1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67
68 extern unsigned long _get_SP(void);
69
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
76
77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
giveup_fpu_maybe_transactional(struct task_struct * tsk)78 void giveup_fpu_maybe_transactional(struct task_struct *tsk)
79 {
80 /*
81 * If we are saving the current thread's registers, and the
82 * thread is in a transactional state, set the TIF_RESTORE_TM
83 * bit so that we know to restore the registers before
84 * returning to userspace.
85 */
86 if (tsk == current && tsk->thread.regs &&
87 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
88 !test_thread_flag(TIF_RESTORE_TM)) {
89 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
90 set_thread_flag(TIF_RESTORE_TM);
91 }
92
93 giveup_fpu(tsk);
94 }
95
giveup_altivec_maybe_transactional(struct task_struct * tsk)96 void giveup_altivec_maybe_transactional(struct task_struct *tsk)
97 {
98 /*
99 * If we are saving the current thread's registers, and the
100 * thread is in a transactional state, set the TIF_RESTORE_TM
101 * bit so that we know to restore the registers before
102 * returning to userspace.
103 */
104 if (tsk == current && tsk->thread.regs &&
105 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
106 !test_thread_flag(TIF_RESTORE_TM)) {
107 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
108 set_thread_flag(TIF_RESTORE_TM);
109 }
110
111 giveup_altivec(tsk);
112 }
113
114 #else
115 #define giveup_fpu_maybe_transactional(tsk) giveup_fpu(tsk)
116 #define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
117 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
118
119 #ifdef CONFIG_PPC_FPU
120 /*
121 * Make sure the floating-point register state in the
122 * the thread_struct is up to date for task tsk.
123 */
flush_fp_to_thread(struct task_struct * tsk)124 void flush_fp_to_thread(struct task_struct *tsk)
125 {
126 if (tsk->thread.regs) {
127 /*
128 * We need to disable preemption here because if we didn't,
129 * another process could get scheduled after the regs->msr
130 * test but before we have finished saving the FP registers
131 * to the thread_struct. That process could take over the
132 * FPU, and then when we get scheduled again we would store
133 * bogus values for the remaining FP registers.
134 */
135 preempt_disable();
136 if (tsk->thread.regs->msr & MSR_FP) {
137 #ifdef CONFIG_SMP
138 /*
139 * This should only ever be called for current or
140 * for a stopped child process. Since we save away
141 * the FP register state on context switch on SMP,
142 * there is something wrong if a stopped child appears
143 * to still have its FP state in the CPU registers.
144 */
145 BUG_ON(tsk != current);
146 #endif
147 giveup_fpu_maybe_transactional(tsk);
148 }
149 preempt_enable();
150 }
151 }
152 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
153 #endif /* CONFIG_PPC_FPU */
154
enable_kernel_fp(void)155 void enable_kernel_fp(void)
156 {
157 WARN_ON(preemptible());
158
159 #ifdef CONFIG_SMP
160 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
161 giveup_fpu_maybe_transactional(current);
162 else
163 giveup_fpu(NULL); /* just enables FP for kernel */
164 #else
165 giveup_fpu_maybe_transactional(last_task_used_math);
166 #endif /* CONFIG_SMP */
167 }
168 EXPORT_SYMBOL(enable_kernel_fp);
169
170 #ifdef CONFIG_ALTIVEC
enable_kernel_altivec(void)171 void enable_kernel_altivec(void)
172 {
173 WARN_ON(preemptible());
174
175 #ifdef CONFIG_SMP
176 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
177 giveup_altivec_maybe_transactional(current);
178 else
179 giveup_altivec_notask();
180 #else
181 giveup_altivec_maybe_transactional(last_task_used_altivec);
182 #endif /* CONFIG_SMP */
183 }
184 EXPORT_SYMBOL(enable_kernel_altivec);
185
186 /*
187 * Make sure the VMX/Altivec register state in the
188 * the thread_struct is up to date for task tsk.
189 */
flush_altivec_to_thread(struct task_struct * tsk)190 void flush_altivec_to_thread(struct task_struct *tsk)
191 {
192 if (tsk->thread.regs) {
193 preempt_disable();
194 if (tsk->thread.regs->msr & MSR_VEC) {
195 #ifdef CONFIG_SMP
196 BUG_ON(tsk != current);
197 #endif
198 giveup_altivec_maybe_transactional(tsk);
199 }
200 preempt_enable();
201 }
202 }
203 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
204 #endif /* CONFIG_ALTIVEC */
205
206 #ifdef CONFIG_VSX
207 #if 0
208 /* not currently used, but some crazy RAID module might want to later */
209 void enable_kernel_vsx(void)
210 {
211 WARN_ON(preemptible());
212
213 #ifdef CONFIG_SMP
214 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
215 giveup_vsx(current);
216 else
217 giveup_vsx(NULL); /* just enable vsx for kernel - force */
218 #else
219 giveup_vsx(last_task_used_vsx);
220 #endif /* CONFIG_SMP */
221 }
222 EXPORT_SYMBOL(enable_kernel_vsx);
223 #endif
224
giveup_vsx(struct task_struct * tsk)225 void giveup_vsx(struct task_struct *tsk)
226 {
227 giveup_fpu_maybe_transactional(tsk);
228 giveup_altivec_maybe_transactional(tsk);
229 __giveup_vsx(tsk);
230 }
231 EXPORT_SYMBOL(giveup_vsx);
232
flush_vsx_to_thread(struct task_struct * tsk)233 void flush_vsx_to_thread(struct task_struct *tsk)
234 {
235 if (tsk->thread.regs) {
236 preempt_disable();
237 if (tsk->thread.regs->msr & MSR_VSX) {
238 #ifdef CONFIG_SMP
239 BUG_ON(tsk != current);
240 #endif
241 giveup_vsx(tsk);
242 }
243 preempt_enable();
244 }
245 }
246 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
247 #endif /* CONFIG_VSX */
248
249 #ifdef CONFIG_SPE
250
enable_kernel_spe(void)251 void enable_kernel_spe(void)
252 {
253 WARN_ON(preemptible());
254
255 #ifdef CONFIG_SMP
256 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
257 giveup_spe(current);
258 else
259 giveup_spe(NULL); /* just enable SPE for kernel - force */
260 #else
261 giveup_spe(last_task_used_spe);
262 #endif /* __SMP __ */
263 }
264 EXPORT_SYMBOL(enable_kernel_spe);
265
flush_spe_to_thread(struct task_struct * tsk)266 void flush_spe_to_thread(struct task_struct *tsk)
267 {
268 if (tsk->thread.regs) {
269 preempt_disable();
270 if (tsk->thread.regs->msr & MSR_SPE) {
271 #ifdef CONFIG_SMP
272 BUG_ON(tsk != current);
273 #endif
274 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
275 giveup_spe(tsk);
276 }
277 preempt_enable();
278 }
279 }
280 #endif /* CONFIG_SPE */
281
282 #ifndef CONFIG_SMP
283 /*
284 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
285 * and the current task has some state, discard it.
286 */
discard_lazy_cpu_state(void)287 void discard_lazy_cpu_state(void)
288 {
289 preempt_disable();
290 if (last_task_used_math == current)
291 last_task_used_math = NULL;
292 #ifdef CONFIG_ALTIVEC
293 if (last_task_used_altivec == current)
294 last_task_used_altivec = NULL;
295 #endif /* CONFIG_ALTIVEC */
296 #ifdef CONFIG_VSX
297 if (last_task_used_vsx == current)
298 last_task_used_vsx = NULL;
299 #endif /* CONFIG_VSX */
300 #ifdef CONFIG_SPE
301 if (last_task_used_spe == current)
302 last_task_used_spe = NULL;
303 #endif
304 preempt_enable();
305 }
306 #endif /* CONFIG_SMP */
307
308 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
do_send_trap(struct pt_regs * regs,unsigned long address,unsigned long error_code,int signal_code,int breakpt)309 void do_send_trap(struct pt_regs *regs, unsigned long address,
310 unsigned long error_code, int signal_code, int breakpt)
311 {
312 siginfo_t info;
313
314 current->thread.trap_nr = signal_code;
315 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
316 11, SIGSEGV) == NOTIFY_STOP)
317 return;
318
319 /* Deliver the signal to userspace */
320 info.si_signo = SIGTRAP;
321 info.si_errno = breakpt; /* breakpoint or watchpoint id */
322 info.si_code = signal_code;
323 info.si_addr = (void __user *)address;
324 force_sig_info(SIGTRAP, &info, current);
325 }
326 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
do_break(struct pt_regs * regs,unsigned long address,unsigned long error_code)327 void do_break (struct pt_regs *regs, unsigned long address,
328 unsigned long error_code)
329 {
330 siginfo_t info;
331
332 current->thread.trap_nr = TRAP_HWBKPT;
333 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
334 11, SIGSEGV) == NOTIFY_STOP)
335 return;
336
337 if (debugger_break_match(regs))
338 return;
339
340 /* Clear the breakpoint */
341 hw_breakpoint_disable();
342
343 /* Deliver the signal to userspace */
344 info.si_signo = SIGTRAP;
345 info.si_errno = 0;
346 info.si_code = TRAP_HWBKPT;
347 info.si_addr = (void __user *)address;
348 force_sig_info(SIGTRAP, &info, current);
349 }
350 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
351
352 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
353
354 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
355 /*
356 * Set the debug registers back to their default "safe" values.
357 */
set_debug_reg_defaults(struct thread_struct * thread)358 static void set_debug_reg_defaults(struct thread_struct *thread)
359 {
360 thread->debug.iac1 = thread->debug.iac2 = 0;
361 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
362 thread->debug.iac3 = thread->debug.iac4 = 0;
363 #endif
364 thread->debug.dac1 = thread->debug.dac2 = 0;
365 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
366 thread->debug.dvc1 = thread->debug.dvc2 = 0;
367 #endif
368 thread->debug.dbcr0 = 0;
369 #ifdef CONFIG_BOOKE
370 /*
371 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
372 */
373 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
374 DBCR1_IAC3US | DBCR1_IAC4US;
375 /*
376 * Force Data Address Compare User/Supervisor bits to be User-only
377 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
378 */
379 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
380 #else
381 thread->debug.dbcr1 = 0;
382 #endif
383 }
384
prime_debug_regs(struct debug_reg * debug)385 static void prime_debug_regs(struct debug_reg *debug)
386 {
387 /*
388 * We could have inherited MSR_DE from userspace, since
389 * it doesn't get cleared on exception entry. Make sure
390 * MSR_DE is clear before we enable any debug events.
391 */
392 mtmsr(mfmsr() & ~MSR_DE);
393
394 mtspr(SPRN_IAC1, debug->iac1);
395 mtspr(SPRN_IAC2, debug->iac2);
396 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
397 mtspr(SPRN_IAC3, debug->iac3);
398 mtspr(SPRN_IAC4, debug->iac4);
399 #endif
400 mtspr(SPRN_DAC1, debug->dac1);
401 mtspr(SPRN_DAC2, debug->dac2);
402 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
403 mtspr(SPRN_DVC1, debug->dvc1);
404 mtspr(SPRN_DVC2, debug->dvc2);
405 #endif
406 mtspr(SPRN_DBCR0, debug->dbcr0);
407 mtspr(SPRN_DBCR1, debug->dbcr1);
408 #ifdef CONFIG_BOOKE
409 mtspr(SPRN_DBCR2, debug->dbcr2);
410 #endif
411 }
412 /*
413 * Unless neither the old or new thread are making use of the
414 * debug registers, set the debug registers from the values
415 * stored in the new thread.
416 */
switch_booke_debug_regs(struct debug_reg * new_debug)417 void switch_booke_debug_regs(struct debug_reg *new_debug)
418 {
419 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
420 || (new_debug->dbcr0 & DBCR0_IDM))
421 prime_debug_regs(new_debug);
422 }
423 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
424 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
425 #ifndef CONFIG_HAVE_HW_BREAKPOINT
set_debug_reg_defaults(struct thread_struct * thread)426 static void set_debug_reg_defaults(struct thread_struct *thread)
427 {
428 thread->hw_brk.address = 0;
429 thread->hw_brk.type = 0;
430 set_breakpoint(&thread->hw_brk);
431 }
432 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
433 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
434
435 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
__set_dabr(unsigned long dabr,unsigned long dabrx)436 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
437 {
438 mtspr(SPRN_DAC1, dabr);
439 #ifdef CONFIG_PPC_47x
440 isync();
441 #endif
442 return 0;
443 }
444 #elif defined(CONFIG_PPC_BOOK3S)
__set_dabr(unsigned long dabr,unsigned long dabrx)445 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
446 {
447 mtspr(SPRN_DABR, dabr);
448 if (cpu_has_feature(CPU_FTR_DABRX))
449 mtspr(SPRN_DABRX, dabrx);
450 return 0;
451 }
452 #else
__set_dabr(unsigned long dabr,unsigned long dabrx)453 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
454 {
455 return -EINVAL;
456 }
457 #endif
458
set_dabr(struct arch_hw_breakpoint * brk)459 static inline int set_dabr(struct arch_hw_breakpoint *brk)
460 {
461 unsigned long dabr, dabrx;
462
463 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
464 dabrx = ((brk->type >> 3) & 0x7);
465
466 if (ppc_md.set_dabr)
467 return ppc_md.set_dabr(dabr, dabrx);
468
469 return __set_dabr(dabr, dabrx);
470 }
471
set_dawr(struct arch_hw_breakpoint * brk)472 static inline int set_dawr(struct arch_hw_breakpoint *brk)
473 {
474 unsigned long dawr, dawrx, mrd;
475
476 dawr = brk->address;
477
478 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
479 << (63 - 58); //* read/write bits */
480 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
481 << (63 - 59); //* translate */
482 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
483 >> 3; //* PRIM bits */
484 /* dawr length is stored in field MDR bits 48:53. Matches range in
485 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
486 0b111111=64DW.
487 brk->len is in bytes.
488 This aligns up to double word size, shifts and does the bias.
489 */
490 mrd = ((brk->len + 7) >> 3) - 1;
491 dawrx |= (mrd & 0x3f) << (63 - 53);
492
493 if (ppc_md.set_dawr)
494 return ppc_md.set_dawr(dawr, dawrx);
495 mtspr(SPRN_DAWR, dawr);
496 mtspr(SPRN_DAWRX, dawrx);
497 return 0;
498 }
499
__set_breakpoint(struct arch_hw_breakpoint * brk)500 void __set_breakpoint(struct arch_hw_breakpoint *brk)
501 {
502 __get_cpu_var(current_brk) = *brk;
503
504 if (cpu_has_feature(CPU_FTR_DAWR))
505 set_dawr(brk);
506 else
507 set_dabr(brk);
508 }
509
set_breakpoint(struct arch_hw_breakpoint * brk)510 void set_breakpoint(struct arch_hw_breakpoint *brk)
511 {
512 preempt_disable();
513 __set_breakpoint(brk);
514 preempt_enable();
515 }
516
517 #ifdef CONFIG_PPC64
518 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
519 #endif
520
hw_brk_match(struct arch_hw_breakpoint * a,struct arch_hw_breakpoint * b)521 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
522 struct arch_hw_breakpoint *b)
523 {
524 if (a->address != b->address)
525 return false;
526 if (a->type != b->type)
527 return false;
528 if (a->len != b->len)
529 return false;
530 return true;
531 }
532
533 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
tm_reclaim_thread(struct thread_struct * thr,struct thread_info * ti,uint8_t cause)534 static void tm_reclaim_thread(struct thread_struct *thr,
535 struct thread_info *ti, uint8_t cause)
536 {
537 unsigned long msr_diff = 0;
538
539 /*
540 * If FP/VSX registers have been already saved to the
541 * thread_struct, move them to the transact_fp array.
542 * We clear the TIF_RESTORE_TM bit since after the reclaim
543 * the thread will no longer be transactional.
544 */
545 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
546 msr_diff = thr->tm_orig_msr & ~thr->regs->msr;
547 if (msr_diff & MSR_FP)
548 memcpy(&thr->transact_fp, &thr->fp_state,
549 sizeof(struct thread_fp_state));
550 if (msr_diff & MSR_VEC)
551 memcpy(&thr->transact_vr, &thr->vr_state,
552 sizeof(struct thread_vr_state));
553 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
554 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
555 }
556
557 tm_reclaim(thr, thr->regs->msr, cause);
558
559 /* Having done the reclaim, we now have the checkpointed
560 * FP/VSX values in the registers. These might be valid
561 * even if we have previously called enable_kernel_fp() or
562 * flush_fp_to_thread(), so update thr->regs->msr to
563 * indicate their current validity.
564 */
565 thr->regs->msr |= msr_diff;
566 }
567
tm_reclaim_current(uint8_t cause)568 void tm_reclaim_current(uint8_t cause)
569 {
570 tm_enable();
571 tm_reclaim_thread(¤t->thread, current_thread_info(), cause);
572 }
573
tm_reclaim_task(struct task_struct * tsk)574 static inline void tm_reclaim_task(struct task_struct *tsk)
575 {
576 /* We have to work out if we're switching from/to a task that's in the
577 * middle of a transaction.
578 *
579 * In switching we need to maintain a 2nd register state as
580 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
581 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
582 * (current) FPRs into oldtask->thread.transact_fpr[].
583 *
584 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
585 */
586 struct thread_struct *thr = &tsk->thread;
587
588 if (!thr->regs)
589 return;
590
591 if (!MSR_TM_ACTIVE(thr->regs->msr))
592 goto out_and_saveregs;
593
594 /* Stash the original thread MSR, as giveup_fpu et al will
595 * modify it. We hold onto it to see whether the task used
596 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
597 * tm_orig_msr is already set.
598 */
599 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
600 thr->tm_orig_msr = thr->regs->msr;
601
602 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
603 "ccr=%lx, msr=%lx, trap=%lx)\n",
604 tsk->pid, thr->regs->nip,
605 thr->regs->ccr, thr->regs->msr,
606 thr->regs->trap);
607
608 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
609
610 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
611 tsk->pid);
612
613 out_and_saveregs:
614 /* Always save the regs here, even if a transaction's not active.
615 * This context-switches a thread's TM info SPRs. We do it here to
616 * be consistent with the restore path (in recheckpoint) which
617 * cannot happen later in _switch().
618 */
619 tm_save_sprs(thr);
620 }
621
622 extern void __tm_recheckpoint(struct thread_struct *thread,
623 unsigned long orig_msr);
624
tm_recheckpoint(struct thread_struct * thread,unsigned long orig_msr)625 void tm_recheckpoint(struct thread_struct *thread,
626 unsigned long orig_msr)
627 {
628 unsigned long flags;
629
630 /* We really can't be interrupted here as the TEXASR registers can't
631 * change and later in the trecheckpoint code, we have a userspace R1.
632 * So let's hard disable over this region.
633 */
634 local_irq_save(flags);
635 hard_irq_disable();
636
637 /* The TM SPRs are restored here, so that TEXASR.FS can be set
638 * before the trecheckpoint and no explosion occurs.
639 */
640 tm_restore_sprs(thread);
641
642 __tm_recheckpoint(thread, orig_msr);
643
644 local_irq_restore(flags);
645 }
646
tm_recheckpoint_new_task(struct task_struct * new)647 static inline void tm_recheckpoint_new_task(struct task_struct *new)
648 {
649 unsigned long msr;
650
651 if (!cpu_has_feature(CPU_FTR_TM))
652 return;
653
654 /* Recheckpoint the registers of the thread we're about to switch to.
655 *
656 * If the task was using FP, we non-lazily reload both the original and
657 * the speculative FP register states. This is because the kernel
658 * doesn't see if/when a TM rollback occurs, so if we take an FP
659 * unavoidable later, we are unable to determine which set of FP regs
660 * need to be restored.
661 */
662 if (!new->thread.regs)
663 return;
664
665 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
666 tm_restore_sprs(&new->thread);
667 return;
668 }
669 msr = new->thread.tm_orig_msr;
670 /* Recheckpoint to restore original checkpointed register state. */
671 TM_DEBUG("*** tm_recheckpoint of pid %d "
672 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
673 new->pid, new->thread.regs->msr, msr);
674
675 /* This loads the checkpointed FP/VEC state, if used */
676 tm_recheckpoint(&new->thread, msr);
677
678 /* This loads the speculative FP/VEC state, if used */
679 if (msr & MSR_FP) {
680 do_load_up_transact_fpu(&new->thread);
681 new->thread.regs->msr |=
682 (MSR_FP | new->thread.fpexc_mode);
683 }
684 #ifdef CONFIG_ALTIVEC
685 if (msr & MSR_VEC) {
686 do_load_up_transact_altivec(&new->thread);
687 new->thread.regs->msr |= MSR_VEC;
688 }
689 #endif
690 /* We may as well turn on VSX too since all the state is restored now */
691 if (msr & MSR_VSX)
692 new->thread.regs->msr |= MSR_VSX;
693
694 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
695 "(kernel msr 0x%lx)\n",
696 new->pid, mfmsr());
697 }
698
__switch_to_tm(struct task_struct * prev)699 static inline void __switch_to_tm(struct task_struct *prev)
700 {
701 if (cpu_has_feature(CPU_FTR_TM)) {
702 tm_enable();
703 tm_reclaim_task(prev);
704 }
705 }
706
707 /*
708 * This is called if we are on the way out to userspace and the
709 * TIF_RESTORE_TM flag is set. It checks if we need to reload
710 * FP and/or vector state and does so if necessary.
711 * If userspace is inside a transaction (whether active or
712 * suspended) and FP/VMX/VSX instructions have ever been enabled
713 * inside that transaction, then we have to keep them enabled
714 * and keep the FP/VMX/VSX state loaded while ever the transaction
715 * continues. The reason is that if we didn't, and subsequently
716 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
717 * we don't know whether it's the same transaction, and thus we
718 * don't know which of the checkpointed state and the transactional
719 * state to use.
720 */
restore_tm_state(struct pt_regs * regs)721 void restore_tm_state(struct pt_regs *regs)
722 {
723 unsigned long msr_diff;
724
725 clear_thread_flag(TIF_RESTORE_TM);
726 if (!MSR_TM_ACTIVE(regs->msr))
727 return;
728
729 msr_diff = current->thread.tm_orig_msr & ~regs->msr;
730 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
731 if (msr_diff & MSR_FP) {
732 fp_enable();
733 load_fp_state(¤t->thread.fp_state);
734 regs->msr |= current->thread.fpexc_mode;
735 }
736 if (msr_diff & MSR_VEC) {
737 vec_enable();
738 load_vr_state(¤t->thread.vr_state);
739 }
740 regs->msr |= msr_diff;
741 }
742
743 #else
744 #define tm_recheckpoint_new_task(new)
745 #define __switch_to_tm(prev)
746 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
747
__switch_to(struct task_struct * prev,struct task_struct * new)748 struct task_struct *__switch_to(struct task_struct *prev,
749 struct task_struct *new)
750 {
751 struct thread_struct *new_thread, *old_thread;
752 struct task_struct *last;
753 #ifdef CONFIG_PPC_BOOK3S_64
754 struct ppc64_tlb_batch *batch;
755 #endif
756
757 WARN_ON(!irqs_disabled());
758
759 /* Back up the TAR and DSCR across context switches.
760 * Note that the TAR is not available for use in the kernel. (To
761 * provide this, the TAR should be backed up/restored on exception
762 * entry/exit instead, and be in pt_regs. FIXME, this should be in
763 * pt_regs anyway (for debug).)
764 * Save the TAR and DSCR here before we do treclaim/trecheckpoint as
765 * these will change them.
766 */
767 save_early_sprs(&prev->thread);
768
769 __switch_to_tm(prev);
770
771 #ifdef CONFIG_SMP
772 /* avoid complexity of lazy save/restore of fpu
773 * by just saving it every time we switch out if
774 * this task used the fpu during the last quantum.
775 *
776 * If it tries to use the fpu again, it'll trap and
777 * reload its fp regs. So we don't have to do a restore
778 * every switch, just a save.
779 * -- Cort
780 */
781 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
782 giveup_fpu(prev);
783 #ifdef CONFIG_ALTIVEC
784 /*
785 * If the previous thread used altivec in the last quantum
786 * (thus changing altivec regs) then save them.
787 * We used to check the VRSAVE register but not all apps
788 * set it, so we don't rely on it now (and in fact we need
789 * to save & restore VSCR even if VRSAVE == 0). -- paulus
790 *
791 * On SMP we always save/restore altivec regs just to avoid the
792 * complexity of changing processors.
793 * -- Cort
794 */
795 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
796 giveup_altivec(prev);
797 #endif /* CONFIG_ALTIVEC */
798 #ifdef CONFIG_VSX
799 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
800 /* VMX and FPU registers are already save here */
801 __giveup_vsx(prev);
802 #endif /* CONFIG_VSX */
803 #ifdef CONFIG_SPE
804 /*
805 * If the previous thread used spe in the last quantum
806 * (thus changing spe regs) then save them.
807 *
808 * On SMP we always save/restore spe regs just to avoid the
809 * complexity of changing processors.
810 */
811 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
812 giveup_spe(prev);
813 #endif /* CONFIG_SPE */
814
815 #else /* CONFIG_SMP */
816 #ifdef CONFIG_ALTIVEC
817 /* Avoid the trap. On smp this this never happens since
818 * we don't set last_task_used_altivec -- Cort
819 */
820 if (new->thread.regs && last_task_used_altivec == new)
821 new->thread.regs->msr |= MSR_VEC;
822 #endif /* CONFIG_ALTIVEC */
823 #ifdef CONFIG_VSX
824 if (new->thread.regs && last_task_used_vsx == new)
825 new->thread.regs->msr |= MSR_VSX;
826 #endif /* CONFIG_VSX */
827 #ifdef CONFIG_SPE
828 /* Avoid the trap. On smp this this never happens since
829 * we don't set last_task_used_spe
830 */
831 if (new->thread.regs && last_task_used_spe == new)
832 new->thread.regs->msr |= MSR_SPE;
833 #endif /* CONFIG_SPE */
834
835 #endif /* CONFIG_SMP */
836
837 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
838 switch_booke_debug_regs(&new->thread.debug);
839 #else
840 /*
841 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
842 * schedule DABR
843 */
844 #ifndef CONFIG_HAVE_HW_BREAKPOINT
845 if (unlikely(!hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
846 __set_breakpoint(&new->thread.hw_brk);
847 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
848 #endif
849
850
851 new_thread = &new->thread;
852 old_thread = ¤t->thread;
853
854 #ifdef CONFIG_PPC64
855 /*
856 * Collect processor utilization data per process
857 */
858 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
859 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
860 long unsigned start_tb, current_tb;
861 start_tb = old_thread->start_tb;
862 cu->current_tb = current_tb = mfspr(SPRN_PURR);
863 old_thread->accum_tb += (current_tb - start_tb);
864 new_thread->start_tb = current_tb;
865 }
866 #endif /* CONFIG_PPC64 */
867
868 #ifdef CONFIG_PPC_BOOK3S_64
869 batch = &__get_cpu_var(ppc64_tlb_batch);
870 if (batch->active) {
871 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
872 if (batch->index)
873 __flush_tlb_pending(batch);
874 batch->active = 0;
875 }
876 #endif /* CONFIG_PPC_BOOK3S_64 */
877
878 /*
879 * We can't take a PMU exception inside _switch() since there is a
880 * window where the kernel stack SLB and the kernel stack are out
881 * of sync. Hard disable here.
882 */
883 hard_irq_disable();
884
885 tm_recheckpoint_new_task(new);
886
887 last = _switch(old_thread, new_thread);
888
889 #ifdef CONFIG_PPC_BOOK3S_64
890 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
891 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
892 batch = &__get_cpu_var(ppc64_tlb_batch);
893 batch->active = 1;
894 }
895 #endif /* CONFIG_PPC_BOOK3S_64 */
896
897 return last;
898 }
899
900 static int instructions_to_print = 16;
901
show_instructions(struct pt_regs * regs)902 static void show_instructions(struct pt_regs *regs)
903 {
904 int i;
905 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
906 sizeof(int));
907
908 printk("Instruction dump:");
909
910 for (i = 0; i < instructions_to_print; i++) {
911 int instr;
912
913 if (!(i % 8))
914 printk("\n");
915
916 #if !defined(CONFIG_BOOKE)
917 /* If executing with the IMMU off, adjust pc rather
918 * than print XXXXXXXX.
919 */
920 if (!(regs->msr & MSR_IR))
921 pc = (unsigned long)phys_to_virt(pc);
922 #endif
923
924 /* We use __get_user here *only* to avoid an OOPS on a
925 * bad address because the pc *should* only be a
926 * kernel address.
927 */
928 if (!__kernel_text_address(pc) ||
929 __get_user(instr, (unsigned int __user *)pc)) {
930 printk(KERN_CONT "XXXXXXXX ");
931 } else {
932 if (regs->nip == pc)
933 printk(KERN_CONT "<%08x> ", instr);
934 else
935 printk(KERN_CONT "%08x ", instr);
936 }
937
938 pc += sizeof(int);
939 }
940
941 printk("\n");
942 }
943
944 static struct regbit {
945 unsigned long bit;
946 const char *name;
947 } msr_bits[] = {
948 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
949 {MSR_SF, "SF"},
950 {MSR_HV, "HV"},
951 #endif
952 {MSR_VEC, "VEC"},
953 {MSR_VSX, "VSX"},
954 #ifdef CONFIG_BOOKE
955 {MSR_CE, "CE"},
956 #endif
957 {MSR_EE, "EE"},
958 {MSR_PR, "PR"},
959 {MSR_FP, "FP"},
960 {MSR_ME, "ME"},
961 #ifdef CONFIG_BOOKE
962 {MSR_DE, "DE"},
963 #else
964 {MSR_SE, "SE"},
965 {MSR_BE, "BE"},
966 #endif
967 {MSR_IR, "IR"},
968 {MSR_DR, "DR"},
969 {MSR_PMM, "PMM"},
970 #ifndef CONFIG_BOOKE
971 {MSR_RI, "RI"},
972 {MSR_LE, "LE"},
973 #endif
974 {0, NULL}
975 };
976
printbits(unsigned long val,struct regbit * bits)977 static void printbits(unsigned long val, struct regbit *bits)
978 {
979 const char *sep = "";
980
981 printk("<");
982 for (; bits->bit; ++bits)
983 if (val & bits->bit) {
984 printk("%s%s", sep, bits->name);
985 sep = ",";
986 }
987 printk(">");
988 }
989
990 #ifdef CONFIG_PPC64
991 #define REG "%016lx"
992 #define REGS_PER_LINE 4
993 #define LAST_VOLATILE 13
994 #else
995 #define REG "%08lx"
996 #define REGS_PER_LINE 8
997 #define LAST_VOLATILE 12
998 #endif
999
show_regs(struct pt_regs * regs)1000 void show_regs(struct pt_regs * regs)
1001 {
1002 int i, trap;
1003
1004 show_regs_print_info(KERN_DEFAULT);
1005
1006 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1007 regs->nip, regs->link, regs->ctr);
1008 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1009 regs, regs->trap, print_tainted(), init_utsname()->release);
1010 printk("MSR: "REG" ", regs->msr);
1011 printbits(regs->msr, msr_bits);
1012 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1013 trap = TRAP(regs);
1014 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1015 printk("CFAR: "REG" ", regs->orig_gpr3);
1016 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1017 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1018 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1019 #else
1020 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1021 #endif
1022 #ifdef CONFIG_PPC64
1023 printk("SOFTE: %ld ", regs->softe);
1024 #endif
1025 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1026 if (MSR_TM_ACTIVE(regs->msr))
1027 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1028 #endif
1029
1030 for (i = 0; i < 32; i++) {
1031 if ((i % REGS_PER_LINE) == 0)
1032 printk("\nGPR%02d: ", i);
1033 printk(REG " ", regs->gpr[i]);
1034 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1035 break;
1036 }
1037 printk("\n");
1038 #ifdef CONFIG_KALLSYMS
1039 /*
1040 * Lookup NIP late so we have the best change of getting the
1041 * above info out without failing
1042 */
1043 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1044 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1045 #endif
1046 show_stack(current, (unsigned long *) regs->gpr[1]);
1047 if (!user_mode(regs))
1048 show_instructions(regs);
1049 }
1050
exit_thread(struct task_struct * tsk)1051 void exit_thread(struct task_struct *tsk)
1052 {
1053 discard_lazy_cpu_state();
1054 }
1055
flush_thread(void)1056 void flush_thread(void)
1057 {
1058 discard_lazy_cpu_state();
1059
1060 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1061 flush_ptrace_hw_breakpoint(current);
1062 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1063 set_debug_reg_defaults(¤t->thread);
1064 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1065 }
1066
1067 void
release_thread(struct task_struct * t)1068 release_thread(struct task_struct *t)
1069 {
1070 }
1071
1072 /*
1073 * this gets called so that we can store coprocessor state into memory and
1074 * copy the current task into the new thread.
1075 */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1076 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1077 {
1078 flush_fp_to_thread(src);
1079 flush_altivec_to_thread(src);
1080 flush_vsx_to_thread(src);
1081 flush_spe_to_thread(src);
1082 /*
1083 * Flush TM state out so we can copy it. __switch_to_tm() does this
1084 * flush but it removes the checkpointed state from the current CPU and
1085 * transitions the CPU out of TM mode. Hence we need to call
1086 * tm_recheckpoint_new_task() (on the same task) to restore the
1087 * checkpointed state back and the TM mode.
1088 */
1089 __switch_to_tm(src);
1090 tm_recheckpoint_new_task(src);
1091
1092 *dst = *src;
1093
1094 clear_task_ebb(dst);
1095
1096 return 0;
1097 }
1098
setup_ksp_vsid(struct task_struct * p,unsigned long sp)1099 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1100 {
1101 #ifdef CONFIG_PPC_STD_MMU_64
1102 unsigned long sp_vsid;
1103 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1104
1105 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1106 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1107 << SLB_VSID_SHIFT_1T;
1108 else
1109 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1110 << SLB_VSID_SHIFT;
1111 sp_vsid |= SLB_VSID_KERNEL | llp;
1112 p->thread.ksp_vsid = sp_vsid;
1113 #endif
1114 }
1115
1116 /*
1117 * Copy a thread..
1118 */
1119 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
1120
copy_thread(unsigned long clone_flags,unsigned long usp,unsigned long arg,struct task_struct * p)1121 int copy_thread(unsigned long clone_flags, unsigned long usp,
1122 unsigned long arg, struct task_struct *p)
1123 {
1124 struct pt_regs *childregs, *kregs;
1125 extern void ret_from_fork(void);
1126 extern void ret_from_kernel_thread(void);
1127 void (*f)(void);
1128 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1129
1130 /* Copy registers */
1131 sp -= sizeof(struct pt_regs);
1132 childregs = (struct pt_regs *) sp;
1133 if (unlikely(p->flags & PF_KTHREAD)) {
1134 struct thread_info *ti = (void *)task_stack_page(p);
1135 memset(childregs, 0, sizeof(struct pt_regs));
1136 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1137 /* function */
1138 if (usp)
1139 childregs->gpr[14] = ppc_function_entry((void *)usp);
1140 #ifdef CONFIG_PPC64
1141 clear_tsk_thread_flag(p, TIF_32BIT);
1142 childregs->softe = 1;
1143 #endif
1144 childregs->gpr[15] = arg;
1145 p->thread.regs = NULL; /* no user register state */
1146 ti->flags |= _TIF_RESTOREALL;
1147 f = ret_from_kernel_thread;
1148 } else {
1149 struct pt_regs *regs = current_pt_regs();
1150 CHECK_FULL_REGS(regs);
1151 *childregs = *regs;
1152 if (usp)
1153 childregs->gpr[1] = usp;
1154 p->thread.regs = childregs;
1155 childregs->gpr[3] = 0; /* Result from fork() */
1156 if (clone_flags & CLONE_SETTLS) {
1157 #ifdef CONFIG_PPC64
1158 if (!is_32bit_task())
1159 childregs->gpr[13] = childregs->gpr[6];
1160 else
1161 #endif
1162 childregs->gpr[2] = childregs->gpr[6];
1163 }
1164
1165 f = ret_from_fork;
1166 }
1167 sp -= STACK_FRAME_OVERHEAD;
1168
1169 /*
1170 * The way this works is that at some point in the future
1171 * some task will call _switch to switch to the new task.
1172 * That will pop off the stack frame created below and start
1173 * the new task running at ret_from_fork. The new task will
1174 * do some house keeping and then return from the fork or clone
1175 * system call, using the stack frame created above.
1176 */
1177 ((unsigned long *)sp)[0] = 0;
1178 sp -= sizeof(struct pt_regs);
1179 kregs = (struct pt_regs *) sp;
1180 sp -= STACK_FRAME_OVERHEAD;
1181 p->thread.ksp = sp;
1182 #ifdef CONFIG_PPC32
1183 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1184 _ALIGN_UP(sizeof(struct thread_info), 16);
1185 #endif
1186 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1187 p->thread.ptrace_bps[0] = NULL;
1188 #endif
1189
1190 p->thread.fp_save_area = NULL;
1191 #ifdef CONFIG_ALTIVEC
1192 p->thread.vr_save_area = NULL;
1193 #endif
1194
1195 setup_ksp_vsid(p, sp);
1196
1197 #ifdef CONFIG_PPC64
1198 if (cpu_has_feature(CPU_FTR_DSCR)) {
1199 p->thread.dscr_inherit = current->thread.dscr_inherit;
1200 p->thread.dscr = current->thread.dscr;
1201 }
1202 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1203 p->thread.ppr = INIT_PPR;
1204 #endif
1205 kregs->nip = ppc_function_entry(f);
1206 return 0;
1207 }
1208
1209 /*
1210 * Set up a thread for executing a new program
1211 */
start_thread(struct pt_regs * regs,unsigned long start,unsigned long sp)1212 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1213 {
1214 #ifdef CONFIG_PPC64
1215 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1216 #endif
1217
1218 /*
1219 * If we exec out of a kernel thread then thread.regs will not be
1220 * set. Do it now.
1221 */
1222 if (!current->thread.regs) {
1223 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1224 current->thread.regs = regs - 1;
1225 }
1226
1227 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1228 /*
1229 * Clear any transactional state, we're exec()ing. The cause is
1230 * not important as there will never be a recheckpoint so it's not
1231 * user visible.
1232 */
1233 if (MSR_TM_SUSPENDED(mfmsr()))
1234 tm_reclaim_current(0);
1235 #endif
1236
1237 memset(regs->gpr, 0, sizeof(regs->gpr));
1238 regs->ctr = 0;
1239 regs->link = 0;
1240 regs->xer = 0;
1241 regs->ccr = 0;
1242 regs->gpr[1] = sp;
1243
1244 /*
1245 * We have just cleared all the nonvolatile GPRs, so make
1246 * FULL_REGS(regs) return true. This is necessary to allow
1247 * ptrace to examine the thread immediately after exec.
1248 */
1249 regs->trap &= ~1UL;
1250
1251 #ifdef CONFIG_PPC32
1252 regs->mq = 0;
1253 regs->nip = start;
1254 regs->msr = MSR_USER;
1255 #else
1256 if (!is_32bit_task()) {
1257 unsigned long entry;
1258
1259 if (is_elf2_task()) {
1260 /* Look ma, no function descriptors! */
1261 entry = start;
1262
1263 /*
1264 * Ulrich says:
1265 * The latest iteration of the ABI requires that when
1266 * calling a function (at its global entry point),
1267 * the caller must ensure r12 holds the entry point
1268 * address (so that the function can quickly
1269 * establish addressability).
1270 */
1271 regs->gpr[12] = start;
1272 /* Make sure that's restored on entry to userspace. */
1273 set_thread_flag(TIF_RESTOREALL);
1274 } else {
1275 unsigned long toc;
1276
1277 /* start is a relocated pointer to the function
1278 * descriptor for the elf _start routine. The first
1279 * entry in the function descriptor is the entry
1280 * address of _start and the second entry is the TOC
1281 * value we need to use.
1282 */
1283 __get_user(entry, (unsigned long __user *)start);
1284 __get_user(toc, (unsigned long __user *)start+1);
1285
1286 /* Check whether the e_entry function descriptor entries
1287 * need to be relocated before we can use them.
1288 */
1289 if (load_addr != 0) {
1290 entry += load_addr;
1291 toc += load_addr;
1292 }
1293 regs->gpr[2] = toc;
1294 }
1295 regs->nip = entry;
1296 regs->msr = MSR_USER64;
1297 } else {
1298 regs->nip = start;
1299 regs->gpr[2] = 0;
1300 regs->msr = MSR_USER32;
1301 }
1302 #endif
1303 discard_lazy_cpu_state();
1304 #ifdef CONFIG_VSX
1305 current->thread.used_vsr = 0;
1306 #endif
1307 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state));
1308 current->thread.fp_save_area = NULL;
1309 #ifdef CONFIG_ALTIVEC
1310 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state));
1311 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1312 current->thread.vr_save_area = NULL;
1313 current->thread.vrsave = 0;
1314 current->thread.used_vr = 0;
1315 #endif /* CONFIG_ALTIVEC */
1316 #ifdef CONFIG_SPE
1317 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1318 current->thread.acc = 0;
1319 current->thread.spefscr = 0;
1320 current->thread.used_spe = 0;
1321 #endif /* CONFIG_SPE */
1322 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1323 if (cpu_has_feature(CPU_FTR_TM))
1324 regs->msr |= MSR_TM;
1325 current->thread.tm_tfhar = 0;
1326 current->thread.tm_texasr = 0;
1327 current->thread.tm_tfiar = 0;
1328 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1329 }
1330 EXPORT_SYMBOL(start_thread);
1331
1332 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1333 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1334
set_fpexc_mode(struct task_struct * tsk,unsigned int val)1335 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1336 {
1337 struct pt_regs *regs = tsk->thread.regs;
1338
1339 /* This is a bit hairy. If we are an SPE enabled processor
1340 * (have embedded fp) we store the IEEE exception enable flags in
1341 * fpexc_mode. fpexc_mode is also used for setting FP exception
1342 * mode (asyn, precise, disabled) for 'Classic' FP. */
1343 if (val & PR_FP_EXC_SW_ENABLE) {
1344 #ifdef CONFIG_SPE
1345 if (cpu_has_feature(CPU_FTR_SPE)) {
1346 /*
1347 * When the sticky exception bits are set
1348 * directly by userspace, it must call prctl
1349 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1350 * in the existing prctl settings) or
1351 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1352 * the bits being set). <fenv.h> functions
1353 * saving and restoring the whole
1354 * floating-point environment need to do so
1355 * anyway to restore the prctl settings from
1356 * the saved environment.
1357 */
1358 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1359 tsk->thread.fpexc_mode = val &
1360 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1361 return 0;
1362 } else {
1363 return -EINVAL;
1364 }
1365 #else
1366 return -EINVAL;
1367 #endif
1368 }
1369
1370 /* on a CONFIG_SPE this does not hurt us. The bits that
1371 * __pack_fe01 use do not overlap with bits used for
1372 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1373 * on CONFIG_SPE implementations are reserved so writing to
1374 * them does not change anything */
1375 if (val > PR_FP_EXC_PRECISE)
1376 return -EINVAL;
1377 tsk->thread.fpexc_mode = __pack_fe01(val);
1378 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1379 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1380 | tsk->thread.fpexc_mode;
1381 return 0;
1382 }
1383
get_fpexc_mode(struct task_struct * tsk,unsigned long adr)1384 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1385 {
1386 unsigned int val;
1387
1388 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1389 #ifdef CONFIG_SPE
1390 if (cpu_has_feature(CPU_FTR_SPE)) {
1391 /*
1392 * When the sticky exception bits are set
1393 * directly by userspace, it must call prctl
1394 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1395 * in the existing prctl settings) or
1396 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1397 * the bits being set). <fenv.h> functions
1398 * saving and restoring the whole
1399 * floating-point environment need to do so
1400 * anyway to restore the prctl settings from
1401 * the saved environment.
1402 */
1403 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1404 val = tsk->thread.fpexc_mode;
1405 } else
1406 return -EINVAL;
1407 #else
1408 return -EINVAL;
1409 #endif
1410 else
1411 val = __unpack_fe01(tsk->thread.fpexc_mode);
1412 return put_user(val, (unsigned int __user *) adr);
1413 }
1414
set_endian(struct task_struct * tsk,unsigned int val)1415 int set_endian(struct task_struct *tsk, unsigned int val)
1416 {
1417 struct pt_regs *regs = tsk->thread.regs;
1418
1419 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1420 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1421 return -EINVAL;
1422
1423 if (regs == NULL)
1424 return -EINVAL;
1425
1426 if (val == PR_ENDIAN_BIG)
1427 regs->msr &= ~MSR_LE;
1428 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1429 regs->msr |= MSR_LE;
1430 else
1431 return -EINVAL;
1432
1433 return 0;
1434 }
1435
get_endian(struct task_struct * tsk,unsigned long adr)1436 int get_endian(struct task_struct *tsk, unsigned long adr)
1437 {
1438 struct pt_regs *regs = tsk->thread.regs;
1439 unsigned int val;
1440
1441 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1442 !cpu_has_feature(CPU_FTR_REAL_LE))
1443 return -EINVAL;
1444
1445 if (regs == NULL)
1446 return -EINVAL;
1447
1448 if (regs->msr & MSR_LE) {
1449 if (cpu_has_feature(CPU_FTR_REAL_LE))
1450 val = PR_ENDIAN_LITTLE;
1451 else
1452 val = PR_ENDIAN_PPC_LITTLE;
1453 } else
1454 val = PR_ENDIAN_BIG;
1455
1456 return put_user(val, (unsigned int __user *)adr);
1457 }
1458
set_unalign_ctl(struct task_struct * tsk,unsigned int val)1459 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1460 {
1461 tsk->thread.align_ctl = val;
1462 return 0;
1463 }
1464
get_unalign_ctl(struct task_struct * tsk,unsigned long adr)1465 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1466 {
1467 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1468 }
1469
valid_irq_stack(unsigned long sp,struct task_struct * p,unsigned long nbytes)1470 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1471 unsigned long nbytes)
1472 {
1473 unsigned long stack_page;
1474 unsigned long cpu = task_cpu(p);
1475
1476 /*
1477 * Avoid crashing if the stack has overflowed and corrupted
1478 * task_cpu(p), which is in the thread_info struct.
1479 */
1480 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1481 stack_page = (unsigned long) hardirq_ctx[cpu];
1482 if (sp >= stack_page + sizeof(struct thread_struct)
1483 && sp <= stack_page + THREAD_SIZE - nbytes)
1484 return 1;
1485
1486 stack_page = (unsigned long) softirq_ctx[cpu];
1487 if (sp >= stack_page + sizeof(struct thread_struct)
1488 && sp <= stack_page + THREAD_SIZE - nbytes)
1489 return 1;
1490 }
1491 return 0;
1492 }
1493
validate_sp(unsigned long sp,struct task_struct * p,unsigned long nbytes)1494 int validate_sp(unsigned long sp, struct task_struct *p,
1495 unsigned long nbytes)
1496 {
1497 unsigned long stack_page = (unsigned long)task_stack_page(p);
1498
1499 if (sp >= stack_page + sizeof(struct thread_struct)
1500 && sp <= stack_page + THREAD_SIZE - nbytes)
1501 return 1;
1502
1503 return valid_irq_stack(sp, p, nbytes);
1504 }
1505
1506 EXPORT_SYMBOL(validate_sp);
1507
get_wchan(struct task_struct * p)1508 unsigned long get_wchan(struct task_struct *p)
1509 {
1510 unsigned long ip, sp;
1511 int count = 0;
1512
1513 if (!p || p == current || p->state == TASK_RUNNING)
1514 return 0;
1515
1516 sp = p->thread.ksp;
1517 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1518 return 0;
1519
1520 do {
1521 sp = *(unsigned long *)sp;
1522 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1523 return 0;
1524 if (count > 0) {
1525 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1526 if (!in_sched_functions(ip))
1527 return ip;
1528 }
1529 } while (count++ < 16);
1530 return 0;
1531 }
1532
1533 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1534
show_stack(struct task_struct * tsk,unsigned long * stack)1535 void show_stack(struct task_struct *tsk, unsigned long *stack)
1536 {
1537 unsigned long sp, ip, lr, newsp;
1538 int count = 0;
1539 int firstframe = 1;
1540 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1541 int curr_frame = current->curr_ret_stack;
1542 extern void return_to_handler(void);
1543 unsigned long rth = (unsigned long)return_to_handler;
1544 unsigned long mrth = -1;
1545 #ifdef CONFIG_PPC64
1546 extern void mod_return_to_handler(void);
1547 rth = *(unsigned long *)rth;
1548 mrth = (unsigned long)mod_return_to_handler;
1549 mrth = *(unsigned long *)mrth;
1550 #endif
1551 #endif
1552
1553 sp = (unsigned long) stack;
1554 if (tsk == NULL)
1555 tsk = current;
1556 if (sp == 0) {
1557 if (tsk == current)
1558 sp = current_stack_pointer();
1559 else
1560 sp = tsk->thread.ksp;
1561 }
1562
1563 lr = 0;
1564 printk("Call Trace:\n");
1565 do {
1566 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1567 return;
1568
1569 stack = (unsigned long *) sp;
1570 newsp = stack[0];
1571 ip = stack[STACK_FRAME_LR_SAVE];
1572 if (!firstframe || ip != lr) {
1573 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1574 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1575 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1576 printk(" (%pS)",
1577 (void *)current->ret_stack[curr_frame].ret);
1578 curr_frame--;
1579 }
1580 #endif
1581 if (firstframe)
1582 printk(" (unreliable)");
1583 printk("\n");
1584 }
1585 firstframe = 0;
1586
1587 /*
1588 * See if this is an exception frame.
1589 * We look for the "regshere" marker in the current frame.
1590 */
1591 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1592 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1593 struct pt_regs *regs = (struct pt_regs *)
1594 (sp + STACK_FRAME_OVERHEAD);
1595 lr = regs->link;
1596 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
1597 regs->trap, (void *)regs->nip, (void *)lr);
1598 firstframe = 1;
1599 }
1600
1601 sp = newsp;
1602 } while (count++ < kstack_depth_to_print);
1603 }
1604
1605 #ifdef CONFIG_PPC64
1606 /* Called with hard IRQs off */
__ppc64_runlatch_on(void)1607 void notrace __ppc64_runlatch_on(void)
1608 {
1609 struct thread_info *ti = current_thread_info();
1610 unsigned long ctrl;
1611
1612 ctrl = mfspr(SPRN_CTRLF);
1613 ctrl |= CTRL_RUNLATCH;
1614 mtspr(SPRN_CTRLT, ctrl);
1615
1616 ti->local_flags |= _TLF_RUNLATCH;
1617 }
1618
1619 /* Called with hard IRQs off */
__ppc64_runlatch_off(void)1620 void notrace __ppc64_runlatch_off(void)
1621 {
1622 struct thread_info *ti = current_thread_info();
1623 unsigned long ctrl;
1624
1625 ti->local_flags &= ~_TLF_RUNLATCH;
1626
1627 ctrl = mfspr(SPRN_CTRLF);
1628 ctrl &= ~CTRL_RUNLATCH;
1629 mtspr(SPRN_CTRLT, ctrl);
1630 }
1631 #endif /* CONFIG_PPC64 */
1632
arch_align_stack(unsigned long sp)1633 unsigned long arch_align_stack(unsigned long sp)
1634 {
1635 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1636 sp -= get_random_int() & ~PAGE_MASK;
1637 return sp & ~0xf;
1638 }
1639
brk_rnd(void)1640 static inline unsigned long brk_rnd(void)
1641 {
1642 unsigned long rnd = 0;
1643
1644 /* 8MB for 32bit, 1GB for 64bit */
1645 if (is_32bit_task())
1646 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1647 else
1648 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1649
1650 return rnd << PAGE_SHIFT;
1651 }
1652
arch_randomize_brk(struct mm_struct * mm)1653 unsigned long arch_randomize_brk(struct mm_struct *mm)
1654 {
1655 unsigned long base = mm->brk;
1656 unsigned long ret;
1657
1658 #ifdef CONFIG_PPC_STD_MMU_64
1659 /*
1660 * If we are using 1TB segments and we are allowed to randomise
1661 * the heap, we can put it above 1TB so it is backed by a 1TB
1662 * segment. Otherwise the heap will be in the bottom 1TB
1663 * which always uses 256MB segments and this may result in a
1664 * performance penalty.
1665 */
1666 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1667 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1668 #endif
1669
1670 ret = PAGE_ALIGN(base + brk_rnd());
1671
1672 if (ret < mm->brk)
1673 return mm->brk;
1674
1675 return ret;
1676 }
1677
randomize_et_dyn(unsigned long base)1678 unsigned long randomize_et_dyn(unsigned long base)
1679 {
1680 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1681
1682 if (ret < base)
1683 return base;
1684
1685 return ret;
1686 }
1687