• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22 
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
34 
35 /*
36  * fill ring buffer with silence
37  * runtime->silence_start: starting pointer to silence area
38  * runtime->silence_filled: size filled with silence
39  * runtime->silence_threshold: threshold from application
40  * runtime->silence_size: maximal size from application
41  *
42  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
43  */
snd_pcm_playback_silence(struct snd_pcm_substream * substream,snd_pcm_uframes_t new_hw_ptr)44 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
45 {
46 	struct snd_pcm_runtime *runtime = substream->runtime;
47 	snd_pcm_uframes_t frames, ofs, transfer;
48 
49 	if (runtime->silence_size < runtime->boundary) {
50 		snd_pcm_sframes_t noise_dist, n;
51 		if (runtime->silence_start != runtime->control->appl_ptr) {
52 			n = runtime->control->appl_ptr - runtime->silence_start;
53 			if (n < 0)
54 				n += runtime->boundary;
55 			if ((snd_pcm_uframes_t)n < runtime->silence_filled)
56 				runtime->silence_filled -= n;
57 			else
58 				runtime->silence_filled = 0;
59 			runtime->silence_start = runtime->control->appl_ptr;
60 		}
61 		if (runtime->silence_filled >= runtime->buffer_size)
62 			return;
63 		noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
64 		if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
65 			return;
66 		frames = runtime->silence_threshold - noise_dist;
67 		if (frames > runtime->silence_size)
68 			frames = runtime->silence_size;
69 	} else {
70 		if (new_hw_ptr == ULONG_MAX) {	/* initialization */
71 			snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
72 			if (avail > runtime->buffer_size)
73 				avail = runtime->buffer_size;
74 			runtime->silence_filled = avail > 0 ? avail : 0;
75 			runtime->silence_start = (runtime->status->hw_ptr +
76 						  runtime->silence_filled) %
77 						 runtime->boundary;
78 		} else {
79 			ofs = runtime->status->hw_ptr;
80 			frames = new_hw_ptr - ofs;
81 			if ((snd_pcm_sframes_t)frames < 0)
82 				frames += runtime->boundary;
83 			runtime->silence_filled -= frames;
84 			if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
85 				runtime->silence_filled = 0;
86 				runtime->silence_start = new_hw_ptr;
87 			} else {
88 				runtime->silence_start = ofs;
89 			}
90 		}
91 		frames = runtime->buffer_size - runtime->silence_filled;
92 	}
93 	if (snd_BUG_ON(frames > runtime->buffer_size))
94 		return;
95 	if (frames == 0)
96 		return;
97 	ofs = runtime->silence_start % runtime->buffer_size;
98 	while (frames > 0) {
99 		transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
100 		if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
101 		    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
102 			if (substream->ops->silence) {
103 				int err;
104 				err = substream->ops->silence(substream, -1, ofs, transfer);
105 				snd_BUG_ON(err < 0);
106 			} else {
107 				char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
108 				snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
109 			}
110 		} else {
111 			unsigned int c;
112 			unsigned int channels = runtime->channels;
113 			if (substream->ops->silence) {
114 				for (c = 0; c < channels; ++c) {
115 					int err;
116 					err = substream->ops->silence(substream, c, ofs, transfer);
117 					snd_BUG_ON(err < 0);
118 				}
119 			} else {
120 				size_t dma_csize = runtime->dma_bytes / channels;
121 				for (c = 0; c < channels; ++c) {
122 					char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
123 					snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
124 				}
125 			}
126 		}
127 		runtime->silence_filled += transfer;
128 		frames -= transfer;
129 		ofs = 0;
130 	}
131 }
132 
133 #ifdef CONFIG_SND_DEBUG
snd_pcm_debug_name(struct snd_pcm_substream * substream,char * name,size_t len)134 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
135 			   char *name, size_t len)
136 {
137 	snprintf(name, len, "pcmC%dD%d%c:%d",
138 		 substream->pcm->card->number,
139 		 substream->pcm->device,
140 		 substream->stream ? 'c' : 'p',
141 		 substream->number);
142 }
143 EXPORT_SYMBOL(snd_pcm_debug_name);
144 #endif
145 
146 #define XRUN_DEBUG_BASIC	(1<<0)
147 #define XRUN_DEBUG_STACK	(1<<1)	/* dump also stack */
148 #define XRUN_DEBUG_JIFFIESCHECK	(1<<2)	/* do jiffies check */
149 #define XRUN_DEBUG_PERIODUPDATE	(1<<3)	/* full period update info */
150 #define XRUN_DEBUG_HWPTRUPDATE	(1<<4)	/* full hwptr update info */
151 #define XRUN_DEBUG_LOG		(1<<5)	/* show last 10 positions on err */
152 #define XRUN_DEBUG_LOGONCE	(1<<6)	/* do above only once */
153 
154 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
155 
156 #define xrun_debug(substream, mask) \
157 			((substream)->pstr->xrun_debug & (mask))
158 #else
159 #define xrun_debug(substream, mask)	0
160 #endif
161 
162 #define dump_stack_on_xrun(substream) do {			\
163 		if (xrun_debug(substream, XRUN_DEBUG_STACK))	\
164 			dump_stack();				\
165 	} while (0)
166 
xrun(struct snd_pcm_substream * substream)167 static void xrun(struct snd_pcm_substream *substream)
168 {
169 	struct snd_pcm_runtime *runtime = substream->runtime;
170 
171 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
172 		snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
173 	snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
174 	if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
175 		char name[16];
176 		snd_pcm_debug_name(substream, name, sizeof(name));
177 		pcm_warn(substream->pcm, "XRUN: %s\n", name);
178 		dump_stack_on_xrun(substream);
179 	}
180 }
181 
182 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
183 #define hw_ptr_error(substream, fmt, args...)				\
184 	do {								\
185 		if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {		\
186 			xrun_log_show(substream);			\
187 			pr_err_ratelimited("ALSA: PCM: " fmt, ##args);	\
188 			dump_stack_on_xrun(substream);			\
189 		}							\
190 	} while (0)
191 
192 #define XRUN_LOG_CNT	10
193 
194 struct hwptr_log_entry {
195 	unsigned int in_interrupt;
196 	unsigned long jiffies;
197 	snd_pcm_uframes_t pos;
198 	snd_pcm_uframes_t period_size;
199 	snd_pcm_uframes_t buffer_size;
200 	snd_pcm_uframes_t old_hw_ptr;
201 	snd_pcm_uframes_t hw_ptr_base;
202 };
203 
204 struct snd_pcm_hwptr_log {
205 	unsigned int idx;
206 	unsigned int hit: 1;
207 	struct hwptr_log_entry entries[XRUN_LOG_CNT];
208 };
209 
xrun_log(struct snd_pcm_substream * substream,snd_pcm_uframes_t pos,int in_interrupt)210 static void xrun_log(struct snd_pcm_substream *substream,
211 		     snd_pcm_uframes_t pos, int in_interrupt)
212 {
213 	struct snd_pcm_runtime *runtime = substream->runtime;
214 	struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
215 	struct hwptr_log_entry *entry;
216 
217 	if (log == NULL) {
218 		log = kzalloc(sizeof(*log), GFP_ATOMIC);
219 		if (log == NULL)
220 			return;
221 		runtime->hwptr_log = log;
222 	} else {
223 		if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
224 			return;
225 	}
226 	entry = &log->entries[log->idx];
227 	entry->in_interrupt = in_interrupt;
228 	entry->jiffies = jiffies;
229 	entry->pos = pos;
230 	entry->period_size = runtime->period_size;
231 	entry->buffer_size = runtime->buffer_size;
232 	entry->old_hw_ptr = runtime->status->hw_ptr;
233 	entry->hw_ptr_base = runtime->hw_ptr_base;
234 	log->idx = (log->idx + 1) % XRUN_LOG_CNT;
235 }
236 
xrun_log_show(struct snd_pcm_substream * substream)237 static void xrun_log_show(struct snd_pcm_substream *substream)
238 {
239 	struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
240 	struct hwptr_log_entry *entry;
241 	char name[16];
242 	unsigned int idx;
243 	int cnt;
244 
245 	if (log == NULL)
246 		return;
247 	if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
248 		return;
249 	snd_pcm_debug_name(substream, name, sizeof(name));
250 	for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
251 		entry = &log->entries[idx];
252 		if (entry->period_size == 0)
253 			break;
254 		pr_info("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
255 			   "hwptr=%ld/%ld\n",
256 			   name, entry->in_interrupt ? "[Q] " : "",
257 			   entry->jiffies,
258 			   (unsigned long)entry->pos,
259 			   (unsigned long)entry->period_size,
260 			   (unsigned long)entry->buffer_size,
261 			   (unsigned long)entry->old_hw_ptr,
262 			   (unsigned long)entry->hw_ptr_base);
263 		idx++;
264 		idx %= XRUN_LOG_CNT;
265 	}
266 	log->hit = 1;
267 }
268 
269 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
270 
271 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
272 #define xrun_log(substream, pos, in_interrupt)	do { } while (0)
273 #define xrun_log_show(substream)	do { } while (0)
274 
275 #endif
276 
snd_pcm_update_state(struct snd_pcm_substream * substream,struct snd_pcm_runtime * runtime)277 int snd_pcm_update_state(struct snd_pcm_substream *substream,
278 			 struct snd_pcm_runtime *runtime)
279 {
280 	snd_pcm_uframes_t avail;
281 
282 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
283 		avail = snd_pcm_playback_avail(runtime);
284 	else
285 		avail = snd_pcm_capture_avail(runtime);
286 	if (avail > runtime->avail_max)
287 		runtime->avail_max = avail;
288 	if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
289 		if (avail >= runtime->buffer_size) {
290 			snd_pcm_drain_done(substream);
291 			return -EPIPE;
292 		}
293 	} else {
294 		if (avail >= runtime->stop_threshold) {
295 			xrun(substream);
296 			return -EPIPE;
297 		}
298 	}
299 	if (runtime->twake) {
300 		if (avail >= runtime->twake)
301 			wake_up(&runtime->tsleep);
302 	} else if (avail >= runtime->control->avail_min)
303 		wake_up(&runtime->sleep);
304 	return 0;
305 }
306 
snd_pcm_update_hw_ptr0(struct snd_pcm_substream * substream,unsigned int in_interrupt)307 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
308 				  unsigned int in_interrupt)
309 {
310 	struct snd_pcm_runtime *runtime = substream->runtime;
311 	snd_pcm_uframes_t pos;
312 	snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
313 	snd_pcm_sframes_t hdelta, delta;
314 	unsigned long jdelta;
315 	unsigned long curr_jiffies;
316 	struct timespec curr_tstamp;
317 	struct timespec audio_tstamp;
318 	int crossed_boundary = 0;
319 
320 	old_hw_ptr = runtime->status->hw_ptr;
321 
322 	/*
323 	 * group pointer, time and jiffies reads to allow for more
324 	 * accurate correlations/corrections.
325 	 * The values are stored at the end of this routine after
326 	 * corrections for hw_ptr position
327 	 */
328 	pos = substream->ops->pointer(substream);
329 	curr_jiffies = jiffies;
330 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
331 		snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
332 
333 		if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) &&
334 			(substream->ops->wall_clock))
335 			substream->ops->wall_clock(substream, &audio_tstamp);
336 	}
337 
338 	if (pos == SNDRV_PCM_POS_XRUN) {
339 		xrun(substream);
340 		return -EPIPE;
341 	}
342 	if (pos >= runtime->buffer_size) {
343 		if (printk_ratelimit()) {
344 			char name[16];
345 			snd_pcm_debug_name(substream, name, sizeof(name));
346 			xrun_log_show(substream);
347 			pcm_err(substream->pcm,
348 				"XRUN: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
349 				name, pos, runtime->buffer_size,
350 				runtime->period_size);
351 		}
352 		pos = 0;
353 	}
354 	pos -= pos % runtime->min_align;
355 	if (xrun_debug(substream, XRUN_DEBUG_LOG))
356 		xrun_log(substream, pos, in_interrupt);
357 	hw_base = runtime->hw_ptr_base;
358 	new_hw_ptr = hw_base + pos;
359 	if (in_interrupt) {
360 		/* we know that one period was processed */
361 		/* delta = "expected next hw_ptr" for in_interrupt != 0 */
362 		delta = runtime->hw_ptr_interrupt + runtime->period_size;
363 		if (delta > new_hw_ptr) {
364 			/* check for double acknowledged interrupts */
365 			hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
366 			if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
367 				hw_base += runtime->buffer_size;
368 				if (hw_base >= runtime->boundary) {
369 					hw_base = 0;
370 					crossed_boundary++;
371 				}
372 				new_hw_ptr = hw_base + pos;
373 				goto __delta;
374 			}
375 		}
376 	}
377 	/* new_hw_ptr might be lower than old_hw_ptr in case when */
378 	/* pointer crosses the end of the ring buffer */
379 	if (new_hw_ptr < old_hw_ptr) {
380 		hw_base += runtime->buffer_size;
381 		if (hw_base >= runtime->boundary) {
382 			hw_base = 0;
383 			crossed_boundary++;
384 		}
385 		new_hw_ptr = hw_base + pos;
386 	}
387       __delta:
388 	delta = new_hw_ptr - old_hw_ptr;
389 	if (delta < 0)
390 		delta += runtime->boundary;
391 	if (xrun_debug(substream, in_interrupt ?
392 			XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
393 		char name[16];
394 		snd_pcm_debug_name(substream, name, sizeof(name));
395 		pcm_dbg(substream->pcm,
396 			"%s_update: %s: pos=%u/%u/%u, hwptr=%ld/%ld/%ld/%ld\n",
397 			   in_interrupt ? "period" : "hwptr",
398 			   name,
399 			   (unsigned int)pos,
400 			   (unsigned int)runtime->period_size,
401 			   (unsigned int)runtime->buffer_size,
402 			   (unsigned long)delta,
403 			   (unsigned long)old_hw_ptr,
404 			   (unsigned long)new_hw_ptr,
405 			   (unsigned long)runtime->hw_ptr_base);
406 	}
407 
408 	if (runtime->no_period_wakeup) {
409 		snd_pcm_sframes_t xrun_threshold;
410 		/*
411 		 * Without regular period interrupts, we have to check
412 		 * the elapsed time to detect xruns.
413 		 */
414 		jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
415 		if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
416 			goto no_delta_check;
417 		hdelta = jdelta - delta * HZ / runtime->rate;
418 		xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
419 		while (hdelta > xrun_threshold) {
420 			delta += runtime->buffer_size;
421 			hw_base += runtime->buffer_size;
422 			if (hw_base >= runtime->boundary) {
423 				hw_base = 0;
424 				crossed_boundary++;
425 			}
426 			new_hw_ptr = hw_base + pos;
427 			hdelta -= runtime->hw_ptr_buffer_jiffies;
428 		}
429 		goto no_delta_check;
430 	}
431 
432 	/* something must be really wrong */
433 	if (delta >= runtime->buffer_size + runtime->period_size) {
434 		hw_ptr_error(substream,
435 			       "Unexpected hw_pointer value %s"
436 			       "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
437 			       "old_hw_ptr=%ld)\n",
438 				     in_interrupt ? "[Q] " : "[P]",
439 				     substream->stream, (long)pos,
440 				     (long)new_hw_ptr, (long)old_hw_ptr);
441 		return 0;
442 	}
443 
444 	/* Do jiffies check only in xrun_debug mode */
445 	if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
446 		goto no_jiffies_check;
447 
448 	/* Skip the jiffies check for hardwares with BATCH flag.
449 	 * Such hardware usually just increases the position at each IRQ,
450 	 * thus it can't give any strange position.
451 	 */
452 	if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
453 		goto no_jiffies_check;
454 	hdelta = delta;
455 	if (hdelta < runtime->delay)
456 		goto no_jiffies_check;
457 	hdelta -= runtime->delay;
458 	jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
459 	if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
460 		delta = jdelta /
461 			(((runtime->period_size * HZ) / runtime->rate)
462 								+ HZ/100);
463 		/* move new_hw_ptr according jiffies not pos variable */
464 		new_hw_ptr = old_hw_ptr;
465 		hw_base = delta;
466 		/* use loop to avoid checks for delta overflows */
467 		/* the delta value is small or zero in most cases */
468 		while (delta > 0) {
469 			new_hw_ptr += runtime->period_size;
470 			if (new_hw_ptr >= runtime->boundary) {
471 				new_hw_ptr -= runtime->boundary;
472 				crossed_boundary--;
473 			}
474 			delta--;
475 		}
476 		/* align hw_base to buffer_size */
477 		hw_ptr_error(substream,
478 			     "hw_ptr skipping! %s"
479 			     "(pos=%ld, delta=%ld, period=%ld, "
480 			     "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
481 			     in_interrupt ? "[Q] " : "",
482 			     (long)pos, (long)hdelta,
483 			     (long)runtime->period_size, jdelta,
484 			     ((hdelta * HZ) / runtime->rate), hw_base,
485 			     (unsigned long)old_hw_ptr,
486 			     (unsigned long)new_hw_ptr);
487 		/* reset values to proper state */
488 		delta = 0;
489 		hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
490 	}
491  no_jiffies_check:
492 	if (delta > runtime->period_size + runtime->period_size / 2) {
493 		hw_ptr_error(substream,
494 			     "Lost interrupts? %s"
495 			     "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
496 			     "old_hw_ptr=%ld)\n",
497 			     in_interrupt ? "[Q] " : "",
498 			     substream->stream, (long)delta,
499 			     (long)new_hw_ptr,
500 			     (long)old_hw_ptr);
501 	}
502 
503  no_delta_check:
504 	if (runtime->status->hw_ptr == new_hw_ptr)
505 		return 0;
506 
507 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
508 	    runtime->silence_size > 0)
509 		snd_pcm_playback_silence(substream, new_hw_ptr);
510 
511 	if (in_interrupt) {
512 		delta = new_hw_ptr - runtime->hw_ptr_interrupt;
513 		if (delta < 0)
514 			delta += runtime->boundary;
515 		delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
516 		runtime->hw_ptr_interrupt += delta;
517 		if (runtime->hw_ptr_interrupt >= runtime->boundary)
518 			runtime->hw_ptr_interrupt -= runtime->boundary;
519 	}
520 	runtime->hw_ptr_base = hw_base;
521 	runtime->status->hw_ptr = new_hw_ptr;
522 	runtime->hw_ptr_jiffies = curr_jiffies;
523 	if (crossed_boundary) {
524 		snd_BUG_ON(crossed_boundary != 1);
525 		runtime->hw_ptr_wrap += runtime->boundary;
526 	}
527 	if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
528 		runtime->status->tstamp = curr_tstamp;
529 
530 		if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) {
531 			/*
532 			 * no wall clock available, provide audio timestamp
533 			 * derived from pointer position+delay
534 			 */
535 			u64 audio_frames, audio_nsecs;
536 
537 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
538 				audio_frames = runtime->hw_ptr_wrap
539 					+ runtime->status->hw_ptr
540 					- runtime->delay;
541 			else
542 				audio_frames = runtime->hw_ptr_wrap
543 					+ runtime->status->hw_ptr
544 					+ runtime->delay;
545 			audio_nsecs = div_u64(audio_frames * 1000000000LL,
546 					runtime->rate);
547 			audio_tstamp = ns_to_timespec(audio_nsecs);
548 		}
549 		runtime->status->audio_tstamp = audio_tstamp;
550 	}
551 
552 	return snd_pcm_update_state(substream, runtime);
553 }
554 
555 /* CAUTION: call it with irq disabled */
snd_pcm_update_hw_ptr(struct snd_pcm_substream * substream)556 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
557 {
558 	return snd_pcm_update_hw_ptr0(substream, 0);
559 }
560 
561 /**
562  * snd_pcm_set_ops - set the PCM operators
563  * @pcm: the pcm instance
564  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
565  * @ops: the operator table
566  *
567  * Sets the given PCM operators to the pcm instance.
568  */
snd_pcm_set_ops(struct snd_pcm * pcm,int direction,const struct snd_pcm_ops * ops)569 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
570 		     const struct snd_pcm_ops *ops)
571 {
572 	struct snd_pcm_str *stream = &pcm->streams[direction];
573 	struct snd_pcm_substream *substream;
574 
575 	for (substream = stream->substream; substream != NULL; substream = substream->next)
576 		substream->ops = ops;
577 }
578 
579 EXPORT_SYMBOL(snd_pcm_set_ops);
580 
581 /**
582  * snd_pcm_sync - set the PCM sync id
583  * @substream: the pcm substream
584  *
585  * Sets the PCM sync identifier for the card.
586  */
snd_pcm_set_sync(struct snd_pcm_substream * substream)587 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
588 {
589 	struct snd_pcm_runtime *runtime = substream->runtime;
590 
591 	runtime->sync.id32[0] = substream->pcm->card->number;
592 	runtime->sync.id32[1] = -1;
593 	runtime->sync.id32[2] = -1;
594 	runtime->sync.id32[3] = -1;
595 }
596 
597 EXPORT_SYMBOL(snd_pcm_set_sync);
598 
599 /*
600  *  Standard ioctl routine
601  */
602 
div32(unsigned int a,unsigned int b,unsigned int * r)603 static inline unsigned int div32(unsigned int a, unsigned int b,
604 				 unsigned int *r)
605 {
606 	if (b == 0) {
607 		*r = 0;
608 		return UINT_MAX;
609 	}
610 	*r = a % b;
611 	return a / b;
612 }
613 
div_down(unsigned int a,unsigned int b)614 static inline unsigned int div_down(unsigned int a, unsigned int b)
615 {
616 	if (b == 0)
617 		return UINT_MAX;
618 	return a / b;
619 }
620 
div_up(unsigned int a,unsigned int b)621 static inline unsigned int div_up(unsigned int a, unsigned int b)
622 {
623 	unsigned int r;
624 	unsigned int q;
625 	if (b == 0)
626 		return UINT_MAX;
627 	q = div32(a, b, &r);
628 	if (r)
629 		++q;
630 	return q;
631 }
632 
mul(unsigned int a,unsigned int b)633 static inline unsigned int mul(unsigned int a, unsigned int b)
634 {
635 	if (a == 0)
636 		return 0;
637 	if (div_down(UINT_MAX, a) < b)
638 		return UINT_MAX;
639 	return a * b;
640 }
641 
muldiv32(unsigned int a,unsigned int b,unsigned int c,unsigned int * r)642 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
643 				    unsigned int c, unsigned int *r)
644 {
645 	u_int64_t n = (u_int64_t) a * b;
646 	if (c == 0) {
647 		*r = 0;
648 		return UINT_MAX;
649 	}
650 	n = div_u64_rem(n, c, r);
651 	if (n >= UINT_MAX) {
652 		*r = 0;
653 		return UINT_MAX;
654 	}
655 	return n;
656 }
657 
658 /**
659  * snd_interval_refine - refine the interval value of configurator
660  * @i: the interval value to refine
661  * @v: the interval value to refer to
662  *
663  * Refines the interval value with the reference value.
664  * The interval is changed to the range satisfying both intervals.
665  * The interval status (min, max, integer, etc.) are evaluated.
666  *
667  * Return: Positive if the value is changed, zero if it's not changed, or a
668  * negative error code.
669  */
snd_interval_refine(struct snd_interval * i,const struct snd_interval * v)670 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
671 {
672 	int changed = 0;
673 	if (snd_BUG_ON(snd_interval_empty(i)))
674 		return -EINVAL;
675 	if (i->min < v->min) {
676 		i->min = v->min;
677 		i->openmin = v->openmin;
678 		changed = 1;
679 	} else if (i->min == v->min && !i->openmin && v->openmin) {
680 		i->openmin = 1;
681 		changed = 1;
682 	}
683 	if (i->max > v->max) {
684 		i->max = v->max;
685 		i->openmax = v->openmax;
686 		changed = 1;
687 	} else if (i->max == v->max && !i->openmax && v->openmax) {
688 		i->openmax = 1;
689 		changed = 1;
690 	}
691 	if (!i->integer && v->integer) {
692 		i->integer = 1;
693 		changed = 1;
694 	}
695 	if (i->integer) {
696 		if (i->openmin) {
697 			i->min++;
698 			i->openmin = 0;
699 		}
700 		if (i->openmax) {
701 			i->max--;
702 			i->openmax = 0;
703 		}
704 	} else if (!i->openmin && !i->openmax && i->min == i->max)
705 		i->integer = 1;
706 	if (snd_interval_checkempty(i)) {
707 		snd_interval_none(i);
708 		return -EINVAL;
709 	}
710 	return changed;
711 }
712 
713 EXPORT_SYMBOL(snd_interval_refine);
714 
snd_interval_refine_first(struct snd_interval * i)715 static int snd_interval_refine_first(struct snd_interval *i)
716 {
717 	if (snd_BUG_ON(snd_interval_empty(i)))
718 		return -EINVAL;
719 	if (snd_interval_single(i))
720 		return 0;
721 	i->max = i->min;
722 	i->openmax = i->openmin;
723 	if (i->openmax)
724 		i->max++;
725 	return 1;
726 }
727 
snd_interval_refine_last(struct snd_interval * i)728 static int snd_interval_refine_last(struct snd_interval *i)
729 {
730 	if (snd_BUG_ON(snd_interval_empty(i)))
731 		return -EINVAL;
732 	if (snd_interval_single(i))
733 		return 0;
734 	i->min = i->max;
735 	i->openmin = i->openmax;
736 	if (i->openmin)
737 		i->min--;
738 	return 1;
739 }
740 
snd_interval_mul(const struct snd_interval * a,const struct snd_interval * b,struct snd_interval * c)741 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
742 {
743 	if (a->empty || b->empty) {
744 		snd_interval_none(c);
745 		return;
746 	}
747 	c->empty = 0;
748 	c->min = mul(a->min, b->min);
749 	c->openmin = (a->openmin || b->openmin);
750 	c->max = mul(a->max,  b->max);
751 	c->openmax = (a->openmax || b->openmax);
752 	c->integer = (a->integer && b->integer);
753 }
754 
755 /**
756  * snd_interval_div - refine the interval value with division
757  * @a: dividend
758  * @b: divisor
759  * @c: quotient
760  *
761  * c = a / b
762  *
763  * Returns non-zero if the value is changed, zero if not changed.
764  */
snd_interval_div(const struct snd_interval * a,const struct snd_interval * b,struct snd_interval * c)765 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
766 {
767 	unsigned int r;
768 	if (a->empty || b->empty) {
769 		snd_interval_none(c);
770 		return;
771 	}
772 	c->empty = 0;
773 	c->min = div32(a->min, b->max, &r);
774 	c->openmin = (r || a->openmin || b->openmax);
775 	if (b->min > 0) {
776 		c->max = div32(a->max, b->min, &r);
777 		if (r) {
778 			c->max++;
779 			c->openmax = 1;
780 		} else
781 			c->openmax = (a->openmax || b->openmin);
782 	} else {
783 		c->max = UINT_MAX;
784 		c->openmax = 0;
785 	}
786 	c->integer = 0;
787 }
788 
789 /**
790  * snd_interval_muldivk - refine the interval value
791  * @a: dividend 1
792  * @b: dividend 2
793  * @k: divisor (as integer)
794  * @c: result
795   *
796  * c = a * b / k
797  *
798  * Returns non-zero if the value is changed, zero if not changed.
799  */
snd_interval_muldivk(const struct snd_interval * a,const struct snd_interval * b,unsigned int k,struct snd_interval * c)800 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
801 		      unsigned int k, struct snd_interval *c)
802 {
803 	unsigned int r;
804 	if (a->empty || b->empty) {
805 		snd_interval_none(c);
806 		return;
807 	}
808 	c->empty = 0;
809 	c->min = muldiv32(a->min, b->min, k, &r);
810 	c->openmin = (r || a->openmin || b->openmin);
811 	c->max = muldiv32(a->max, b->max, k, &r);
812 	if (r) {
813 		c->max++;
814 		c->openmax = 1;
815 	} else
816 		c->openmax = (a->openmax || b->openmax);
817 	c->integer = 0;
818 }
819 
820 /**
821  * snd_interval_mulkdiv - refine the interval value
822  * @a: dividend 1
823  * @k: dividend 2 (as integer)
824  * @b: divisor
825  * @c: result
826  *
827  * c = a * k / b
828  *
829  * Returns non-zero if the value is changed, zero if not changed.
830  */
snd_interval_mulkdiv(const struct snd_interval * a,unsigned int k,const struct snd_interval * b,struct snd_interval * c)831 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
832 		      const struct snd_interval *b, struct snd_interval *c)
833 {
834 	unsigned int r;
835 	if (a->empty || b->empty) {
836 		snd_interval_none(c);
837 		return;
838 	}
839 	c->empty = 0;
840 	c->min = muldiv32(a->min, k, b->max, &r);
841 	c->openmin = (r || a->openmin || b->openmax);
842 	if (b->min > 0) {
843 		c->max = muldiv32(a->max, k, b->min, &r);
844 		if (r) {
845 			c->max++;
846 			c->openmax = 1;
847 		} else
848 			c->openmax = (a->openmax || b->openmin);
849 	} else {
850 		c->max = UINT_MAX;
851 		c->openmax = 0;
852 	}
853 	c->integer = 0;
854 }
855 
856 /* ---- */
857 
858 
859 /**
860  * snd_interval_ratnum - refine the interval value
861  * @i: interval to refine
862  * @rats_count: number of ratnum_t
863  * @rats: ratnum_t array
864  * @nump: pointer to store the resultant numerator
865  * @denp: pointer to store the resultant denominator
866  *
867  * Return: Positive if the value is changed, zero if it's not changed, or a
868  * negative error code.
869  */
snd_interval_ratnum(struct snd_interval * i,unsigned int rats_count,struct snd_ratnum * rats,unsigned int * nump,unsigned int * denp)870 int snd_interval_ratnum(struct snd_interval *i,
871 			unsigned int rats_count, struct snd_ratnum *rats,
872 			unsigned int *nump, unsigned int *denp)
873 {
874 	unsigned int best_num, best_den;
875 	int best_diff;
876 	unsigned int k;
877 	struct snd_interval t;
878 	int err;
879 	unsigned int result_num, result_den;
880 	int result_diff;
881 
882 	best_num = best_den = best_diff = 0;
883 	for (k = 0; k < rats_count; ++k) {
884 		unsigned int num = rats[k].num;
885 		unsigned int den;
886 		unsigned int q = i->min;
887 		int diff;
888 		if (q == 0)
889 			q = 1;
890 		den = div_up(num, q);
891 		if (den < rats[k].den_min)
892 			continue;
893 		if (den > rats[k].den_max)
894 			den = rats[k].den_max;
895 		else {
896 			unsigned int r;
897 			r = (den - rats[k].den_min) % rats[k].den_step;
898 			if (r != 0)
899 				den -= r;
900 		}
901 		diff = num - q * den;
902 		if (diff < 0)
903 			diff = -diff;
904 		if (best_num == 0 ||
905 		    diff * best_den < best_diff * den) {
906 			best_diff = diff;
907 			best_den = den;
908 			best_num = num;
909 		}
910 	}
911 	if (best_den == 0) {
912 		i->empty = 1;
913 		return -EINVAL;
914 	}
915 	t.min = div_down(best_num, best_den);
916 	t.openmin = !!(best_num % best_den);
917 
918 	result_num = best_num;
919 	result_diff = best_diff;
920 	result_den = best_den;
921 	best_num = best_den = best_diff = 0;
922 	for (k = 0; k < rats_count; ++k) {
923 		unsigned int num = rats[k].num;
924 		unsigned int den;
925 		unsigned int q = i->max;
926 		int diff;
927 		if (q == 0) {
928 			i->empty = 1;
929 			return -EINVAL;
930 		}
931 		den = div_down(num, q);
932 		if (den > rats[k].den_max)
933 			continue;
934 		if (den < rats[k].den_min)
935 			den = rats[k].den_min;
936 		else {
937 			unsigned int r;
938 			r = (den - rats[k].den_min) % rats[k].den_step;
939 			if (r != 0)
940 				den += rats[k].den_step - r;
941 		}
942 		diff = q * den - num;
943 		if (diff < 0)
944 			diff = -diff;
945 		if (best_num == 0 ||
946 		    diff * best_den < best_diff * den) {
947 			best_diff = diff;
948 			best_den = den;
949 			best_num = num;
950 		}
951 	}
952 	if (best_den == 0) {
953 		i->empty = 1;
954 		return -EINVAL;
955 	}
956 	t.max = div_up(best_num, best_den);
957 	t.openmax = !!(best_num % best_den);
958 	t.integer = 0;
959 	err = snd_interval_refine(i, &t);
960 	if (err < 0)
961 		return err;
962 
963 	if (snd_interval_single(i)) {
964 		if (best_diff * result_den < result_diff * best_den) {
965 			result_num = best_num;
966 			result_den = best_den;
967 		}
968 		if (nump)
969 			*nump = result_num;
970 		if (denp)
971 			*denp = result_den;
972 	}
973 	return err;
974 }
975 
976 EXPORT_SYMBOL(snd_interval_ratnum);
977 
978 /**
979  * snd_interval_ratden - refine the interval value
980  * @i: interval to refine
981  * @rats_count: number of struct ratden
982  * @rats: struct ratden array
983  * @nump: pointer to store the resultant numerator
984  * @denp: pointer to store the resultant denominator
985  *
986  * Return: Positive if the value is changed, zero if it's not changed, or a
987  * negative error code.
988  */
snd_interval_ratden(struct snd_interval * i,unsigned int rats_count,struct snd_ratden * rats,unsigned int * nump,unsigned int * denp)989 static int snd_interval_ratden(struct snd_interval *i,
990 			       unsigned int rats_count, struct snd_ratden *rats,
991 			       unsigned int *nump, unsigned int *denp)
992 {
993 	unsigned int best_num, best_diff, best_den;
994 	unsigned int k;
995 	struct snd_interval t;
996 	int err;
997 
998 	best_num = best_den = best_diff = 0;
999 	for (k = 0; k < rats_count; ++k) {
1000 		unsigned int num;
1001 		unsigned int den = rats[k].den;
1002 		unsigned int q = i->min;
1003 		int diff;
1004 		num = mul(q, den);
1005 		if (num > rats[k].num_max)
1006 			continue;
1007 		if (num < rats[k].num_min)
1008 			num = rats[k].num_max;
1009 		else {
1010 			unsigned int r;
1011 			r = (num - rats[k].num_min) % rats[k].num_step;
1012 			if (r != 0)
1013 				num += rats[k].num_step - r;
1014 		}
1015 		diff = num - q * den;
1016 		if (best_num == 0 ||
1017 		    diff * best_den < best_diff * den) {
1018 			best_diff = diff;
1019 			best_den = den;
1020 			best_num = num;
1021 		}
1022 	}
1023 	if (best_den == 0) {
1024 		i->empty = 1;
1025 		return -EINVAL;
1026 	}
1027 	t.min = div_down(best_num, best_den);
1028 	t.openmin = !!(best_num % best_den);
1029 
1030 	best_num = best_den = best_diff = 0;
1031 	for (k = 0; k < rats_count; ++k) {
1032 		unsigned int num;
1033 		unsigned int den = rats[k].den;
1034 		unsigned int q = i->max;
1035 		int diff;
1036 		num = mul(q, den);
1037 		if (num < rats[k].num_min)
1038 			continue;
1039 		if (num > rats[k].num_max)
1040 			num = rats[k].num_max;
1041 		else {
1042 			unsigned int r;
1043 			r = (num - rats[k].num_min) % rats[k].num_step;
1044 			if (r != 0)
1045 				num -= r;
1046 		}
1047 		diff = q * den - num;
1048 		if (best_num == 0 ||
1049 		    diff * best_den < best_diff * den) {
1050 			best_diff = diff;
1051 			best_den = den;
1052 			best_num = num;
1053 		}
1054 	}
1055 	if (best_den == 0) {
1056 		i->empty = 1;
1057 		return -EINVAL;
1058 	}
1059 	t.max = div_up(best_num, best_den);
1060 	t.openmax = !!(best_num % best_den);
1061 	t.integer = 0;
1062 	err = snd_interval_refine(i, &t);
1063 	if (err < 0)
1064 		return err;
1065 
1066 	if (snd_interval_single(i)) {
1067 		if (nump)
1068 			*nump = best_num;
1069 		if (denp)
1070 			*denp = best_den;
1071 	}
1072 	return err;
1073 }
1074 
1075 /**
1076  * snd_interval_list - refine the interval value from the list
1077  * @i: the interval value to refine
1078  * @count: the number of elements in the list
1079  * @list: the value list
1080  * @mask: the bit-mask to evaluate
1081  *
1082  * Refines the interval value from the list.
1083  * When mask is non-zero, only the elements corresponding to bit 1 are
1084  * evaluated.
1085  *
1086  * Return: Positive if the value is changed, zero if it's not changed, or a
1087  * negative error code.
1088  */
snd_interval_list(struct snd_interval * i,unsigned int count,const unsigned int * list,unsigned int mask)1089 int snd_interval_list(struct snd_interval *i, unsigned int count,
1090 		      const unsigned int *list, unsigned int mask)
1091 {
1092         unsigned int k;
1093 	struct snd_interval list_range;
1094 
1095 	if (!count) {
1096 		i->empty = 1;
1097 		return -EINVAL;
1098 	}
1099 	snd_interval_any(&list_range);
1100 	list_range.min = UINT_MAX;
1101 	list_range.max = 0;
1102         for (k = 0; k < count; k++) {
1103 		if (mask && !(mask & (1 << k)))
1104 			continue;
1105 		if (!snd_interval_test(i, list[k]))
1106 			continue;
1107 		list_range.min = min(list_range.min, list[k]);
1108 		list_range.max = max(list_range.max, list[k]);
1109         }
1110 	return snd_interval_refine(i, &list_range);
1111 }
1112 
1113 EXPORT_SYMBOL(snd_interval_list);
1114 
snd_interval_step(struct snd_interval * i,unsigned int step)1115 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1116 {
1117 	unsigned int n;
1118 	int changed = 0;
1119 	n = i->min % step;
1120 	if (n != 0 || i->openmin) {
1121 		i->min += step - n;
1122 		i->openmin = 0;
1123 		changed = 1;
1124 	}
1125 	n = i->max % step;
1126 	if (n != 0 || i->openmax) {
1127 		i->max -= n;
1128 		i->openmax = 0;
1129 		changed = 1;
1130 	}
1131 	if (snd_interval_checkempty(i)) {
1132 		i->empty = 1;
1133 		return -EINVAL;
1134 	}
1135 	return changed;
1136 }
1137 
1138 /* Info constraints helpers */
1139 
1140 /**
1141  * snd_pcm_hw_rule_add - add the hw-constraint rule
1142  * @runtime: the pcm runtime instance
1143  * @cond: condition bits
1144  * @var: the variable to evaluate
1145  * @func: the evaluation function
1146  * @private: the private data pointer passed to function
1147  * @dep: the dependent variables
1148  *
1149  * Return: Zero if successful, or a negative error code on failure.
1150  */
snd_pcm_hw_rule_add(struct snd_pcm_runtime * runtime,unsigned int cond,int var,snd_pcm_hw_rule_func_t func,void * private,int dep,...)1151 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1152 			int var,
1153 			snd_pcm_hw_rule_func_t func, void *private,
1154 			int dep, ...)
1155 {
1156 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1157 	struct snd_pcm_hw_rule *c;
1158 	unsigned int k;
1159 	va_list args;
1160 	va_start(args, dep);
1161 	if (constrs->rules_num >= constrs->rules_all) {
1162 		struct snd_pcm_hw_rule *new;
1163 		unsigned int new_rules = constrs->rules_all + 16;
1164 		new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1165 		if (!new) {
1166 			va_end(args);
1167 			return -ENOMEM;
1168 		}
1169 		if (constrs->rules) {
1170 			memcpy(new, constrs->rules,
1171 			       constrs->rules_num * sizeof(*c));
1172 			kfree(constrs->rules);
1173 		}
1174 		constrs->rules = new;
1175 		constrs->rules_all = new_rules;
1176 	}
1177 	c = &constrs->rules[constrs->rules_num];
1178 	c->cond = cond;
1179 	c->func = func;
1180 	c->var = var;
1181 	c->private = private;
1182 	k = 0;
1183 	while (1) {
1184 		if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1185 			va_end(args);
1186 			return -EINVAL;
1187 		}
1188 		c->deps[k++] = dep;
1189 		if (dep < 0)
1190 			break;
1191 		dep = va_arg(args, int);
1192 	}
1193 	constrs->rules_num++;
1194 	va_end(args);
1195 	return 0;
1196 }
1197 
1198 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1199 
1200 /**
1201  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1202  * @runtime: PCM runtime instance
1203  * @var: hw_params variable to apply the mask
1204  * @mask: the bitmap mask
1205  *
1206  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1207  *
1208  * Return: Zero if successful, or a negative error code on failure.
1209  */
snd_pcm_hw_constraint_mask(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var,u_int32_t mask)1210 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1211 			       u_int32_t mask)
1212 {
1213 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1214 	struct snd_mask *maskp = constrs_mask(constrs, var);
1215 	*maskp->bits &= mask;
1216 	memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1217 	if (*maskp->bits == 0)
1218 		return -EINVAL;
1219 	return 0;
1220 }
1221 
1222 /**
1223  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1224  * @runtime: PCM runtime instance
1225  * @var: hw_params variable to apply the mask
1226  * @mask: the 64bit bitmap mask
1227  *
1228  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1229  *
1230  * Return: Zero if successful, or a negative error code on failure.
1231  */
snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var,u_int64_t mask)1232 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1233 				 u_int64_t mask)
1234 {
1235 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1236 	struct snd_mask *maskp = constrs_mask(constrs, var);
1237 	maskp->bits[0] &= (u_int32_t)mask;
1238 	maskp->bits[1] &= (u_int32_t)(mask >> 32);
1239 	memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1240 	if (! maskp->bits[0] && ! maskp->bits[1])
1241 		return -EINVAL;
1242 	return 0;
1243 }
1244 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1245 
1246 /**
1247  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1248  * @runtime: PCM runtime instance
1249  * @var: hw_params variable to apply the integer constraint
1250  *
1251  * Apply the constraint of integer to an interval parameter.
1252  *
1253  * Return: Positive if the value is changed, zero if it's not changed, or a
1254  * negative error code.
1255  */
snd_pcm_hw_constraint_integer(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var)1256 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1257 {
1258 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1259 	return snd_interval_setinteger(constrs_interval(constrs, var));
1260 }
1261 
1262 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1263 
1264 /**
1265  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1266  * @runtime: PCM runtime instance
1267  * @var: hw_params variable to apply the range
1268  * @min: the minimal value
1269  * @max: the maximal value
1270  *
1271  * Apply the min/max range constraint to an interval parameter.
1272  *
1273  * Return: Positive if the value is changed, zero if it's not changed, or a
1274  * negative error code.
1275  */
snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var,unsigned int min,unsigned int max)1276 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1277 				 unsigned int min, unsigned int max)
1278 {
1279 	struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1280 	struct snd_interval t;
1281 	t.min = min;
1282 	t.max = max;
1283 	t.openmin = t.openmax = 0;
1284 	t.integer = 0;
1285 	return snd_interval_refine(constrs_interval(constrs, var), &t);
1286 }
1287 
1288 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1289 
snd_pcm_hw_rule_list(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1290 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1291 				struct snd_pcm_hw_rule *rule)
1292 {
1293 	struct snd_pcm_hw_constraint_list *list = rule->private;
1294 	return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1295 }
1296 
1297 
1298 /**
1299  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1300  * @runtime: PCM runtime instance
1301  * @cond: condition bits
1302  * @var: hw_params variable to apply the list constraint
1303  * @l: list
1304  *
1305  * Apply the list of constraints to an interval parameter.
1306  *
1307  * Return: Zero if successful, or a negative error code on failure.
1308  */
snd_pcm_hw_constraint_list(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,const struct snd_pcm_hw_constraint_list * l)1309 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1310 			       unsigned int cond,
1311 			       snd_pcm_hw_param_t var,
1312 			       const struct snd_pcm_hw_constraint_list *l)
1313 {
1314 	return snd_pcm_hw_rule_add(runtime, cond, var,
1315 				   snd_pcm_hw_rule_list, (void *)l,
1316 				   var, -1);
1317 }
1318 
1319 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1320 
snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1321 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1322 				   struct snd_pcm_hw_rule *rule)
1323 {
1324 	struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1325 	unsigned int num = 0, den = 0;
1326 	int err;
1327 	err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1328 				  r->nrats, r->rats, &num, &den);
1329 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1330 		params->rate_num = num;
1331 		params->rate_den = den;
1332 	}
1333 	return err;
1334 }
1335 
1336 /**
1337  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1338  * @runtime: PCM runtime instance
1339  * @cond: condition bits
1340  * @var: hw_params variable to apply the ratnums constraint
1341  * @r: struct snd_ratnums constriants
1342  *
1343  * Return: Zero if successful, or a negative error code on failure.
1344  */
snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,struct snd_pcm_hw_constraint_ratnums * r)1345 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1346 				  unsigned int cond,
1347 				  snd_pcm_hw_param_t var,
1348 				  struct snd_pcm_hw_constraint_ratnums *r)
1349 {
1350 	return snd_pcm_hw_rule_add(runtime, cond, var,
1351 				   snd_pcm_hw_rule_ratnums, r,
1352 				   var, -1);
1353 }
1354 
1355 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1356 
snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1357 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1358 				   struct snd_pcm_hw_rule *rule)
1359 {
1360 	struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1361 	unsigned int num = 0, den = 0;
1362 	int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1363 				  r->nrats, r->rats, &num, &den);
1364 	if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1365 		params->rate_num = num;
1366 		params->rate_den = den;
1367 	}
1368 	return err;
1369 }
1370 
1371 /**
1372  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1373  * @runtime: PCM runtime instance
1374  * @cond: condition bits
1375  * @var: hw_params variable to apply the ratdens constraint
1376  * @r: struct snd_ratdens constriants
1377  *
1378  * Return: Zero if successful, or a negative error code on failure.
1379  */
snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,struct snd_pcm_hw_constraint_ratdens * r)1380 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1381 				  unsigned int cond,
1382 				  snd_pcm_hw_param_t var,
1383 				  struct snd_pcm_hw_constraint_ratdens *r)
1384 {
1385 	return snd_pcm_hw_rule_add(runtime, cond, var,
1386 				   snd_pcm_hw_rule_ratdens, r,
1387 				   var, -1);
1388 }
1389 
1390 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1391 
snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1392 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1393 				  struct snd_pcm_hw_rule *rule)
1394 {
1395 	unsigned int l = (unsigned long) rule->private;
1396 	int width = l & 0xffff;
1397 	unsigned int msbits = l >> 16;
1398 	struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1399 	if (snd_interval_single(i) && snd_interval_value(i) == width)
1400 		params->msbits = msbits;
1401 	return 0;
1402 }
1403 
1404 /**
1405  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1406  * @runtime: PCM runtime instance
1407  * @cond: condition bits
1408  * @width: sample bits width
1409  * @msbits: msbits width
1410  *
1411  * Return: Zero if successful, or a negative error code on failure.
1412  */
snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime * runtime,unsigned int cond,unsigned int width,unsigned int msbits)1413 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1414 				 unsigned int cond,
1415 				 unsigned int width,
1416 				 unsigned int msbits)
1417 {
1418 	unsigned long l = (msbits << 16) | width;
1419 	return snd_pcm_hw_rule_add(runtime, cond, -1,
1420 				    snd_pcm_hw_rule_msbits,
1421 				    (void*) l,
1422 				    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1423 }
1424 
1425 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1426 
snd_pcm_hw_rule_step(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1427 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1428 				struct snd_pcm_hw_rule *rule)
1429 {
1430 	unsigned long step = (unsigned long) rule->private;
1431 	return snd_interval_step(hw_param_interval(params, rule->var), step);
1432 }
1433 
1434 /**
1435  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1436  * @runtime: PCM runtime instance
1437  * @cond: condition bits
1438  * @var: hw_params variable to apply the step constraint
1439  * @step: step size
1440  *
1441  * Return: Zero if successful, or a negative error code on failure.
1442  */
snd_pcm_hw_constraint_step(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,unsigned long step)1443 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1444 			       unsigned int cond,
1445 			       snd_pcm_hw_param_t var,
1446 			       unsigned long step)
1447 {
1448 	return snd_pcm_hw_rule_add(runtime, cond, var,
1449 				   snd_pcm_hw_rule_step, (void *) step,
1450 				   var, -1);
1451 }
1452 
1453 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1454 
snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1455 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1456 {
1457 	static unsigned int pow2_sizes[] = {
1458 		1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1459 		1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1460 		1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1461 		1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1462 	};
1463 	return snd_interval_list(hw_param_interval(params, rule->var),
1464 				 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1465 }
1466 
1467 /**
1468  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1469  * @runtime: PCM runtime instance
1470  * @cond: condition bits
1471  * @var: hw_params variable to apply the power-of-2 constraint
1472  *
1473  * Return: Zero if successful, or a negative error code on failure.
1474  */
snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var)1475 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1476 			       unsigned int cond,
1477 			       snd_pcm_hw_param_t var)
1478 {
1479 	return snd_pcm_hw_rule_add(runtime, cond, var,
1480 				   snd_pcm_hw_rule_pow2, NULL,
1481 				   var, -1);
1482 }
1483 
1484 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1485 
snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1486 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1487 					   struct snd_pcm_hw_rule *rule)
1488 {
1489 	unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1490 	struct snd_interval *rate;
1491 
1492 	rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1493 	return snd_interval_list(rate, 1, &base_rate, 0);
1494 }
1495 
1496 /**
1497  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1498  * @runtime: PCM runtime instance
1499  * @base_rate: the rate at which the hardware does not resample
1500  *
1501  * Return: Zero if successful, or a negative error code on failure.
1502  */
snd_pcm_hw_rule_noresample(struct snd_pcm_runtime * runtime,unsigned int base_rate)1503 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1504 			       unsigned int base_rate)
1505 {
1506 	return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1507 				   SNDRV_PCM_HW_PARAM_RATE,
1508 				   snd_pcm_hw_rule_noresample_func,
1509 				   (void *)(uintptr_t)base_rate,
1510 				   SNDRV_PCM_HW_PARAM_RATE, -1);
1511 }
1512 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1513 
_snd_pcm_hw_param_any(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1514 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1515 				  snd_pcm_hw_param_t var)
1516 {
1517 	if (hw_is_mask(var)) {
1518 		snd_mask_any(hw_param_mask(params, var));
1519 		params->cmask |= 1 << var;
1520 		params->rmask |= 1 << var;
1521 		return;
1522 	}
1523 	if (hw_is_interval(var)) {
1524 		snd_interval_any(hw_param_interval(params, var));
1525 		params->cmask |= 1 << var;
1526 		params->rmask |= 1 << var;
1527 		return;
1528 	}
1529 	snd_BUG();
1530 }
1531 
_snd_pcm_hw_params_any(struct snd_pcm_hw_params * params)1532 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1533 {
1534 	unsigned int k;
1535 	memset(params, 0, sizeof(*params));
1536 	for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1537 		_snd_pcm_hw_param_any(params, k);
1538 	for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1539 		_snd_pcm_hw_param_any(params, k);
1540 	params->info = ~0U;
1541 }
1542 
1543 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1544 
1545 /**
1546  * snd_pcm_hw_param_value - return @params field @var value
1547  * @params: the hw_params instance
1548  * @var: parameter to retrieve
1549  * @dir: pointer to the direction (-1,0,1) or %NULL
1550  *
1551  * Return: The value for field @var if it's fixed in configuration space
1552  * defined by @params. -%EINVAL otherwise.
1553  */
snd_pcm_hw_param_value(const struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var,int * dir)1554 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1555 			   snd_pcm_hw_param_t var, int *dir)
1556 {
1557 	if (hw_is_mask(var)) {
1558 		const struct snd_mask *mask = hw_param_mask_c(params, var);
1559 		if (!snd_mask_single(mask))
1560 			return -EINVAL;
1561 		if (dir)
1562 			*dir = 0;
1563 		return snd_mask_value(mask);
1564 	}
1565 	if (hw_is_interval(var)) {
1566 		const struct snd_interval *i = hw_param_interval_c(params, var);
1567 		if (!snd_interval_single(i))
1568 			return -EINVAL;
1569 		if (dir)
1570 			*dir = i->openmin;
1571 		return snd_interval_value(i);
1572 	}
1573 	return -EINVAL;
1574 }
1575 
1576 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1577 
_snd_pcm_hw_param_setempty(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1578 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1579 				snd_pcm_hw_param_t var)
1580 {
1581 	if (hw_is_mask(var)) {
1582 		snd_mask_none(hw_param_mask(params, var));
1583 		params->cmask |= 1 << var;
1584 		params->rmask |= 1 << var;
1585 	} else if (hw_is_interval(var)) {
1586 		snd_interval_none(hw_param_interval(params, var));
1587 		params->cmask |= 1 << var;
1588 		params->rmask |= 1 << var;
1589 	} else {
1590 		snd_BUG();
1591 	}
1592 }
1593 
1594 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1595 
_snd_pcm_hw_param_first(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1596 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1597 				   snd_pcm_hw_param_t var)
1598 {
1599 	int changed;
1600 	if (hw_is_mask(var))
1601 		changed = snd_mask_refine_first(hw_param_mask(params, var));
1602 	else if (hw_is_interval(var))
1603 		changed = snd_interval_refine_first(hw_param_interval(params, var));
1604 	else
1605 		return -EINVAL;
1606 	if (changed) {
1607 		params->cmask |= 1 << var;
1608 		params->rmask |= 1 << var;
1609 	}
1610 	return changed;
1611 }
1612 
1613 
1614 /**
1615  * snd_pcm_hw_param_first - refine config space and return minimum value
1616  * @pcm: PCM instance
1617  * @params: the hw_params instance
1618  * @var: parameter to retrieve
1619  * @dir: pointer to the direction (-1,0,1) or %NULL
1620  *
1621  * Inside configuration space defined by @params remove from @var all
1622  * values > minimum. Reduce configuration space accordingly.
1623  *
1624  * Return: The minimum, or a negative error code on failure.
1625  */
snd_pcm_hw_param_first(struct snd_pcm_substream * pcm,struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var,int * dir)1626 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1627 			   struct snd_pcm_hw_params *params,
1628 			   snd_pcm_hw_param_t var, int *dir)
1629 {
1630 	int changed = _snd_pcm_hw_param_first(params, var);
1631 	if (changed < 0)
1632 		return changed;
1633 	if (params->rmask) {
1634 		int err = snd_pcm_hw_refine(pcm, params);
1635 		if (err < 0)
1636 			return err;
1637 	}
1638 	return snd_pcm_hw_param_value(params, var, dir);
1639 }
1640 
1641 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1642 
_snd_pcm_hw_param_last(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1643 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1644 				  snd_pcm_hw_param_t var)
1645 {
1646 	int changed;
1647 	if (hw_is_mask(var))
1648 		changed = snd_mask_refine_last(hw_param_mask(params, var));
1649 	else if (hw_is_interval(var))
1650 		changed = snd_interval_refine_last(hw_param_interval(params, var));
1651 	else
1652 		return -EINVAL;
1653 	if (changed) {
1654 		params->cmask |= 1 << var;
1655 		params->rmask |= 1 << var;
1656 	}
1657 	return changed;
1658 }
1659 
1660 
1661 /**
1662  * snd_pcm_hw_param_last - refine config space and return maximum value
1663  * @pcm: PCM instance
1664  * @params: the hw_params instance
1665  * @var: parameter to retrieve
1666  * @dir: pointer to the direction (-1,0,1) or %NULL
1667  *
1668  * Inside configuration space defined by @params remove from @var all
1669  * values < maximum. Reduce configuration space accordingly.
1670  *
1671  * Return: The maximum, or a negative error code on failure.
1672  */
snd_pcm_hw_param_last(struct snd_pcm_substream * pcm,struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var,int * dir)1673 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1674 			  struct snd_pcm_hw_params *params,
1675 			  snd_pcm_hw_param_t var, int *dir)
1676 {
1677 	int changed = _snd_pcm_hw_param_last(params, var);
1678 	if (changed < 0)
1679 		return changed;
1680 	if (params->rmask) {
1681 		int err = snd_pcm_hw_refine(pcm, params);
1682 		if (err < 0)
1683 			return err;
1684 	}
1685 	return snd_pcm_hw_param_value(params, var, dir);
1686 }
1687 
1688 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1689 
1690 /**
1691  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1692  * @pcm: PCM instance
1693  * @params: the hw_params instance
1694  *
1695  * Choose one configuration from configuration space defined by @params.
1696  * The configuration chosen is that obtained fixing in this order:
1697  * first access, first format, first subformat, min channels,
1698  * min rate, min period time, max buffer size, min tick time
1699  *
1700  * Return: Zero if successful, or a negative error code on failure.
1701  */
snd_pcm_hw_params_choose(struct snd_pcm_substream * pcm,struct snd_pcm_hw_params * params)1702 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1703 			     struct snd_pcm_hw_params *params)
1704 {
1705 	static int vars[] = {
1706 		SNDRV_PCM_HW_PARAM_ACCESS,
1707 		SNDRV_PCM_HW_PARAM_FORMAT,
1708 		SNDRV_PCM_HW_PARAM_SUBFORMAT,
1709 		SNDRV_PCM_HW_PARAM_CHANNELS,
1710 		SNDRV_PCM_HW_PARAM_RATE,
1711 		SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1712 		SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1713 		SNDRV_PCM_HW_PARAM_TICK_TIME,
1714 		-1
1715 	};
1716 	int err, *v;
1717 
1718 	for (v = vars; *v != -1; v++) {
1719 		if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1720 			err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1721 		else
1722 			err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1723 		if (snd_BUG_ON(err < 0))
1724 			return err;
1725 	}
1726 	return 0;
1727 }
1728 
snd_pcm_lib_ioctl_reset(struct snd_pcm_substream * substream,void * arg)1729 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1730 				   void *arg)
1731 {
1732 	struct snd_pcm_runtime *runtime = substream->runtime;
1733 	unsigned long flags;
1734 	snd_pcm_stream_lock_irqsave(substream, flags);
1735 	if (snd_pcm_running(substream) &&
1736 	    snd_pcm_update_hw_ptr(substream) >= 0)
1737 		runtime->status->hw_ptr %= runtime->buffer_size;
1738 	else {
1739 		runtime->status->hw_ptr = 0;
1740 		runtime->hw_ptr_wrap = 0;
1741 	}
1742 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1743 	return 0;
1744 }
1745 
snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream * substream,void * arg)1746 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1747 					  void *arg)
1748 {
1749 	struct snd_pcm_channel_info *info = arg;
1750 	struct snd_pcm_runtime *runtime = substream->runtime;
1751 	int width;
1752 	if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1753 		info->offset = -1;
1754 		return 0;
1755 	}
1756 	width = snd_pcm_format_physical_width(runtime->format);
1757 	if (width < 0)
1758 		return width;
1759 	info->offset = 0;
1760 	switch (runtime->access) {
1761 	case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1762 	case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1763 		info->first = info->channel * width;
1764 		info->step = runtime->channels * width;
1765 		break;
1766 	case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1767 	case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1768 	{
1769 		size_t size = runtime->dma_bytes / runtime->channels;
1770 		info->first = info->channel * size * 8;
1771 		info->step = width;
1772 		break;
1773 	}
1774 	default:
1775 		snd_BUG();
1776 		break;
1777 	}
1778 	return 0;
1779 }
1780 
snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream * substream,void * arg)1781 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1782 				       void *arg)
1783 {
1784 	struct snd_pcm_hw_params *params = arg;
1785 	snd_pcm_format_t format;
1786 	int channels;
1787 	ssize_t frame_size;
1788 
1789 	params->fifo_size = substream->runtime->hw.fifo_size;
1790 	if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1791 		format = params_format(params);
1792 		channels = params_channels(params);
1793 		frame_size = snd_pcm_format_size(format, channels);
1794 		if (frame_size > 0)
1795 			params->fifo_size /= (unsigned)frame_size;
1796 	}
1797 	return 0;
1798 }
1799 
1800 /**
1801  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1802  * @substream: the pcm substream instance
1803  * @cmd: ioctl command
1804  * @arg: ioctl argument
1805  *
1806  * Processes the generic ioctl commands for PCM.
1807  * Can be passed as the ioctl callback for PCM ops.
1808  *
1809  * Return: Zero if successful, or a negative error code on failure.
1810  */
snd_pcm_lib_ioctl(struct snd_pcm_substream * substream,unsigned int cmd,void * arg)1811 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1812 		      unsigned int cmd, void *arg)
1813 {
1814 	switch (cmd) {
1815 	case SNDRV_PCM_IOCTL1_INFO:
1816 		return 0;
1817 	case SNDRV_PCM_IOCTL1_RESET:
1818 		return snd_pcm_lib_ioctl_reset(substream, arg);
1819 	case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1820 		return snd_pcm_lib_ioctl_channel_info(substream, arg);
1821 	case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1822 		return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1823 	}
1824 	return -ENXIO;
1825 }
1826 
1827 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1828 
1829 /**
1830  * snd_pcm_period_elapsed - update the pcm status for the next period
1831  * @substream: the pcm substream instance
1832  *
1833  * This function is called from the interrupt handler when the
1834  * PCM has processed the period size.  It will update the current
1835  * pointer, wake up sleepers, etc.
1836  *
1837  * Even if more than one periods have elapsed since the last call, you
1838  * have to call this only once.
1839  */
snd_pcm_period_elapsed(struct snd_pcm_substream * substream)1840 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1841 {
1842 	struct snd_pcm_runtime *runtime;
1843 	unsigned long flags;
1844 
1845 	if (PCM_RUNTIME_CHECK(substream))
1846 		return;
1847 	runtime = substream->runtime;
1848 
1849 	if (runtime->transfer_ack_begin)
1850 		runtime->transfer_ack_begin(substream);
1851 
1852 	snd_pcm_stream_lock_irqsave(substream, flags);
1853 	if (!snd_pcm_running(substream) ||
1854 	    snd_pcm_update_hw_ptr0(substream, 1) < 0)
1855 		goto _end;
1856 
1857 	if (substream->timer_running)
1858 		snd_timer_interrupt(substream->timer, 1);
1859  _end:
1860 	kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1861 	snd_pcm_stream_unlock_irqrestore(substream, flags);
1862 	if (runtime->transfer_ack_end)
1863 		runtime->transfer_ack_end(substream);
1864 }
1865 
1866 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1867 
1868 /*
1869  * Wait until avail_min data becomes available
1870  * Returns a negative error code if any error occurs during operation.
1871  * The available space is stored on availp.  When err = 0 and avail = 0
1872  * on the capture stream, it indicates the stream is in DRAINING state.
1873  */
wait_for_avail(struct snd_pcm_substream * substream,snd_pcm_uframes_t * availp)1874 static int wait_for_avail(struct snd_pcm_substream *substream,
1875 			      snd_pcm_uframes_t *availp)
1876 {
1877 	struct snd_pcm_runtime *runtime = substream->runtime;
1878 	int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1879 	wait_queue_t wait;
1880 	int err = 0;
1881 	snd_pcm_uframes_t avail = 0;
1882 	long wait_time, tout;
1883 
1884 	init_waitqueue_entry(&wait, current);
1885 	set_current_state(TASK_INTERRUPTIBLE);
1886 	add_wait_queue(&runtime->tsleep, &wait);
1887 
1888 	if (runtime->no_period_wakeup)
1889 		wait_time = MAX_SCHEDULE_TIMEOUT;
1890 	else {
1891 		wait_time = 10;
1892 		if (runtime->rate) {
1893 			long t = runtime->period_size * 2 / runtime->rate;
1894 			wait_time = max(t, wait_time);
1895 		}
1896 		wait_time = msecs_to_jiffies(wait_time * 1000);
1897 	}
1898 
1899 	for (;;) {
1900 		if (signal_pending(current)) {
1901 			err = -ERESTARTSYS;
1902 			break;
1903 		}
1904 
1905 		/*
1906 		 * We need to check if space became available already
1907 		 * (and thus the wakeup happened already) first to close
1908 		 * the race of space already having become available.
1909 		 * This check must happen after been added to the waitqueue
1910 		 * and having current state be INTERRUPTIBLE.
1911 		 */
1912 		if (is_playback)
1913 			avail = snd_pcm_playback_avail(runtime);
1914 		else
1915 			avail = snd_pcm_capture_avail(runtime);
1916 		if (avail >= runtime->twake)
1917 			break;
1918 		snd_pcm_stream_unlock_irq(substream);
1919 
1920 		tout = schedule_timeout(wait_time);
1921 
1922 		snd_pcm_stream_lock_irq(substream);
1923 		set_current_state(TASK_INTERRUPTIBLE);
1924 		switch (runtime->status->state) {
1925 		case SNDRV_PCM_STATE_SUSPENDED:
1926 			err = -ESTRPIPE;
1927 			goto _endloop;
1928 		case SNDRV_PCM_STATE_XRUN:
1929 			err = -EPIPE;
1930 			goto _endloop;
1931 		case SNDRV_PCM_STATE_DRAINING:
1932 			if (is_playback)
1933 				err = -EPIPE;
1934 			else
1935 				avail = 0; /* indicate draining */
1936 			goto _endloop;
1937 		case SNDRV_PCM_STATE_OPEN:
1938 		case SNDRV_PCM_STATE_SETUP:
1939 		case SNDRV_PCM_STATE_DISCONNECTED:
1940 			err = -EBADFD;
1941 			goto _endloop;
1942 		case SNDRV_PCM_STATE_PAUSED:
1943 			continue;
1944 		}
1945 		if (!tout) {
1946 			pcm_dbg(substream->pcm,
1947 				"%s write error (DMA or IRQ trouble?)\n",
1948 				is_playback ? "playback" : "capture");
1949 			err = -EIO;
1950 			break;
1951 		}
1952 	}
1953  _endloop:
1954 	set_current_state(TASK_RUNNING);
1955 	remove_wait_queue(&runtime->tsleep, &wait);
1956 	*availp = avail;
1957 	return err;
1958 }
1959 
snd_pcm_lib_write_transfer(struct snd_pcm_substream * substream,unsigned int hwoff,unsigned long data,unsigned int off,snd_pcm_uframes_t frames)1960 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1961 				      unsigned int hwoff,
1962 				      unsigned long data, unsigned int off,
1963 				      snd_pcm_uframes_t frames)
1964 {
1965 	struct snd_pcm_runtime *runtime = substream->runtime;
1966 	int err;
1967 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1968 	if (substream->ops->copy) {
1969 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1970 			return err;
1971 	} else {
1972 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1973 		if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1974 			return -EFAULT;
1975 	}
1976 	return 0;
1977 }
1978 
1979 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1980 			  unsigned long data, unsigned int off,
1981 			  snd_pcm_uframes_t size);
1982 
snd_pcm_lib_write1(struct snd_pcm_substream * substream,unsigned long data,snd_pcm_uframes_t size,int nonblock,transfer_f transfer)1983 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1984 					    unsigned long data,
1985 					    snd_pcm_uframes_t size,
1986 					    int nonblock,
1987 					    transfer_f transfer)
1988 {
1989 	struct snd_pcm_runtime *runtime = substream->runtime;
1990 	snd_pcm_uframes_t xfer = 0;
1991 	snd_pcm_uframes_t offset = 0;
1992 	snd_pcm_uframes_t avail;
1993 	int err = 0;
1994 
1995 	if (size == 0)
1996 		return 0;
1997 
1998 	snd_pcm_stream_lock_irq(substream);
1999 	switch (runtime->status->state) {
2000 	case SNDRV_PCM_STATE_PREPARED:
2001 	case SNDRV_PCM_STATE_RUNNING:
2002 	case SNDRV_PCM_STATE_PAUSED:
2003 		break;
2004 	case SNDRV_PCM_STATE_XRUN:
2005 		err = -EPIPE;
2006 		goto _end_unlock;
2007 	case SNDRV_PCM_STATE_SUSPENDED:
2008 		err = -ESTRPIPE;
2009 		goto _end_unlock;
2010 	default:
2011 		err = -EBADFD;
2012 		goto _end_unlock;
2013 	}
2014 
2015 	runtime->twake = runtime->control->avail_min ? : 1;
2016 	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2017 		snd_pcm_update_hw_ptr(substream);
2018 	avail = snd_pcm_playback_avail(runtime);
2019 	while (size > 0) {
2020 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2021 		snd_pcm_uframes_t cont;
2022 		if (!avail) {
2023 			if (nonblock) {
2024 				err = -EAGAIN;
2025 				goto _end_unlock;
2026 			}
2027 			runtime->twake = min_t(snd_pcm_uframes_t, size,
2028 					runtime->control->avail_min ? : 1);
2029 			err = wait_for_avail(substream, &avail);
2030 			if (err < 0)
2031 				goto _end_unlock;
2032 		}
2033 		frames = size > avail ? avail : size;
2034 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2035 		if (frames > cont)
2036 			frames = cont;
2037 		if (snd_BUG_ON(!frames)) {
2038 			runtime->twake = 0;
2039 			snd_pcm_stream_unlock_irq(substream);
2040 			return -EINVAL;
2041 		}
2042 		appl_ptr = runtime->control->appl_ptr;
2043 		appl_ofs = appl_ptr % runtime->buffer_size;
2044 		snd_pcm_stream_unlock_irq(substream);
2045 		err = transfer(substream, appl_ofs, data, offset, frames);
2046 		snd_pcm_stream_lock_irq(substream);
2047 		if (err < 0)
2048 			goto _end_unlock;
2049 		switch (runtime->status->state) {
2050 		case SNDRV_PCM_STATE_XRUN:
2051 			err = -EPIPE;
2052 			goto _end_unlock;
2053 		case SNDRV_PCM_STATE_SUSPENDED:
2054 			err = -ESTRPIPE;
2055 			goto _end_unlock;
2056 		default:
2057 			break;
2058 		}
2059 		appl_ptr += frames;
2060 		if (appl_ptr >= runtime->boundary)
2061 			appl_ptr -= runtime->boundary;
2062 		runtime->control->appl_ptr = appl_ptr;
2063 		if (substream->ops->ack)
2064 			substream->ops->ack(substream);
2065 
2066 		offset += frames;
2067 		size -= frames;
2068 		xfer += frames;
2069 		avail -= frames;
2070 		if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2071 		    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2072 			err = snd_pcm_start(substream);
2073 			if (err < 0)
2074 				goto _end_unlock;
2075 		}
2076 	}
2077  _end_unlock:
2078 	runtime->twake = 0;
2079 	if (xfer > 0 && err >= 0)
2080 		snd_pcm_update_state(substream, runtime);
2081 	snd_pcm_stream_unlock_irq(substream);
2082 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2083 }
2084 
2085 /* sanity-check for read/write methods */
pcm_sanity_check(struct snd_pcm_substream * substream)2086 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2087 {
2088 	struct snd_pcm_runtime *runtime;
2089 	if (PCM_RUNTIME_CHECK(substream))
2090 		return -ENXIO;
2091 	runtime = substream->runtime;
2092 	if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2093 		return -EINVAL;
2094 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2095 		return -EBADFD;
2096 	return 0;
2097 }
2098 
snd_pcm_lib_write(struct snd_pcm_substream * substream,const void __user * buf,snd_pcm_uframes_t size)2099 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2100 {
2101 	struct snd_pcm_runtime *runtime;
2102 	int nonblock;
2103 	int err;
2104 
2105 	err = pcm_sanity_check(substream);
2106 	if (err < 0)
2107 		return err;
2108 	runtime = substream->runtime;
2109 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2110 
2111 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2112 	    runtime->channels > 1)
2113 		return -EINVAL;
2114 	return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2115 				  snd_pcm_lib_write_transfer);
2116 }
2117 
2118 EXPORT_SYMBOL(snd_pcm_lib_write);
2119 
snd_pcm_lib_writev_transfer(struct snd_pcm_substream * substream,unsigned int hwoff,unsigned long data,unsigned int off,snd_pcm_uframes_t frames)2120 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2121 				       unsigned int hwoff,
2122 				       unsigned long data, unsigned int off,
2123 				       snd_pcm_uframes_t frames)
2124 {
2125 	struct snd_pcm_runtime *runtime = substream->runtime;
2126 	int err;
2127 	void __user **bufs = (void __user **)data;
2128 	int channels = runtime->channels;
2129 	int c;
2130 	if (substream->ops->copy) {
2131 		if (snd_BUG_ON(!substream->ops->silence))
2132 			return -EINVAL;
2133 		for (c = 0; c < channels; ++c, ++bufs) {
2134 			if (*bufs == NULL) {
2135 				if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2136 					return err;
2137 			} else {
2138 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2139 				if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2140 					return err;
2141 			}
2142 		}
2143 	} else {
2144 		/* default transfer behaviour */
2145 		size_t dma_csize = runtime->dma_bytes / channels;
2146 		for (c = 0; c < channels; ++c, ++bufs) {
2147 			char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2148 			if (*bufs == NULL) {
2149 				snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2150 			} else {
2151 				char __user *buf = *bufs + samples_to_bytes(runtime, off);
2152 				if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2153 					return -EFAULT;
2154 			}
2155 		}
2156 	}
2157 	return 0;
2158 }
2159 
snd_pcm_lib_writev(struct snd_pcm_substream * substream,void __user ** bufs,snd_pcm_uframes_t frames)2160 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2161 				     void __user **bufs,
2162 				     snd_pcm_uframes_t frames)
2163 {
2164 	struct snd_pcm_runtime *runtime;
2165 	int nonblock;
2166 	int err;
2167 
2168 	err = pcm_sanity_check(substream);
2169 	if (err < 0)
2170 		return err;
2171 	runtime = substream->runtime;
2172 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2173 
2174 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2175 		return -EINVAL;
2176 	return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2177 				  nonblock, snd_pcm_lib_writev_transfer);
2178 }
2179 
2180 EXPORT_SYMBOL(snd_pcm_lib_writev);
2181 
snd_pcm_lib_read_transfer(struct snd_pcm_substream * substream,unsigned int hwoff,unsigned long data,unsigned int off,snd_pcm_uframes_t frames)2182 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2183 				     unsigned int hwoff,
2184 				     unsigned long data, unsigned int off,
2185 				     snd_pcm_uframes_t frames)
2186 {
2187 	struct snd_pcm_runtime *runtime = substream->runtime;
2188 	int err;
2189 	char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2190 	if (substream->ops->copy) {
2191 		if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2192 			return err;
2193 	} else {
2194 		char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2195 		if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2196 			return -EFAULT;
2197 	}
2198 	return 0;
2199 }
2200 
snd_pcm_lib_read1(struct snd_pcm_substream * substream,unsigned long data,snd_pcm_uframes_t size,int nonblock,transfer_f transfer)2201 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2202 					   unsigned long data,
2203 					   snd_pcm_uframes_t size,
2204 					   int nonblock,
2205 					   transfer_f transfer)
2206 {
2207 	struct snd_pcm_runtime *runtime = substream->runtime;
2208 	snd_pcm_uframes_t xfer = 0;
2209 	snd_pcm_uframes_t offset = 0;
2210 	snd_pcm_uframes_t avail;
2211 	int err = 0;
2212 
2213 	if (size == 0)
2214 		return 0;
2215 
2216 	snd_pcm_stream_lock_irq(substream);
2217 	switch (runtime->status->state) {
2218 	case SNDRV_PCM_STATE_PREPARED:
2219 		if (size >= runtime->start_threshold) {
2220 			err = snd_pcm_start(substream);
2221 			if (err < 0)
2222 				goto _end_unlock;
2223 		}
2224 		break;
2225 	case SNDRV_PCM_STATE_DRAINING:
2226 	case SNDRV_PCM_STATE_RUNNING:
2227 	case SNDRV_PCM_STATE_PAUSED:
2228 		break;
2229 	case SNDRV_PCM_STATE_XRUN:
2230 		err = -EPIPE;
2231 		goto _end_unlock;
2232 	case SNDRV_PCM_STATE_SUSPENDED:
2233 		err = -ESTRPIPE;
2234 		goto _end_unlock;
2235 	default:
2236 		err = -EBADFD;
2237 		goto _end_unlock;
2238 	}
2239 
2240 	runtime->twake = runtime->control->avail_min ? : 1;
2241 	if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2242 		snd_pcm_update_hw_ptr(substream);
2243 	avail = snd_pcm_capture_avail(runtime);
2244 	while (size > 0) {
2245 		snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2246 		snd_pcm_uframes_t cont;
2247 		if (!avail) {
2248 			if (runtime->status->state ==
2249 			    SNDRV_PCM_STATE_DRAINING) {
2250 				snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2251 				goto _end_unlock;
2252 			}
2253 			if (nonblock) {
2254 				err = -EAGAIN;
2255 				goto _end_unlock;
2256 			}
2257 			runtime->twake = min_t(snd_pcm_uframes_t, size,
2258 					runtime->control->avail_min ? : 1);
2259 			err = wait_for_avail(substream, &avail);
2260 			if (err < 0)
2261 				goto _end_unlock;
2262 			if (!avail)
2263 				continue; /* draining */
2264 		}
2265 		frames = size > avail ? avail : size;
2266 		cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2267 		if (frames > cont)
2268 			frames = cont;
2269 		if (snd_BUG_ON(!frames)) {
2270 			runtime->twake = 0;
2271 			snd_pcm_stream_unlock_irq(substream);
2272 			return -EINVAL;
2273 		}
2274 		appl_ptr = runtime->control->appl_ptr;
2275 		appl_ofs = appl_ptr % runtime->buffer_size;
2276 		snd_pcm_stream_unlock_irq(substream);
2277 		err = transfer(substream, appl_ofs, data, offset, frames);
2278 		snd_pcm_stream_lock_irq(substream);
2279 		if (err < 0)
2280 			goto _end_unlock;
2281 		switch (runtime->status->state) {
2282 		case SNDRV_PCM_STATE_XRUN:
2283 			err = -EPIPE;
2284 			goto _end_unlock;
2285 		case SNDRV_PCM_STATE_SUSPENDED:
2286 			err = -ESTRPIPE;
2287 			goto _end_unlock;
2288 		default:
2289 			break;
2290 		}
2291 		appl_ptr += frames;
2292 		if (appl_ptr >= runtime->boundary)
2293 			appl_ptr -= runtime->boundary;
2294 		runtime->control->appl_ptr = appl_ptr;
2295 		if (substream->ops->ack)
2296 			substream->ops->ack(substream);
2297 
2298 		offset += frames;
2299 		size -= frames;
2300 		xfer += frames;
2301 		avail -= frames;
2302 	}
2303  _end_unlock:
2304 	runtime->twake = 0;
2305 	if (xfer > 0 && err >= 0)
2306 		snd_pcm_update_state(substream, runtime);
2307 	snd_pcm_stream_unlock_irq(substream);
2308 	return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2309 }
2310 
snd_pcm_lib_read(struct snd_pcm_substream * substream,void __user * buf,snd_pcm_uframes_t size)2311 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2312 {
2313 	struct snd_pcm_runtime *runtime;
2314 	int nonblock;
2315 	int err;
2316 
2317 	err = pcm_sanity_check(substream);
2318 	if (err < 0)
2319 		return err;
2320 	runtime = substream->runtime;
2321 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2322 	if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2323 		return -EINVAL;
2324 	return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2325 }
2326 
2327 EXPORT_SYMBOL(snd_pcm_lib_read);
2328 
snd_pcm_lib_readv_transfer(struct snd_pcm_substream * substream,unsigned int hwoff,unsigned long data,unsigned int off,snd_pcm_uframes_t frames)2329 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2330 				      unsigned int hwoff,
2331 				      unsigned long data, unsigned int off,
2332 				      snd_pcm_uframes_t frames)
2333 {
2334 	struct snd_pcm_runtime *runtime = substream->runtime;
2335 	int err;
2336 	void __user **bufs = (void __user **)data;
2337 	int channels = runtime->channels;
2338 	int c;
2339 	if (substream->ops->copy) {
2340 		for (c = 0; c < channels; ++c, ++bufs) {
2341 			char __user *buf;
2342 			if (*bufs == NULL)
2343 				continue;
2344 			buf = *bufs + samples_to_bytes(runtime, off);
2345 			if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2346 				return err;
2347 		}
2348 	} else {
2349 		snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2350 		for (c = 0; c < channels; ++c, ++bufs) {
2351 			char *hwbuf;
2352 			char __user *buf;
2353 			if (*bufs == NULL)
2354 				continue;
2355 
2356 			hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2357 			buf = *bufs + samples_to_bytes(runtime, off);
2358 			if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2359 				return -EFAULT;
2360 		}
2361 	}
2362 	return 0;
2363 }
2364 
snd_pcm_lib_readv(struct snd_pcm_substream * substream,void __user ** bufs,snd_pcm_uframes_t frames)2365 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2366 				    void __user **bufs,
2367 				    snd_pcm_uframes_t frames)
2368 {
2369 	struct snd_pcm_runtime *runtime;
2370 	int nonblock;
2371 	int err;
2372 
2373 	err = pcm_sanity_check(substream);
2374 	if (err < 0)
2375 		return err;
2376 	runtime = substream->runtime;
2377 	if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2378 		return -EBADFD;
2379 
2380 	nonblock = !!(substream->f_flags & O_NONBLOCK);
2381 	if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2382 		return -EINVAL;
2383 	return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2384 }
2385 
2386 EXPORT_SYMBOL(snd_pcm_lib_readv);
2387 
2388 /*
2389  * standard channel mapping helpers
2390  */
2391 
2392 /* default channel maps for multi-channel playbacks, up to 8 channels */
2393 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2394 	{ .channels = 1,
2395 	  .map = { SNDRV_CHMAP_MONO } },
2396 	{ .channels = 2,
2397 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2398 	{ .channels = 4,
2399 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2400 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2401 	{ .channels = 6,
2402 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2403 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2404 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2405 	{ .channels = 8,
2406 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2407 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2408 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2409 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2410 	{ }
2411 };
2412 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2413 
2414 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2415 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2416 	{ .channels = 1,
2417 	  .map = { SNDRV_CHMAP_MONO } },
2418 	{ .channels = 2,
2419 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2420 	{ .channels = 4,
2421 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2422 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2423 	{ .channels = 6,
2424 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2425 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2426 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2427 	{ .channels = 8,
2428 	  .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2429 		   SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2430 		   SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2431 		   SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2432 	{ }
2433 };
2434 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2435 
valid_chmap_channels(const struct snd_pcm_chmap * info,int ch)2436 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2437 {
2438 	if (ch > info->max_channels)
2439 		return false;
2440 	return !info->channel_mask || (info->channel_mask & (1U << ch));
2441 }
2442 
pcm_chmap_ctl_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2443 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2444 			      struct snd_ctl_elem_info *uinfo)
2445 {
2446 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2447 
2448 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2449 	uinfo->count = 0;
2450 	uinfo->count = info->max_channels;
2451 	uinfo->value.integer.min = 0;
2452 	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2453 	return 0;
2454 }
2455 
2456 /* get callback for channel map ctl element
2457  * stores the channel position firstly matching with the current channels
2458  */
pcm_chmap_ctl_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2459 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2460 			     struct snd_ctl_elem_value *ucontrol)
2461 {
2462 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2463 	unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2464 	struct snd_pcm_substream *substream;
2465 	const struct snd_pcm_chmap_elem *map;
2466 
2467 	if (snd_BUG_ON(!info->chmap))
2468 		return -EINVAL;
2469 	substream = snd_pcm_chmap_substream(info, idx);
2470 	if (!substream)
2471 		return -ENODEV;
2472 	memset(ucontrol->value.integer.value, 0,
2473 	       sizeof(ucontrol->value.integer.value));
2474 	if (!substream->runtime)
2475 		return 0; /* no channels set */
2476 	for (map = info->chmap; map->channels; map++) {
2477 		int i;
2478 		if (map->channels == substream->runtime->channels &&
2479 		    valid_chmap_channels(info, map->channels)) {
2480 			for (i = 0; i < map->channels; i++)
2481 				ucontrol->value.integer.value[i] = map->map[i];
2482 			return 0;
2483 		}
2484 	}
2485 	return -EINVAL;
2486 }
2487 
2488 /* tlv callback for channel map ctl element
2489  * expands the pre-defined channel maps in a form of TLV
2490  */
pcm_chmap_ctl_tlv(struct snd_kcontrol * kcontrol,int op_flag,unsigned int size,unsigned int __user * tlv)2491 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2492 			     unsigned int size, unsigned int __user *tlv)
2493 {
2494 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2495 	const struct snd_pcm_chmap_elem *map;
2496 	unsigned int __user *dst;
2497 	int c, count = 0;
2498 
2499 	if (snd_BUG_ON(!info->chmap))
2500 		return -EINVAL;
2501 	if (size < 8)
2502 		return -ENOMEM;
2503 	if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2504 		return -EFAULT;
2505 	size -= 8;
2506 	dst = tlv + 2;
2507 	for (map = info->chmap; map->channels; map++) {
2508 		int chs_bytes = map->channels * 4;
2509 		if (!valid_chmap_channels(info, map->channels))
2510 			continue;
2511 		if (size < 8)
2512 			return -ENOMEM;
2513 		if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2514 		    put_user(chs_bytes, dst + 1))
2515 			return -EFAULT;
2516 		dst += 2;
2517 		size -= 8;
2518 		count += 8;
2519 		if (size < chs_bytes)
2520 			return -ENOMEM;
2521 		size -= chs_bytes;
2522 		count += chs_bytes;
2523 		for (c = 0; c < map->channels; c++) {
2524 			if (put_user(map->map[c], dst))
2525 				return -EFAULT;
2526 			dst++;
2527 		}
2528 	}
2529 	if (put_user(count, tlv + 1))
2530 		return -EFAULT;
2531 	return 0;
2532 }
2533 
pcm_chmap_ctl_private_free(struct snd_kcontrol * kcontrol)2534 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2535 {
2536 	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2537 	info->pcm->streams[info->stream].chmap_kctl = NULL;
2538 	kfree(info);
2539 }
2540 
2541 /**
2542  * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2543  * @pcm: the assigned PCM instance
2544  * @stream: stream direction
2545  * @chmap: channel map elements (for query)
2546  * @max_channels: the max number of channels for the stream
2547  * @private_value: the value passed to each kcontrol's private_value field
2548  * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2549  *
2550  * Create channel-mapping control elements assigned to the given PCM stream(s).
2551  * Return: Zero if successful, or a negative error value.
2552  */
snd_pcm_add_chmap_ctls(struct snd_pcm * pcm,int stream,const struct snd_pcm_chmap_elem * chmap,int max_channels,unsigned long private_value,struct snd_pcm_chmap ** info_ret)2553 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2554 			   const struct snd_pcm_chmap_elem *chmap,
2555 			   int max_channels,
2556 			   unsigned long private_value,
2557 			   struct snd_pcm_chmap **info_ret)
2558 {
2559 	struct snd_pcm_chmap *info;
2560 	struct snd_kcontrol_new knew = {
2561 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
2562 		.access = SNDRV_CTL_ELEM_ACCESS_READ |
2563 			SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2564 			SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2565 		.info = pcm_chmap_ctl_info,
2566 		.get = pcm_chmap_ctl_get,
2567 		.tlv.c = pcm_chmap_ctl_tlv,
2568 	};
2569 	int err;
2570 
2571 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2572 	if (!info)
2573 		return -ENOMEM;
2574 	info->pcm = pcm;
2575 	info->stream = stream;
2576 	info->chmap = chmap;
2577 	info->max_channels = max_channels;
2578 	if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2579 		knew.name = "Playback Channel Map";
2580 	else
2581 		knew.name = "Capture Channel Map";
2582 	knew.device = pcm->device;
2583 	knew.count = pcm->streams[stream].substream_count;
2584 	knew.private_value = private_value;
2585 	info->kctl = snd_ctl_new1(&knew, info);
2586 	if (!info->kctl) {
2587 		kfree(info);
2588 		return -ENOMEM;
2589 	}
2590 	info->kctl->private_free = pcm_chmap_ctl_private_free;
2591 	err = snd_ctl_add(pcm->card, info->kctl);
2592 	if (err < 0)
2593 		return err;
2594 	pcm->streams[stream].chmap_kctl = info->kctl;
2595 	if (info_ret)
2596 		*info_ret = info;
2597 	return 0;
2598 }
2599 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2600