1 /*
2 * Ultra Wide Band
3 * AES-128 CCM Encryption
4 *
5 * Copyright (C) 2007 Intel Corporation
6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301, USA.
21 *
22 *
23 * We don't do any encryption here; we use the Linux Kernel's AES-128
24 * crypto modules to construct keys and payload blocks in a way
25 * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
26 * there.
27 *
28 * Thanks a zillion to John Keys for his help and clarifications over
29 * the designed-by-a-committee text.
30 *
31 * So the idea is that there is this basic Pseudo-Random-Function
32 * defined in WUSB1.0[6.5] which is the core of everything. It works
33 * by tweaking some blocks, AES crypting them and then xoring
34 * something else with them (this seems to be called CBC(AES) -- can
35 * you tell I know jack about crypto?). So we just funnel it into the
36 * Linux Crypto API.
37 *
38 * We leave a crypto test module so we can verify that vectors match,
39 * every now and then.
40 *
41 * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
42 * am learning a lot...
43 *
44 * Conveniently, some data structures that need to be
45 * funneled through AES are...16 bytes in size!
46 */
47
48 #include <linux/crypto.h>
49 #include <linux/module.h>
50 #include <linux/err.h>
51 #include <linux/uwb.h>
52 #include <linux/slab.h>
53 #include <linux/usb/wusb.h>
54 #include <linux/scatterlist.h>
55
56 static int debug_crypto_verify = 0;
57
58 module_param(debug_crypto_verify, int, 0);
59 MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
60
wusb_key_dump(const void * buf,size_t len)61 static void wusb_key_dump(const void *buf, size_t len)
62 {
63 print_hex_dump(KERN_ERR, " ", DUMP_PREFIX_OFFSET, 16, 1,
64 buf, len, 0);
65 }
66
67 /*
68 * Block of data, as understood by AES-CCM
69 *
70 * The code assumes this structure is nothing but a 16 byte array
71 * (packed in a struct to avoid common mess ups that I usually do with
72 * arrays and enforcing type checking).
73 */
74 struct aes_ccm_block {
75 u8 data[16];
76 } __attribute__((packed));
77
78 /*
79 * Counter-mode Blocks (WUSB1.0[6.4])
80 *
81 * According to CCM (or so it seems), for the purpose of calculating
82 * the MIC, the message is broken in N counter-mode blocks, B0, B1,
83 * ... BN.
84 *
85 * B0 contains flags, the CCM nonce and l(m).
86 *
87 * B1 contains l(a), the MAC header, the encryption offset and padding.
88 *
89 * If EO is nonzero, additional blocks are built from payload bytes
90 * until EO is exhausted (FIXME: padding to 16 bytes, I guess). The
91 * padding is not xmitted.
92 */
93
94 /* WUSB1.0[T6.4] */
95 struct aes_ccm_b0 {
96 u8 flags; /* 0x59, per CCM spec */
97 struct aes_ccm_nonce ccm_nonce;
98 __be16 lm;
99 } __attribute__((packed));
100
101 /* WUSB1.0[T6.5] */
102 struct aes_ccm_b1 {
103 __be16 la;
104 u8 mac_header[10];
105 __le16 eo;
106 u8 security_reserved; /* This is always zero */
107 u8 padding; /* 0 */
108 } __attribute__((packed));
109
110 /*
111 * Encryption Blocks (WUSB1.0[6.4.4])
112 *
113 * CCM uses Ax blocks to generate a keystream with which the MIC and
114 * the message's payload are encoded. A0 always encrypts/decrypts the
115 * MIC. Ax (x>0) are used for the successive payload blocks.
116 *
117 * The x is the counter, and is increased for each block.
118 */
119 struct aes_ccm_a {
120 u8 flags; /* 0x01, per CCM spec */
121 struct aes_ccm_nonce ccm_nonce;
122 __be16 counter; /* Value of x */
123 } __attribute__((packed));
124
bytewise_xor(void * _bo,const void * _bi1,const void * _bi2,size_t size)125 static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
126 size_t size)
127 {
128 u8 *bo = _bo;
129 const u8 *bi1 = _bi1, *bi2 = _bi2;
130 size_t itr;
131 for (itr = 0; itr < size; itr++)
132 bo[itr] = bi1[itr] ^ bi2[itr];
133 }
134
135 /*
136 * CC-MAC function WUSB1.0[6.5]
137 *
138 * Take a data string and produce the encrypted CBC Counter-mode MIC
139 *
140 * Note the names for most function arguments are made to (more or
141 * less) match those used in the pseudo-function definition given in
142 * WUSB1.0[6.5].
143 *
144 * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
145 *
146 * @tfm_aes: AES cipher handle (initialized)
147 *
148 * @mic: buffer for placing the computed MIC (Message Integrity
149 * Code). This is exactly 8 bytes, and we expect the buffer to
150 * be at least eight bytes in length.
151 *
152 * @key: 128 bit symmetric key
153 *
154 * @n: CCM nonce
155 *
156 * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
157 * we use exactly 14 bytes).
158 *
159 * @b: data stream to be processed; cannot be a global or const local
160 * (will confuse the scatterlists)
161 *
162 * @blen: size of b...
163 *
164 * Still not very clear how this is done, but looks like this: we
165 * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
166 * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
167 * take the payload and divide it in blocks (16 bytes), xor them with
168 * the previous crypto result (16 bytes) and crypt it, repeat the next
169 * block with the output of the previous one, rinse wash (I guess this
170 * is what AES CBC mode means...but I truly have no idea). So we use
171 * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
172 * Vector) is 16 bytes and is set to zero, so
173 *
174 * See rfc3610. Linux crypto has a CBC implementation, but the
175 * documentation is scarce, to say the least, and the example code is
176 * so intricated that is difficult to understand how things work. Most
177 * of this is guess work -- bite me.
178 *
179 * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
180 * using the 14 bytes of @a to fill up
181 * b1.{mac_header,e0,security_reserved,padding}.
182 *
183 * NOTE: The definition of l(a) in WUSB1.0[6.5] vs the definition of
184 * l(m) is orthogonal, they bear no relationship, so it is not
185 * in conflict with the parameter's relation that
186 * WUSB1.0[6.4.2]) defines.
187 *
188 * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
189 * first errata released on 2005/07.
190 *
191 * NOTE: we need to clean IV to zero at each invocation to make sure
192 * we start with a fresh empty Initial Vector, so that the CBC
193 * works ok.
194 *
195 * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
196 * what sg[4] is for. Maybe there is a smarter way to do this.
197 */
wusb_ccm_mac(struct crypto_blkcipher * tfm_cbc,struct crypto_cipher * tfm_aes,void * mic,const struct aes_ccm_nonce * n,const struct aes_ccm_label * a,const void * b,size_t blen)198 static int wusb_ccm_mac(struct crypto_blkcipher *tfm_cbc,
199 struct crypto_cipher *tfm_aes, void *mic,
200 const struct aes_ccm_nonce *n,
201 const struct aes_ccm_label *a, const void *b,
202 size_t blen)
203 {
204 int result = 0;
205 struct blkcipher_desc desc;
206 struct aes_ccm_b0 b0;
207 struct aes_ccm_b1 b1;
208 struct aes_ccm_a ax;
209 struct scatterlist sg[4], sg_dst;
210 void *iv, *dst_buf;
211 size_t ivsize, dst_size;
212 const u8 bzero[16] = { 0 };
213 size_t zero_padding;
214
215 /*
216 * These checks should be compile time optimized out
217 * ensure @a fills b1's mac_header and following fields
218 */
219 WARN_ON(sizeof(*a) != sizeof(b1) - sizeof(b1.la));
220 WARN_ON(sizeof(b0) != sizeof(struct aes_ccm_block));
221 WARN_ON(sizeof(b1) != sizeof(struct aes_ccm_block));
222 WARN_ON(sizeof(ax) != sizeof(struct aes_ccm_block));
223
224 result = -ENOMEM;
225 zero_padding = blen % sizeof(struct aes_ccm_block);
226 if (zero_padding)
227 zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
228 dst_size = blen + sizeof(b0) + sizeof(b1) + zero_padding;
229 dst_buf = kzalloc(dst_size, GFP_KERNEL);
230 if (dst_buf == NULL) {
231 printk(KERN_ERR "E: can't alloc destination buffer\n");
232 goto error_dst_buf;
233 }
234
235 iv = crypto_blkcipher_crt(tfm_cbc)->iv;
236 ivsize = crypto_blkcipher_ivsize(tfm_cbc);
237 memset(iv, 0, ivsize);
238
239 /* Setup B0 */
240 b0.flags = 0x59; /* Format B0 */
241 b0.ccm_nonce = *n;
242 b0.lm = cpu_to_be16(0); /* WUSB1.0[6.5] sez l(m) is 0 */
243
244 /* Setup B1
245 *
246 * The WUSB spec is anything but clear! WUSB1.0[6.5]
247 * says that to initialize B1 from A with 'l(a) = blen +
248 * 14'--after clarification, it means to use A's contents
249 * for MAC Header, EO, sec reserved and padding.
250 */
251 b1.la = cpu_to_be16(blen + 14);
252 memcpy(&b1.mac_header, a, sizeof(*a));
253
254 sg_init_table(sg, ARRAY_SIZE(sg));
255 sg_set_buf(&sg[0], &b0, sizeof(b0));
256 sg_set_buf(&sg[1], &b1, sizeof(b1));
257 sg_set_buf(&sg[2], b, blen);
258 /* 0 if well behaved :) */
259 sg_set_buf(&sg[3], bzero, zero_padding);
260 sg_init_one(&sg_dst, dst_buf, dst_size);
261
262 desc.tfm = tfm_cbc;
263 desc.flags = 0;
264 result = crypto_blkcipher_encrypt(&desc, &sg_dst, sg, dst_size);
265 if (result < 0) {
266 printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
267 result);
268 goto error_cbc_crypt;
269 }
270
271 /* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
272 * The procedure is to AES crypt the A0 block and XOR the MIC
273 * Tag against it; we only do the first 8 bytes and place it
274 * directly in the destination buffer.
275 *
276 * POS Crypto API: size is assumed to be AES's block size.
277 * Thanks for documenting it -- tip taken from airo.c
278 */
279 ax.flags = 0x01; /* as per WUSB 1.0 spec */
280 ax.ccm_nonce = *n;
281 ax.counter = 0;
282 crypto_cipher_encrypt_one(tfm_aes, (void *)&ax, (void *)&ax);
283 bytewise_xor(mic, &ax, iv, 8);
284 result = 8;
285 error_cbc_crypt:
286 kfree(dst_buf);
287 error_dst_buf:
288 return result;
289 }
290
291 /*
292 * WUSB Pseudo Random Function (WUSB1.0[6.5])
293 *
294 * @b: buffer to the source data; cannot be a global or const local
295 * (will confuse the scatterlists)
296 */
wusb_prf(void * out,size_t out_size,const u8 key[16],const struct aes_ccm_nonce * _n,const struct aes_ccm_label * a,const void * b,size_t blen,size_t len)297 ssize_t wusb_prf(void *out, size_t out_size,
298 const u8 key[16], const struct aes_ccm_nonce *_n,
299 const struct aes_ccm_label *a,
300 const void *b, size_t blen, size_t len)
301 {
302 ssize_t result, bytes = 0, bitr;
303 struct aes_ccm_nonce n = *_n;
304 struct crypto_blkcipher *tfm_cbc;
305 struct crypto_cipher *tfm_aes;
306 u64 sfn = 0;
307 __le64 sfn_le;
308
309 tfm_cbc = crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
310 if (IS_ERR(tfm_cbc)) {
311 result = PTR_ERR(tfm_cbc);
312 printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
313 goto error_alloc_cbc;
314 }
315 result = crypto_blkcipher_setkey(tfm_cbc, key, 16);
316 if (result < 0) {
317 printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
318 goto error_setkey_cbc;
319 }
320
321 tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
322 if (IS_ERR(tfm_aes)) {
323 result = PTR_ERR(tfm_aes);
324 printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
325 goto error_alloc_aes;
326 }
327 result = crypto_cipher_setkey(tfm_aes, key, 16);
328 if (result < 0) {
329 printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
330 goto error_setkey_aes;
331 }
332
333 for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
334 sfn_le = cpu_to_le64(sfn++);
335 memcpy(&n.sfn, &sfn_le, sizeof(n.sfn)); /* n.sfn++... */
336 result = wusb_ccm_mac(tfm_cbc, tfm_aes, out + bytes,
337 &n, a, b, blen);
338 if (result < 0)
339 goto error_ccm_mac;
340 bytes += result;
341 }
342 result = bytes;
343 error_ccm_mac:
344 error_setkey_aes:
345 crypto_free_cipher(tfm_aes);
346 error_alloc_aes:
347 error_setkey_cbc:
348 crypto_free_blkcipher(tfm_cbc);
349 error_alloc_cbc:
350 return result;
351 }
352
353 /* WUSB1.0[A.2] test vectors */
354 static const u8 stv_hsmic_key[16] = {
355 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
356 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
357 };
358
359 static const struct aes_ccm_nonce stv_hsmic_n = {
360 .sfn = { 0 },
361 .tkid = { 0x76, 0x98, 0x01, },
362 .dest_addr = { .data = { 0xbe, 0x00 } },
363 .src_addr = { .data = { 0x76, 0x98 } },
364 };
365
366 /*
367 * Out-of-band MIC Generation verification code
368 *
369 */
wusb_oob_mic_verify(void)370 static int wusb_oob_mic_verify(void)
371 {
372 int result;
373 u8 mic[8];
374 /* WUSB1.0[A.2] test vectors
375 *
376 * Need to keep it in the local stack as GCC 4.1.3something
377 * messes up and generates noise.
378 */
379 struct usb_handshake stv_hsmic_hs = {
380 .bMessageNumber = 2,
381 .bStatus = 00,
382 .tTKID = { 0x76, 0x98, 0x01 },
383 .bReserved = 00,
384 .CDID = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
385 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
386 0x3c, 0x3d, 0x3e, 0x3f },
387 .nonce = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
388 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
389 0x2c, 0x2d, 0x2e, 0x2f },
390 .MIC = { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
391 0x14, 0x7b } ,
392 };
393 size_t hs_size;
394
395 result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
396 if (result < 0)
397 printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
398 else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
399 printk(KERN_ERR "E: OOB MIC test: "
400 "mismatch between MIC result and WUSB1.0[A2]\n");
401 hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
402 printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
403 wusb_key_dump(&stv_hsmic_hs, hs_size);
404 printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
405 sizeof(stv_hsmic_n));
406 wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
407 printk(KERN_ERR "E: MIC out:\n");
408 wusb_key_dump(mic, sizeof(mic));
409 printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
410 wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
411 result = -EINVAL;
412 } else
413 result = 0;
414 return result;
415 }
416
417 /*
418 * Test vectors for Key derivation
419 *
420 * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
421 * (errata corrected in 2005/07).
422 */
423 static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
424 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
425 0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
426 };
427
428 static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
429 .sfn = { 0 },
430 .tkid = { 0x76, 0x98, 0x01, },
431 .dest_addr = { .data = { 0xbe, 0x00 } },
432 .src_addr = { .data = { 0x76, 0x98 } },
433 };
434
435 static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
436 .kck = {
437 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
438 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
439 },
440 .ptk = {
441 0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
442 0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
443 }
444 };
445
446 /*
447 * Performa a test to make sure we match the vectors defined in
448 * WUSB1.0[A.1](Errata2006/12)
449 */
wusb_key_derive_verify(void)450 static int wusb_key_derive_verify(void)
451 {
452 int result = 0;
453 struct wusb_keydvt_out keydvt_out;
454 /* These come from WUSB1.0[A.1] + 2006/12 errata
455 * NOTE: can't make this const or global -- somehow it seems
456 * the scatterlists for crypto get confused and we get
457 * bad data. There is no doc on this... */
458 struct wusb_keydvt_in stv_keydvt_in_a1 = {
459 .hnonce = {
460 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
461 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
462 },
463 .dnonce = {
464 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
465 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
466 }
467 };
468
469 result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
470 &stv_keydvt_in_a1);
471 if (result < 0)
472 printk(KERN_ERR "E: WUSB key derivation test: "
473 "derivation failed: %d\n", result);
474 if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
475 printk(KERN_ERR "E: WUSB key derivation test: "
476 "mismatch between key derivation result "
477 "and WUSB1.0[A1] Errata 2006/12\n");
478 printk(KERN_ERR "E: keydvt in: key\n");
479 wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
480 printk(KERN_ERR "E: keydvt in: nonce\n");
481 wusb_key_dump( &stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
482 printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
483 wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
484 printk(KERN_ERR "E: keydvt out: KCK\n");
485 wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
486 printk(KERN_ERR "E: keydvt out: PTK\n");
487 wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
488 result = -EINVAL;
489 } else
490 result = 0;
491 return result;
492 }
493
494 /*
495 * Initialize crypto system
496 *
497 * FIXME: we do nothing now, other than verifying. Later on we'll
498 * cache the encryption stuff, so that's why we have a separate init.
499 */
wusb_crypto_init(void)500 int wusb_crypto_init(void)
501 {
502 int result;
503
504 if (debug_crypto_verify) {
505 result = wusb_key_derive_verify();
506 if (result < 0)
507 return result;
508 return wusb_oob_mic_verify();
509 }
510 return 0;
511 }
512
wusb_crypto_exit(void)513 void wusb_crypto_exit(void)
514 {
515 /* FIXME: free cached crypto transforms */
516 }
517