• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/sched.h>
16 #include <linux/preempt.h>
17 #include <linux/module.h>
18 #include <linux/fs.h>
19 #include <linux/kprobes.h>
20 #include <linux/elfcore.h>
21 #include <linux/tick.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/hardirq.h>
26 #include <linux/syscalls.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/signal.h>
30 #include <asm/stack.h>
31 #include <asm/switch_to.h>
32 #include <asm/homecache.h>
33 #include <asm/syscalls.h>
34 #include <asm/traps.h>
35 #include <asm/setup.h>
36 #include <asm/uaccess.h>
37 #ifdef CONFIG_HARDWALL
38 #include <asm/hardwall.h>
39 #endif
40 #include <arch/chip.h>
41 #include <arch/abi.h>
42 #include <arch/sim_def.h>
43 
44 /*
45  * Use the (x86) "idle=poll" option to prefer low latency when leaving the
46  * idle loop over low power while in the idle loop, e.g. if we have
47  * one thread per core and we want to get threads out of futex waits fast.
48  */
idle_setup(char * str)49 static int __init idle_setup(char *str)
50 {
51 	if (!str)
52 		return -EINVAL;
53 
54 	if (!strcmp(str, "poll")) {
55 		pr_info("using polling idle threads.\n");
56 		cpu_idle_poll_ctrl(true);
57 		return 0;
58 	} else if (!strcmp(str, "halt")) {
59 		return 0;
60 	}
61 	return -1;
62 }
63 early_param("idle", idle_setup);
64 
arch_cpu_idle(void)65 void arch_cpu_idle(void)
66 {
67 	__this_cpu_write(irq_stat.idle_timestamp, jiffies);
68 	_cpu_idle();
69 }
70 
71 /*
72  * Release a thread_info structure
73  */
arch_release_thread_info(struct thread_info * info)74 void arch_release_thread_info(struct thread_info *info)
75 {
76 	struct single_step_state *step_state = info->step_state;
77 
78 	if (step_state) {
79 
80 		/*
81 		 * FIXME: we don't munmap step_state->buffer
82 		 * because the mm_struct for this process (info->task->mm)
83 		 * has already been zeroed in exit_mm().  Keeping a
84 		 * reference to it here seems like a bad move, so this
85 		 * means we can't munmap() the buffer, and therefore if we
86 		 * ptrace multiple threads in a process, we will slowly
87 		 * leak user memory.  (Note that as soon as the last
88 		 * thread in a process dies, we will reclaim all user
89 		 * memory including single-step buffers in the usual way.)
90 		 * We should either assign a kernel VA to this buffer
91 		 * somehow, or we should associate the buffer(s) with the
92 		 * mm itself so we can clean them up that way.
93 		 */
94 		kfree(step_state);
95 	}
96 }
97 
98 static void save_arch_state(struct thread_struct *t);
99 
copy_thread(unsigned long clone_flags,unsigned long sp,unsigned long arg,struct task_struct * p)100 int copy_thread(unsigned long clone_flags, unsigned long sp,
101 		unsigned long arg, struct task_struct *p)
102 {
103 	struct pt_regs *childregs = task_pt_regs(p);
104 	unsigned long ksp;
105 	unsigned long *callee_regs;
106 
107 	/*
108 	 * Set up the stack and stack pointer appropriately for the
109 	 * new child to find itself woken up in __switch_to().
110 	 * The callee-saved registers must be on the stack to be read;
111 	 * the new task will then jump to assembly support to handle
112 	 * calling schedule_tail(), etc., and (for userspace tasks)
113 	 * returning to the context set up in the pt_regs.
114 	 */
115 	ksp = (unsigned long) childregs;
116 	ksp -= C_ABI_SAVE_AREA_SIZE;   /* interrupt-entry save area */
117 	((long *)ksp)[0] = ((long *)ksp)[1] = 0;
118 	ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
119 	callee_regs = (unsigned long *)ksp;
120 	ksp -= C_ABI_SAVE_AREA_SIZE;   /* __switch_to() save area */
121 	((long *)ksp)[0] = ((long *)ksp)[1] = 0;
122 	p->thread.ksp = ksp;
123 
124 	/* Record the pid of the task that created this one. */
125 	p->thread.creator_pid = current->pid;
126 
127 	if (unlikely(p->flags & PF_KTHREAD)) {
128 		/* kernel thread */
129 		memset(childregs, 0, sizeof(struct pt_regs));
130 		memset(&callee_regs[2], 0,
131 		       (CALLEE_SAVED_REGS_COUNT - 2) * sizeof(unsigned long));
132 		callee_regs[0] = sp;   /* r30 = function */
133 		callee_regs[1] = arg;  /* r31 = arg */
134 		childregs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
135 		p->thread.pc = (unsigned long) ret_from_kernel_thread;
136 		return 0;
137 	}
138 
139 	/*
140 	 * Start new thread in ret_from_fork so it schedules properly
141 	 * and then return from interrupt like the parent.
142 	 */
143 	p->thread.pc = (unsigned long) ret_from_fork;
144 
145 	/*
146 	 * Do not clone step state from the parent; each thread
147 	 * must make its own lazily.
148 	 */
149 	task_thread_info(p)->step_state = NULL;
150 
151 #ifdef __tilegx__
152 	/*
153 	 * Do not clone unalign jit fixup from the parent; each thread
154 	 * must allocate its own on demand.
155 	 */
156 	task_thread_info(p)->unalign_jit_base = NULL;
157 #endif
158 
159 	/*
160 	 * Copy the registers onto the kernel stack so the
161 	 * return-from-interrupt code will reload it into registers.
162 	 */
163 	*childregs = *current_pt_regs();
164 	childregs->regs[0] = 0;         /* return value is zero */
165 	if (sp)
166 		childregs->sp = sp;  /* override with new user stack pointer */
167 	memcpy(callee_regs, &childregs->regs[CALLEE_SAVED_FIRST_REG],
168 	       CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
169 
170 	/* Save user stack top pointer so we can ID the stack vm area later. */
171 	p->thread.usp0 = childregs->sp;
172 
173 	/*
174 	 * If CLONE_SETTLS is set, set "tp" in the new task to "r4",
175 	 * which is passed in as arg #5 to sys_clone().
176 	 */
177 	if (clone_flags & CLONE_SETTLS)
178 		childregs->tp = childregs->regs[4];
179 
180 
181 #if CHIP_HAS_TILE_DMA()
182 	/*
183 	 * No DMA in the new thread.  We model this on the fact that
184 	 * fork() clears the pending signals, alarms, and aio for the child.
185 	 */
186 	memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
187 	memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
188 #endif
189 
190 	/* New thread has its miscellaneous processor state bits clear. */
191 	p->thread.proc_status = 0;
192 
193 #ifdef CONFIG_HARDWALL
194 	/* New thread does not own any networks. */
195 	memset(&p->thread.hardwall[0], 0,
196 	       sizeof(struct hardwall_task) * HARDWALL_TYPES);
197 #endif
198 
199 
200 	/*
201 	 * Start the new thread with the current architecture state
202 	 * (user interrupt masks, etc.).
203 	 */
204 	save_arch_state(&p->thread);
205 
206 	return 0;
207 }
208 
set_unalign_ctl(struct task_struct * tsk,unsigned int val)209 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
210 {
211 	task_thread_info(tsk)->align_ctl = val;
212 	return 0;
213 }
214 
get_unalign_ctl(struct task_struct * tsk,unsigned long adr)215 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
216 {
217 	return put_user(task_thread_info(tsk)->align_ctl,
218 			(unsigned int __user *)adr);
219 }
220 
221 static struct task_struct corrupt_current = { .comm = "<corrupt>" };
222 
223 /*
224  * Return "current" if it looks plausible, or else a pointer to a dummy.
225  * This can be helpful if we are just trying to emit a clean panic.
226  */
validate_current(void)227 struct task_struct *validate_current(void)
228 {
229 	struct task_struct *tsk = current;
230 	if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
231 		     (high_memory && (void *)tsk > high_memory) ||
232 		     ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
233 		pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
234 		tsk = &corrupt_current;
235 	}
236 	return tsk;
237 }
238 
239 /* Take and return the pointer to the previous task, for schedule_tail(). */
sim_notify_fork(struct task_struct * prev)240 struct task_struct *sim_notify_fork(struct task_struct *prev)
241 {
242 	struct task_struct *tsk = current;
243 	__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
244 		     (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
245 	__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
246 		     (tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
247 	return prev;
248 }
249 
dump_task_regs(struct task_struct * tsk,elf_gregset_t * regs)250 int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
251 {
252 	struct pt_regs *ptregs = task_pt_regs(tsk);
253 	elf_core_copy_regs(regs, ptregs);
254 	return 1;
255 }
256 
257 #if CHIP_HAS_TILE_DMA()
258 
259 /* Allow user processes to access the DMA SPRs */
grant_dma_mpls(void)260 void grant_dma_mpls(void)
261 {
262 #if CONFIG_KERNEL_PL == 2
263 	__insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
264 	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
265 #else
266 	__insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
267 	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
268 #endif
269 }
270 
271 /* Forbid user processes from accessing the DMA SPRs */
restrict_dma_mpls(void)272 void restrict_dma_mpls(void)
273 {
274 #if CONFIG_KERNEL_PL == 2
275 	__insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1);
276 	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1);
277 #else
278 	__insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
279 	__insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
280 #endif
281 }
282 
283 /* Pause the DMA engine, then save off its state registers. */
save_tile_dma_state(struct tile_dma_state * dma)284 static void save_tile_dma_state(struct tile_dma_state *dma)
285 {
286 	unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
287 	unsigned long post_suspend_state;
288 
289 	/* If we're running, suspend the engine. */
290 	if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
291 		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
292 
293 	/*
294 	 * Wait for the engine to idle, then save regs.  Note that we
295 	 * want to record the "running" bit from before suspension,
296 	 * and the "done" bit from after, so that we can properly
297 	 * distinguish a case where the user suspended the engine from
298 	 * the case where the kernel suspended as part of the context
299 	 * swap.
300 	 */
301 	do {
302 		post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
303 	} while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
304 
305 	dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
306 	dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
307 	dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
308 	dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
309 	dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
310 	dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
311 	dma->byte = __insn_mfspr(SPR_DMA_BYTE);
312 	dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
313 		(post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
314 }
315 
316 /* Restart a DMA that was running before we were context-switched out. */
restore_tile_dma_state(struct thread_struct * t)317 static void restore_tile_dma_state(struct thread_struct *t)
318 {
319 	const struct tile_dma_state *dma = &t->tile_dma_state;
320 
321 	/*
322 	 * The only way to restore the done bit is to run a zero
323 	 * length transaction.
324 	 */
325 	if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
326 	    !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
327 		__insn_mtspr(SPR_DMA_BYTE, 0);
328 		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
329 		while (__insn_mfspr(SPR_DMA_USER_STATUS) &
330 		       SPR_DMA_STATUS__BUSY_MASK)
331 			;
332 	}
333 
334 	__insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
335 	__insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
336 	__insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
337 	__insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
338 	__insn_mtspr(SPR_DMA_STRIDE, dma->strides);
339 	__insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
340 	__insn_mtspr(SPR_DMA_BYTE, dma->byte);
341 
342 	/*
343 	 * Restart the engine if we were running and not done.
344 	 * Clear a pending async DMA fault that we were waiting on return
345 	 * to user space to execute, since we expect the DMA engine
346 	 * to regenerate those faults for us now.  Note that we don't
347 	 * try to clear the TIF_ASYNC_TLB flag, since it's relatively
348 	 * harmless if set, and it covers both DMA and the SN processor.
349 	 */
350 	if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
351 		t->dma_async_tlb.fault_num = 0;
352 		__insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
353 	}
354 }
355 
356 #endif
357 
save_arch_state(struct thread_struct * t)358 static void save_arch_state(struct thread_struct *t)
359 {
360 #if CHIP_HAS_SPLIT_INTR_MASK()
361 	t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
362 		((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
363 #else
364 	t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
365 #endif
366 	t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
367 	t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
368 	t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
369 	t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
370 	t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
371 	t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
372 	t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
373 	t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
374 #if !CHIP_HAS_FIXED_INTVEC_BASE()
375 	t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
376 #endif
377 	t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
378 #if CHIP_HAS_DSTREAM_PF()
379 	t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
380 #endif
381 }
382 
restore_arch_state(const struct thread_struct * t)383 static void restore_arch_state(const struct thread_struct *t)
384 {
385 #if CHIP_HAS_SPLIT_INTR_MASK()
386 	__insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
387 	__insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
388 #else
389 	__insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
390 #endif
391 	__insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
392 	__insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
393 	__insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
394 	__insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
395 	__insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
396 	__insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
397 	__insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
398 	__insn_mtspr(SPR_PROC_STATUS, t->proc_status);
399 #if !CHIP_HAS_FIXED_INTVEC_BASE()
400 	__insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
401 #endif
402 	__insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
403 #if CHIP_HAS_DSTREAM_PF()
404 	__insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
405 #endif
406 }
407 
408 
_prepare_arch_switch(struct task_struct * next)409 void _prepare_arch_switch(struct task_struct *next)
410 {
411 #if CHIP_HAS_TILE_DMA()
412 	struct tile_dma_state *dma = &current->thread.tile_dma_state;
413 	if (dma->enabled)
414 		save_tile_dma_state(dma);
415 #endif
416 }
417 
418 
_switch_to(struct task_struct * prev,struct task_struct * next)419 struct task_struct *__sched _switch_to(struct task_struct *prev,
420 				       struct task_struct *next)
421 {
422 	/* DMA state is already saved; save off other arch state. */
423 	save_arch_state(&prev->thread);
424 
425 #if CHIP_HAS_TILE_DMA()
426 	/*
427 	 * Restore DMA in new task if desired.
428 	 * Note that it is only safe to restart here since interrupts
429 	 * are disabled, so we can't take any DMATLB miss or access
430 	 * interrupts before we have finished switching stacks.
431 	 */
432 	if (next->thread.tile_dma_state.enabled) {
433 		restore_tile_dma_state(&next->thread);
434 		grant_dma_mpls();
435 	} else {
436 		restrict_dma_mpls();
437 	}
438 #endif
439 
440 	/* Restore other arch state. */
441 	restore_arch_state(&next->thread);
442 
443 #ifdef CONFIG_HARDWALL
444 	/* Enable or disable access to the network registers appropriately. */
445 	hardwall_switch_tasks(prev, next);
446 #endif
447 
448 	/*
449 	 * Switch kernel SP, PC, and callee-saved registers.
450 	 * In the context of the new task, return the old task pointer
451 	 * (i.e. the task that actually called __switch_to).
452 	 * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
453 	 */
454 	return __switch_to(prev, next, next_current_ksp0(next));
455 }
456 
457 /*
458  * This routine is called on return from interrupt if any of the
459  * TIF_WORK_MASK flags are set in thread_info->flags.  It is
460  * entered with interrupts disabled so we don't miss an event
461  * that modified the thread_info flags.  If any flag is set, we
462  * handle it and return, and the calling assembly code will
463  * re-disable interrupts, reload the thread flags, and call back
464  * if more flags need to be handled.
465  *
466  * We return whether we need to check the thread_info flags again
467  * or not.  Note that we don't clear TIF_SINGLESTEP here, so it's
468  * important that it be tested last, and then claim that we don't
469  * need to recheck the flags.
470  */
do_work_pending(struct pt_regs * regs,u32 thread_info_flags)471 int do_work_pending(struct pt_regs *regs, u32 thread_info_flags)
472 {
473 	/* If we enter in kernel mode, do nothing and exit the caller loop. */
474 	if (!user_mode(regs))
475 		return 0;
476 
477 	/* Enable interrupts; they are disabled again on return to caller. */
478 	local_irq_enable();
479 
480 	if (thread_info_flags & _TIF_NEED_RESCHED) {
481 		schedule();
482 		return 1;
483 	}
484 #if CHIP_HAS_TILE_DMA()
485 	if (thread_info_flags & _TIF_ASYNC_TLB) {
486 		do_async_page_fault(regs);
487 		return 1;
488 	}
489 #endif
490 	if (thread_info_flags & _TIF_SIGPENDING) {
491 		do_signal(regs);
492 		return 1;
493 	}
494 	if (thread_info_flags & _TIF_NOTIFY_RESUME) {
495 		clear_thread_flag(TIF_NOTIFY_RESUME);
496 		tracehook_notify_resume(regs);
497 		return 1;
498 	}
499 	if (thread_info_flags & _TIF_SINGLESTEP) {
500 		single_step_once(regs);
501 		return 0;
502 	}
503 	panic("work_pending: bad flags %#x\n", thread_info_flags);
504 }
505 
get_wchan(struct task_struct * p)506 unsigned long get_wchan(struct task_struct *p)
507 {
508 	struct KBacktraceIterator kbt;
509 
510 	if (!p || p == current || p->state == TASK_RUNNING)
511 		return 0;
512 
513 	for (KBacktraceIterator_init(&kbt, p, NULL);
514 	     !KBacktraceIterator_end(&kbt);
515 	     KBacktraceIterator_next(&kbt)) {
516 		if (!in_sched_functions(kbt.it.pc))
517 			return kbt.it.pc;
518 	}
519 
520 	return 0;
521 }
522 
523 /* Flush thread state. */
flush_thread(void)524 void flush_thread(void)
525 {
526 	/* Nothing */
527 }
528 
529 /*
530  * Free current thread data structures etc..
531  */
exit_thread(struct task_struct * tsk)532 void exit_thread(struct task_struct *tsk)
533 {
534 #ifdef CONFIG_HARDWALL
535 	/*
536 	 * Remove the task from the list of tasks that are associated
537 	 * with any live hardwalls.  (If the task that is exiting held
538 	 * the last reference to a hardwall fd, it would already have
539 	 * been released and deactivated at this point.)
540 	 */
541 	hardwall_deactivate_all(tsk);
542 #endif
543 }
544 
show_regs(struct pt_regs * regs)545 void show_regs(struct pt_regs *regs)
546 {
547 	struct task_struct *tsk = validate_current();
548 	int i;
549 
550 	pr_err("\n");
551 	if (tsk != &corrupt_current)
552 		show_regs_print_info(KERN_ERR);
553 #ifdef __tilegx__
554 	for (i = 0; i < 17; i++)
555 		pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
556 		       i, regs->regs[i], i+18, regs->regs[i+18],
557 		       i+36, regs->regs[i+36]);
558 	pr_err(" r17: "REGFMT" r35: "REGFMT" tp : "REGFMT"\n",
559 	       regs->regs[17], regs->regs[35], regs->tp);
560 	pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
561 #else
562 	for (i = 0; i < 13; i++)
563 		pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
564 		       " r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
565 		       i, regs->regs[i], i+14, regs->regs[i+14],
566 		       i+27, regs->regs[i+27], i+40, regs->regs[i+40]);
567 	pr_err(" r13: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
568 	       regs->regs[13], regs->tp, regs->sp, regs->lr);
569 #endif
570 	pr_err(" pc : "REGFMT" ex1: %ld     faultnum: %ld\n",
571 	       regs->pc, regs->ex1, regs->faultnum);
572 
573 	dump_stack_regs(regs);
574 }
575