• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28 
f2fs_stop_checkpoint(struct f2fs_sb_info * sbi,bool end_io)29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 	set_ckpt_flags(sbi, CP_ERROR_FLAG);
32 	if (!end_io)
33 		f2fs_flush_merged_writes(sbi);
34 }
35 
36 /*
37  * We guarantee no failure on the returned page.
38  */
grab_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)39 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
40 {
41 	struct address_space *mapping = META_MAPPING(sbi);
42 	struct page *page = NULL;
43 repeat:
44 	page = f2fs_grab_cache_page(mapping, index, false);
45 	if (!page) {
46 		cond_resched();
47 		goto repeat;
48 	}
49 	f2fs_wait_on_page_writeback(page, META, true);
50 	if (!PageUptodate(page))
51 		SetPageUptodate(page);
52 	return page;
53 }
54 
55 /*
56  * We guarantee no failure on the returned page.
57  */
__get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index,bool is_meta)58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
59 							bool is_meta)
60 {
61 	struct address_space *mapping = META_MAPPING(sbi);
62 	struct page *page;
63 	struct f2fs_io_info fio = {
64 		.sbi = sbi,
65 		.type = META,
66 		.op = REQ_OP_READ,
67 		.op_flags = REQ_META | REQ_PRIO,
68 		.old_blkaddr = index,
69 		.new_blkaddr = index,
70 		.encrypted_page = NULL,
71 	};
72 
73 	if (unlikely(!is_meta))
74 		fio.op_flags &= ~REQ_META;
75 repeat:
76 	page = f2fs_grab_cache_page(mapping, index, false);
77 	if (!page) {
78 		cond_resched();
79 		goto repeat;
80 	}
81 	if (PageUptodate(page))
82 		goto out;
83 
84 	fio.page = page;
85 
86 	if (f2fs_submit_page_bio(&fio)) {
87 		f2fs_put_page(page, 1);
88 		goto repeat;
89 	}
90 
91 	lock_page(page);
92 	if (unlikely(page->mapping != mapping)) {
93 		f2fs_put_page(page, 1);
94 		goto repeat;
95 	}
96 
97 	/*
98 	 * if there is any IO error when accessing device, make our filesystem
99 	 * readonly and make sure do not write checkpoint with non-uptodate
100 	 * meta page.
101 	 */
102 	if (unlikely(!PageUptodate(page)))
103 		f2fs_stop_checkpoint(sbi, false);
104 out:
105 	mark_page_accessed(page);
106 	return page;
107 }
108 
get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111 	return __get_meta_page(sbi, index, true);
112 }
113 
114 /* for POR only */
get_tmp_page(struct f2fs_sb_info * sbi,pgoff_t index)115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117 	return __get_meta_page(sbi, index, false);
118 }
119 
is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121 {
122 	switch (type) {
123 	case META_NAT:
124 		break;
125 	case META_SIT:
126 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127 			return false;
128 		break;
129 	case META_SSA:
130 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131 			blkaddr < SM_I(sbi)->ssa_blkaddr))
132 			return false;
133 		break;
134 	case META_CP:
135 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136 			blkaddr < __start_cp_addr(sbi)))
137 			return false;
138 		break;
139 	case META_POR:
140 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141 			blkaddr < MAIN_BLKADDR(sbi)))
142 			return false;
143 		break;
144 	default:
145 		BUG();
146 	}
147 
148 	return true;
149 }
150 
151 /*
152  * Readahead CP/NAT/SIT/SSA pages
153  */
ra_meta_pages(struct f2fs_sb_info * sbi,block_t start,int nrpages,int type,bool sync)154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155 							int type, bool sync)
156 {
157 	struct page *page;
158 	block_t blkno = start;
159 	struct f2fs_io_info fio = {
160 		.sbi = sbi,
161 		.type = META,
162 		.op = REQ_OP_READ,
163 		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
164 		.encrypted_page = NULL,
165 		.in_list = false,
166 	};
167 	struct blk_plug plug;
168 
169 	if (unlikely(type == META_POR))
170 		fio.op_flags &= ~REQ_META;
171 
172 	blk_start_plug(&plug);
173 	for (; nrpages-- > 0; blkno++) {
174 
175 		if (!is_valid_blkaddr(sbi, blkno, type))
176 			goto out;
177 
178 		switch (type) {
179 		case META_NAT:
180 			if (unlikely(blkno >=
181 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
182 				blkno = 0;
183 			/* get nat block addr */
184 			fio.new_blkaddr = current_nat_addr(sbi,
185 					blkno * NAT_ENTRY_PER_BLOCK);
186 			break;
187 		case META_SIT:
188 			/* get sit block addr */
189 			fio.new_blkaddr = current_sit_addr(sbi,
190 					blkno * SIT_ENTRY_PER_BLOCK);
191 			break;
192 		case META_SSA:
193 		case META_CP:
194 		case META_POR:
195 			fio.new_blkaddr = blkno;
196 			break;
197 		default:
198 			BUG();
199 		}
200 
201 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
202 						fio.new_blkaddr, false);
203 		if (!page)
204 			continue;
205 		if (PageUptodate(page)) {
206 			f2fs_put_page(page, 1);
207 			continue;
208 		}
209 
210 		fio.page = page;
211 		f2fs_submit_page_bio(&fio);
212 		f2fs_put_page(page, 0);
213 	}
214 out:
215 	blk_finish_plug(&plug);
216 	return blkno - start;
217 }
218 
ra_meta_pages_cond(struct f2fs_sb_info * sbi,pgoff_t index)219 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
220 {
221 	struct page *page;
222 	bool readahead = false;
223 
224 	page = find_get_page(META_MAPPING(sbi), index);
225 	if (!page || !PageUptodate(page))
226 		readahead = true;
227 	f2fs_put_page(page, 0);
228 
229 	if (readahead)
230 		ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
231 }
232 
__f2fs_write_meta_page(struct page * page,struct writeback_control * wbc,enum iostat_type io_type)233 static int __f2fs_write_meta_page(struct page *page,
234 				struct writeback_control *wbc,
235 				enum iostat_type io_type)
236 {
237 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
238 
239 	trace_f2fs_writepage(page, META);
240 
241 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
242 		goto redirty_out;
243 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
244 		goto redirty_out;
245 	if (unlikely(f2fs_cp_error(sbi)))
246 		goto redirty_out;
247 
248 	write_meta_page(sbi, page, io_type);
249 	dec_page_count(sbi, F2FS_DIRTY_META);
250 
251 	if (wbc->for_reclaim)
252 		f2fs_submit_merged_write_cond(sbi, page->mapping->host,
253 						0, page->index, META);
254 
255 	unlock_page(page);
256 
257 	if (unlikely(f2fs_cp_error(sbi)))
258 		f2fs_submit_merged_write(sbi, META);
259 
260 	return 0;
261 
262 redirty_out:
263 	redirty_page_for_writepage(wbc, page);
264 	return AOP_WRITEPAGE_ACTIVATE;
265 }
266 
f2fs_write_meta_page(struct page * page,struct writeback_control * wbc)267 static int f2fs_write_meta_page(struct page *page,
268 				struct writeback_control *wbc)
269 {
270 	return __f2fs_write_meta_page(page, wbc, FS_META_IO);
271 }
272 
f2fs_write_meta_pages(struct address_space * mapping,struct writeback_control * wbc)273 static int f2fs_write_meta_pages(struct address_space *mapping,
274 				struct writeback_control *wbc)
275 {
276 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
277 	long diff, written;
278 
279 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
280 		goto skip_write;
281 
282 	/* collect a number of dirty meta pages and write together */
283 	if (wbc->for_kupdate ||
284 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
285 		goto skip_write;
286 
287 	/* if locked failed, cp will flush dirty pages instead */
288 	if (!mutex_trylock(&sbi->cp_mutex))
289 		goto skip_write;
290 
291 	trace_f2fs_writepages(mapping->host, wbc, META);
292 	diff = nr_pages_to_write(sbi, META, wbc);
293 	written = sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
294 	mutex_unlock(&sbi->cp_mutex);
295 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
296 	return 0;
297 
298 skip_write:
299 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
300 	trace_f2fs_writepages(mapping->host, wbc, META);
301 	return 0;
302 }
303 
sync_meta_pages(struct f2fs_sb_info * sbi,enum page_type type,long nr_to_write,enum iostat_type io_type)304 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
305 				long nr_to_write, enum iostat_type io_type)
306 {
307 	struct address_space *mapping = META_MAPPING(sbi);
308 	pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
309 	struct pagevec pvec;
310 	long nwritten = 0;
311 	struct writeback_control wbc = {
312 		.for_reclaim = 0,
313 	};
314 	struct blk_plug plug;
315 
316 	pagevec_init(&pvec, 0);
317 
318 	blk_start_plug(&plug);
319 
320 	while (index <= end) {
321 		int i, nr_pages;
322 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
323 				PAGECACHE_TAG_DIRTY,
324 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
325 		if (unlikely(nr_pages == 0))
326 			break;
327 
328 		for (i = 0; i < nr_pages; i++) {
329 			struct page *page = pvec.pages[i];
330 
331 			if (prev == ULONG_MAX)
332 				prev = page->index - 1;
333 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
334 				pagevec_release(&pvec);
335 				goto stop;
336 			}
337 
338 			lock_page(page);
339 
340 			if (unlikely(page->mapping != mapping)) {
341 continue_unlock:
342 				unlock_page(page);
343 				continue;
344 			}
345 			if (!PageDirty(page)) {
346 				/* someone wrote it for us */
347 				goto continue_unlock;
348 			}
349 
350 			f2fs_wait_on_page_writeback(page, META, true);
351 
352 			BUG_ON(PageWriteback(page));
353 			if (!clear_page_dirty_for_io(page))
354 				goto continue_unlock;
355 
356 			if (__f2fs_write_meta_page(page, &wbc, io_type)) {
357 				unlock_page(page);
358 				break;
359 			}
360 			nwritten++;
361 			prev = page->index;
362 			if (unlikely(nwritten >= nr_to_write))
363 				break;
364 		}
365 		pagevec_release(&pvec);
366 		cond_resched();
367 	}
368 stop:
369 	if (nwritten)
370 		f2fs_submit_merged_write(sbi, type);
371 
372 	blk_finish_plug(&plug);
373 
374 	return nwritten;
375 }
376 
f2fs_set_meta_page_dirty(struct page * page)377 static int f2fs_set_meta_page_dirty(struct page *page)
378 {
379 	trace_f2fs_set_page_dirty(page, META);
380 
381 	if (!PageUptodate(page))
382 		SetPageUptodate(page);
383 	if (!PageDirty(page)) {
384 		f2fs_set_page_dirty_nobuffers(page);
385 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
386 		SetPagePrivate(page);
387 		f2fs_trace_pid(page);
388 		return 1;
389 	}
390 	return 0;
391 }
392 
393 const struct address_space_operations f2fs_meta_aops = {
394 	.writepage	= f2fs_write_meta_page,
395 	.writepages	= f2fs_write_meta_pages,
396 	.set_page_dirty	= f2fs_set_meta_page_dirty,
397 	.invalidatepage = f2fs_invalidate_page,
398 	.releasepage	= f2fs_release_page,
399 #ifdef CONFIG_MIGRATION
400 	.migratepage    = f2fs_migrate_page,
401 #endif
402 };
403 
__add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)404 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
405 						unsigned int devidx, int type)
406 {
407 	struct inode_management *im = &sbi->im[type];
408 	struct ino_entry *e, *tmp;
409 
410 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
411 
412 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
413 
414 	spin_lock(&im->ino_lock);
415 	e = radix_tree_lookup(&im->ino_root, ino);
416 	if (!e) {
417 		e = tmp;
418 		if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
419 			f2fs_bug_on(sbi, 1);
420 
421 		memset(e, 0, sizeof(struct ino_entry));
422 		e->ino = ino;
423 
424 		list_add_tail(&e->list, &im->ino_list);
425 		if (type != ORPHAN_INO)
426 			im->ino_num++;
427 	}
428 
429 	if (type == FLUSH_INO)
430 		f2fs_set_bit(devidx, (char *)&e->dirty_device);
431 
432 	spin_unlock(&im->ino_lock);
433 	radix_tree_preload_end();
434 
435 	if (e != tmp)
436 		kmem_cache_free(ino_entry_slab, tmp);
437 }
438 
__remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)439 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
440 {
441 	struct inode_management *im = &sbi->im[type];
442 	struct ino_entry *e;
443 
444 	spin_lock(&im->ino_lock);
445 	e = radix_tree_lookup(&im->ino_root, ino);
446 	if (e) {
447 		list_del(&e->list);
448 		radix_tree_delete(&im->ino_root, ino);
449 		im->ino_num--;
450 		spin_unlock(&im->ino_lock);
451 		kmem_cache_free(ino_entry_slab, e);
452 		return;
453 	}
454 	spin_unlock(&im->ino_lock);
455 }
456 
add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)457 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
458 {
459 	/* add new dirty ino entry into list */
460 	__add_ino_entry(sbi, ino, 0, type);
461 }
462 
remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)463 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
464 {
465 	/* remove dirty ino entry from list */
466 	__remove_ino_entry(sbi, ino, type);
467 }
468 
469 /* mode should be APPEND_INO or UPDATE_INO */
exist_written_data(struct f2fs_sb_info * sbi,nid_t ino,int mode)470 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
471 {
472 	struct inode_management *im = &sbi->im[mode];
473 	struct ino_entry *e;
474 
475 	spin_lock(&im->ino_lock);
476 	e = radix_tree_lookup(&im->ino_root, ino);
477 	spin_unlock(&im->ino_lock);
478 	return e ? true : false;
479 }
480 
release_ino_entry(struct f2fs_sb_info * sbi,bool all)481 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
482 {
483 	struct ino_entry *e, *tmp;
484 	int i;
485 
486 	for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
487 		struct inode_management *im = &sbi->im[i];
488 
489 		spin_lock(&im->ino_lock);
490 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
491 			list_del(&e->list);
492 			radix_tree_delete(&im->ino_root, e->ino);
493 			kmem_cache_free(ino_entry_slab, e);
494 			im->ino_num--;
495 		}
496 		spin_unlock(&im->ino_lock);
497 	}
498 }
499 
set_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)500 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
501 					unsigned int devidx, int type)
502 {
503 	__add_ino_entry(sbi, ino, devidx, type);
504 }
505 
is_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)506 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
507 					unsigned int devidx, int type)
508 {
509 	struct inode_management *im = &sbi->im[type];
510 	struct ino_entry *e;
511 	bool is_dirty = false;
512 
513 	spin_lock(&im->ino_lock);
514 	e = radix_tree_lookup(&im->ino_root, ino);
515 	if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
516 		is_dirty = true;
517 	spin_unlock(&im->ino_lock);
518 	return is_dirty;
519 }
520 
acquire_orphan_inode(struct f2fs_sb_info * sbi)521 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
522 {
523 	struct inode_management *im = &sbi->im[ORPHAN_INO];
524 	int err = 0;
525 
526 	spin_lock(&im->ino_lock);
527 
528 #ifdef CONFIG_F2FS_FAULT_INJECTION
529 	if (time_to_inject(sbi, FAULT_ORPHAN)) {
530 		spin_unlock(&im->ino_lock);
531 		f2fs_show_injection_info(FAULT_ORPHAN);
532 		return -ENOSPC;
533 	}
534 #endif
535 	if (unlikely(im->ino_num >= sbi->max_orphans))
536 		err = -ENOSPC;
537 	else
538 		im->ino_num++;
539 	spin_unlock(&im->ino_lock);
540 
541 	return err;
542 }
543 
release_orphan_inode(struct f2fs_sb_info * sbi)544 void release_orphan_inode(struct f2fs_sb_info *sbi)
545 {
546 	struct inode_management *im = &sbi->im[ORPHAN_INO];
547 
548 	spin_lock(&im->ino_lock);
549 	f2fs_bug_on(sbi, im->ino_num == 0);
550 	im->ino_num--;
551 	spin_unlock(&im->ino_lock);
552 }
553 
add_orphan_inode(struct inode * inode)554 void add_orphan_inode(struct inode *inode)
555 {
556 	/* add new orphan ino entry into list */
557 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
558 	update_inode_page(inode);
559 }
560 
remove_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)561 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
562 {
563 	/* remove orphan entry from orphan list */
564 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
565 }
566 
recover_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)567 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
568 {
569 	struct inode *inode;
570 	struct node_info ni;
571 	int err = acquire_orphan_inode(sbi);
572 
573 	if (err) {
574 		set_sbi_flag(sbi, SBI_NEED_FSCK);
575 		f2fs_msg(sbi->sb, KERN_WARNING,
576 				"%s: orphan failed (ino=%x), run fsck to fix.",
577 				__func__, ino);
578 		return err;
579 	}
580 
581 	__add_ino_entry(sbi, ino, 0, ORPHAN_INO);
582 
583 	inode = f2fs_iget_retry(sbi->sb, ino);
584 	if (IS_ERR(inode)) {
585 		/*
586 		 * there should be a bug that we can't find the entry
587 		 * to orphan inode.
588 		 */
589 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
590 		return PTR_ERR(inode);
591 	}
592 
593 	clear_nlink(inode);
594 
595 	/* truncate all the data during iput */
596 	iput(inode);
597 
598 	get_node_info(sbi, ino, &ni);
599 
600 	/* ENOMEM was fully retried in f2fs_evict_inode. */
601 	if (ni.blk_addr != NULL_ADDR) {
602 		set_sbi_flag(sbi, SBI_NEED_FSCK);
603 		f2fs_msg(sbi->sb, KERN_WARNING,
604 			"%s: orphan failed (ino=%x) by kernel, retry mount.",
605 				__func__, ino);
606 		return -EIO;
607 	}
608 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
609 	return 0;
610 }
611 
recover_orphan_inodes(struct f2fs_sb_info * sbi)612 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
613 {
614 	block_t start_blk, orphan_blocks, i, j;
615 	unsigned int s_flags = sbi->sb->s_flags;
616 	int err = 0;
617 #ifdef CONFIG_QUOTA
618 	int quota_enabled;
619 #endif
620 
621 	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
622 		return 0;
623 
624 	if (s_flags & MS_RDONLY) {
625 		f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
626 		sbi->sb->s_flags &= ~MS_RDONLY;
627 	}
628 
629 #ifdef CONFIG_QUOTA
630 	/* Needed for iput() to work correctly and not trash data */
631 	sbi->sb->s_flags |= MS_ACTIVE;
632 
633 	/* Turn on quotas so that they are updated correctly */
634 	quota_enabled = f2fs_enable_quota_files(sbi, s_flags & MS_RDONLY);
635 #endif
636 
637 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
638 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
639 
640 	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
641 
642 	for (i = 0; i < orphan_blocks; i++) {
643 		struct page *page = get_meta_page(sbi, start_blk + i);
644 		struct f2fs_orphan_block *orphan_blk;
645 
646 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
647 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
648 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
649 			err = recover_orphan_inode(sbi, ino);
650 			if (err) {
651 				f2fs_put_page(page, 1);
652 				goto out;
653 			}
654 		}
655 		f2fs_put_page(page, 1);
656 	}
657 	/* clear Orphan Flag */
658 	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
659 out:
660 #ifdef CONFIG_QUOTA
661 	/* Turn quotas off */
662 	if (quota_enabled)
663 		f2fs_quota_off_umount(sbi->sb);
664 #endif
665 	sbi->sb->s_flags = s_flags; /* Restore MS_RDONLY status */
666 
667 	return err;
668 }
669 
write_orphan_inodes(struct f2fs_sb_info * sbi,block_t start_blk)670 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
671 {
672 	struct list_head *head;
673 	struct f2fs_orphan_block *orphan_blk = NULL;
674 	unsigned int nentries = 0;
675 	unsigned short index = 1;
676 	unsigned short orphan_blocks;
677 	struct page *page = NULL;
678 	struct ino_entry *orphan = NULL;
679 	struct inode_management *im = &sbi->im[ORPHAN_INO];
680 
681 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
682 
683 	/*
684 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
685 	 * orphan inode operations are covered under f2fs_lock_op().
686 	 * And, spin_lock should be avoided due to page operations below.
687 	 */
688 	head = &im->ino_list;
689 
690 	/* loop for each orphan inode entry and write them in Jornal block */
691 	list_for_each_entry(orphan, head, list) {
692 		if (!page) {
693 			page = grab_meta_page(sbi, start_blk++);
694 			orphan_blk =
695 				(struct f2fs_orphan_block *)page_address(page);
696 			memset(orphan_blk, 0, sizeof(*orphan_blk));
697 		}
698 
699 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
700 
701 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
702 			/*
703 			 * an orphan block is full of 1020 entries,
704 			 * then we need to flush current orphan blocks
705 			 * and bring another one in memory
706 			 */
707 			orphan_blk->blk_addr = cpu_to_le16(index);
708 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
709 			orphan_blk->entry_count = cpu_to_le32(nentries);
710 			set_page_dirty(page);
711 			f2fs_put_page(page, 1);
712 			index++;
713 			nentries = 0;
714 			page = NULL;
715 		}
716 	}
717 
718 	if (page) {
719 		orphan_blk->blk_addr = cpu_to_le16(index);
720 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
721 		orphan_blk->entry_count = cpu_to_le32(nentries);
722 		set_page_dirty(page);
723 		f2fs_put_page(page, 1);
724 	}
725 }
726 
get_checkpoint_version(struct f2fs_sb_info * sbi,block_t cp_addr,struct f2fs_checkpoint ** cp_block,struct page ** cp_page,unsigned long long * version)727 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
728 		struct f2fs_checkpoint **cp_block, struct page **cp_page,
729 		unsigned long long *version)
730 {
731 	unsigned long blk_size = sbi->blocksize;
732 	size_t crc_offset = 0;
733 	__u32 crc = 0;
734 
735 	*cp_page = get_meta_page(sbi, cp_addr);
736 	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
737 
738 	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
739 	if (crc_offset > (blk_size - sizeof(__le32))) {
740 		f2fs_msg(sbi->sb, KERN_WARNING,
741 			"invalid crc_offset: %zu", crc_offset);
742 		return -EINVAL;
743 	}
744 
745 	crc = cur_cp_crc(*cp_block);
746 	if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
747 		f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
748 		return -EINVAL;
749 	}
750 
751 	*version = cur_cp_version(*cp_block);
752 	return 0;
753 }
754 
validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)755 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
756 				block_t cp_addr, unsigned long long *version)
757 {
758 	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
759 	struct f2fs_checkpoint *cp_block = NULL;
760 	unsigned long long cur_version = 0, pre_version = 0;
761 	int err;
762 
763 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
764 					&cp_page_1, version);
765 	if (err)
766 		goto invalid_cp1;
767 	pre_version = *version;
768 
769 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
770 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
771 					&cp_page_2, version);
772 	if (err)
773 		goto invalid_cp2;
774 	cur_version = *version;
775 
776 	if (cur_version == pre_version) {
777 		*version = cur_version;
778 		f2fs_put_page(cp_page_2, 1);
779 		return cp_page_1;
780 	}
781 invalid_cp2:
782 	f2fs_put_page(cp_page_2, 1);
783 invalid_cp1:
784 	f2fs_put_page(cp_page_1, 1);
785 	return NULL;
786 }
787 
get_valid_checkpoint(struct f2fs_sb_info * sbi)788 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
789 {
790 	struct f2fs_checkpoint *cp_block;
791 	struct f2fs_super_block *fsb = sbi->raw_super;
792 	struct page *cp1, *cp2, *cur_page;
793 	unsigned long blk_size = sbi->blocksize;
794 	unsigned long long cp1_version = 0, cp2_version = 0;
795 	unsigned long long cp_start_blk_no;
796 	unsigned int cp_blks = 1 + __cp_payload(sbi);
797 	block_t cp_blk_no;
798 	int i;
799 
800 	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
801 	if (!sbi->ckpt)
802 		return -ENOMEM;
803 	/*
804 	 * Finding out valid cp block involves read both
805 	 * sets( cp pack1 and cp pack 2)
806 	 */
807 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
808 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
809 
810 	/* The second checkpoint pack should start at the next segment */
811 	cp_start_blk_no += ((unsigned long long)1) <<
812 				le32_to_cpu(fsb->log_blocks_per_seg);
813 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
814 
815 	if (cp1 && cp2) {
816 		if (ver_after(cp2_version, cp1_version))
817 			cur_page = cp2;
818 		else
819 			cur_page = cp1;
820 	} else if (cp1) {
821 		cur_page = cp1;
822 	} else if (cp2) {
823 		cur_page = cp2;
824 	} else {
825 		goto fail_no_cp;
826 	}
827 
828 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
829 	memcpy(sbi->ckpt, cp_block, blk_size);
830 
831 	/* Sanity checking of checkpoint */
832 	if (sanity_check_ckpt(sbi))
833 		goto free_fail_no_cp;
834 
835 	if (cur_page == cp1)
836 		sbi->cur_cp_pack = 1;
837 	else
838 		sbi->cur_cp_pack = 2;
839 
840 	if (cp_blks <= 1)
841 		goto done;
842 
843 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
844 	if (cur_page == cp2)
845 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
846 
847 	for (i = 1; i < cp_blks; i++) {
848 		void *sit_bitmap_ptr;
849 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
850 
851 		cur_page = get_meta_page(sbi, cp_blk_no + i);
852 		sit_bitmap_ptr = page_address(cur_page);
853 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
854 		f2fs_put_page(cur_page, 1);
855 	}
856 done:
857 	f2fs_put_page(cp1, 1);
858 	f2fs_put_page(cp2, 1);
859 	return 0;
860 
861 free_fail_no_cp:
862 	f2fs_put_page(cp1, 1);
863 	f2fs_put_page(cp2, 1);
864 fail_no_cp:
865 	kfree(sbi->ckpt);
866 	return -EINVAL;
867 }
868 
__add_dirty_inode(struct inode * inode,enum inode_type type)869 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
870 {
871 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
872 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
873 
874 	if (is_inode_flag_set(inode, flag))
875 		return;
876 
877 	set_inode_flag(inode, flag);
878 	if (!f2fs_is_volatile_file(inode))
879 		list_add_tail(&F2FS_I(inode)->dirty_list,
880 						&sbi->inode_list[type]);
881 	stat_inc_dirty_inode(sbi, type);
882 }
883 
__remove_dirty_inode(struct inode * inode,enum inode_type type)884 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
885 {
886 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
887 
888 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
889 		return;
890 
891 	list_del_init(&F2FS_I(inode)->dirty_list);
892 	clear_inode_flag(inode, flag);
893 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
894 }
895 
update_dirty_page(struct inode * inode,struct page * page)896 void update_dirty_page(struct inode *inode, struct page *page)
897 {
898 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
899 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
900 
901 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
902 			!S_ISLNK(inode->i_mode))
903 		return;
904 
905 	spin_lock(&sbi->inode_lock[type]);
906 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
907 		__add_dirty_inode(inode, type);
908 	inode_inc_dirty_pages(inode);
909 	spin_unlock(&sbi->inode_lock[type]);
910 
911 	SetPagePrivate(page);
912 	f2fs_trace_pid(page);
913 }
914 
remove_dirty_inode(struct inode * inode)915 void remove_dirty_inode(struct inode *inode)
916 {
917 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
918 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
919 
920 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
921 			!S_ISLNK(inode->i_mode))
922 		return;
923 
924 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
925 		return;
926 
927 	spin_lock(&sbi->inode_lock[type]);
928 	__remove_dirty_inode(inode, type);
929 	spin_unlock(&sbi->inode_lock[type]);
930 }
931 
sync_dirty_inodes(struct f2fs_sb_info * sbi,enum inode_type type)932 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
933 {
934 	struct list_head *head;
935 	struct inode *inode;
936 	struct f2fs_inode_info *fi;
937 	bool is_dir = (type == DIR_INODE);
938 	unsigned long ino = 0;
939 
940 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
941 				get_pages(sbi, is_dir ?
942 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
943 retry:
944 	if (unlikely(f2fs_cp_error(sbi)))
945 		return -EIO;
946 
947 	spin_lock(&sbi->inode_lock[type]);
948 
949 	head = &sbi->inode_list[type];
950 	if (list_empty(head)) {
951 		spin_unlock(&sbi->inode_lock[type]);
952 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
953 				get_pages(sbi, is_dir ?
954 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
955 		return 0;
956 	}
957 	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
958 	inode = igrab(&fi->vfs_inode);
959 	spin_unlock(&sbi->inode_lock[type]);
960 	if (inode) {
961 		unsigned long cur_ino = inode->i_ino;
962 
963 		if (is_dir)
964 			F2FS_I(inode)->cp_task = current;
965 
966 		filemap_fdatawrite(inode->i_mapping);
967 
968 		if (is_dir)
969 			F2FS_I(inode)->cp_task = NULL;
970 
971 		iput(inode);
972 		/* We need to give cpu to another writers. */
973 		if (ino == cur_ino) {
974 			congestion_wait(BLK_RW_ASYNC, HZ/50);
975 			cond_resched();
976 		} else {
977 			ino = cur_ino;
978 		}
979 	} else {
980 		/*
981 		 * We should submit bio, since it exists several
982 		 * wribacking dentry pages in the freeing inode.
983 		 */
984 		f2fs_submit_merged_write(sbi, DATA);
985 		cond_resched();
986 	}
987 	goto retry;
988 }
989 
f2fs_sync_inode_meta(struct f2fs_sb_info * sbi)990 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
991 {
992 	struct list_head *head = &sbi->inode_list[DIRTY_META];
993 	struct inode *inode;
994 	struct f2fs_inode_info *fi;
995 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
996 
997 	while (total--) {
998 		if (unlikely(f2fs_cp_error(sbi)))
999 			return -EIO;
1000 
1001 		spin_lock(&sbi->inode_lock[DIRTY_META]);
1002 		if (list_empty(head)) {
1003 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
1004 			return 0;
1005 		}
1006 		fi = list_first_entry(head, struct f2fs_inode_info,
1007 							gdirty_list);
1008 		inode = igrab(&fi->vfs_inode);
1009 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1010 		if (inode) {
1011 			sync_inode_metadata(inode, 0);
1012 
1013 			/* it's on eviction */
1014 			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1015 				update_inode_page(inode);
1016 			iput(inode);
1017 		}
1018 	}
1019 	return 0;
1020 }
1021 
__prepare_cp_block(struct f2fs_sb_info * sbi)1022 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1023 {
1024 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1025 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1026 	nid_t last_nid = nm_i->next_scan_nid;
1027 
1028 	next_free_nid(sbi, &last_nid);
1029 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1030 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1031 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1032 	ckpt->next_free_nid = cpu_to_le32(last_nid);
1033 }
1034 
1035 /*
1036  * Freeze all the FS-operations for checkpoint.
1037  */
block_operations(struct f2fs_sb_info * sbi)1038 static int block_operations(struct f2fs_sb_info *sbi)
1039 {
1040 	struct writeback_control wbc = {
1041 		.sync_mode = WB_SYNC_ALL,
1042 		.nr_to_write = LONG_MAX,
1043 		.for_reclaim = 0,
1044 	};
1045 	struct blk_plug plug;
1046 	int err = 0;
1047 
1048 	blk_start_plug(&plug);
1049 
1050 retry_flush_dents:
1051 	f2fs_lock_all(sbi);
1052 	/* write all the dirty dentry pages */
1053 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1054 		f2fs_unlock_all(sbi);
1055 		err = sync_dirty_inodes(sbi, DIR_INODE);
1056 		if (err)
1057 			goto out;
1058 		cond_resched();
1059 		goto retry_flush_dents;
1060 	}
1061 
1062 	/*
1063 	 * POR: we should ensure that there are no dirty node pages
1064 	 * until finishing nat/sit flush. inode->i_blocks can be updated.
1065 	 */
1066 	down_write(&sbi->node_change);
1067 
1068 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1069 		up_write(&sbi->node_change);
1070 		f2fs_unlock_all(sbi);
1071 		err = f2fs_sync_inode_meta(sbi);
1072 		if (err)
1073 			goto out;
1074 		cond_resched();
1075 		goto retry_flush_dents;
1076 	}
1077 
1078 retry_flush_nodes:
1079 	down_write(&sbi->node_write);
1080 
1081 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1082 		up_write(&sbi->node_write);
1083 		err = sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1084 		if (err) {
1085 			up_write(&sbi->node_change);
1086 			f2fs_unlock_all(sbi);
1087 			goto out;
1088 		}
1089 		cond_resched();
1090 		goto retry_flush_nodes;
1091 	}
1092 
1093 	/*
1094 	 * sbi->node_change is used only for AIO write_begin path which produces
1095 	 * dirty node blocks and some checkpoint values by block allocation.
1096 	 */
1097 	__prepare_cp_block(sbi);
1098 	up_write(&sbi->node_change);
1099 out:
1100 	blk_finish_plug(&plug);
1101 	return err;
1102 }
1103 
unblock_operations(struct f2fs_sb_info * sbi)1104 static void unblock_operations(struct f2fs_sb_info *sbi)
1105 {
1106 	up_write(&sbi->node_write);
1107 	f2fs_unlock_all(sbi);
1108 }
1109 
wait_on_all_pages_writeback(struct f2fs_sb_info * sbi)1110 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1111 {
1112 	DEFINE_WAIT(wait);
1113 
1114 	for (;;) {
1115 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1116 
1117 		if (!get_pages(sbi, F2FS_WB_CP_DATA))
1118 			break;
1119 
1120 		io_schedule_timeout(5*HZ);
1121 	}
1122 	finish_wait(&sbi->cp_wait, &wait);
1123 }
1124 
update_ckpt_flags(struct f2fs_sb_info * sbi,struct cp_control * cpc)1125 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1126 {
1127 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1128 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1129 	unsigned long flags;
1130 
1131 	spin_lock_irqsave(&sbi->cp_lock, flags);
1132 
1133 	if ((cpc->reason & CP_UMOUNT) &&
1134 			le32_to_cpu(ckpt->cp_pack_total_block_count) >
1135 			sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1136 		disable_nat_bits(sbi, false);
1137 
1138 	if (cpc->reason & CP_TRIMMED)
1139 		__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1140 
1141 	if (cpc->reason & CP_UMOUNT)
1142 		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1143 	else
1144 		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1145 
1146 	if (cpc->reason & CP_FASTBOOT)
1147 		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1148 	else
1149 		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1150 
1151 	if (orphan_num)
1152 		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1153 	else
1154 		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1155 
1156 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1157 		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1158 
1159 	/* set this flag to activate crc|cp_ver for recovery */
1160 	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1161 
1162 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1163 }
1164 
do_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1165 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1166 {
1167 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1168 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1169 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1170 	block_t start_blk;
1171 	unsigned int data_sum_blocks, orphan_blocks;
1172 	__u32 crc32 = 0;
1173 	int i;
1174 	int cp_payload_blks = __cp_payload(sbi);
1175 	struct super_block *sb = sbi->sb;
1176 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1177 	u64 kbytes_written;
1178 	int err;
1179 
1180 	/* Flush all the NAT/SIT pages */
1181 	while (get_pages(sbi, F2FS_DIRTY_META)) {
1182 		sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1183 		if (unlikely(f2fs_cp_error(sbi)))
1184 			return -EIO;
1185 	}
1186 
1187 	/*
1188 	 * modify checkpoint
1189 	 * version number is already updated
1190 	 */
1191 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1192 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1193 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1194 		ckpt->cur_node_segno[i] =
1195 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1196 		ckpt->cur_node_blkoff[i] =
1197 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1198 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1199 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1200 	}
1201 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1202 		ckpt->cur_data_segno[i] =
1203 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1204 		ckpt->cur_data_blkoff[i] =
1205 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1206 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1207 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1208 	}
1209 
1210 	/* 2 cp  + n data seg summary + orphan inode blocks */
1211 	data_sum_blocks = npages_for_summary_flush(sbi, false);
1212 	spin_lock_irqsave(&sbi->cp_lock, flags);
1213 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1214 		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1215 	else
1216 		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1217 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1218 
1219 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1220 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1221 			orphan_blocks);
1222 
1223 	if (__remain_node_summaries(cpc->reason))
1224 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1225 				cp_payload_blks + data_sum_blocks +
1226 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1227 	else
1228 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1229 				cp_payload_blks + data_sum_blocks +
1230 				orphan_blocks);
1231 
1232 	/* update ckpt flag for checkpoint */
1233 	update_ckpt_flags(sbi, cpc);
1234 
1235 	/* update SIT/NAT bitmap */
1236 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1237 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1238 
1239 	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1240 	*((__le32 *)((unsigned char *)ckpt +
1241 				le32_to_cpu(ckpt->checksum_offset)))
1242 				= cpu_to_le32(crc32);
1243 
1244 	start_blk = __start_cp_next_addr(sbi);
1245 
1246 	/* write nat bits */
1247 	if (enabled_nat_bits(sbi, cpc)) {
1248 		__u64 cp_ver = cur_cp_version(ckpt);
1249 		block_t blk;
1250 
1251 		cp_ver |= ((__u64)crc32 << 32);
1252 		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1253 
1254 		blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1255 		for (i = 0; i < nm_i->nat_bits_blocks; i++)
1256 			update_meta_page(sbi, nm_i->nat_bits +
1257 					(i << F2FS_BLKSIZE_BITS), blk + i);
1258 
1259 		/* Flush all the NAT BITS pages */
1260 		while (get_pages(sbi, F2FS_DIRTY_META)) {
1261 			sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1262 			if (unlikely(f2fs_cp_error(sbi)))
1263 				return -EIO;
1264 		}
1265 	}
1266 
1267 	/* need to wait for end_io results */
1268 	wait_on_all_pages_writeback(sbi);
1269 	if (unlikely(f2fs_cp_error(sbi)))
1270 		return -EIO;
1271 
1272 	/* flush all device cache */
1273 	err = f2fs_flush_device_cache(sbi);
1274 	if (err)
1275 		return err;
1276 
1277 	/* write out checkpoint buffer at block 0 */
1278 	update_meta_page(sbi, ckpt, start_blk++);
1279 
1280 	for (i = 1; i < 1 + cp_payload_blks; i++)
1281 		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1282 							start_blk++);
1283 
1284 	if (orphan_num) {
1285 		write_orphan_inodes(sbi, start_blk);
1286 		start_blk += orphan_blocks;
1287 	}
1288 
1289 	write_data_summaries(sbi, start_blk);
1290 	start_blk += data_sum_blocks;
1291 
1292 	/* Record write statistics in the hot node summary */
1293 	kbytes_written = sbi->kbytes_written;
1294 	if (sb->s_bdev->bd_part)
1295 		kbytes_written += BD_PART_WRITTEN(sbi);
1296 
1297 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1298 
1299 	if (__remain_node_summaries(cpc->reason)) {
1300 		write_node_summaries(sbi, start_blk);
1301 		start_blk += NR_CURSEG_NODE_TYPE;
1302 	}
1303 
1304 	/* writeout checkpoint block */
1305 	update_meta_page(sbi, ckpt, start_blk);
1306 
1307 	/* wait for previous submitted node/meta pages writeback */
1308 	wait_on_all_pages_writeback(sbi);
1309 
1310 	if (unlikely(f2fs_cp_error(sbi)))
1311 		return -EIO;
1312 
1313 	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1314 	filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1315 
1316 	/* update user_block_counts */
1317 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1318 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1319 
1320 	/* Here, we only have one bio having CP pack */
1321 	sync_meta_pages(sbi, META_FLUSH, LONG_MAX, FS_CP_META_IO);
1322 
1323 	/* wait for previous submitted meta pages writeback */
1324 	wait_on_all_pages_writeback(sbi);
1325 
1326 	release_ino_entry(sbi, false);
1327 
1328 	if (unlikely(f2fs_cp_error(sbi)))
1329 		return -EIO;
1330 
1331 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1332 	clear_sbi_flag(sbi, SBI_NEED_CP);
1333 	__set_cp_next_pack(sbi);
1334 
1335 	/*
1336 	 * redirty superblock if metadata like node page or inode cache is
1337 	 * updated during writing checkpoint.
1338 	 */
1339 	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1340 			get_pages(sbi, F2FS_DIRTY_IMETA))
1341 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1342 
1343 	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1344 
1345 	return 0;
1346 }
1347 
1348 /*
1349  * We guarantee that this checkpoint procedure will not fail.
1350  */
write_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1351 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1352 {
1353 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1354 	unsigned long long ckpt_ver;
1355 	int err = 0;
1356 
1357 	mutex_lock(&sbi->cp_mutex);
1358 
1359 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1360 		((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1361 		((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1362 		goto out;
1363 	if (unlikely(f2fs_cp_error(sbi))) {
1364 		err = -EIO;
1365 		goto out;
1366 	}
1367 	if (f2fs_readonly(sbi->sb)) {
1368 		err = -EROFS;
1369 		goto out;
1370 	}
1371 
1372 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1373 
1374 	err = block_operations(sbi);
1375 	if (err)
1376 		goto out;
1377 
1378 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1379 
1380 	f2fs_flush_merged_writes(sbi);
1381 
1382 	/* this is the case of multiple fstrims without any changes */
1383 	if (cpc->reason & CP_DISCARD) {
1384 		if (!exist_trim_candidates(sbi, cpc)) {
1385 			unblock_operations(sbi);
1386 			goto out;
1387 		}
1388 
1389 		if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1390 				SIT_I(sbi)->dirty_sentries == 0 &&
1391 				prefree_segments(sbi) == 0) {
1392 			flush_sit_entries(sbi, cpc);
1393 			clear_prefree_segments(sbi, cpc);
1394 			unblock_operations(sbi);
1395 			goto out;
1396 		}
1397 	}
1398 
1399 	/*
1400 	 * update checkpoint pack index
1401 	 * Increase the version number so that
1402 	 * SIT entries and seg summaries are written at correct place
1403 	 */
1404 	ckpt_ver = cur_cp_version(ckpt);
1405 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1406 
1407 	/* write cached NAT/SIT entries to NAT/SIT area */
1408 	flush_nat_entries(sbi, cpc);
1409 	flush_sit_entries(sbi, cpc);
1410 
1411 	/* unlock all the fs_lock[] in do_checkpoint() */
1412 	err = do_checkpoint(sbi, cpc);
1413 	if (err)
1414 		release_discard_addrs(sbi);
1415 	else
1416 		clear_prefree_segments(sbi, cpc);
1417 
1418 	unblock_operations(sbi);
1419 	stat_inc_cp_count(sbi->stat_info);
1420 
1421 	if (cpc->reason & CP_RECOVERY)
1422 		f2fs_msg(sbi->sb, KERN_NOTICE,
1423 			"checkpoint: version = %llx", ckpt_ver);
1424 
1425 	/* do checkpoint periodically */
1426 	f2fs_update_time(sbi, CP_TIME);
1427 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1428 out:
1429 	mutex_unlock(&sbi->cp_mutex);
1430 	return err;
1431 }
1432 
init_ino_entry_info(struct f2fs_sb_info * sbi)1433 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1434 {
1435 	int i;
1436 
1437 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1438 		struct inode_management *im = &sbi->im[i];
1439 
1440 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1441 		spin_lock_init(&im->ino_lock);
1442 		INIT_LIST_HEAD(&im->ino_list);
1443 		im->ino_num = 0;
1444 	}
1445 
1446 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1447 			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1448 				F2FS_ORPHANS_PER_BLOCK;
1449 }
1450 
create_checkpoint_caches(void)1451 int __init create_checkpoint_caches(void)
1452 {
1453 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1454 			sizeof(struct ino_entry));
1455 	if (!ino_entry_slab)
1456 		return -ENOMEM;
1457 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1458 			sizeof(struct inode_entry));
1459 	if (!inode_entry_slab) {
1460 		kmem_cache_destroy(ino_entry_slab);
1461 		return -ENOMEM;
1462 	}
1463 	return 0;
1464 }
1465 
destroy_checkpoint_caches(void)1466 void destroy_checkpoint_caches(void)
1467 {
1468 	kmem_cache_destroy(ino_entry_slab);
1469 	kmem_cache_destroy(inode_entry_slab);
1470 }
1471