• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Ultra Wide Band
3  * AES-128 CCM Encryption
4  *
5  * Copyright (C) 2007 Intel Corporation
6  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License version
10  * 2 as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20  * 02110-1301, USA.
21  *
22  *
23  * We don't do any encryption here; we use the Linux Kernel's AES-128
24  * crypto modules to construct keys and payload blocks in a way
25  * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
26  * there.
27  *
28  * Thanks a zillion to John Keys for his help and clarifications over
29  * the designed-by-a-committee text.
30  *
31  * So the idea is that there is this basic Pseudo-Random-Function
32  * defined in WUSB1.0[6.5] which is the core of everything. It works
33  * by tweaking some blocks, AES crypting them and then xoring
34  * something else with them (this seems to be called CBC(AES) -- can
35  * you tell I know jack about crypto?). So we just funnel it into the
36  * Linux Crypto API.
37  *
38  * We leave a crypto test module so we can verify that vectors match,
39  * every now and then.
40  *
41  * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
42  *             am learning a lot...
43  *
44  *             Conveniently, some data structures that need to be
45  *             funneled through AES are...16 bytes in size!
46  */
47 
48 #include <linux/crypto.h>
49 #include <linux/module.h>
50 #include <linux/err.h>
51 #include <linux/uwb.h>
52 #include <linux/slab.h>
53 #include <linux/usb/wusb.h>
54 #include <linux/scatterlist.h>
55 
56 static int debug_crypto_verify = 0;
57 
58 module_param(debug_crypto_verify, int, 0);
59 MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
60 
wusb_key_dump(const void * buf,size_t len)61 static void wusb_key_dump(const void *buf, size_t len)
62 {
63 	print_hex_dump(KERN_ERR, "  ", DUMP_PREFIX_OFFSET, 16, 1,
64 		       buf, len, 0);
65 }
66 
67 /*
68  * Block of data, as understood by AES-CCM
69  *
70  * The code assumes this structure is nothing but a 16 byte array
71  * (packed in a struct to avoid common mess ups that I usually do with
72  * arrays and enforcing type checking).
73  */
74 struct aes_ccm_block {
75 	u8 data[16];
76 } __attribute__((packed));
77 
78 /*
79  * Counter-mode Blocks (WUSB1.0[6.4])
80  *
81  * According to CCM (or so it seems), for the purpose of calculating
82  * the MIC, the message is broken in N counter-mode blocks, B0, B1,
83  * ... BN.
84  *
85  * B0 contains flags, the CCM nonce and l(m).
86  *
87  * B1 contains l(a), the MAC header, the encryption offset and padding.
88  *
89  * If EO is nonzero, additional blocks are built from payload bytes
90  * until EO is exhausted (FIXME: padding to 16 bytes, I guess). The
91  * padding is not xmitted.
92  */
93 
94 /* WUSB1.0[T6.4] */
95 struct aes_ccm_b0 {
96 	u8 flags;	/* 0x59, per CCM spec */
97 	struct aes_ccm_nonce ccm_nonce;
98 	__be16 lm;
99 } __attribute__((packed));
100 
101 /* WUSB1.0[T6.5] */
102 struct aes_ccm_b1 {
103 	__be16 la;
104 	u8 mac_header[10];
105 	__le16 eo;
106 	u8 security_reserved;	/* This is always zero */
107 	u8 padding;		/* 0 */
108 } __attribute__((packed));
109 
110 /*
111  * Encryption Blocks (WUSB1.0[6.4.4])
112  *
113  * CCM uses Ax blocks to generate a keystream with which the MIC and
114  * the message's payload are encoded. A0 always encrypts/decrypts the
115  * MIC. Ax (x>0) are used for the successive payload blocks.
116  *
117  * The x is the counter, and is increased for each block.
118  */
119 struct aes_ccm_a {
120 	u8 flags;	/* 0x01, per CCM spec */
121 	struct aes_ccm_nonce ccm_nonce;
122 	__be16 counter;	/* Value of x */
123 } __attribute__((packed));
124 
bytewise_xor(void * _bo,const void * _bi1,const void * _bi2,size_t size)125 static void bytewise_xor(void *_bo, const void *_bi1, const void *_bi2,
126 			 size_t size)
127 {
128 	u8 *bo = _bo;
129 	const u8 *bi1 = _bi1, *bi2 = _bi2;
130 	size_t itr;
131 	for (itr = 0; itr < size; itr++)
132 		bo[itr] = bi1[itr] ^ bi2[itr];
133 }
134 
135 /*
136  * CC-MAC function WUSB1.0[6.5]
137  *
138  * Take a data string and produce the encrypted CBC Counter-mode MIC
139  *
140  * Note the names for most function arguments are made to (more or
141  * less) match those used in the pseudo-function definition given in
142  * WUSB1.0[6.5].
143  *
144  * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
145  *
146  * @tfm_aes: AES cipher handle (initialized)
147  *
148  * @mic: buffer for placing the computed MIC (Message Integrity
149  *       Code). This is exactly 8 bytes, and we expect the buffer to
150  *       be at least eight bytes in length.
151  *
152  * @key: 128 bit symmetric key
153  *
154  * @n: CCM nonce
155  *
156  * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
157  *     we use exactly 14 bytes).
158  *
159  * @b: data stream to be processed; cannot be a global or const local
160  *     (will confuse the scatterlists)
161  *
162  * @blen: size of b...
163  *
164  * Still not very clear how this is done, but looks like this: we
165  * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
166  * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
167  * take the payload and divide it in blocks (16 bytes), xor them with
168  * the previous crypto result (16 bytes) and crypt it, repeat the next
169  * block with the output of the previous one, rinse wash (I guess this
170  * is what AES CBC mode means...but I truly have no idea). So we use
171  * the CBC(AES) blkcipher, that does precisely that. The IV (Initial
172  * Vector) is 16 bytes and is set to zero, so
173  *
174  * See rfc3610. Linux crypto has a CBC implementation, but the
175  * documentation is scarce, to say the least, and the example code is
176  * so intricated that is difficult to understand how things work. Most
177  * of this is guess work -- bite me.
178  *
179  * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
180  *     using the 14 bytes of @a to fill up
181  *     b1.{mac_header,e0,security_reserved,padding}.
182  *
183  * NOTE: The definition of l(a) in WUSB1.0[6.5] vs the definition of
184  *       l(m) is orthogonal, they bear no relationship, so it is not
185  *       in conflict with the parameter's relation that
186  *       WUSB1.0[6.4.2]) defines.
187  *
188  * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
189  *       first errata released on 2005/07.
190  *
191  * NOTE: we need to clean IV to zero at each invocation to make sure
192  *       we start with a fresh empty Initial Vector, so that the CBC
193  *       works ok.
194  *
195  * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
196  *       what sg[4] is for. Maybe there is a smarter way to do this.
197  */
wusb_ccm_mac(struct crypto_blkcipher * tfm_cbc,struct crypto_cipher * tfm_aes,void * mic,const struct aes_ccm_nonce * n,const struct aes_ccm_label * a,const void * b,size_t blen)198 static int wusb_ccm_mac(struct crypto_blkcipher *tfm_cbc,
199 			struct crypto_cipher *tfm_aes, void *mic,
200 			const struct aes_ccm_nonce *n,
201 			const struct aes_ccm_label *a, const void *b,
202 			size_t blen)
203 {
204 	int result = 0;
205 	struct blkcipher_desc desc;
206 	struct aes_ccm_b0 b0;
207 	struct aes_ccm_b1 b1;
208 	struct aes_ccm_a ax;
209 	struct scatterlist sg[4], sg_dst;
210 	void *iv, *dst_buf;
211 	size_t ivsize, dst_size;
212 	const u8 bzero[16] = { 0 };
213 	size_t zero_padding;
214 
215 	/*
216 	 * These checks should be compile time optimized out
217 	 * ensure @a fills b1's mac_header and following fields
218 	 */
219 	WARN_ON(sizeof(*a) != sizeof(b1) - sizeof(b1.la));
220 	WARN_ON(sizeof(b0) != sizeof(struct aes_ccm_block));
221 	WARN_ON(sizeof(b1) != sizeof(struct aes_ccm_block));
222 	WARN_ON(sizeof(ax) != sizeof(struct aes_ccm_block));
223 
224 	result = -ENOMEM;
225 	zero_padding = blen % sizeof(struct aes_ccm_block);
226 	if (zero_padding)
227 		zero_padding = sizeof(struct aes_ccm_block) - zero_padding;
228 	dst_size = blen + sizeof(b0) + sizeof(b1) + zero_padding;
229 	dst_buf = kzalloc(dst_size, GFP_KERNEL);
230 	if (dst_buf == NULL) {
231 		printk(KERN_ERR "E: can't alloc destination buffer\n");
232 		goto error_dst_buf;
233 	}
234 
235 	iv = crypto_blkcipher_crt(tfm_cbc)->iv;
236 	ivsize = crypto_blkcipher_ivsize(tfm_cbc);
237 	memset(iv, 0, ivsize);
238 
239 	/* Setup B0 */
240 	b0.flags = 0x59;	/* Format B0 */
241 	b0.ccm_nonce = *n;
242 	b0.lm = cpu_to_be16(0);	/* WUSB1.0[6.5] sez l(m) is 0 */
243 
244 	/* Setup B1
245 	 *
246 	 * The WUSB spec is anything but clear! WUSB1.0[6.5]
247 	 * says that to initialize B1 from A with 'l(a) = blen +
248 	 * 14'--after clarification, it means to use A's contents
249 	 * for MAC Header, EO, sec reserved and padding.
250 	 */
251 	b1.la = cpu_to_be16(blen + 14);
252 	memcpy(&b1.mac_header, a, sizeof(*a));
253 
254 	sg_init_table(sg, ARRAY_SIZE(sg));
255 	sg_set_buf(&sg[0], &b0, sizeof(b0));
256 	sg_set_buf(&sg[1], &b1, sizeof(b1));
257 	sg_set_buf(&sg[2], b, blen);
258 	/* 0 if well behaved :) */
259 	sg_set_buf(&sg[3], bzero, zero_padding);
260 	sg_init_one(&sg_dst, dst_buf, dst_size);
261 
262 	desc.tfm = tfm_cbc;
263 	desc.flags = 0;
264 	result = crypto_blkcipher_encrypt(&desc, &sg_dst, sg, dst_size);
265 	if (result < 0) {
266 		printk(KERN_ERR "E: can't compute CBC-MAC tag (MIC): %d\n",
267 		       result);
268 		goto error_cbc_crypt;
269 	}
270 
271 	/* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
272 	 * The procedure is to AES crypt the A0 block and XOR the MIC
273 	 * Tag against it; we only do the first 8 bytes and place it
274 	 * directly in the destination buffer.
275 	 *
276 	 * POS Crypto API: size is assumed to be AES's block size.
277 	 * Thanks for documenting it -- tip taken from airo.c
278 	 */
279 	ax.flags = 0x01;		/* as per WUSB 1.0 spec */
280 	ax.ccm_nonce = *n;
281 	ax.counter = 0;
282 	crypto_cipher_encrypt_one(tfm_aes, (void *)&ax, (void *)&ax);
283 	bytewise_xor(mic, &ax, iv, 8);
284 	result = 8;
285 error_cbc_crypt:
286 	kfree(dst_buf);
287 error_dst_buf:
288 	return result;
289 }
290 
291 /*
292  * WUSB Pseudo Random Function (WUSB1.0[6.5])
293  *
294  * @b: buffer to the source data; cannot be a global or const local
295  *     (will confuse the scatterlists)
296  */
wusb_prf(void * out,size_t out_size,const u8 key[16],const struct aes_ccm_nonce * _n,const struct aes_ccm_label * a,const void * b,size_t blen,size_t len)297 ssize_t wusb_prf(void *out, size_t out_size,
298 		 const u8 key[16], const struct aes_ccm_nonce *_n,
299 		 const struct aes_ccm_label *a,
300 		 const void *b, size_t blen, size_t len)
301 {
302 	ssize_t result, bytes = 0, bitr;
303 	struct aes_ccm_nonce n = *_n;
304 	struct crypto_blkcipher *tfm_cbc;
305 	struct crypto_cipher *tfm_aes;
306 	u64 sfn = 0;
307 	__le64 sfn_le;
308 
309 	tfm_cbc = crypto_alloc_blkcipher("cbc(aes)", 0, CRYPTO_ALG_ASYNC);
310 	if (IS_ERR(tfm_cbc)) {
311 		result = PTR_ERR(tfm_cbc);
312 		printk(KERN_ERR "E: can't load CBC(AES): %d\n", (int)result);
313 		goto error_alloc_cbc;
314 	}
315 	result = crypto_blkcipher_setkey(tfm_cbc, key, 16);
316 	if (result < 0) {
317 		printk(KERN_ERR "E: can't set CBC key: %d\n", (int)result);
318 		goto error_setkey_cbc;
319 	}
320 
321 	tfm_aes = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC);
322 	if (IS_ERR(tfm_aes)) {
323 		result = PTR_ERR(tfm_aes);
324 		printk(KERN_ERR "E: can't load AES: %d\n", (int)result);
325 		goto error_alloc_aes;
326 	}
327 	result = crypto_cipher_setkey(tfm_aes, key, 16);
328 	if (result < 0) {
329 		printk(KERN_ERR "E: can't set AES key: %d\n", (int)result);
330 		goto error_setkey_aes;
331 	}
332 
333 	for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
334 		sfn_le = cpu_to_le64(sfn++);
335 		memcpy(&n.sfn, &sfn_le, sizeof(n.sfn));	/* n.sfn++... */
336 		result = wusb_ccm_mac(tfm_cbc, tfm_aes, out + bytes,
337 				      &n, a, b, blen);
338 		if (result < 0)
339 			goto error_ccm_mac;
340 		bytes += result;
341 	}
342 	result = bytes;
343 error_ccm_mac:
344 error_setkey_aes:
345 	crypto_free_cipher(tfm_aes);
346 error_alloc_aes:
347 error_setkey_cbc:
348 	crypto_free_blkcipher(tfm_cbc);
349 error_alloc_cbc:
350 	return result;
351 }
352 
353 /* WUSB1.0[A.2] test vectors */
354 static const u8 stv_hsmic_key[16] = {
355 	0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
356 	0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
357 };
358 
359 static const struct aes_ccm_nonce stv_hsmic_n = {
360 	.sfn = { 0 },
361 	.tkid = { 0x76, 0x98, 0x01,  },
362 	.dest_addr = { .data = { 0xbe, 0x00 } },
363 		.src_addr = { .data = { 0x76, 0x98 } },
364 };
365 
366 /*
367  * Out-of-band MIC Generation verification code
368  *
369  */
wusb_oob_mic_verify(void)370 static int wusb_oob_mic_verify(void)
371 {
372 	int result;
373 	u8 mic[8];
374 	/* WUSB1.0[A.2] test vectors
375 	 *
376 	 * Need to keep it in the local stack as GCC 4.1.3something
377 	 * messes up and generates noise.
378 	 */
379 	struct usb_handshake stv_hsmic_hs = {
380 		.bMessageNumber = 2,
381 		.bStatus 	= 00,
382 		.tTKID 		= { 0x76, 0x98, 0x01 },
383 		.bReserved 	= 00,
384 		.CDID 		= { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
385 				    0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
386 				    0x3c, 0x3d, 0x3e, 0x3f },
387 		.nonce	 	= { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
388 				    0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
389 				    0x2c, 0x2d, 0x2e, 0x2f },
390 		.MIC	 	= { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
391 				    0x14, 0x7b } ,
392 	};
393 	size_t hs_size;
394 
395 	result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
396 	if (result < 0)
397 		printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
398 	else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
399 		printk(KERN_ERR "E: OOB MIC test: "
400 		       "mismatch between MIC result and WUSB1.0[A2]\n");
401 		hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
402 		printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
403 		wusb_key_dump(&stv_hsmic_hs, hs_size);
404 		printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
405 		       sizeof(stv_hsmic_n));
406 		wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
407 		printk(KERN_ERR "E: MIC out:\n");
408 		wusb_key_dump(mic, sizeof(mic));
409 		printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
410 		wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
411 		result = -EINVAL;
412 	} else
413 		result = 0;
414 	return result;
415 }
416 
417 /*
418  * Test vectors for Key derivation
419  *
420  * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
421  * (errata corrected in 2005/07).
422  */
423 static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
424 	0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
425 	0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
426 };
427 
428 static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
429 	.sfn = { 0 },
430 	.tkid = { 0x76, 0x98, 0x01,  },
431 	.dest_addr = { .data = { 0xbe, 0x00 } },
432 	.src_addr = { .data = { 0x76, 0x98 } },
433 };
434 
435 static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
436 	.kck = {
437 		0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
438 		0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
439 	},
440 	.ptk = {
441 		0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
442 		0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
443 	}
444 };
445 
446 /*
447  * Performa a test to make sure we match the vectors defined in
448  * WUSB1.0[A.1](Errata2006/12)
449  */
wusb_key_derive_verify(void)450 static int wusb_key_derive_verify(void)
451 {
452 	int result = 0;
453 	struct wusb_keydvt_out keydvt_out;
454 	/* These come from WUSB1.0[A.1] + 2006/12 errata
455 	 * NOTE: can't make this const or global -- somehow it seems
456 	 *       the scatterlists for crypto get confused and we get
457 	 *       bad data. There is no doc on this... */
458 	struct wusb_keydvt_in stv_keydvt_in_a1 = {
459 		.hnonce = {
460 			0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
461 			0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
462 		},
463 		.dnonce = {
464 			0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
465 			0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
466 		}
467 	};
468 
469 	result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
470 				 &stv_keydvt_in_a1);
471 	if (result < 0)
472 		printk(KERN_ERR "E: WUSB key derivation test: "
473 		       "derivation failed: %d\n", result);
474 	if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
475 		printk(KERN_ERR "E: WUSB key derivation test: "
476 		       "mismatch between key derivation result "
477 		       "and WUSB1.0[A1] Errata 2006/12\n");
478 		printk(KERN_ERR "E: keydvt in: key\n");
479 		wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
480 		printk(KERN_ERR "E: keydvt in: nonce\n");
481 		wusb_key_dump( &stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
482 		printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
483 		wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
484 		printk(KERN_ERR "E: keydvt out: KCK\n");
485 		wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
486 		printk(KERN_ERR "E: keydvt out: PTK\n");
487 		wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
488 		result = -EINVAL;
489 	} else
490 		result = 0;
491 	return result;
492 }
493 
494 /*
495  * Initialize crypto system
496  *
497  * FIXME: we do nothing now, other than verifying. Later on we'll
498  * cache the encryption stuff, so that's why we have a separate init.
499  */
wusb_crypto_init(void)500 int wusb_crypto_init(void)
501 {
502 	int result;
503 
504 	if (debug_crypto_verify) {
505 		result = wusb_key_derive_verify();
506 		if (result < 0)
507 			return result;
508 		return wusb_oob_mic_verify();
509 	}
510 	return 0;
511 }
512 
wusb_crypto_exit(void)513 void wusb_crypto_exit(void)
514 {
515 	/* FIXME: free cached crypto transforms */
516 }
517