SID for a given security context,
1481 * falling back to specified default if needed.
1482 *
1483 * @scontext: security context
1484 * @scontext_len: length in bytes
1485 * @sid: security identifier, SID
1486 * @def_sid: default SID to assign on error
1487 *
1488 * Obtains a SID associated with the security context that
1489 * has the string representation specified by @scontext.
1490 * The default SID is passed to the MLS layer to be used to allow
1491 * kernel labeling of the MLS field if the MLS field is not present
1492 * (for upgrading to MLS without full relabel).
1493 * Implicitly forces adding of the context even if it cannot be mapped yet.
1494 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1495 * memory is available, or 0 on success.
1496 */
security_context_to_sid_default(const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1497 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1498 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1499 {
1500 return security_context_to_sid_core(scontext, scontext_len,
1501 sid, def_sid, gfp_flags, 1);
1502 }
1503
security_context_to_sid_force(const char * scontext,u32 scontext_len,u32 * sid)1504 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1505 u32 *sid)
1506 {
1507 return security_context_to_sid_core(scontext, scontext_len,
1508 sid, SECSID_NULL, GFP_KERNEL, 1);
1509 }
1510
compute_sid_handle_invalid_context(struct context * scontext,struct context * tcontext,u16 tclass,struct context * newcontext)1511 static int compute_sid_handle_invalid_context(
1512 struct context *scontext,
1513 struct context *tcontext,
1514 u16 tclass,
1515 struct context *newcontext)
1516 {
1517 char *s = NULL, *t = NULL, *n = NULL;
1518 u32 slen, tlen, nlen;
1519
1520 if (context_struct_to_string(scontext, &s, &slen))
1521 goto out;
1522 if (context_struct_to_string(tcontext, &t, &tlen))
1523 goto out;
1524 if (context_struct_to_string(newcontext, &n, &nlen))
1525 goto out;
1526 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1527 "op=security_compute_sid invalid_context=%s"
1528 " scontext=%s"
1529 " tcontext=%s"
1530 " tclass=%s",
1531 n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1532 out:
1533 kfree(s);
1534 kfree(t);
1535 kfree(n);
1536 if (!selinux_enforcing)
1537 return 0;
1538 return -EACCES;
1539 }
1540
filename_compute_type(struct policydb * p,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1541 static void filename_compute_type(struct policydb *p, struct context *newcontext,
1542 u32 stype, u32 ttype, u16 tclass,
1543 const char *objname)
1544 {
1545 struct filename_trans ft;
1546 struct filename_trans_datum *otype;
1547
1548 /*
1549 * Most filename trans rules are going to live in specific directories
1550 * like /dev or /var/run. This bitmap will quickly skip rule searches
1551 * if the ttype does not contain any rules.
1552 */
1553 if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1554 return;
1555
1556 ft.stype = stype;
1557 ft.ttype = ttype;
1558 ft.tclass = tclass;
1559 ft.name = objname;
1560
1561 otype = hashtab_search(p->filename_trans, &ft);
1562 if (otype)
1563 newcontext->type = otype->otype;
1564 }
1565
security_compute_sid(u32 ssid,u32 tsid,u16 orig_tclass,u32 specified,const char * objname,u32 * out_sid,bool kern)1566 static int security_compute_sid(u32 ssid,
1567 u32 tsid,
1568 u16 orig_tclass,
1569 u32 specified,
1570 const char *objname,
1571 u32 *out_sid,
1572 bool kern)
1573 {
1574 struct class_datum *cladatum = NULL;
1575 struct context *scontext = NULL, *tcontext = NULL, newcontext;
1576 struct role_trans *roletr = NULL;
1577 struct avtab_key avkey;
1578 struct avtab_datum *avdatum;
1579 struct avtab_node *node;
1580 u16 tclass;
1581 int rc = 0;
1582 bool sock;
1583
1584 if (!ss_initialized) {
1585 switch (orig_tclass) {
1586 case SECCLASS_PROCESS: /* kernel value */
1587 *out_sid = ssid;
1588 break;
1589 default:
1590 *out_sid = tsid;
1591 break;
1592 }
1593 goto out;
1594 }
1595
1596 context_init(&newcontext);
1597
1598 read_lock(&policy_rwlock);
1599
1600 if (kern) {
1601 tclass = unmap_class(orig_tclass);
1602 sock = security_is_socket_class(orig_tclass);
1603 } else {
1604 tclass = orig_tclass;
1605 sock = security_is_socket_class(map_class(tclass));
1606 }
1607
1608 scontext = sidtab_search(&sidtab, ssid);
1609 if (!scontext) {
1610 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1611 __func__, ssid);
1612 rc = -EINVAL;
1613 goto out_unlock;
1614 }
1615 tcontext = sidtab_search(&sidtab, tsid);
1616 if (!tcontext) {
1617 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1618 __func__, tsid);
1619 rc = -EINVAL;
1620 goto out_unlock;
1621 }
1622
1623 if (tclass && tclass <= policydb.p_classes.nprim)
1624 cladatum = policydb.class_val_to_struct[tclass - 1];
1625
1626 /* Set the user identity. */
1627 switch (specified) {
1628 case AVTAB_TRANSITION:
1629 case AVTAB_CHANGE:
1630 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1631 newcontext.user = tcontext->user;
1632 } else {
1633 /* notice this gets both DEFAULT_SOURCE and unset */
1634 /* Use the process user identity. */
1635 newcontext.user = scontext->user;
1636 }
1637 break;
1638 case AVTAB_MEMBER:
1639 /* Use the related object owner. */
1640 newcontext.user = tcontext->user;
1641 break;
1642 }
1643
1644 /* Set the role to default values. */
1645 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1646 newcontext.role = scontext->role;
1647 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1648 newcontext.role = tcontext->role;
1649 } else {
1650 if ((tclass == policydb.process_class) || (sock == true))
1651 newcontext.role = scontext->role;
1652 else
1653 newcontext.role = OBJECT_R_VAL;
1654 }
1655
1656 /* Set the type to default values. */
1657 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1658 newcontext.type = scontext->type;
1659 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1660 newcontext.type = tcontext->type;
1661 } else {
1662 if ((tclass == policydb.process_class) || (sock == true)) {
1663 /* Use the type of process. */
1664 newcontext.type = scontext->type;
1665 } else {
1666 /* Use the type of the related object. */
1667 newcontext.type = tcontext->type;
1668 }
1669 }
1670
1671 /* Look for a type transition/member/change rule. */
1672 avkey.source_type = scontext->type;
1673 avkey.target_type = tcontext->type;
1674 avkey.target_class = tclass;
1675 avkey.specified = specified;
1676 avdatum = avtab_search(&policydb.te_avtab, &avkey);
1677
1678 /* If no permanent rule, also check for enabled conditional rules */
1679 if (!avdatum) {
1680 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1681 for (; node; node = avtab_search_node_next(node, specified)) {
1682 if (node->key.specified & AVTAB_ENABLED) {
1683 avdatum = &node->datum;
1684 break;
1685 }
1686 }
1687 }
1688
1689 if (avdatum) {
1690 /* Use the type from the type transition/member/change rule. */
1691 newcontext.type = avdatum->u.data;
1692 }
1693
1694 /* if we have a objname this is a file trans check so check those rules */
1695 if (objname)
1696 filename_compute_type(&policydb, &newcontext, scontext->type,
1697 tcontext->type, tclass, objname);
1698
1699 /* Check for class-specific changes. */
1700 if (specified & AVTAB_TRANSITION) {
1701 /* Look for a role transition rule. */
1702 for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1703 if ((roletr->role == scontext->role) &&
1704 (roletr->type == tcontext->type) &&
1705 (roletr->tclass == tclass)) {
1706 /* Use the role transition rule. */
1707 newcontext.role = roletr->new_role;
1708 break;
1709 }
1710 }
1711 }
1712
1713 /* Set the MLS attributes.
1714 This is done last because it may allocate memory. */
1715 rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1716 &newcontext, sock);
1717 if (rc)
1718 goto out_unlock;
1719
1720 /* Check the validity of the context. */
1721 if (!policydb_context_isvalid(&policydb, &newcontext)) {
1722 rc = compute_sid_handle_invalid_context(scontext,
1723 tcontext,
1724 tclass,
1725 &newcontext);
1726 if (rc)
1727 goto out_unlock;
1728 }
1729 /* Obtain the sid for the context. */
1730 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1731 out_unlock:
1732 read_unlock(&policy_rwlock);
1733 context_destroy(&newcontext);
1734 out:
1735 return rc;
1736 }
1737
1738 /**
1739 * security_transition_sid - Compute the SID for a new subject/object.
1740 * @ssid: source security identifier
1741 * @tsid: target security identifier
1742 * @tclass: target security class
1743 * @out_sid: security identifier for new subject/object
1744 *
1745 * Compute a SID to use for labeling a new subject or object in the
1746 * class @tclass based on a SID pair (@ssid, @tsid).
1747 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1748 * if insufficient memory is available, or %0 if the new SID was
1749 * computed successfully.
1750 */
security_transition_sid(u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1751 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1752 const struct qstr *qstr, u32 *out_sid)
1753 {
1754 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1755 qstr ? qstr->name : NULL, out_sid, true);
1756 }
1757
security_transition_sid_user(u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1758 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1759 const char *objname, u32 *out_sid)
1760 {
1761 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1762 objname, out_sid, false);
1763 }
1764
1765 /**
1766 * security_member_sid - Compute the SID for member selection.
1767 * @ssid: source security identifier
1768 * @tsid: target security identifier
1769 * @tclass: target security class
1770 * @out_sid: security identifier for selected member
1771 *
1772 * Compute a SID to use when selecting a member of a polyinstantiated
1773 * object of class @tclass based on a SID pair (@ssid, @tsid).
1774 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1775 * if insufficient memory is available, or %0 if the SID was
1776 * computed successfully.
1777 */
security_member_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1778 int security_member_sid(u32 ssid,
1779 u32 tsid,
1780 u16 tclass,
1781 u32 *out_sid)
1782 {
1783 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1784 out_sid, false);
1785 }
1786
1787 /**
1788 * security_change_sid - Compute the SID for object relabeling.
1789 * @ssid: source security identifier
1790 * @tsid: target security identifier
1791 * @tclass: target security class
1792 * @out_sid: security identifier for selected member
1793 *
1794 * Compute a SID to use for relabeling an object of class @tclass
1795 * based on a SID pair (@ssid, @tsid).
1796 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1797 * if insufficient memory is available, or %0 if the SID was
1798 * computed successfully.
1799 */
security_change_sid(u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1800 int security_change_sid(u32 ssid,
1801 u32 tsid,
1802 u16 tclass,
1803 u32 *out_sid)
1804 {
1805 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1806 out_sid, false);
1807 }
1808
1809 /* Clone the SID into the new SID table. */
clone_sid(u32 sid,struct context * context,void * arg)1810 static int clone_sid(u32 sid,
1811 struct context *context,
1812 void *arg)
1813 {
1814 struct sidtab *s = arg;
1815
1816 if (sid > SECINITSID_NUM)
1817 return sidtab_insert(s, sid, context);
1818 else
1819 return 0;
1820 }
1821
convert_context_handle_invalid_context(struct context * context)1822 static inline int convert_context_handle_invalid_context(struct context *context)
1823 {
1824 char *s;
1825 u32 len;
1826
1827 if (selinux_enforcing)
1828 return -EINVAL;
1829
1830 if (!context_struct_to_string(context, &s, &len)) {
1831 printk(KERN_WARNING "SELinux: Context %s would be invalid if enforcing\n", s);
1832 kfree(s);
1833 }
1834 return 0;
1835 }
1836
1837 struct convert_context_args {
1838 struct policydb *oldp;
1839 struct policydb *newp;
1840 };
1841
1842 /*
1843 * Convert the values in the security context
1844 * structure `c' from the values specified
1845 * in the policy `p->oldp' to the values specified
1846 * in the policy `p->newp'. Verify that the
1847 * context is valid under the new policy.
1848 */
convert_context(u32 key,struct context * c,void * p)1849 static int convert_context(u32 key,
1850 struct context *c,
1851 void *p)
1852 {
1853 struct convert_context_args *args;
1854 struct context oldc;
1855 struct ocontext *oc;
1856 struct mls_range *range;
1857 struct role_datum *role;
1858 struct type_datum *typdatum;
1859 struct user_datum *usrdatum;
1860 char *s;
1861 u32 len;
1862 int rc = 0;
1863
1864 if (key <= SECINITSID_NUM)
1865 goto out;
1866
1867 args = p;
1868
1869 if (c->str) {
1870 struct context ctx;
1871
1872 rc = -ENOMEM;
1873 s = kstrdup(c->str, GFP_KERNEL);
1874 if (!s)
1875 goto out;
1876
1877 rc = string_to_context_struct(args->newp, NULL, s,
1878 c->len, &ctx, SECSID_NULL);
1879 kfree(s);
1880 if (!rc) {
1881 printk(KERN_INFO "SELinux: Context %s became valid (mapped).\n",
1882 c->str);
1883 /* Replace string with mapped representation. */
1884 kfree(c->str);
1885 memcpy(c, &ctx, sizeof(*c));
1886 goto out;
1887 } else if (rc == -EINVAL) {
1888 /* Retain string representation for later mapping. */
1889 rc = 0;
1890 goto out;
1891 } else {
1892 /* Other error condition, e.g. ENOMEM. */
1893 printk(KERN_ERR "SELinux: Unable to map context %s, rc = %d.\n",
1894 c->str, -rc);
1895 goto out;
1896 }
1897 }
1898
1899 rc = context_cpy(&oldc, c);
1900 if (rc)
1901 goto out;
1902
1903 /* Convert the user. */
1904 rc = -EINVAL;
1905 usrdatum = hashtab_search(args->newp->p_users.table,
1906 sym_name(args->oldp, SYM_USERS, c->user - 1));
1907 if (!usrdatum)
1908 goto bad;
1909 c->user = usrdatum->value;
1910
1911 /* Convert the role. */
1912 rc = -EINVAL;
1913 role = hashtab_search(args->newp->p_roles.table,
1914 sym_name(args->oldp, SYM_ROLES, c->role - 1));
1915 if (!role)
1916 goto bad;
1917 c->role = role->value;
1918
1919 /* Convert the type. */
1920 rc = -EINVAL;
1921 typdatum = hashtab_search(args->newp->p_types.table,
1922 sym_name(args->oldp, SYM_TYPES, c->type - 1));
1923 if (!typdatum)
1924 goto bad;
1925 c->type = typdatum->value;
1926
1927 /* Convert the MLS fields if dealing with MLS policies */
1928 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1929 rc = mls_convert_context(args->oldp, args->newp, c);
1930 if (rc)
1931 goto bad;
1932 } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1933 /*
1934 * Switching between MLS and non-MLS policy:
1935 * free any storage used by the MLS fields in the
1936 * context for all existing entries in the sidtab.
1937 */
1938 mls_context_destroy(c);
1939 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1940 /*
1941 * Switching between non-MLS and MLS policy:
1942 * ensure that the MLS fields of the context for all
1943 * existing entries in the sidtab are filled in with a
1944 * suitable default value, likely taken from one of the
1945 * initial SIDs.
1946 */
1947 oc = args->newp->ocontexts[OCON_ISID];
1948 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1949 oc = oc->next;
1950 rc = -EINVAL;
1951 if (!oc) {
1952 printk(KERN_ERR "SELinux: unable to look up"
1953 " the initial SIDs list\n");
1954 goto bad;
1955 }
1956 range = &oc->context[0].range;
1957 rc = mls_range_set(c, range);
1958 if (rc)
1959 goto bad;
1960 }
1961
1962 /* Check the validity of the new context. */
1963 if (!policydb_context_isvalid(args->newp, c)) {
1964 rc = convert_context_handle_invalid_context(&oldc);
1965 if (rc)
1966 goto bad;
1967 }
1968
1969 context_destroy(&oldc);
1970
1971 rc = 0;
1972 out:
1973 return rc;
1974 bad:
1975 /* Map old representation to string and save it. */
1976 rc = context_struct_to_string(&oldc, &s, &len);
1977 if (rc)
1978 return rc;
1979 context_destroy(&oldc);
1980 context_destroy(c);
1981 c->str = s;
1982 c->len = len;
1983 printk(KERN_INFO "SELinux: Context %s became invalid (unmapped).\n",
1984 c->str);
1985 rc = 0;
1986 goto out;
1987 }
1988
security_load_policycaps(void)1989 static void security_load_policycaps(void)
1990 {
1991 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1992 POLICYDB_CAPABILITY_NETPEER);
1993 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1994 POLICYDB_CAPABILITY_OPENPERM);
1995 selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
1996 POLICYDB_CAPABILITY_ALWAYSNETWORK);
1997 }
1998
1999 static int security_preserve_bools(struct policydb *p);
2000
2001 /**
2002 * security_load_policy - Load a security policy configuration.
2003 * @data: binary policy data
2004 * @len: length of data in bytes
2005 *
2006 * Load a new set of security policy configuration data,
2007 * validate it and convert the SID table as necessary.
2008 * This function will flush the access vector cache after
2009 * loading the new policy.
2010 */
security_load_policy(void * data,size_t len)2011 int security_load_policy(void *data, size_t len)
2012 {
2013 struct policydb *oldpolicydb, *newpolicydb;
2014 struct sidtab oldsidtab, newsidtab;
2015 struct selinux_mapping *oldmap, *map = NULL;
2016 struct convert_context_args args;
2017 u32 seqno;
2018 u16 map_size;
2019 int rc = 0;
2020 struct policy_file file = { data, len }, *fp = &file;
2021
2022 oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2023 if (!oldpolicydb) {
2024 rc = -ENOMEM;
2025 goto out;
2026 }
2027 newpolicydb = oldpolicydb + 1;
2028
2029 if (!ss_initialized) {
2030 avtab_cache_init();
2031 rc = policydb_read(&policydb, fp);
2032 if (rc) {
2033 avtab_cache_destroy();
2034 goto out;
2035 }
2036
2037 policydb.len = len;
2038 rc = selinux_set_mapping(&policydb, secclass_map,
2039 ¤t_mapping,
2040 ¤t_mapping_size);
2041 if (rc) {
2042 policydb_destroy(&policydb);
2043 avtab_cache_destroy();
2044 goto out;
2045 }
2046
2047 rc = policydb_load_isids(&policydb, &sidtab);
2048 if (rc) {
2049 policydb_destroy(&policydb);
2050 avtab_cache_destroy();
2051 goto out;
2052 }
2053
2054 security_load_policycaps();
2055 ss_initialized = 1;
2056 seqno = ++latest_granting;
2057 selinux_complete_init();
2058 avc_ss_reset(seqno);
2059 selnl_notify_policyload(seqno);
2060 selinux_status_update_policyload(seqno);
2061 selinux_netlbl_cache_invalidate();
2062 selinux_xfrm_notify_policyload();
2063 goto out;
2064 }
2065
2066 #if 0
2067 sidtab_hash_eval(&sidtab, "sids");
2068 #endif
2069
2070 rc = policydb_read(newpolicydb, fp);
2071 if (rc)
2072 goto out;
2073
2074 newpolicydb->len = len;
2075 /* If switching between different policy types, log MLS status */
2076 if (policydb.mls_enabled && !newpolicydb->mls_enabled)
2077 printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2078 else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
2079 printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2080
2081 rc = policydb_load_isids(newpolicydb, &newsidtab);
2082 if (rc) {
2083 printk(KERN_ERR "SELinux: unable to load the initial SIDs\n");
2084 policydb_destroy(newpolicydb);
2085 goto out;
2086 }
2087
2088 rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
2089 if (rc)
2090 goto err;
2091
2092 rc = security_preserve_bools(newpolicydb);
2093 if (rc) {
2094 printk(KERN_ERR "SELinux: unable to preserve booleans\n");
2095 goto err;
2096 }
2097
2098 /* Clone the SID table. */
2099 sidtab_shutdown(&sidtab);
2100
2101 rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
2102 if (rc)
2103 goto err;
2104
2105 /*
2106 * Convert the internal representations of contexts
2107 * in the new SID table.
2108 */
2109 args.oldp = &policydb;
2110 args.newp = newpolicydb;
2111 rc = sidtab_map(&newsidtab, convert_context, &args);
2112 if (rc) {
2113 printk(KERN_ERR "SELinux: unable to convert the internal"
2114 " representation of contexts in the new SID"
2115 " table\n");
2116 goto err;
2117 }
2118
2119 /* Save the old policydb and SID table to free later. */
2120 memcpy(oldpolicydb, &policydb, sizeof(policydb));
2121 sidtab_set(&oldsidtab, &sidtab);
2122
2123 /* Install the new policydb and SID table. */
2124 write_lock_irq(&policy_rwlock);
2125 memcpy(&policydb, newpolicydb, sizeof(policydb));
2126 sidtab_set(&sidtab, &newsidtab);
2127 security_load_policycaps();
2128 oldmap = current_mapping;
2129 current_mapping = map;
2130 current_mapping_size = map_size;
2131 seqno = ++latest_granting;
2132 write_unlock_irq(&policy_rwlock);
2133
2134 /* Free the old policydb and SID table. */
2135 policydb_destroy(oldpolicydb);
2136 sidtab_destroy(&oldsidtab);
2137 kfree(oldmap);
2138
2139 avc_ss_reset(seqno);
2140 selnl_notify_policyload(seqno);
2141 selinux_status_update_policyload(seqno);
2142 selinux_netlbl_cache_invalidate();
2143 selinux_xfrm_notify_policyload();
2144
2145 rc = 0;
2146 goto out;
2147
2148 err:
2149 kfree(map);
2150 sidtab_destroy(&newsidtab);
2151 policydb_destroy(newpolicydb);
2152
2153 out:
2154 kfree(oldpolicydb);
2155 return rc;
2156 }
2157
security_policydb_len(void)2158 size_t security_policydb_len(void)
2159 {
2160 size_t len;
2161
2162 read_lock(&policy_rwlock);
2163 len = policydb.len;
2164 read_unlock(&policy_rwlock);
2165
2166 return len;
2167 }
2168
2169 /**
2170 * security_port_sid - Obtain the SID for a port.
2171 * @protocol: protocol number
2172 * @port: port number
2173 * @out_sid: security identifier
2174 */
security_port_sid(u8 protocol,u16 port,u32 * out_sid)2175 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2176 {
2177 struct ocontext *c;
2178 int rc = 0;
2179
2180 read_lock(&policy_rwlock);
2181
2182 c = policydb.ocontexts[OCON_PORT];
2183 while (c) {
2184 if (c->u.port.protocol == protocol &&
2185 c->u.port.low_port <= port &&
2186 c->u.port.high_port >= port)
2187 break;
2188 c = c->next;
2189 }
2190
2191 if (c) {
2192 if (!c->sid[0]) {
2193 rc = sidtab_context_to_sid(&sidtab,
2194 &c->context[0],
2195 &c->sid[0]);
2196 if (rc)
2197 goto out;
2198 }
2199 *out_sid = c->sid[0];
2200 } else {
2201 *out_sid = SECINITSID_PORT;
2202 }
2203
2204 out:
2205 read_unlock(&policy_rwlock);
2206 return rc;
2207 }
2208
2209 /**
2210 * security_netif_sid - Obtain the SID for a network interface.
2211 * @name: interface name
2212 * @if_sid: interface SID
2213 */
security_netif_sid(char * name,u32 * if_sid)2214 int security_netif_sid(char *name, u32 *if_sid)
2215 {
2216 int rc = 0;
2217 struct ocontext *c;
2218
2219 read_lock(&policy_rwlock);
2220
2221 c = policydb.ocontexts[OCON_NETIF];
2222 while (c) {
2223 if (strcmp(name, c->u.name) == 0)
2224 break;
2225 c = c->next;
2226 }
2227
2228 if (c) {
2229 if (!c->sid[0] || !c->sid[1]) {
2230 rc = sidtab_context_to_sid(&sidtab,
2231 &c->context[0],
2232 &c->sid[0]);
2233 if (rc)
2234 goto out;
2235 rc = sidtab_context_to_sid(&sidtab,
2236 &c->context[1],
2237 &c->sid[1]);
2238 if (rc)
2239 goto out;
2240 }
2241 *if_sid = c->sid[0];
2242 } else
2243 *if_sid = SECINITSID_NETIF;
2244
2245 out:
2246 read_unlock(&policy_rwlock);
2247 return rc;
2248 }
2249
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2250 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2251 {
2252 int i, fail = 0;
2253
2254 for (i = 0; i < 4; i++)
2255 if (addr[i] != (input[i] & mask[i])) {
2256 fail = 1;
2257 break;
2258 }
2259
2260 return !fail;
2261 }
2262
2263 /**
2264 * security_node_sid - Obtain the SID for a node (host).
2265 * @domain: communication domain aka address family
2266 * @addrp: address
2267 * @addrlen: address length in bytes
2268 * @out_sid: security identifier
2269 */
security_node_sid(u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2270 int security_node_sid(u16 domain,
2271 void *addrp,
2272 u32 addrlen,
2273 u32 *out_sid)
2274 {
2275 int rc;
2276 struct ocontext *c;
2277
2278 read_lock(&policy_rwlock);
2279
2280 switch (domain) {
2281 case AF_INET: {
2282 u32 addr;
2283
2284 rc = -EINVAL;
2285 if (addrlen != sizeof(u32))
2286 goto out;
2287
2288 addr = *((u32 *)addrp);
2289
2290 c = policydb.ocontexts[OCON_NODE];
2291 while (c) {
2292 if (c->u.node.addr == (addr & c->u.node.mask))
2293 break;
2294 c = c->next;
2295 }
2296 break;
2297 }
2298
2299 case AF_INET6:
2300 rc = -EINVAL;
2301 if (addrlen != sizeof(u64) * 2)
2302 goto out;
2303 c = policydb.ocontexts[OCON_NODE6];
2304 while (c) {
2305 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2306 c->u.node6.mask))
2307 break;
2308 c = c->next;
2309 }
2310 break;
2311
2312 default:
2313 rc = 0;
2314 *out_sid = SECINITSID_NODE;
2315 goto out;
2316 }
2317
2318 if (c) {
2319 if (!c->sid[0]) {
2320 rc = sidtab_context_to_sid(&sidtab,
2321 &c->context[0],
2322 &c->sid[0]);
2323 if (rc)
2324 goto out;
2325 }
2326 *out_sid = c->sid[0];
2327 } else {
2328 *out_sid = SECINITSID_NODE;
2329 }
2330
2331 rc = 0;
2332 out:
2333 read_unlock(&policy_rwlock);
2334 return rc;
2335 }
2336
2337 #define SIDS_NEL 25
2338
2339 /**
2340 * security_get_user_sids - Obtain reachable SIDs for a user.
2341 * @fromsid: starting SID
2342 * @username: username
2343 * @sids: array of reachable SIDs for user
2344 * @nel: number of elements in @sids
2345 *
2346 * Generate the set of SIDs for legal security contexts
2347 * for a given user that can be reached by @fromsid.
2348 * Set *@sids to point to a dynamically allocated
2349 * array containing the set of SIDs. Set *@nel to the
2350 * number of elements in the array.
2351 */
2352
security_get_user_sids(u32 fromsid,char * username,u32 ** sids,u32 * nel)2353 int security_get_user_sids(u32 fromsid,
2354 char *username,
2355 u32 **sids,
2356 u32 *nel)
2357 {
2358 struct context *fromcon, usercon;
2359 u32 *mysids = NULL, *mysids2, sid;
2360 u32 mynel = 0, maxnel = SIDS_NEL;
2361 struct user_datum *user;
2362 struct role_datum *role;
2363 struct ebitmap_node *rnode, *tnode;
2364 int rc = 0, i, j;
2365
2366 *sids = NULL;
2367 *nel = 0;
2368
2369 if (!ss_initialized)
2370 goto out;
2371
2372 read_lock(&policy_rwlock);
2373
2374 context_init(&usercon);
2375
2376 rc = -EINVAL;
2377 fromcon = sidtab_search(&sidtab, fromsid);
2378 if (!fromcon)
2379 goto out_unlock;
2380
2381 rc = -EINVAL;
2382 user = hashtab_search(policydb.p_users.table, username);
2383 if (!user)
2384 goto out_unlock;
2385
2386 usercon.user = user->value;
2387
2388 rc = -ENOMEM;
2389 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2390 if (!mysids)
2391 goto out_unlock;
2392
2393 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2394 role = policydb.role_val_to_struct[i];
2395 usercon.role = i + 1;
2396 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2397 usercon.type = j + 1;
2398
2399 if (mls_setup_user_range(fromcon, user, &usercon))
2400 continue;
2401
2402 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2403 if (rc)
2404 goto out_unlock;
2405 if (mynel < maxnel) {
2406 mysids[mynel++] = sid;
2407 } else {
2408 rc = -ENOMEM;
2409 maxnel += SIDS_NEL;
2410 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2411 if (!mysids2)
2412 goto out_unlock;
2413 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2414 kfree(mysids);
2415 mysids = mysids2;
2416 mysids[mynel++] = sid;
2417 }
2418 }
2419 }
2420 rc = 0;
2421 out_unlock:
2422 read_unlock(&policy_rwlock);
2423 if (rc || !mynel) {
2424 kfree(mysids);
2425 goto out;
2426 }
2427
2428 rc = -ENOMEM;
2429 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2430 if (!mysids2) {
2431 kfree(mysids);
2432 goto out;
2433 }
2434 for (i = 0, j = 0; i < mynel; i++) {
2435 struct av_decision dummy_avd;
2436 rc = avc_has_perm_noaudit(fromsid, mysids[i],
2437 SECCLASS_PROCESS, /* kernel value */
2438 PROCESS__TRANSITION, AVC_STRICT,
2439 &dummy_avd);
2440 if (!rc)
2441 mysids2[j++] = mysids[i];
2442 cond_resched();
2443 }
2444 rc = 0;
2445 kfree(mysids);
2446 *sids = mysids2;
2447 *nel = j;
2448 out:
2449 return rc;
2450 }
2451
2452 /**
2453 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2454 * @fstype: filesystem type
2455 * @path: path from root of mount
2456 * @sclass: file security class
2457 * @sid: SID for path
2458 *
2459 * Obtain a SID to use for a file in a filesystem that
2460 * cannot support xattr or use a fixed labeling behavior like
2461 * transition SIDs or task SIDs.
2462 *
2463 * The caller must acquire the policy_rwlock before calling this function.
2464 */
__security_genfs_sid(const char * fstype,char * path,u16 orig_sclass,u32 * sid)2465 static inline int __security_genfs_sid(const char *fstype,
2466 char *path,
2467 u16 orig_sclass,
2468 u32 *sid)
2469 {
2470 int len;
2471 u16 sclass;
2472 struct genfs *genfs;
2473 struct ocontext *c;
2474 int rc, cmp = 0;
2475
2476 while (path[0] == '/' && path[1] == '/')
2477 path++;
2478
2479 sclass = unmap_class(orig_sclass);
2480 *sid = SECINITSID_UNLABELED;
2481
2482 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2483 cmp = strcmp(fstype, genfs->fstype);
2484 if (cmp <= 0)
2485 break;
2486 }
2487
2488 rc = -ENOENT;
2489 if (!genfs || cmp)
2490 goto out;
2491
2492 for (c = genfs->head; c; c = c->next) {
2493 len = strlen(c->u.name);
2494 if ((!c->v.sclass || sclass == c->v.sclass) &&
2495 (strncmp(c->u.name, path, len) == 0))
2496 break;
2497 }
2498
2499 rc = -ENOENT;
2500 if (!c)
2501 goto out;
2502
2503 if (!c->sid[0]) {
2504 rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2505 if (rc)
2506 goto out;
2507 }
2508
2509 *sid = c->sid[0];
2510 rc = 0;
2511 out:
2512 return rc;
2513 }
2514
2515 /**
2516 * security_genfs_sid - Obtain a SID for a file in a filesystem
2517 * @fstype: filesystem type
2518 * @path: path from root of mount
2519 * @sclass: file security class
2520 * @sid: SID for path
2521 *
2522 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2523 * it afterward.
2524 */
security_genfs_sid(const char * fstype,char * path,u16 orig_sclass,u32 * sid)2525 int security_genfs_sid(const char *fstype,
2526 char *path,
2527 u16 orig_sclass,
2528 u32 *sid)
2529 {
2530 int retval;
2531
2532 read_lock(&policy_rwlock);
2533 retval = __security_genfs_sid(fstype, path, orig_sclass, sid);
2534 read_unlock(&policy_rwlock);
2535 return retval;
2536 }
2537
2538 /**
2539 * security_fs_use - Determine how to handle labeling for a filesystem.
2540 * @sb: superblock in question
2541 */
security_fs_use(struct super_block * sb)2542 int security_fs_use(struct super_block *sb)
2543 {
2544 int rc = 0;
2545 struct ocontext *c;
2546 struct superblock_security_struct *sbsec = sb->s_security;
2547 const char *fstype = sb->s_type->name;
2548
2549 read_lock(&policy_rwlock);
2550
2551 c = policydb.ocontexts[OCON_FSUSE];
2552 while (c) {
2553 if (strcmp(fstype, c->u.name) == 0)
2554 break;
2555 c = c->next;
2556 }
2557
2558 if (c) {
2559 sbsec->behavior = c->v.behavior;
2560 if (!c->sid[0]) {
2561 rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2562 &c->sid[0]);
2563 if (rc)
2564 goto out;
2565 }
2566 sbsec->sid = c->sid[0];
2567 } else {
2568 rc = __security_genfs_sid(fstype, "/", SECCLASS_DIR,
2569 &sbsec->sid);
2570 if (rc) {
2571 sbsec->behavior = SECURITY_FS_USE_NONE;
2572 rc = 0;
2573 } else {
2574 sbsec->behavior = SECURITY_FS_USE_GENFS;
2575 }
2576 }
2577
2578 out:
2579 read_unlock(&policy_rwlock);
2580 return rc;
2581 }
2582
security_get_bools(int * len,char *** names,int ** values)2583 int security_get_bools(int *len, char ***names, int **values)
2584 {
2585 int i, rc;
2586
2587 read_lock(&policy_rwlock);
2588 *names = NULL;
2589 *values = NULL;
2590
2591 rc = 0;
2592 *len = policydb.p_bools.nprim;
2593 if (!*len)
2594 goto out;
2595
2596 rc = -ENOMEM;
2597 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2598 if (!*names)
2599 goto err;
2600
2601 rc = -ENOMEM;
2602 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2603 if (!*values)
2604 goto err;
2605
2606 for (i = 0; i < *len; i++) {
2607 size_t name_len;
2608
2609 (*values)[i] = policydb.bool_val_to_struct[i]->state;
2610 name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2611
2612 rc = -ENOMEM;
2613 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2614 if (!(*names)[i])
2615 goto err;
2616
2617 strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2618 (*names)[i][name_len - 1] = 0;
2619 }
2620 rc = 0;
2621 out:
2622 read_unlock(&policy_rwlock);
2623 return rc;
2624 err:
2625 if (*names) {
2626 for (i = 0; i < *len; i++)
2627 kfree((*names)[i]);
2628 }
2629 kfree(*values);
2630 goto out;
2631 }
2632
2633
security_set_bools(int len,int * values)2634 int security_set_bools(int len, int *values)
2635 {
2636 int i, rc;
2637 int lenp, seqno = 0;
2638 struct cond_node *cur;
2639
2640 write_lock_irq(&policy_rwlock);
2641
2642 rc = -EFAULT;
2643 lenp = policydb.p_bools.nprim;
2644 if (len != lenp)
2645 goto out;
2646
2647 for (i = 0; i < len; i++) {
2648 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2649 audit_log(current->audit_context, GFP_ATOMIC,
2650 AUDIT_MAC_CONFIG_CHANGE,
2651 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2652 sym_name(&policydb, SYM_BOOLS, i),
2653 !!values[i],
2654 policydb.bool_val_to_struct[i]->state,
2655 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2656 audit_get_sessionid(current));
2657 }
2658 if (values[i])
2659 policydb.bool_val_to_struct[i]->state = 1;
2660 else
2661 policydb.bool_val_to_struct[i]->state = 0;
2662 }
2663
2664 for (cur = policydb.cond_list; cur; cur = cur->next) {
2665 rc = evaluate_cond_node(&policydb, cur);
2666 if (rc)
2667 goto out;
2668 }
2669
2670 seqno = ++latest_granting;
2671 rc = 0;
2672 out:
2673 write_unlock_irq(&policy_rwlock);
2674 if (!rc) {
2675 avc_ss_reset(seqno);
2676 selnl_notify_policyload(seqno);
2677 selinux_status_update_policyload(seqno);
2678 selinux_xfrm_notify_policyload();
2679 }
2680 return rc;
2681 }
2682
security_get_bool_value(int bool)2683 int security_get_bool_value(int bool)
2684 {
2685 int rc;
2686 int len;
2687
2688 read_lock(&policy_rwlock);
2689
2690 rc = -EFAULT;
2691 len = policydb.p_bools.nprim;
2692 if (bool >= len)
2693 goto out;
2694
2695 rc = policydb.bool_val_to_struct[bool]->state;
2696 out:
2697 read_unlock(&policy_rwlock);
2698 return rc;
2699 }
2700
security_preserve_bools(struct policydb * p)2701 static int security_preserve_bools(struct policydb *p)
2702 {
2703 int rc, nbools = 0, *bvalues = NULL, i;
2704 char **bnames = NULL;
2705 struct cond_bool_datum *booldatum;
2706 struct cond_node *cur;
2707
2708 rc = security_get_bools(&nbools, &bnames, &bvalues);
2709 if (rc)
2710 goto out;
2711 for (i = 0; i < nbools; i++) {
2712 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2713 if (booldatum)
2714 booldatum->state = bvalues[i];
2715 }
2716 for (cur = p->cond_list; cur; cur = cur->next) {
2717 rc = evaluate_cond_node(p, cur);
2718 if (rc)
2719 goto out;
2720 }
2721
2722 out:
2723 if (bnames) {
2724 for (i = 0; i < nbools; i++)
2725 kfree(bnames[i]);
2726 }
2727 kfree(bnames);
2728 kfree(bvalues);
2729 return rc;
2730 }
2731
2732 /*
2733 * security_sid_mls_copy() - computes a new sid based on the given
2734 * sid and the mls portion of mls_sid.
2735 */
security_sid_mls_copy(u32 sid,u32 mls_sid,u32 * new_sid)2736 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2737 {
2738 struct context *context1;
2739 struct context *context2;
2740 struct context newcon;
2741 char *s;
2742 u32 len;
2743 int rc;
2744
2745 rc = 0;
2746 if (!ss_initialized || !policydb.mls_enabled) {
2747 *new_sid = sid;
2748 goto out;
2749 }
2750
2751 context_init(&newcon);
2752
2753 read_lock(&policy_rwlock);
2754
2755 rc = -EINVAL;
2756 context1 = sidtab_search(&sidtab, sid);
2757 if (!context1) {
2758 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2759 __func__, sid);
2760 goto out_unlock;
2761 }
2762
2763 rc = -EINVAL;
2764 context2 = sidtab_search(&sidtab, mls_sid);
2765 if (!context2) {
2766 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2767 __func__, mls_sid);
2768 goto out_unlock;
2769 }
2770
2771 newcon.user = context1->user;
2772 newcon.role = context1->role;
2773 newcon.type = context1->type;
2774 rc = mls_context_cpy(&newcon, context2);
2775 if (rc)
2776 goto out_unlock;
2777
2778 /* Check the validity of the new context. */
2779 if (!policydb_context_isvalid(&policydb, &newcon)) {
2780 rc = convert_context_handle_invalid_context(&newcon);
2781 if (rc) {
2782 if (!context_struct_to_string(&newcon, &s, &len)) {
2783 audit_log(current->audit_context,
2784 GFP_ATOMIC, AUDIT_SELINUX_ERR,
2785 "op=security_sid_mls_copy "
2786 "invalid_context=%s", s);
2787 kfree(s);
2788 }
2789 goto out_unlock;
2790 }
2791 }
2792
2793 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2794 out_unlock:
2795 read_unlock(&policy_rwlock);
2796 context_destroy(&newcon);
2797 out:
2798 return rc;
2799 }
2800
2801 /**
2802 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2803 * @nlbl_sid: NetLabel SID
2804 * @nlbl_type: NetLabel labeling protocol type
2805 * @xfrm_sid: XFRM SID
2806 *
2807 * Description:
2808 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2809 * resolved into a single SID it is returned via @peer_sid and the function
2810 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2811 * returns a negative value. A table summarizing the behavior is below:
2812 *
2813 * | function return | @sid
2814 * ------------------------------+-----------------+-----------------
2815 * no peer labels | 0 | SECSID_NULL
2816 * single peer label | 0 | <peer_label>
2817 * multiple, consistent labels | 0 | <peer_label>
2818 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2819 *
2820 */
security_net_peersid_resolve(u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)2821 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2822 u32 xfrm_sid,
2823 u32 *peer_sid)
2824 {
2825 int rc;
2826 struct context *nlbl_ctx;
2827 struct context *xfrm_ctx;
2828
2829 *peer_sid = SECSID_NULL;
2830
2831 /* handle the common (which also happens to be the set of easy) cases
2832 * right away, these two if statements catch everything involving a
2833 * single or absent peer SID/label */
2834 if (xfrm_sid == SECSID_NULL) {
2835 *peer_sid = nlbl_sid;
2836 return 0;
2837 }
2838 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2839 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2840 * is present */
2841 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2842 *peer_sid = xfrm_sid;
2843 return 0;
2844 }
2845
2846 /* we don't need to check ss_initialized here since the only way both
2847 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2848 * security server was initialized and ss_initialized was true */
2849 if (!policydb.mls_enabled)
2850 return 0;
2851
2852 read_lock(&policy_rwlock);
2853
2854 rc = -EINVAL;
2855 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2856 if (!nlbl_ctx) {
2857 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2858 __func__, nlbl_sid);
2859 goto out;
2860 }
2861 rc = -EINVAL;
2862 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2863 if (!xfrm_ctx) {
2864 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2865 __func__, xfrm_sid);
2866 goto out;
2867 }
2868 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2869 if (rc)
2870 goto out;
2871
2872 /* at present NetLabel SIDs/labels really only carry MLS
2873 * information so if the MLS portion of the NetLabel SID
2874 * matches the MLS portion of the labeled XFRM SID/label
2875 * then pass along the XFRM SID as it is the most
2876 * expressive */
2877 *peer_sid = xfrm_sid;
2878 out:
2879 read_unlock(&policy_rwlock);
2880 return rc;
2881 }
2882
get_classes_callback(void * k,void * d,void * args)2883 static int get_classes_callback(void *k, void *d, void *args)
2884 {
2885 struct class_datum *datum = d;
2886 char *name = k, **classes = args;
2887 int value = datum->value - 1;
2888
2889 classes[value] = kstrdup(name, GFP_ATOMIC);
2890 if (!classes[value])
2891 return -ENOMEM;
2892
2893 return 0;
2894 }
2895
security_get_classes(char *** classes,int * nclasses)2896 int security_get_classes(char ***classes, int *nclasses)
2897 {
2898 int rc;
2899
2900 read_lock(&policy_rwlock);
2901
2902 rc = -ENOMEM;
2903 *nclasses = policydb.p_classes.nprim;
2904 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2905 if (!*classes)
2906 goto out;
2907
2908 rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2909 *classes);
2910 if (rc) {
2911 int i;
2912 for (i = 0; i < *nclasses; i++)
2913 kfree((*classes)[i]);
2914 kfree(*classes);
2915 }
2916
2917 out:
2918 read_unlock(&policy_rwlock);
2919 return rc;
2920 }
2921
get_permissions_callback(void * k,void * d,void * args)2922 static int get_permissions_callback(void *k, void *d, void *args)
2923 {
2924 struct perm_datum *datum = d;
2925 char *name = k, **perms = args;
2926 int value = datum->value - 1;
2927
2928 perms[value] = kstrdup(name, GFP_ATOMIC);
2929 if (!perms[value])
2930 return -ENOMEM;
2931
2932 return 0;
2933 }
2934
security_get_permissions(char * class,char *** perms,int * nperms)2935 int security_get_permissions(char *class, char ***perms, int *nperms)
2936 {
2937 int rc, i;
2938 struct class_datum *match;
2939
2940 read_lock(&policy_rwlock);
2941
2942 rc = -EINVAL;
2943 match = hashtab_search(policydb.p_classes.table, class);
2944 if (!match) {
2945 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n",
2946 __func__, class);
2947 goto out;
2948 }
2949
2950 rc = -ENOMEM;
2951 *nperms = match->permissions.nprim;
2952 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2953 if (!*perms)
2954 goto out;
2955
2956 if (match->comdatum) {
2957 rc = hashtab_map(match->comdatum->permissions.table,
2958 get_permissions_callback, *perms);
2959 if (rc)
2960 goto err;
2961 }
2962
2963 rc = hashtab_map(match->permissions.table, get_permissions_callback,
2964 *perms);
2965 if (rc)
2966 goto err;
2967
2968 out:
2969 read_unlock(&policy_rwlock);
2970 return rc;
2971
2972 err:
2973 read_unlock(&policy_rwlock);
2974 for (i = 0; i < *nperms; i++)
2975 kfree((*perms)[i]);
2976 kfree(*perms);
2977 return rc;
2978 }
2979
security_get_reject_unknown(void)2980 int security_get_reject_unknown(void)
2981 {
2982 return policydb.reject_unknown;
2983 }
2984
security_get_allow_unknown(void)2985 int security_get_allow_unknown(void)
2986 {
2987 return policydb.allow_unknown;
2988 }
2989
2990 /**
2991 * security_policycap_supported - Check for a specific policy capability
2992 * @req_cap: capability
2993 *
2994 * Description:
2995 * This function queries the currently loaded policy to see if it supports the
2996 * capability specified by @req_cap. Returns true (1) if the capability is
2997 * supported, false (0) if it isn't supported.
2998 *
2999 */
security_policycap_supported(unsigned int req_cap)3000 int security_policycap_supported(unsigned int req_cap)
3001 {
3002 int rc;
3003
3004 read_lock(&policy_rwlock);
3005 rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
3006 read_unlock(&policy_rwlock);
3007
3008 return rc;
3009 }
3010
3011 struct selinux_audit_rule {
3012 u32 au_seqno;
3013 struct context au_ctxt;
3014 };
3015
selinux_audit_rule_free(void * vrule)3016 void selinux_audit_rule_free(void *vrule)
3017 {
3018 struct selinux_audit_rule *rule = vrule;
3019
3020 if (rule) {
3021 context_destroy(&rule->au_ctxt);
3022 kfree(rule);
3023 }
3024 }
3025
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule)3026 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3027 {
3028 struct selinux_audit_rule *tmprule;
3029 struct role_datum *roledatum;
3030 struct type_datum *typedatum;
3031 struct user_datum *userdatum;
3032 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3033 int rc = 0;
3034
3035 *rule = NULL;
3036
3037 if (!ss_initialized)
3038 return -EOPNOTSUPP;
3039
3040 switch (field) {
3041 case AUDIT_SUBJ_USER:
3042 case AUDIT_SUBJ_ROLE:
3043 case AUDIT_SUBJ_TYPE:
3044 case AUDIT_OBJ_USER:
3045 case AUDIT_OBJ_ROLE:
3046 case AUDIT_OBJ_TYPE:
3047 /* only 'equals' and 'not equals' fit user, role, and type */
3048 if (op != Audit_equal && op != Audit_not_equal)
3049 return -EINVAL;
3050 break;
3051 case AUDIT_SUBJ_SEN:
3052 case AUDIT_SUBJ_CLR:
3053 case AUDIT_OBJ_LEV_LOW:
3054 case AUDIT_OBJ_LEV_HIGH:
3055 /* we do not allow a range, indicated by the presence of '-' */
3056 if (strchr(rulestr, '-'))
3057 return -EINVAL;
3058 break;
3059 default:
3060 /* only the above fields are valid */
3061 return -EINVAL;
3062 }
3063
3064 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3065 if (!tmprule)
3066 return -ENOMEM;
3067
3068 context_init(&tmprule->au_ctxt);
3069
3070 read_lock(&policy_rwlock);
3071
3072 tmprule->au_seqno = latest_granting;
3073
3074 switch (field) {
3075 case AUDIT_SUBJ_USER:
3076 case AUDIT_OBJ_USER:
3077 rc = -EINVAL;
3078 userdatum = hashtab_search(policydb.p_users.table, rulestr);
3079 if (!userdatum)
3080 goto out;
3081 tmprule->au_ctxt.user = userdatum->value;
3082 break;
3083 case AUDIT_SUBJ_ROLE:
3084 case AUDIT_OBJ_ROLE:
3085 rc = -EINVAL;
3086 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
3087 if (!roledatum)
3088 goto out;
3089 tmprule->au_ctxt.role = roledatum->value;
3090 break;
3091 case AUDIT_SUBJ_TYPE:
3092 case AUDIT_OBJ_TYPE:
3093 rc = -EINVAL;
3094 typedatum = hashtab_search(policydb.p_types.table, rulestr);
3095 if (!typedatum)
3096 goto out;
3097 tmprule->au_ctxt.type = typedatum->value;
3098 break;
3099 case AUDIT_SUBJ_SEN:
3100 case AUDIT_SUBJ_CLR:
3101 case AUDIT_OBJ_LEV_LOW:
3102 case AUDIT_OBJ_LEV_HIGH:
3103 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
3104 if (rc)
3105 goto out;
3106 break;
3107 }
3108 rc = 0;
3109 out:
3110 read_unlock(&policy_rwlock);
3111
3112 if (rc) {
3113 selinux_audit_rule_free(tmprule);
3114 tmprule = NULL;
3115 }
3116
3117 *rule = tmprule;
3118
3119 return rc;
3120 }
3121
3122 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3123 int selinux_audit_rule_known(struct audit_krule *rule)
3124 {
3125 int i;
3126
3127 for (i = 0; i < rule->field_count; i++) {
3128 struct audit_field *f = &rule->fields[i];
3129 switch (f->type) {
3130 case AUDIT_SUBJ_USER:
3131 case AUDIT_SUBJ_ROLE:
3132 case AUDIT_SUBJ_TYPE:
3133 case AUDIT_SUBJ_SEN:
3134 case AUDIT_SUBJ_CLR:
3135 case AUDIT_OBJ_USER:
3136 case AUDIT_OBJ_ROLE:
3137 case AUDIT_OBJ_TYPE:
3138 case AUDIT_OBJ_LEV_LOW:
3139 case AUDIT_OBJ_LEV_HIGH:
3140 return 1;
3141 }
3142 }
3143
3144 return 0;
3145 }
3146
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule,struct audit_context * actx)3147 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3148 struct audit_context *actx)
3149 {
3150 struct context *ctxt;
3151 struct mls_level *level;
3152 struct selinux_audit_rule *rule = vrule;
3153 int match = 0;
3154
3155 if (unlikely(!rule)) {
3156 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3157 return -ENOENT;
3158 }
3159
3160 read_lock(&policy_rwlock);
3161
3162 if (rule->au_seqno < latest_granting) {
3163 match = -ESTALE;
3164 goto out;
3165 }
3166
3167 ctxt = sidtab_search(&sidtab, sid);
3168 if (unlikely(!ctxt)) {
3169 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3170 sid);
3171 match = -ENOENT;
3172 goto out;
3173 }
3174
3175 /* a field/op pair that is not caught here will simply fall through
3176 without a match */
3177 switch (field) {
3178 case AUDIT_SUBJ_USER:
3179 case AUDIT_OBJ_USER:
3180 switch (op) {
3181 case Audit_equal:
3182 match = (ctxt->user == rule->au_ctxt.user);
3183 break;
3184 case Audit_not_equal:
3185 match = (ctxt->user != rule->au_ctxt.user);
3186 break;
3187 }
3188 break;
3189 case AUDIT_SUBJ_ROLE:
3190 case AUDIT_OBJ_ROLE:
3191 switch (op) {
3192 case Audit_equal:
3193 match = (ctxt->role == rule->au_ctxt.role);
3194 break;
3195 case Audit_not_equal:
3196 match = (ctxt->role != rule->au_ctxt.role);
3197 break;
3198 }
3199 break;
3200 case AUDIT_SUBJ_TYPE:
3201 case AUDIT_OBJ_TYPE:
3202 switch (op) {
3203 case Audit_equal:
3204 match = (ctxt->type == rule->au_ctxt.type);
3205 break;
3206 case Audit_not_equal:
3207 match = (ctxt->type != rule->au_ctxt.type);
3208 break;
3209 }
3210 break;
3211 case AUDIT_SUBJ_SEN:
3212 case AUDIT_SUBJ_CLR:
3213 case AUDIT_OBJ_LEV_LOW:
3214 case AUDIT_OBJ_LEV_HIGH:
3215 level = ((field == AUDIT_SUBJ_SEN ||
3216 field == AUDIT_OBJ_LEV_LOW) ?
3217 &ctxt->range.level[0] : &ctxt->range.level[1]);
3218 switch (op) {
3219 case Audit_equal:
3220 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3221 level);
3222 break;
3223 case Audit_not_equal:
3224 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3225 level);
3226 break;
3227 case Audit_lt:
3228 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3229 level) &&
3230 !mls_level_eq(&rule->au_ctxt.range.level[0],
3231 level));
3232 break;
3233 case Audit_le:
3234 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3235 level);
3236 break;
3237 case Audit_gt:
3238 match = (mls_level_dom(level,
3239 &rule->au_ctxt.range.level[0]) &&
3240 !mls_level_eq(level,
3241 &rule->au_ctxt.range.level[0]));
3242 break;
3243 case Audit_ge:
3244 match = mls_level_dom(level,
3245 &rule->au_ctxt.range.level[0]);
3246 break;
3247 }
3248 }
3249
3250 out:
3251 read_unlock(&policy_rwlock);
3252 return match;
3253 }
3254
3255 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3256
aurule_avc_callback(u32 event)3257 static int aurule_avc_callback(u32 event)
3258 {
3259 int err = 0;
3260
3261 if (event == AVC_CALLBACK_RESET && aurule_callback)
3262 err = aurule_callback();
3263 return err;
3264 }
3265
aurule_init(void)3266 static int __init aurule_init(void)
3267 {
3268 int err;
3269
3270 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3271 if (err)
3272 panic("avc_add_callback() failed, error %d\n", err);
3273
3274 return err;
3275 }
3276 __initcall(aurule_init);
3277
3278 #ifdef CONFIG_NETLABEL
3279 /**
3280 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3281 * @secattr: the NetLabel packet security attributes
3282 * @sid: the SELinux SID
3283 *
3284 * Description:
3285 * Attempt to cache the context in @ctx, which was derived from the packet in
3286 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3287 * already been initialized.
3288 *
3289 */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3290 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3291 u32 sid)
3292 {
3293 u32 *sid_cache;
3294
3295 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3296 if (sid_cache == NULL)
3297 return;
3298 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3299 if (secattr->cache == NULL) {
3300 kfree(sid_cache);
3301 return;
3302 }
3303
3304 *sid_cache = sid;
3305 secattr->cache->free = kfree;
3306 secattr->cache->data = sid_cache;
3307 secattr->flags |= NETLBL_SECATTR_CACHE;
3308 }
3309
3310 /**
3311 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3312 * @secattr: the NetLabel packet security attributes
3313 * @sid: the SELinux SID
3314 *
3315 * Description:
3316 * Convert the given NetLabel security attributes in @secattr into a
3317 * SELinux SID. If the @secattr field does not contain a full SELinux
3318 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3319 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3320 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3321 * conversion for future lookups. Returns zero on success, negative values on
3322 * failure.
3323 *
3324 */
security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr * secattr,u32 * sid)3325 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3326 u32 *sid)
3327 {
3328 int rc;
3329 struct context *ctx;
3330 struct context ctx_new;
3331
3332 if (!ss_initialized) {
3333 *sid = SECSID_NULL;
3334 return 0;
3335 }
3336
3337 read_lock(&policy_rwlock);
3338
3339 if (secattr->flags & NETLBL_SECATTR_CACHE)
3340 *sid = *(u32 *)secattr->cache->data;
3341 else if (secattr->flags & NETLBL_SECATTR_SECID)
3342 *sid = secattr->attr.secid;
3343 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3344 rc = -EIDRM;
3345 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3346 if (ctx == NULL)
3347 goto out;
3348
3349 context_init(&ctx_new);
3350 ctx_new.user = ctx->user;
3351 ctx_new.role = ctx->role;
3352 ctx_new.type = ctx->type;
3353 mls_import_netlbl_lvl(&ctx_new, secattr);
3354 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3355 rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3356 secattr->attr.mls.cat);
3357 if (rc)
3358 goto out;
3359 memcpy(&ctx_new.range.level[1].cat,
3360 &ctx_new.range.level[0].cat,
3361 sizeof(ctx_new.range.level[0].cat));
3362 }
3363 rc = -EIDRM;
3364 if (!mls_context_isvalid(&policydb, &ctx_new))
3365 goto out_free;
3366
3367 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3368 if (rc)
3369 goto out_free;
3370
3371 security_netlbl_cache_add(secattr, *sid);
3372
3373 ebitmap_destroy(&ctx_new.range.level[0].cat);
3374 } else
3375 *sid = SECSID_NULL;
3376
3377 read_unlock(&policy_rwlock);
3378 return 0;
3379 out_free:
3380 ebitmap_destroy(&ctx_new.range.level[0].cat);
3381 out:
3382 read_unlock(&policy_rwlock);
3383 return rc;
3384 }
3385
3386 /**
3387 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3388 * @sid: the SELinux SID
3389 * @secattr: the NetLabel packet security attributes
3390 *
3391 * Description:
3392 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3393 * Returns zero on success, negative values on failure.
3394 *
3395 */
security_netlbl_sid_to_secattr(u32 sid,struct netlbl_lsm_secattr * secattr)3396 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3397 {
3398 int rc;
3399 struct context *ctx;
3400
3401 if (!ss_initialized)
3402 return 0;
3403
3404 read_lock(&policy_rwlock);
3405
3406 rc = -ENOENT;
3407 ctx = sidtab_search(&sidtab, sid);
3408 if (ctx == NULL)
3409 goto out;
3410
3411 rc = -ENOMEM;
3412 secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3413 GFP_ATOMIC);
3414 if (secattr->domain == NULL)
3415 goto out;
3416
3417 secattr->attr.secid = sid;
3418 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3419 mls_export_netlbl_lvl(ctx, secattr);
3420 rc = mls_export_netlbl_cat(ctx, secattr);
3421 out:
3422 read_unlock(&policy_rwlock);
3423 return rc;
3424 }
3425 #endif /* CONFIG_NETLABEL */
3426
3427 /**
3428 * security_read_policy - read the policy.
3429 * @data: binary policy data
3430 * @len: length of data in bytes
3431 *
3432 */
security_read_policy(void ** data,size_t * len)3433 int security_read_policy(void **data, size_t *len)
3434 {
3435 int rc;
3436 struct policy_file fp;
3437
3438 if (!ss_initialized)
3439 return -EINVAL;
3440
3441 *len = security_policydb_len();
3442
3443 *data = vmalloc_user(*len);
3444 if (!*data)
3445 return -ENOMEM;
3446
3447 fp.data = *data;
3448 fp.len = *len;
3449
3450 read_lock(&policy_rwlock);
3451 rc = policydb_write(&policydb, &fp);
3452 read_unlock(&policy_rwlock);
3453
3454 if (rc)
3455 return rc;
3456
3457 *len = (unsigned long)fp.data - (unsigned long)*data;
3458 return 0;
3459
3460 }
3461