1 /*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux XFRM hook function implementations.
5 *
6 * Authors: Serge Hallyn <sergeh@us.ibm.com>
7 * Trent Jaeger <jaegert@us.ibm.com>
8 *
9 * Updated: Venkat Yekkirala <vyekkirala@TrustedCS.com>
10 *
11 * Granular IPSec Associations for use in MLS environments.
12 *
13 * Copyright (C) 2005 International Business Machines Corporation
14 * Copyright (C) 2006 Trusted Computer Solutions, Inc.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License version 2,
18 * as published by the Free Software Foundation.
19 */
20
21 /*
22 * USAGE:
23 * NOTES:
24 * 1. Make sure to enable the following options in your kernel config:
25 * CONFIG_SECURITY=y
26 * CONFIG_SECURITY_NETWORK=y
27 * CONFIG_SECURITY_NETWORK_XFRM=y
28 * CONFIG_SECURITY_SELINUX=m/y
29 * ISSUES:
30 * 1. Caching packets, so they are not dropped during negotiation
31 * 2. Emulating a reasonable SO_PEERSEC across machines
32 * 3. Testing addition of sk_policy's with security context via setsockopt
33 */
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/security.h>
37 #include <linux/types.h>
38 #include <linux/netfilter.h>
39 #include <linux/netfilter_ipv4.h>
40 #include <linux/netfilter_ipv6.h>
41 #include <linux/slab.h>
42 #include <linux/ip.h>
43 #include <linux/tcp.h>
44 #include <linux/skbuff.h>
45 #include <linux/xfrm.h>
46 #include <net/xfrm.h>
47 #include <net/checksum.h>
48 #include <net/udp.h>
49 #include <linux/atomic.h>
50
51 #include "avc.h"
52 #include "objsec.h"
53 #include "xfrm.h"
54
55 /* Labeled XFRM instance counter */
56 atomic_t selinux_xfrm_refcount = ATOMIC_INIT(0);
57
58 /*
59 * Returns true if the context is an LSM/SELinux context.
60 */
selinux_authorizable_ctx(struct xfrm_sec_ctx * ctx)61 static inline int selinux_authorizable_ctx(struct xfrm_sec_ctx *ctx)
62 {
63 return (ctx &&
64 (ctx->ctx_doi == XFRM_SC_DOI_LSM) &&
65 (ctx->ctx_alg == XFRM_SC_ALG_SELINUX));
66 }
67
68 /*
69 * Returns true if the xfrm contains a security blob for SELinux.
70 */
selinux_authorizable_xfrm(struct xfrm_state * x)71 static inline int selinux_authorizable_xfrm(struct xfrm_state *x)
72 {
73 return selinux_authorizable_ctx(x->security);
74 }
75
76 /*
77 * Allocates a xfrm_sec_state and populates it using the supplied security
78 * xfrm_user_sec_ctx context.
79 */
selinux_xfrm_alloc_user(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * uctx,gfp_t gfp)80 static int selinux_xfrm_alloc_user(struct xfrm_sec_ctx **ctxp,
81 struct xfrm_user_sec_ctx *uctx,
82 gfp_t gfp)
83 {
84 int rc;
85 const struct task_security_struct *tsec = current_security();
86 struct xfrm_sec_ctx *ctx = NULL;
87 u32 str_len;
88
89 if (ctxp == NULL || uctx == NULL ||
90 uctx->ctx_doi != XFRM_SC_DOI_LSM ||
91 uctx->ctx_alg != XFRM_SC_ALG_SELINUX)
92 return -EINVAL;
93
94 str_len = uctx->ctx_len;
95 if (str_len >= PAGE_SIZE)
96 return -ENOMEM;
97
98 ctx = kmalloc(sizeof(*ctx) + str_len + 1, gfp);
99 if (!ctx)
100 return -ENOMEM;
101
102 ctx->ctx_doi = XFRM_SC_DOI_LSM;
103 ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
104 ctx->ctx_len = str_len;
105 memcpy(ctx->ctx_str, &uctx[1], str_len);
106 ctx->ctx_str[str_len] = '\0';
107 rc = security_context_to_sid(ctx->ctx_str, str_len, &ctx->ctx_sid, gfp);
108 if (rc)
109 goto err;
110
111 rc = avc_has_perm(tsec->sid, ctx->ctx_sid,
112 SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT, NULL);
113 if (rc)
114 goto err;
115
116 *ctxp = ctx;
117 atomic_inc(&selinux_xfrm_refcount);
118 return 0;
119
120 err:
121 kfree(ctx);
122 return rc;
123 }
124
125 /*
126 * Free the xfrm_sec_ctx structure.
127 */
selinux_xfrm_free(struct xfrm_sec_ctx * ctx)128 static void selinux_xfrm_free(struct xfrm_sec_ctx *ctx)
129 {
130 if (!ctx)
131 return;
132
133 atomic_dec(&selinux_xfrm_refcount);
134 kfree(ctx);
135 }
136
137 /*
138 * Authorize the deletion of a labeled SA or policy rule.
139 */
selinux_xfrm_delete(struct xfrm_sec_ctx * ctx)140 static int selinux_xfrm_delete(struct xfrm_sec_ctx *ctx)
141 {
142 const struct task_security_struct *tsec = current_security();
143
144 if (!ctx)
145 return 0;
146
147 return avc_has_perm(tsec->sid, ctx->ctx_sid,
148 SECCLASS_ASSOCIATION, ASSOCIATION__SETCONTEXT,
149 NULL);
150 }
151
152 /*
153 * LSM hook implementation that authorizes that a flow can use a xfrm policy
154 * rule.
155 */
selinux_xfrm_policy_lookup(struct xfrm_sec_ctx * ctx,u32 fl_secid,u8 dir)156 int selinux_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
157 {
158 int rc;
159
160 /* All flows should be treated as polmatch'ing an otherwise applicable
161 * "non-labeled" policy. This would prevent inadvertent "leaks". */
162 if (!ctx)
163 return 0;
164
165 /* Context sid is either set to label or ANY_ASSOC */
166 if (!selinux_authorizable_ctx(ctx))
167 return -EINVAL;
168
169 rc = avc_has_perm(fl_secid, ctx->ctx_sid,
170 SECCLASS_ASSOCIATION, ASSOCIATION__POLMATCH, NULL);
171 return (rc == -EACCES ? -ESRCH : rc);
172 }
173
174 /*
175 * LSM hook implementation that authorizes that a state matches
176 * the given policy, flow combo.
177 */
selinux_xfrm_state_pol_flow_match(struct xfrm_state * x,struct xfrm_policy * xp,const struct flowi * fl)178 int selinux_xfrm_state_pol_flow_match(struct xfrm_state *x,
179 struct xfrm_policy *xp,
180 const struct flowi *fl)
181 {
182 u32 state_sid;
183
184 if (!xp->security)
185 if (x->security)
186 /* unlabeled policy and labeled SA can't match */
187 return 0;
188 else
189 /* unlabeled policy and unlabeled SA match all flows */
190 return 1;
191 else
192 if (!x->security)
193 /* unlabeled SA and labeled policy can't match */
194 return 0;
195 else
196 if (!selinux_authorizable_xfrm(x))
197 /* Not a SELinux-labeled SA */
198 return 0;
199
200 state_sid = x->security->ctx_sid;
201
202 if (fl->flowi_secid != state_sid)
203 return 0;
204
205 /* We don't need a separate SA Vs. policy polmatch check since the SA
206 * is now of the same label as the flow and a flow Vs. policy polmatch
207 * check had already happened in selinux_xfrm_policy_lookup() above. */
208 return (avc_has_perm(fl->flowi_secid, state_sid,
209 SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO,
210 NULL) ? 0 : 1);
211 }
212
selinux_xfrm_skb_sid_egress(struct sk_buff * skb)213 static u32 selinux_xfrm_skb_sid_egress(struct sk_buff *skb)
214 {
215 struct dst_entry *dst = skb_dst(skb);
216 struct xfrm_state *x;
217
218 if (dst == NULL)
219 return SECSID_NULL;
220 x = dst->xfrm;
221 if (x == NULL || !selinux_authorizable_xfrm(x))
222 return SECSID_NULL;
223
224 return x->security->ctx_sid;
225 }
226
selinux_xfrm_skb_sid_ingress(struct sk_buff * skb,u32 * sid,int ckall)227 static int selinux_xfrm_skb_sid_ingress(struct sk_buff *skb,
228 u32 *sid, int ckall)
229 {
230 u32 sid_session = SECSID_NULL;
231 struct sec_path *sp = skb->sp;
232
233 if (sp) {
234 int i;
235
236 for (i = sp->len - 1; i >= 0; i--) {
237 struct xfrm_state *x = sp->xvec[i];
238 if (selinux_authorizable_xfrm(x)) {
239 struct xfrm_sec_ctx *ctx = x->security;
240
241 if (sid_session == SECSID_NULL) {
242 sid_session = ctx->ctx_sid;
243 if (!ckall)
244 goto out;
245 } else if (sid_session != ctx->ctx_sid) {
246 *sid = SECSID_NULL;
247 return -EINVAL;
248 }
249 }
250 }
251 }
252
253 out:
254 *sid = sid_session;
255 return 0;
256 }
257
258 /*
259 * LSM hook implementation that checks and/or returns the xfrm sid for the
260 * incoming packet.
261 */
selinux_xfrm_decode_session(struct sk_buff * skb,u32 * sid,int ckall)262 int selinux_xfrm_decode_session(struct sk_buff *skb, u32 *sid, int ckall)
263 {
264 if (skb == NULL) {
265 *sid = SECSID_NULL;
266 return 0;
267 }
268 return selinux_xfrm_skb_sid_ingress(skb, sid, ckall);
269 }
270
selinux_xfrm_skb_sid(struct sk_buff * skb,u32 * sid)271 int selinux_xfrm_skb_sid(struct sk_buff *skb, u32 *sid)
272 {
273 int rc;
274
275 rc = selinux_xfrm_skb_sid_ingress(skb, sid, 0);
276 if (rc == 0 && *sid == SECSID_NULL)
277 *sid = selinux_xfrm_skb_sid_egress(skb);
278
279 return rc;
280 }
281
282 /*
283 * LSM hook implementation that allocs and transfers uctx spec to xfrm_policy.
284 */
selinux_xfrm_policy_alloc(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * uctx,gfp_t gfp)285 int selinux_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
286 struct xfrm_user_sec_ctx *uctx,
287 gfp_t gfp)
288 {
289 return selinux_xfrm_alloc_user(ctxp, uctx, gfp);
290 }
291
292 /*
293 * LSM hook implementation that copies security data structure from old to new
294 * for policy cloning.
295 */
selinux_xfrm_policy_clone(struct xfrm_sec_ctx * old_ctx,struct xfrm_sec_ctx ** new_ctxp)296 int selinux_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
297 struct xfrm_sec_ctx **new_ctxp)
298 {
299 struct xfrm_sec_ctx *new_ctx;
300
301 if (!old_ctx)
302 return 0;
303
304 new_ctx = kmemdup(old_ctx, sizeof(*old_ctx) + old_ctx->ctx_len,
305 GFP_ATOMIC);
306 if (!new_ctx)
307 return -ENOMEM;
308 atomic_inc(&selinux_xfrm_refcount);
309 *new_ctxp = new_ctx;
310
311 return 0;
312 }
313
314 /*
315 * LSM hook implementation that frees xfrm_sec_ctx security information.
316 */
selinux_xfrm_policy_free(struct xfrm_sec_ctx * ctx)317 void selinux_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
318 {
319 selinux_xfrm_free(ctx);
320 }
321
322 /*
323 * LSM hook implementation that authorizes deletion of labeled policies.
324 */
selinux_xfrm_policy_delete(struct xfrm_sec_ctx * ctx)325 int selinux_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
326 {
327 return selinux_xfrm_delete(ctx);
328 }
329
330 /*
331 * LSM hook implementation that allocates a xfrm_sec_state, populates it using
332 * the supplied security context, and assigns it to the xfrm_state.
333 */
selinux_xfrm_state_alloc(struct xfrm_state * x,struct xfrm_user_sec_ctx * uctx)334 int selinux_xfrm_state_alloc(struct xfrm_state *x,
335 struct xfrm_user_sec_ctx *uctx)
336 {
337 return selinux_xfrm_alloc_user(&x->security, uctx, GFP_KERNEL);
338 }
339
340 /*
341 * LSM hook implementation that allocates a xfrm_sec_state and populates based
342 * on a secid.
343 */
selinux_xfrm_state_alloc_acquire(struct xfrm_state * x,struct xfrm_sec_ctx * polsec,u32 secid)344 int selinux_xfrm_state_alloc_acquire(struct xfrm_state *x,
345 struct xfrm_sec_ctx *polsec, u32 secid)
346 {
347 int rc;
348 struct xfrm_sec_ctx *ctx;
349 char *ctx_str = NULL;
350 int str_len;
351
352 if (!polsec)
353 return 0;
354
355 if (secid == 0)
356 return -EINVAL;
357
358 rc = security_sid_to_context(secid, &ctx_str, &str_len);
359 if (rc)
360 return rc;
361
362 ctx = kmalloc(sizeof(*ctx) + str_len, GFP_ATOMIC);
363 if (!ctx) {
364 rc = -ENOMEM;
365 goto out;
366 }
367
368 ctx->ctx_doi = XFRM_SC_DOI_LSM;
369 ctx->ctx_alg = XFRM_SC_ALG_SELINUX;
370 ctx->ctx_sid = secid;
371 ctx->ctx_len = str_len;
372 memcpy(ctx->ctx_str, ctx_str, str_len);
373
374 x->security = ctx;
375 atomic_inc(&selinux_xfrm_refcount);
376 out:
377 kfree(ctx_str);
378 return rc;
379 }
380
381 /*
382 * LSM hook implementation that frees xfrm_state security information.
383 */
selinux_xfrm_state_free(struct xfrm_state * x)384 void selinux_xfrm_state_free(struct xfrm_state *x)
385 {
386 selinux_xfrm_free(x->security);
387 }
388
389 /*
390 * LSM hook implementation that authorizes deletion of labeled SAs.
391 */
selinux_xfrm_state_delete(struct xfrm_state * x)392 int selinux_xfrm_state_delete(struct xfrm_state *x)
393 {
394 return selinux_xfrm_delete(x->security);
395 }
396
397 /*
398 * LSM hook that controls access to unlabelled packets. If
399 * a xfrm_state is authorizable (defined by macro) then it was
400 * already authorized by the IPSec process. If not, then
401 * we need to check for unlabelled access since this may not have
402 * gone thru the IPSec process.
403 */
selinux_xfrm_sock_rcv_skb(u32 sk_sid,struct sk_buff * skb,struct common_audit_data * ad)404 int selinux_xfrm_sock_rcv_skb(u32 sk_sid, struct sk_buff *skb,
405 struct common_audit_data *ad)
406 {
407 int i;
408 struct sec_path *sp = skb->sp;
409 u32 peer_sid = SECINITSID_UNLABELED;
410
411 if (sp) {
412 for (i = 0; i < sp->len; i++) {
413 struct xfrm_state *x = sp->xvec[i];
414
415 if (x && selinux_authorizable_xfrm(x)) {
416 struct xfrm_sec_ctx *ctx = x->security;
417 peer_sid = ctx->ctx_sid;
418 break;
419 }
420 }
421 }
422
423 /* This check even when there's no association involved is intended,
424 * according to Trent Jaeger, to make sure a process can't engage in
425 * non-IPsec communication unless explicitly allowed by policy. */
426 return avc_has_perm(sk_sid, peer_sid,
427 SECCLASS_ASSOCIATION, ASSOCIATION__RECVFROM, ad);
428 }
429
430 /*
431 * POSTROUTE_LAST hook's XFRM processing:
432 * If we have no security association, then we need to determine
433 * whether the socket is allowed to send to an unlabelled destination.
434 * If we do have a authorizable security association, then it has already been
435 * checked in the selinux_xfrm_state_pol_flow_match hook above.
436 */
selinux_xfrm_postroute_last(u32 sk_sid,struct sk_buff * skb,struct common_audit_data * ad,u8 proto)437 int selinux_xfrm_postroute_last(u32 sk_sid, struct sk_buff *skb,
438 struct common_audit_data *ad, u8 proto)
439 {
440 struct dst_entry *dst;
441
442 switch (proto) {
443 case IPPROTO_AH:
444 case IPPROTO_ESP:
445 case IPPROTO_COMP:
446 /* We should have already seen this packet once before it
447 * underwent xfrm(s). No need to subject it to the unlabeled
448 * check. */
449 return 0;
450 default:
451 break;
452 }
453
454 dst = skb_dst(skb);
455 if (dst) {
456 struct dst_entry *iter;
457
458 for (iter = dst; iter != NULL; iter = iter->child) {
459 struct xfrm_state *x = iter->xfrm;
460
461 if (x && selinux_authorizable_xfrm(x))
462 return 0;
463 }
464 }
465
466 /* This check even when there's no association involved is intended,
467 * according to Trent Jaeger, to make sure a process can't engage in
468 * non-IPsec communication unless explicitly allowed by policy. */
469 return avc_has_perm(sk_sid, SECINITSID_UNLABELED,
470 SECCLASS_ASSOCIATION, ASSOCIATION__SENDTO, ad);
471 }
472