1 /*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/tlv.h>
30 #include <sound/info.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/timer.h>
34
35 /*
36 * fill ring buffer with silence
37 * runtime->silence_start: starting pointer to silence area
38 * runtime->silence_filled: size filled with silence
39 * runtime->silence_threshold: threshold from application
40 * runtime->silence_size: maximal size from application
41 *
42 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
43 */
snd_pcm_playback_silence(struct snd_pcm_substream * substream,snd_pcm_uframes_t new_hw_ptr)44 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
45 {
46 struct snd_pcm_runtime *runtime = substream->runtime;
47 snd_pcm_uframes_t frames, ofs, transfer;
48
49 if (runtime->silence_size < runtime->boundary) {
50 snd_pcm_sframes_t noise_dist, n;
51 if (runtime->silence_start != runtime->control->appl_ptr) {
52 n = runtime->control->appl_ptr - runtime->silence_start;
53 if (n < 0)
54 n += runtime->boundary;
55 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
56 runtime->silence_filled -= n;
57 else
58 runtime->silence_filled = 0;
59 runtime->silence_start = runtime->control->appl_ptr;
60 }
61 if (runtime->silence_filled >= runtime->buffer_size)
62 return;
63 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
64 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
65 return;
66 frames = runtime->silence_threshold - noise_dist;
67 if (frames > runtime->silence_size)
68 frames = runtime->silence_size;
69 } else {
70 if (new_hw_ptr == ULONG_MAX) { /* initialization */
71 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
72 if (avail > runtime->buffer_size)
73 avail = runtime->buffer_size;
74 runtime->silence_filled = avail > 0 ? avail : 0;
75 runtime->silence_start = (runtime->status->hw_ptr +
76 runtime->silence_filled) %
77 runtime->boundary;
78 } else {
79 ofs = runtime->status->hw_ptr;
80 frames = new_hw_ptr - ofs;
81 if ((snd_pcm_sframes_t)frames < 0)
82 frames += runtime->boundary;
83 runtime->silence_filled -= frames;
84 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
85 runtime->silence_filled = 0;
86 runtime->silence_start = new_hw_ptr;
87 } else {
88 runtime->silence_start = ofs;
89 }
90 }
91 frames = runtime->buffer_size - runtime->silence_filled;
92 }
93 if (snd_BUG_ON(frames > runtime->buffer_size))
94 return;
95 if (frames == 0)
96 return;
97 ofs = runtime->silence_start % runtime->buffer_size;
98 while (frames > 0) {
99 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
100 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
101 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
102 if (substream->ops->silence) {
103 int err;
104 err = substream->ops->silence(substream, -1, ofs, transfer);
105 snd_BUG_ON(err < 0);
106 } else {
107 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
108 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
109 }
110 } else {
111 unsigned int c;
112 unsigned int channels = runtime->channels;
113 if (substream->ops->silence) {
114 for (c = 0; c < channels; ++c) {
115 int err;
116 err = substream->ops->silence(substream, c, ofs, transfer);
117 snd_BUG_ON(err < 0);
118 }
119 } else {
120 size_t dma_csize = runtime->dma_bytes / channels;
121 for (c = 0; c < channels; ++c) {
122 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
123 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
124 }
125 }
126 }
127 runtime->silence_filled += transfer;
128 frames -= transfer;
129 ofs = 0;
130 }
131 }
132
133 #ifdef CONFIG_SND_DEBUG
snd_pcm_debug_name(struct snd_pcm_substream * substream,char * name,size_t len)134 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
135 char *name, size_t len)
136 {
137 snprintf(name, len, "pcmC%dD%d%c:%d",
138 substream->pcm->card->number,
139 substream->pcm->device,
140 substream->stream ? 'c' : 'p',
141 substream->number);
142 }
143 EXPORT_SYMBOL(snd_pcm_debug_name);
144 #endif
145
146 #define XRUN_DEBUG_BASIC (1<<0)
147 #define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
148 #define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
149 #define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */
150 #define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */
151 #define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */
152 #define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */
153
154 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
155
156 #define xrun_debug(substream, mask) \
157 ((substream)->pstr->xrun_debug & (mask))
158 #else
159 #define xrun_debug(substream, mask) 0
160 #endif
161
162 #define dump_stack_on_xrun(substream) do { \
163 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
164 dump_stack(); \
165 } while (0)
166
xrun(struct snd_pcm_substream * substream)167 static void xrun(struct snd_pcm_substream *substream)
168 {
169 struct snd_pcm_runtime *runtime = substream->runtime;
170
171 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
172 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
173 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
174 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
175 char name[16];
176 snd_pcm_debug_name(substream, name, sizeof(name));
177 pcm_warn(substream->pcm, "XRUN: %s\n", name);
178 dump_stack_on_xrun(substream);
179 }
180 }
181
182 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
183 #define hw_ptr_error(substream, fmt, args...) \
184 do { \
185 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
186 xrun_log_show(substream); \
187 pr_err_ratelimited("ALSA: PCM: " fmt, ##args); \
188 dump_stack_on_xrun(substream); \
189 } \
190 } while (0)
191
192 #define XRUN_LOG_CNT 10
193
194 struct hwptr_log_entry {
195 unsigned int in_interrupt;
196 unsigned long jiffies;
197 snd_pcm_uframes_t pos;
198 snd_pcm_uframes_t period_size;
199 snd_pcm_uframes_t buffer_size;
200 snd_pcm_uframes_t old_hw_ptr;
201 snd_pcm_uframes_t hw_ptr_base;
202 };
203
204 struct snd_pcm_hwptr_log {
205 unsigned int idx;
206 unsigned int hit: 1;
207 struct hwptr_log_entry entries[XRUN_LOG_CNT];
208 };
209
xrun_log(struct snd_pcm_substream * substream,snd_pcm_uframes_t pos,int in_interrupt)210 static void xrun_log(struct snd_pcm_substream *substream,
211 snd_pcm_uframes_t pos, int in_interrupt)
212 {
213 struct snd_pcm_runtime *runtime = substream->runtime;
214 struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
215 struct hwptr_log_entry *entry;
216
217 if (log == NULL) {
218 log = kzalloc(sizeof(*log), GFP_ATOMIC);
219 if (log == NULL)
220 return;
221 runtime->hwptr_log = log;
222 } else {
223 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
224 return;
225 }
226 entry = &log->entries[log->idx];
227 entry->in_interrupt = in_interrupt;
228 entry->jiffies = jiffies;
229 entry->pos = pos;
230 entry->period_size = runtime->period_size;
231 entry->buffer_size = runtime->buffer_size;
232 entry->old_hw_ptr = runtime->status->hw_ptr;
233 entry->hw_ptr_base = runtime->hw_ptr_base;
234 log->idx = (log->idx + 1) % XRUN_LOG_CNT;
235 }
236
xrun_log_show(struct snd_pcm_substream * substream)237 static void xrun_log_show(struct snd_pcm_substream *substream)
238 {
239 struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
240 struct hwptr_log_entry *entry;
241 char name[16];
242 unsigned int idx;
243 int cnt;
244
245 if (log == NULL)
246 return;
247 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
248 return;
249 snd_pcm_debug_name(substream, name, sizeof(name));
250 for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
251 entry = &log->entries[idx];
252 if (entry->period_size == 0)
253 break;
254 pr_info("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
255 "hwptr=%ld/%ld\n",
256 name, entry->in_interrupt ? "[Q] " : "",
257 entry->jiffies,
258 (unsigned long)entry->pos,
259 (unsigned long)entry->period_size,
260 (unsigned long)entry->buffer_size,
261 (unsigned long)entry->old_hw_ptr,
262 (unsigned long)entry->hw_ptr_base);
263 idx++;
264 idx %= XRUN_LOG_CNT;
265 }
266 log->hit = 1;
267 }
268
269 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
270
271 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
272 #define xrun_log(substream, pos, in_interrupt) do { } while (0)
273 #define xrun_log_show(substream) do { } while (0)
274
275 #endif
276
snd_pcm_update_state(struct snd_pcm_substream * substream,struct snd_pcm_runtime * runtime)277 int snd_pcm_update_state(struct snd_pcm_substream *substream,
278 struct snd_pcm_runtime *runtime)
279 {
280 snd_pcm_uframes_t avail;
281
282 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
283 avail = snd_pcm_playback_avail(runtime);
284 else
285 avail = snd_pcm_capture_avail(runtime);
286 if (avail > runtime->avail_max)
287 runtime->avail_max = avail;
288 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
289 if (avail >= runtime->buffer_size) {
290 snd_pcm_drain_done(substream);
291 return -EPIPE;
292 }
293 } else {
294 if (avail >= runtime->stop_threshold) {
295 xrun(substream);
296 return -EPIPE;
297 }
298 }
299 if (runtime->twake) {
300 if (avail >= runtime->twake)
301 wake_up(&runtime->tsleep);
302 } else if (avail >= runtime->control->avail_min)
303 wake_up(&runtime->sleep);
304 return 0;
305 }
306
snd_pcm_update_hw_ptr0(struct snd_pcm_substream * substream,unsigned int in_interrupt)307 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
308 unsigned int in_interrupt)
309 {
310 struct snd_pcm_runtime *runtime = substream->runtime;
311 snd_pcm_uframes_t pos;
312 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
313 snd_pcm_sframes_t hdelta, delta;
314 unsigned long jdelta;
315 unsigned long curr_jiffies;
316 struct timespec curr_tstamp;
317 struct timespec audio_tstamp;
318 int crossed_boundary = 0;
319
320 old_hw_ptr = runtime->status->hw_ptr;
321
322 /*
323 * group pointer, time and jiffies reads to allow for more
324 * accurate correlations/corrections.
325 * The values are stored at the end of this routine after
326 * corrections for hw_ptr position
327 */
328 pos = substream->ops->pointer(substream);
329 curr_jiffies = jiffies;
330 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
331 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
332
333 if ((runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK) &&
334 (substream->ops->wall_clock))
335 substream->ops->wall_clock(substream, &audio_tstamp);
336 }
337
338 if (pos == SNDRV_PCM_POS_XRUN) {
339 xrun(substream);
340 return -EPIPE;
341 }
342 if (pos >= runtime->buffer_size) {
343 if (printk_ratelimit()) {
344 char name[16];
345 snd_pcm_debug_name(substream, name, sizeof(name));
346 xrun_log_show(substream);
347 pcm_err(substream->pcm,
348 "XRUN: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
349 name, pos, runtime->buffer_size,
350 runtime->period_size);
351 }
352 pos = 0;
353 }
354 pos -= pos % runtime->min_align;
355 if (xrun_debug(substream, XRUN_DEBUG_LOG))
356 xrun_log(substream, pos, in_interrupt);
357 hw_base = runtime->hw_ptr_base;
358 new_hw_ptr = hw_base + pos;
359 if (in_interrupt) {
360 /* we know that one period was processed */
361 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
362 delta = runtime->hw_ptr_interrupt + runtime->period_size;
363 if (delta > new_hw_ptr) {
364 /* check for double acknowledged interrupts */
365 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
366 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
367 hw_base += runtime->buffer_size;
368 if (hw_base >= runtime->boundary) {
369 hw_base = 0;
370 crossed_boundary++;
371 }
372 new_hw_ptr = hw_base + pos;
373 goto __delta;
374 }
375 }
376 }
377 /* new_hw_ptr might be lower than old_hw_ptr in case when */
378 /* pointer crosses the end of the ring buffer */
379 if (new_hw_ptr < old_hw_ptr) {
380 hw_base += runtime->buffer_size;
381 if (hw_base >= runtime->boundary) {
382 hw_base = 0;
383 crossed_boundary++;
384 }
385 new_hw_ptr = hw_base + pos;
386 }
387 __delta:
388 delta = new_hw_ptr - old_hw_ptr;
389 if (delta < 0)
390 delta += runtime->boundary;
391 if (xrun_debug(substream, in_interrupt ?
392 XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
393 char name[16];
394 snd_pcm_debug_name(substream, name, sizeof(name));
395 pcm_dbg(substream->pcm,
396 "%s_update: %s: pos=%u/%u/%u, hwptr=%ld/%ld/%ld/%ld\n",
397 in_interrupt ? "period" : "hwptr",
398 name,
399 (unsigned int)pos,
400 (unsigned int)runtime->period_size,
401 (unsigned int)runtime->buffer_size,
402 (unsigned long)delta,
403 (unsigned long)old_hw_ptr,
404 (unsigned long)new_hw_ptr,
405 (unsigned long)runtime->hw_ptr_base);
406 }
407
408 if (runtime->no_period_wakeup) {
409 snd_pcm_sframes_t xrun_threshold;
410 /*
411 * Without regular period interrupts, we have to check
412 * the elapsed time to detect xruns.
413 */
414 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
415 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
416 goto no_delta_check;
417 hdelta = jdelta - delta * HZ / runtime->rate;
418 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
419 while (hdelta > xrun_threshold) {
420 delta += runtime->buffer_size;
421 hw_base += runtime->buffer_size;
422 if (hw_base >= runtime->boundary) {
423 hw_base = 0;
424 crossed_boundary++;
425 }
426 new_hw_ptr = hw_base + pos;
427 hdelta -= runtime->hw_ptr_buffer_jiffies;
428 }
429 goto no_delta_check;
430 }
431
432 /* something must be really wrong */
433 if (delta >= runtime->buffer_size + runtime->period_size) {
434 hw_ptr_error(substream,
435 "Unexpected hw_pointer value %s"
436 "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
437 "old_hw_ptr=%ld)\n",
438 in_interrupt ? "[Q] " : "[P]",
439 substream->stream, (long)pos,
440 (long)new_hw_ptr, (long)old_hw_ptr);
441 return 0;
442 }
443
444 /* Do jiffies check only in xrun_debug mode */
445 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
446 goto no_jiffies_check;
447
448 /* Skip the jiffies check for hardwares with BATCH flag.
449 * Such hardware usually just increases the position at each IRQ,
450 * thus it can't give any strange position.
451 */
452 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
453 goto no_jiffies_check;
454 hdelta = delta;
455 if (hdelta < runtime->delay)
456 goto no_jiffies_check;
457 hdelta -= runtime->delay;
458 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
459 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
460 delta = jdelta /
461 (((runtime->period_size * HZ) / runtime->rate)
462 + HZ/100);
463 /* move new_hw_ptr according jiffies not pos variable */
464 new_hw_ptr = old_hw_ptr;
465 hw_base = delta;
466 /* use loop to avoid checks for delta overflows */
467 /* the delta value is small or zero in most cases */
468 while (delta > 0) {
469 new_hw_ptr += runtime->period_size;
470 if (new_hw_ptr >= runtime->boundary) {
471 new_hw_ptr -= runtime->boundary;
472 crossed_boundary--;
473 }
474 delta--;
475 }
476 /* align hw_base to buffer_size */
477 hw_ptr_error(substream,
478 "hw_ptr skipping! %s"
479 "(pos=%ld, delta=%ld, period=%ld, "
480 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
481 in_interrupt ? "[Q] " : "",
482 (long)pos, (long)hdelta,
483 (long)runtime->period_size, jdelta,
484 ((hdelta * HZ) / runtime->rate), hw_base,
485 (unsigned long)old_hw_ptr,
486 (unsigned long)new_hw_ptr);
487 /* reset values to proper state */
488 delta = 0;
489 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
490 }
491 no_jiffies_check:
492 if (delta > runtime->period_size + runtime->period_size / 2) {
493 hw_ptr_error(substream,
494 "Lost interrupts? %s"
495 "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
496 "old_hw_ptr=%ld)\n",
497 in_interrupt ? "[Q] " : "",
498 substream->stream, (long)delta,
499 (long)new_hw_ptr,
500 (long)old_hw_ptr);
501 }
502
503 no_delta_check:
504 if (runtime->status->hw_ptr == new_hw_ptr)
505 return 0;
506
507 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
508 runtime->silence_size > 0)
509 snd_pcm_playback_silence(substream, new_hw_ptr);
510
511 if (in_interrupt) {
512 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
513 if (delta < 0)
514 delta += runtime->boundary;
515 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
516 runtime->hw_ptr_interrupt += delta;
517 if (runtime->hw_ptr_interrupt >= runtime->boundary)
518 runtime->hw_ptr_interrupt -= runtime->boundary;
519 }
520 runtime->hw_ptr_base = hw_base;
521 runtime->status->hw_ptr = new_hw_ptr;
522 runtime->hw_ptr_jiffies = curr_jiffies;
523 if (crossed_boundary) {
524 snd_BUG_ON(crossed_boundary != 1);
525 runtime->hw_ptr_wrap += runtime->boundary;
526 }
527 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
528 runtime->status->tstamp = curr_tstamp;
529
530 if (!(runtime->hw.info & SNDRV_PCM_INFO_HAS_WALL_CLOCK)) {
531 /*
532 * no wall clock available, provide audio timestamp
533 * derived from pointer position+delay
534 */
535 u64 audio_frames, audio_nsecs;
536
537 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
538 audio_frames = runtime->hw_ptr_wrap
539 + runtime->status->hw_ptr
540 - runtime->delay;
541 else
542 audio_frames = runtime->hw_ptr_wrap
543 + runtime->status->hw_ptr
544 + runtime->delay;
545 audio_nsecs = div_u64(audio_frames * 1000000000LL,
546 runtime->rate);
547 audio_tstamp = ns_to_timespec(audio_nsecs);
548 }
549 runtime->status->audio_tstamp = audio_tstamp;
550 }
551
552 return snd_pcm_update_state(substream, runtime);
553 }
554
555 /* CAUTION: call it with irq disabled */
snd_pcm_update_hw_ptr(struct snd_pcm_substream * substream)556 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
557 {
558 return snd_pcm_update_hw_ptr0(substream, 0);
559 }
560
561 /**
562 * snd_pcm_set_ops - set the PCM operators
563 * @pcm: the pcm instance
564 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
565 * @ops: the operator table
566 *
567 * Sets the given PCM operators to the pcm instance.
568 */
snd_pcm_set_ops(struct snd_pcm * pcm,int direction,const struct snd_pcm_ops * ops)569 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
570 const struct snd_pcm_ops *ops)
571 {
572 struct snd_pcm_str *stream = &pcm->streams[direction];
573 struct snd_pcm_substream *substream;
574
575 for (substream = stream->substream; substream != NULL; substream = substream->next)
576 substream->ops = ops;
577 }
578
579 EXPORT_SYMBOL(snd_pcm_set_ops);
580
581 /**
582 * snd_pcm_sync - set the PCM sync id
583 * @substream: the pcm substream
584 *
585 * Sets the PCM sync identifier for the card.
586 */
snd_pcm_set_sync(struct snd_pcm_substream * substream)587 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
588 {
589 struct snd_pcm_runtime *runtime = substream->runtime;
590
591 runtime->sync.id32[0] = substream->pcm->card->number;
592 runtime->sync.id32[1] = -1;
593 runtime->sync.id32[2] = -1;
594 runtime->sync.id32[3] = -1;
595 }
596
597 EXPORT_SYMBOL(snd_pcm_set_sync);
598
599 /*
600 * Standard ioctl routine
601 */
602
div32(unsigned int a,unsigned int b,unsigned int * r)603 static inline unsigned int div32(unsigned int a, unsigned int b,
604 unsigned int *r)
605 {
606 if (b == 0) {
607 *r = 0;
608 return UINT_MAX;
609 }
610 *r = a % b;
611 return a / b;
612 }
613
div_down(unsigned int a,unsigned int b)614 static inline unsigned int div_down(unsigned int a, unsigned int b)
615 {
616 if (b == 0)
617 return UINT_MAX;
618 return a / b;
619 }
620
div_up(unsigned int a,unsigned int b)621 static inline unsigned int div_up(unsigned int a, unsigned int b)
622 {
623 unsigned int r;
624 unsigned int q;
625 if (b == 0)
626 return UINT_MAX;
627 q = div32(a, b, &r);
628 if (r)
629 ++q;
630 return q;
631 }
632
mul(unsigned int a,unsigned int b)633 static inline unsigned int mul(unsigned int a, unsigned int b)
634 {
635 if (a == 0)
636 return 0;
637 if (div_down(UINT_MAX, a) < b)
638 return UINT_MAX;
639 return a * b;
640 }
641
muldiv32(unsigned int a,unsigned int b,unsigned int c,unsigned int * r)642 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
643 unsigned int c, unsigned int *r)
644 {
645 u_int64_t n = (u_int64_t) a * b;
646 if (c == 0) {
647 *r = 0;
648 return UINT_MAX;
649 }
650 n = div_u64_rem(n, c, r);
651 if (n >= UINT_MAX) {
652 *r = 0;
653 return UINT_MAX;
654 }
655 return n;
656 }
657
658 /**
659 * snd_interval_refine - refine the interval value of configurator
660 * @i: the interval value to refine
661 * @v: the interval value to refer to
662 *
663 * Refines the interval value with the reference value.
664 * The interval is changed to the range satisfying both intervals.
665 * The interval status (min, max, integer, etc.) are evaluated.
666 *
667 * Return: Positive if the value is changed, zero if it's not changed, or a
668 * negative error code.
669 */
snd_interval_refine(struct snd_interval * i,const struct snd_interval * v)670 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
671 {
672 int changed = 0;
673 if (snd_BUG_ON(snd_interval_empty(i)))
674 return -EINVAL;
675 if (i->min < v->min) {
676 i->min = v->min;
677 i->openmin = v->openmin;
678 changed = 1;
679 } else if (i->min == v->min && !i->openmin && v->openmin) {
680 i->openmin = 1;
681 changed = 1;
682 }
683 if (i->max > v->max) {
684 i->max = v->max;
685 i->openmax = v->openmax;
686 changed = 1;
687 } else if (i->max == v->max && !i->openmax && v->openmax) {
688 i->openmax = 1;
689 changed = 1;
690 }
691 if (!i->integer && v->integer) {
692 i->integer = 1;
693 changed = 1;
694 }
695 if (i->integer) {
696 if (i->openmin) {
697 i->min++;
698 i->openmin = 0;
699 }
700 if (i->openmax) {
701 i->max--;
702 i->openmax = 0;
703 }
704 } else if (!i->openmin && !i->openmax && i->min == i->max)
705 i->integer = 1;
706 if (snd_interval_checkempty(i)) {
707 snd_interval_none(i);
708 return -EINVAL;
709 }
710 return changed;
711 }
712
713 EXPORT_SYMBOL(snd_interval_refine);
714
snd_interval_refine_first(struct snd_interval * i)715 static int snd_interval_refine_first(struct snd_interval *i)
716 {
717 if (snd_BUG_ON(snd_interval_empty(i)))
718 return -EINVAL;
719 if (snd_interval_single(i))
720 return 0;
721 i->max = i->min;
722 i->openmax = i->openmin;
723 if (i->openmax)
724 i->max++;
725 return 1;
726 }
727
snd_interval_refine_last(struct snd_interval * i)728 static int snd_interval_refine_last(struct snd_interval *i)
729 {
730 if (snd_BUG_ON(snd_interval_empty(i)))
731 return -EINVAL;
732 if (snd_interval_single(i))
733 return 0;
734 i->min = i->max;
735 i->openmin = i->openmax;
736 if (i->openmin)
737 i->min--;
738 return 1;
739 }
740
snd_interval_mul(const struct snd_interval * a,const struct snd_interval * b,struct snd_interval * c)741 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
742 {
743 if (a->empty || b->empty) {
744 snd_interval_none(c);
745 return;
746 }
747 c->empty = 0;
748 c->min = mul(a->min, b->min);
749 c->openmin = (a->openmin || b->openmin);
750 c->max = mul(a->max, b->max);
751 c->openmax = (a->openmax || b->openmax);
752 c->integer = (a->integer && b->integer);
753 }
754
755 /**
756 * snd_interval_div - refine the interval value with division
757 * @a: dividend
758 * @b: divisor
759 * @c: quotient
760 *
761 * c = a / b
762 *
763 * Returns non-zero if the value is changed, zero if not changed.
764 */
snd_interval_div(const struct snd_interval * a,const struct snd_interval * b,struct snd_interval * c)765 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
766 {
767 unsigned int r;
768 if (a->empty || b->empty) {
769 snd_interval_none(c);
770 return;
771 }
772 c->empty = 0;
773 c->min = div32(a->min, b->max, &r);
774 c->openmin = (r || a->openmin || b->openmax);
775 if (b->min > 0) {
776 c->max = div32(a->max, b->min, &r);
777 if (r) {
778 c->max++;
779 c->openmax = 1;
780 } else
781 c->openmax = (a->openmax || b->openmin);
782 } else {
783 c->max = UINT_MAX;
784 c->openmax = 0;
785 }
786 c->integer = 0;
787 }
788
789 /**
790 * snd_interval_muldivk - refine the interval value
791 * @a: dividend 1
792 * @b: dividend 2
793 * @k: divisor (as integer)
794 * @c: result
795 *
796 * c = a * b / k
797 *
798 * Returns non-zero if the value is changed, zero if not changed.
799 */
snd_interval_muldivk(const struct snd_interval * a,const struct snd_interval * b,unsigned int k,struct snd_interval * c)800 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
801 unsigned int k, struct snd_interval *c)
802 {
803 unsigned int r;
804 if (a->empty || b->empty) {
805 snd_interval_none(c);
806 return;
807 }
808 c->empty = 0;
809 c->min = muldiv32(a->min, b->min, k, &r);
810 c->openmin = (r || a->openmin || b->openmin);
811 c->max = muldiv32(a->max, b->max, k, &r);
812 if (r) {
813 c->max++;
814 c->openmax = 1;
815 } else
816 c->openmax = (a->openmax || b->openmax);
817 c->integer = 0;
818 }
819
820 /**
821 * snd_interval_mulkdiv - refine the interval value
822 * @a: dividend 1
823 * @k: dividend 2 (as integer)
824 * @b: divisor
825 * @c: result
826 *
827 * c = a * k / b
828 *
829 * Returns non-zero if the value is changed, zero if not changed.
830 */
snd_interval_mulkdiv(const struct snd_interval * a,unsigned int k,const struct snd_interval * b,struct snd_interval * c)831 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
832 const struct snd_interval *b, struct snd_interval *c)
833 {
834 unsigned int r;
835 if (a->empty || b->empty) {
836 snd_interval_none(c);
837 return;
838 }
839 c->empty = 0;
840 c->min = muldiv32(a->min, k, b->max, &r);
841 c->openmin = (r || a->openmin || b->openmax);
842 if (b->min > 0) {
843 c->max = muldiv32(a->max, k, b->min, &r);
844 if (r) {
845 c->max++;
846 c->openmax = 1;
847 } else
848 c->openmax = (a->openmax || b->openmin);
849 } else {
850 c->max = UINT_MAX;
851 c->openmax = 0;
852 }
853 c->integer = 0;
854 }
855
856 /* ---- */
857
858
859 /**
860 * snd_interval_ratnum - refine the interval value
861 * @i: interval to refine
862 * @rats_count: number of ratnum_t
863 * @rats: ratnum_t array
864 * @nump: pointer to store the resultant numerator
865 * @denp: pointer to store the resultant denominator
866 *
867 * Return: Positive if the value is changed, zero if it's not changed, or a
868 * negative error code.
869 */
snd_interval_ratnum(struct snd_interval * i,unsigned int rats_count,struct snd_ratnum * rats,unsigned int * nump,unsigned int * denp)870 int snd_interval_ratnum(struct snd_interval *i,
871 unsigned int rats_count, struct snd_ratnum *rats,
872 unsigned int *nump, unsigned int *denp)
873 {
874 unsigned int best_num, best_den;
875 int best_diff;
876 unsigned int k;
877 struct snd_interval t;
878 int err;
879 unsigned int result_num, result_den;
880 int result_diff;
881
882 best_num = best_den = best_diff = 0;
883 for (k = 0; k < rats_count; ++k) {
884 unsigned int num = rats[k].num;
885 unsigned int den;
886 unsigned int q = i->min;
887 int diff;
888 if (q == 0)
889 q = 1;
890 den = div_up(num, q);
891 if (den < rats[k].den_min)
892 continue;
893 if (den > rats[k].den_max)
894 den = rats[k].den_max;
895 else {
896 unsigned int r;
897 r = (den - rats[k].den_min) % rats[k].den_step;
898 if (r != 0)
899 den -= r;
900 }
901 diff = num - q * den;
902 if (diff < 0)
903 diff = -diff;
904 if (best_num == 0 ||
905 diff * best_den < best_diff * den) {
906 best_diff = diff;
907 best_den = den;
908 best_num = num;
909 }
910 }
911 if (best_den == 0) {
912 i->empty = 1;
913 return -EINVAL;
914 }
915 t.min = div_down(best_num, best_den);
916 t.openmin = !!(best_num % best_den);
917
918 result_num = best_num;
919 result_diff = best_diff;
920 result_den = best_den;
921 best_num = best_den = best_diff = 0;
922 for (k = 0; k < rats_count; ++k) {
923 unsigned int num = rats[k].num;
924 unsigned int den;
925 unsigned int q = i->max;
926 int diff;
927 if (q == 0) {
928 i->empty = 1;
929 return -EINVAL;
930 }
931 den = div_down(num, q);
932 if (den > rats[k].den_max)
933 continue;
934 if (den < rats[k].den_min)
935 den = rats[k].den_min;
936 else {
937 unsigned int r;
938 r = (den - rats[k].den_min) % rats[k].den_step;
939 if (r != 0)
940 den += rats[k].den_step - r;
941 }
942 diff = q * den - num;
943 if (diff < 0)
944 diff = -diff;
945 if (best_num == 0 ||
946 diff * best_den < best_diff * den) {
947 best_diff = diff;
948 best_den = den;
949 best_num = num;
950 }
951 }
952 if (best_den == 0) {
953 i->empty = 1;
954 return -EINVAL;
955 }
956 t.max = div_up(best_num, best_den);
957 t.openmax = !!(best_num % best_den);
958 t.integer = 0;
959 err = snd_interval_refine(i, &t);
960 if (err < 0)
961 return err;
962
963 if (snd_interval_single(i)) {
964 if (best_diff * result_den < result_diff * best_den) {
965 result_num = best_num;
966 result_den = best_den;
967 }
968 if (nump)
969 *nump = result_num;
970 if (denp)
971 *denp = result_den;
972 }
973 return err;
974 }
975
976 EXPORT_SYMBOL(snd_interval_ratnum);
977
978 /**
979 * snd_interval_ratden - refine the interval value
980 * @i: interval to refine
981 * @rats_count: number of struct ratden
982 * @rats: struct ratden array
983 * @nump: pointer to store the resultant numerator
984 * @denp: pointer to store the resultant denominator
985 *
986 * Return: Positive if the value is changed, zero if it's not changed, or a
987 * negative error code.
988 */
snd_interval_ratden(struct snd_interval * i,unsigned int rats_count,struct snd_ratden * rats,unsigned int * nump,unsigned int * denp)989 static int snd_interval_ratden(struct snd_interval *i,
990 unsigned int rats_count, struct snd_ratden *rats,
991 unsigned int *nump, unsigned int *denp)
992 {
993 unsigned int best_num, best_diff, best_den;
994 unsigned int k;
995 struct snd_interval t;
996 int err;
997
998 best_num = best_den = best_diff = 0;
999 for (k = 0; k < rats_count; ++k) {
1000 unsigned int num;
1001 unsigned int den = rats[k].den;
1002 unsigned int q = i->min;
1003 int diff;
1004 num = mul(q, den);
1005 if (num > rats[k].num_max)
1006 continue;
1007 if (num < rats[k].num_min)
1008 num = rats[k].num_max;
1009 else {
1010 unsigned int r;
1011 r = (num - rats[k].num_min) % rats[k].num_step;
1012 if (r != 0)
1013 num += rats[k].num_step - r;
1014 }
1015 diff = num - q * den;
1016 if (best_num == 0 ||
1017 diff * best_den < best_diff * den) {
1018 best_diff = diff;
1019 best_den = den;
1020 best_num = num;
1021 }
1022 }
1023 if (best_den == 0) {
1024 i->empty = 1;
1025 return -EINVAL;
1026 }
1027 t.min = div_down(best_num, best_den);
1028 t.openmin = !!(best_num % best_den);
1029
1030 best_num = best_den = best_diff = 0;
1031 for (k = 0; k < rats_count; ++k) {
1032 unsigned int num;
1033 unsigned int den = rats[k].den;
1034 unsigned int q = i->max;
1035 int diff;
1036 num = mul(q, den);
1037 if (num < rats[k].num_min)
1038 continue;
1039 if (num > rats[k].num_max)
1040 num = rats[k].num_max;
1041 else {
1042 unsigned int r;
1043 r = (num - rats[k].num_min) % rats[k].num_step;
1044 if (r != 0)
1045 num -= r;
1046 }
1047 diff = q * den - num;
1048 if (best_num == 0 ||
1049 diff * best_den < best_diff * den) {
1050 best_diff = diff;
1051 best_den = den;
1052 best_num = num;
1053 }
1054 }
1055 if (best_den == 0) {
1056 i->empty = 1;
1057 return -EINVAL;
1058 }
1059 t.max = div_up(best_num, best_den);
1060 t.openmax = !!(best_num % best_den);
1061 t.integer = 0;
1062 err = snd_interval_refine(i, &t);
1063 if (err < 0)
1064 return err;
1065
1066 if (snd_interval_single(i)) {
1067 if (nump)
1068 *nump = best_num;
1069 if (denp)
1070 *denp = best_den;
1071 }
1072 return err;
1073 }
1074
1075 /**
1076 * snd_interval_list - refine the interval value from the list
1077 * @i: the interval value to refine
1078 * @count: the number of elements in the list
1079 * @list: the value list
1080 * @mask: the bit-mask to evaluate
1081 *
1082 * Refines the interval value from the list.
1083 * When mask is non-zero, only the elements corresponding to bit 1 are
1084 * evaluated.
1085 *
1086 * Return: Positive if the value is changed, zero if it's not changed, or a
1087 * negative error code.
1088 */
snd_interval_list(struct snd_interval * i,unsigned int count,const unsigned int * list,unsigned int mask)1089 int snd_interval_list(struct snd_interval *i, unsigned int count,
1090 const unsigned int *list, unsigned int mask)
1091 {
1092 unsigned int k;
1093 struct snd_interval list_range;
1094
1095 if (!count) {
1096 i->empty = 1;
1097 return -EINVAL;
1098 }
1099 snd_interval_any(&list_range);
1100 list_range.min = UINT_MAX;
1101 list_range.max = 0;
1102 for (k = 0; k < count; k++) {
1103 if (mask && !(mask & (1 << k)))
1104 continue;
1105 if (!snd_interval_test(i, list[k]))
1106 continue;
1107 list_range.min = min(list_range.min, list[k]);
1108 list_range.max = max(list_range.max, list[k]);
1109 }
1110 return snd_interval_refine(i, &list_range);
1111 }
1112
1113 EXPORT_SYMBOL(snd_interval_list);
1114
snd_interval_step(struct snd_interval * i,unsigned int step)1115 static int snd_interval_step(struct snd_interval *i, unsigned int step)
1116 {
1117 unsigned int n;
1118 int changed = 0;
1119 n = i->min % step;
1120 if (n != 0 || i->openmin) {
1121 i->min += step - n;
1122 i->openmin = 0;
1123 changed = 1;
1124 }
1125 n = i->max % step;
1126 if (n != 0 || i->openmax) {
1127 i->max -= n;
1128 i->openmax = 0;
1129 changed = 1;
1130 }
1131 if (snd_interval_checkempty(i)) {
1132 i->empty = 1;
1133 return -EINVAL;
1134 }
1135 return changed;
1136 }
1137
1138 /* Info constraints helpers */
1139
1140 /**
1141 * snd_pcm_hw_rule_add - add the hw-constraint rule
1142 * @runtime: the pcm runtime instance
1143 * @cond: condition bits
1144 * @var: the variable to evaluate
1145 * @func: the evaluation function
1146 * @private: the private data pointer passed to function
1147 * @dep: the dependent variables
1148 *
1149 * Return: Zero if successful, or a negative error code on failure.
1150 */
snd_pcm_hw_rule_add(struct snd_pcm_runtime * runtime,unsigned int cond,int var,snd_pcm_hw_rule_func_t func,void * private,int dep,...)1151 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1152 int var,
1153 snd_pcm_hw_rule_func_t func, void *private,
1154 int dep, ...)
1155 {
1156 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1157 struct snd_pcm_hw_rule *c;
1158 unsigned int k;
1159 va_list args;
1160 va_start(args, dep);
1161 if (constrs->rules_num >= constrs->rules_all) {
1162 struct snd_pcm_hw_rule *new;
1163 unsigned int new_rules = constrs->rules_all + 16;
1164 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1165 if (!new) {
1166 va_end(args);
1167 return -ENOMEM;
1168 }
1169 if (constrs->rules) {
1170 memcpy(new, constrs->rules,
1171 constrs->rules_num * sizeof(*c));
1172 kfree(constrs->rules);
1173 }
1174 constrs->rules = new;
1175 constrs->rules_all = new_rules;
1176 }
1177 c = &constrs->rules[constrs->rules_num];
1178 c->cond = cond;
1179 c->func = func;
1180 c->var = var;
1181 c->private = private;
1182 k = 0;
1183 while (1) {
1184 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1185 va_end(args);
1186 return -EINVAL;
1187 }
1188 c->deps[k++] = dep;
1189 if (dep < 0)
1190 break;
1191 dep = va_arg(args, int);
1192 }
1193 constrs->rules_num++;
1194 va_end(args);
1195 return 0;
1196 }
1197
1198 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1199
1200 /**
1201 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1202 * @runtime: PCM runtime instance
1203 * @var: hw_params variable to apply the mask
1204 * @mask: the bitmap mask
1205 *
1206 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1207 *
1208 * Return: Zero if successful, or a negative error code on failure.
1209 */
snd_pcm_hw_constraint_mask(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var,u_int32_t mask)1210 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1211 u_int32_t mask)
1212 {
1213 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1214 struct snd_mask *maskp = constrs_mask(constrs, var);
1215 *maskp->bits &= mask;
1216 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1217 if (*maskp->bits == 0)
1218 return -EINVAL;
1219 return 0;
1220 }
1221
1222 /**
1223 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1224 * @runtime: PCM runtime instance
1225 * @var: hw_params variable to apply the mask
1226 * @mask: the 64bit bitmap mask
1227 *
1228 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1229 *
1230 * Return: Zero if successful, or a negative error code on failure.
1231 */
snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var,u_int64_t mask)1232 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1233 u_int64_t mask)
1234 {
1235 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1236 struct snd_mask *maskp = constrs_mask(constrs, var);
1237 maskp->bits[0] &= (u_int32_t)mask;
1238 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1239 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1240 if (! maskp->bits[0] && ! maskp->bits[1])
1241 return -EINVAL;
1242 return 0;
1243 }
1244 EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1245
1246 /**
1247 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1248 * @runtime: PCM runtime instance
1249 * @var: hw_params variable to apply the integer constraint
1250 *
1251 * Apply the constraint of integer to an interval parameter.
1252 *
1253 * Return: Positive if the value is changed, zero if it's not changed, or a
1254 * negative error code.
1255 */
snd_pcm_hw_constraint_integer(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var)1256 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1257 {
1258 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1259 return snd_interval_setinteger(constrs_interval(constrs, var));
1260 }
1261
1262 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1263
1264 /**
1265 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1266 * @runtime: PCM runtime instance
1267 * @var: hw_params variable to apply the range
1268 * @min: the minimal value
1269 * @max: the maximal value
1270 *
1271 * Apply the min/max range constraint to an interval parameter.
1272 *
1273 * Return: Positive if the value is changed, zero if it's not changed, or a
1274 * negative error code.
1275 */
snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime * runtime,snd_pcm_hw_param_t var,unsigned int min,unsigned int max)1276 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1277 unsigned int min, unsigned int max)
1278 {
1279 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1280 struct snd_interval t;
1281 t.min = min;
1282 t.max = max;
1283 t.openmin = t.openmax = 0;
1284 t.integer = 0;
1285 return snd_interval_refine(constrs_interval(constrs, var), &t);
1286 }
1287
1288 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1289
snd_pcm_hw_rule_list(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1290 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1291 struct snd_pcm_hw_rule *rule)
1292 {
1293 struct snd_pcm_hw_constraint_list *list = rule->private;
1294 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1295 }
1296
1297
1298 /**
1299 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1300 * @runtime: PCM runtime instance
1301 * @cond: condition bits
1302 * @var: hw_params variable to apply the list constraint
1303 * @l: list
1304 *
1305 * Apply the list of constraints to an interval parameter.
1306 *
1307 * Return: Zero if successful, or a negative error code on failure.
1308 */
snd_pcm_hw_constraint_list(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,const struct snd_pcm_hw_constraint_list * l)1309 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1310 unsigned int cond,
1311 snd_pcm_hw_param_t var,
1312 const struct snd_pcm_hw_constraint_list *l)
1313 {
1314 return snd_pcm_hw_rule_add(runtime, cond, var,
1315 snd_pcm_hw_rule_list, (void *)l,
1316 var, -1);
1317 }
1318
1319 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1320
snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1321 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1322 struct snd_pcm_hw_rule *rule)
1323 {
1324 struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1325 unsigned int num = 0, den = 0;
1326 int err;
1327 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1328 r->nrats, r->rats, &num, &den);
1329 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1330 params->rate_num = num;
1331 params->rate_den = den;
1332 }
1333 return err;
1334 }
1335
1336 /**
1337 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1338 * @runtime: PCM runtime instance
1339 * @cond: condition bits
1340 * @var: hw_params variable to apply the ratnums constraint
1341 * @r: struct snd_ratnums constriants
1342 *
1343 * Return: Zero if successful, or a negative error code on failure.
1344 */
snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,struct snd_pcm_hw_constraint_ratnums * r)1345 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1346 unsigned int cond,
1347 snd_pcm_hw_param_t var,
1348 struct snd_pcm_hw_constraint_ratnums *r)
1349 {
1350 return snd_pcm_hw_rule_add(runtime, cond, var,
1351 snd_pcm_hw_rule_ratnums, r,
1352 var, -1);
1353 }
1354
1355 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1356
snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1357 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1358 struct snd_pcm_hw_rule *rule)
1359 {
1360 struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1361 unsigned int num = 0, den = 0;
1362 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1363 r->nrats, r->rats, &num, &den);
1364 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1365 params->rate_num = num;
1366 params->rate_den = den;
1367 }
1368 return err;
1369 }
1370
1371 /**
1372 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1373 * @runtime: PCM runtime instance
1374 * @cond: condition bits
1375 * @var: hw_params variable to apply the ratdens constraint
1376 * @r: struct snd_ratdens constriants
1377 *
1378 * Return: Zero if successful, or a negative error code on failure.
1379 */
snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,struct snd_pcm_hw_constraint_ratdens * r)1380 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1381 unsigned int cond,
1382 snd_pcm_hw_param_t var,
1383 struct snd_pcm_hw_constraint_ratdens *r)
1384 {
1385 return snd_pcm_hw_rule_add(runtime, cond, var,
1386 snd_pcm_hw_rule_ratdens, r,
1387 var, -1);
1388 }
1389
1390 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1391
snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1392 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1393 struct snd_pcm_hw_rule *rule)
1394 {
1395 unsigned int l = (unsigned long) rule->private;
1396 int width = l & 0xffff;
1397 unsigned int msbits = l >> 16;
1398 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1399 if (snd_interval_single(i) && snd_interval_value(i) == width)
1400 params->msbits = msbits;
1401 return 0;
1402 }
1403
1404 /**
1405 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1406 * @runtime: PCM runtime instance
1407 * @cond: condition bits
1408 * @width: sample bits width
1409 * @msbits: msbits width
1410 *
1411 * Return: Zero if successful, or a negative error code on failure.
1412 */
snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime * runtime,unsigned int cond,unsigned int width,unsigned int msbits)1413 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1414 unsigned int cond,
1415 unsigned int width,
1416 unsigned int msbits)
1417 {
1418 unsigned long l = (msbits << 16) | width;
1419 return snd_pcm_hw_rule_add(runtime, cond, -1,
1420 snd_pcm_hw_rule_msbits,
1421 (void*) l,
1422 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1423 }
1424
1425 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1426
snd_pcm_hw_rule_step(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1427 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1428 struct snd_pcm_hw_rule *rule)
1429 {
1430 unsigned long step = (unsigned long) rule->private;
1431 return snd_interval_step(hw_param_interval(params, rule->var), step);
1432 }
1433
1434 /**
1435 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1436 * @runtime: PCM runtime instance
1437 * @cond: condition bits
1438 * @var: hw_params variable to apply the step constraint
1439 * @step: step size
1440 *
1441 * Return: Zero if successful, or a negative error code on failure.
1442 */
snd_pcm_hw_constraint_step(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var,unsigned long step)1443 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1444 unsigned int cond,
1445 snd_pcm_hw_param_t var,
1446 unsigned long step)
1447 {
1448 return snd_pcm_hw_rule_add(runtime, cond, var,
1449 snd_pcm_hw_rule_step, (void *) step,
1450 var, -1);
1451 }
1452
1453 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1454
snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1455 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1456 {
1457 static unsigned int pow2_sizes[] = {
1458 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1459 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1460 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1461 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1462 };
1463 return snd_interval_list(hw_param_interval(params, rule->var),
1464 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1465 }
1466
1467 /**
1468 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1469 * @runtime: PCM runtime instance
1470 * @cond: condition bits
1471 * @var: hw_params variable to apply the power-of-2 constraint
1472 *
1473 * Return: Zero if successful, or a negative error code on failure.
1474 */
snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime * runtime,unsigned int cond,snd_pcm_hw_param_t var)1475 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1476 unsigned int cond,
1477 snd_pcm_hw_param_t var)
1478 {
1479 return snd_pcm_hw_rule_add(runtime, cond, var,
1480 snd_pcm_hw_rule_pow2, NULL,
1481 var, -1);
1482 }
1483
1484 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1485
snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)1486 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1487 struct snd_pcm_hw_rule *rule)
1488 {
1489 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1490 struct snd_interval *rate;
1491
1492 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1493 return snd_interval_list(rate, 1, &base_rate, 0);
1494 }
1495
1496 /**
1497 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1498 * @runtime: PCM runtime instance
1499 * @base_rate: the rate at which the hardware does not resample
1500 *
1501 * Return: Zero if successful, or a negative error code on failure.
1502 */
snd_pcm_hw_rule_noresample(struct snd_pcm_runtime * runtime,unsigned int base_rate)1503 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1504 unsigned int base_rate)
1505 {
1506 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1507 SNDRV_PCM_HW_PARAM_RATE,
1508 snd_pcm_hw_rule_noresample_func,
1509 (void *)(uintptr_t)base_rate,
1510 SNDRV_PCM_HW_PARAM_RATE, -1);
1511 }
1512 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1513
_snd_pcm_hw_param_any(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1514 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1515 snd_pcm_hw_param_t var)
1516 {
1517 if (hw_is_mask(var)) {
1518 snd_mask_any(hw_param_mask(params, var));
1519 params->cmask |= 1 << var;
1520 params->rmask |= 1 << var;
1521 return;
1522 }
1523 if (hw_is_interval(var)) {
1524 snd_interval_any(hw_param_interval(params, var));
1525 params->cmask |= 1 << var;
1526 params->rmask |= 1 << var;
1527 return;
1528 }
1529 snd_BUG();
1530 }
1531
_snd_pcm_hw_params_any(struct snd_pcm_hw_params * params)1532 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1533 {
1534 unsigned int k;
1535 memset(params, 0, sizeof(*params));
1536 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1537 _snd_pcm_hw_param_any(params, k);
1538 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1539 _snd_pcm_hw_param_any(params, k);
1540 params->info = ~0U;
1541 }
1542
1543 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1544
1545 /**
1546 * snd_pcm_hw_param_value - return @params field @var value
1547 * @params: the hw_params instance
1548 * @var: parameter to retrieve
1549 * @dir: pointer to the direction (-1,0,1) or %NULL
1550 *
1551 * Return: The value for field @var if it's fixed in configuration space
1552 * defined by @params. -%EINVAL otherwise.
1553 */
snd_pcm_hw_param_value(const struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var,int * dir)1554 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1555 snd_pcm_hw_param_t var, int *dir)
1556 {
1557 if (hw_is_mask(var)) {
1558 const struct snd_mask *mask = hw_param_mask_c(params, var);
1559 if (!snd_mask_single(mask))
1560 return -EINVAL;
1561 if (dir)
1562 *dir = 0;
1563 return snd_mask_value(mask);
1564 }
1565 if (hw_is_interval(var)) {
1566 const struct snd_interval *i = hw_param_interval_c(params, var);
1567 if (!snd_interval_single(i))
1568 return -EINVAL;
1569 if (dir)
1570 *dir = i->openmin;
1571 return snd_interval_value(i);
1572 }
1573 return -EINVAL;
1574 }
1575
1576 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1577
_snd_pcm_hw_param_setempty(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1578 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1579 snd_pcm_hw_param_t var)
1580 {
1581 if (hw_is_mask(var)) {
1582 snd_mask_none(hw_param_mask(params, var));
1583 params->cmask |= 1 << var;
1584 params->rmask |= 1 << var;
1585 } else if (hw_is_interval(var)) {
1586 snd_interval_none(hw_param_interval(params, var));
1587 params->cmask |= 1 << var;
1588 params->rmask |= 1 << var;
1589 } else {
1590 snd_BUG();
1591 }
1592 }
1593
1594 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1595
_snd_pcm_hw_param_first(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1596 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1597 snd_pcm_hw_param_t var)
1598 {
1599 int changed;
1600 if (hw_is_mask(var))
1601 changed = snd_mask_refine_first(hw_param_mask(params, var));
1602 else if (hw_is_interval(var))
1603 changed = snd_interval_refine_first(hw_param_interval(params, var));
1604 else
1605 return -EINVAL;
1606 if (changed) {
1607 params->cmask |= 1 << var;
1608 params->rmask |= 1 << var;
1609 }
1610 return changed;
1611 }
1612
1613
1614 /**
1615 * snd_pcm_hw_param_first - refine config space and return minimum value
1616 * @pcm: PCM instance
1617 * @params: the hw_params instance
1618 * @var: parameter to retrieve
1619 * @dir: pointer to the direction (-1,0,1) or %NULL
1620 *
1621 * Inside configuration space defined by @params remove from @var all
1622 * values > minimum. Reduce configuration space accordingly.
1623 *
1624 * Return: The minimum, or a negative error code on failure.
1625 */
snd_pcm_hw_param_first(struct snd_pcm_substream * pcm,struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var,int * dir)1626 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1627 struct snd_pcm_hw_params *params,
1628 snd_pcm_hw_param_t var, int *dir)
1629 {
1630 int changed = _snd_pcm_hw_param_first(params, var);
1631 if (changed < 0)
1632 return changed;
1633 if (params->rmask) {
1634 int err = snd_pcm_hw_refine(pcm, params);
1635 if (err < 0)
1636 return err;
1637 }
1638 return snd_pcm_hw_param_value(params, var, dir);
1639 }
1640
1641 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1642
_snd_pcm_hw_param_last(struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var)1643 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1644 snd_pcm_hw_param_t var)
1645 {
1646 int changed;
1647 if (hw_is_mask(var))
1648 changed = snd_mask_refine_last(hw_param_mask(params, var));
1649 else if (hw_is_interval(var))
1650 changed = snd_interval_refine_last(hw_param_interval(params, var));
1651 else
1652 return -EINVAL;
1653 if (changed) {
1654 params->cmask |= 1 << var;
1655 params->rmask |= 1 << var;
1656 }
1657 return changed;
1658 }
1659
1660
1661 /**
1662 * snd_pcm_hw_param_last - refine config space and return maximum value
1663 * @pcm: PCM instance
1664 * @params: the hw_params instance
1665 * @var: parameter to retrieve
1666 * @dir: pointer to the direction (-1,0,1) or %NULL
1667 *
1668 * Inside configuration space defined by @params remove from @var all
1669 * values < maximum. Reduce configuration space accordingly.
1670 *
1671 * Return: The maximum, or a negative error code on failure.
1672 */
snd_pcm_hw_param_last(struct snd_pcm_substream * pcm,struct snd_pcm_hw_params * params,snd_pcm_hw_param_t var,int * dir)1673 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1674 struct snd_pcm_hw_params *params,
1675 snd_pcm_hw_param_t var, int *dir)
1676 {
1677 int changed = _snd_pcm_hw_param_last(params, var);
1678 if (changed < 0)
1679 return changed;
1680 if (params->rmask) {
1681 int err = snd_pcm_hw_refine(pcm, params);
1682 if (err < 0)
1683 return err;
1684 }
1685 return snd_pcm_hw_param_value(params, var, dir);
1686 }
1687
1688 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1689
1690 /**
1691 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1692 * @pcm: PCM instance
1693 * @params: the hw_params instance
1694 *
1695 * Choose one configuration from configuration space defined by @params.
1696 * The configuration chosen is that obtained fixing in this order:
1697 * first access, first format, first subformat, min channels,
1698 * min rate, min period time, max buffer size, min tick time
1699 *
1700 * Return: Zero if successful, or a negative error code on failure.
1701 */
snd_pcm_hw_params_choose(struct snd_pcm_substream * pcm,struct snd_pcm_hw_params * params)1702 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1703 struct snd_pcm_hw_params *params)
1704 {
1705 static int vars[] = {
1706 SNDRV_PCM_HW_PARAM_ACCESS,
1707 SNDRV_PCM_HW_PARAM_FORMAT,
1708 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1709 SNDRV_PCM_HW_PARAM_CHANNELS,
1710 SNDRV_PCM_HW_PARAM_RATE,
1711 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1712 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1713 SNDRV_PCM_HW_PARAM_TICK_TIME,
1714 -1
1715 };
1716 int err, *v;
1717
1718 for (v = vars; *v != -1; v++) {
1719 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1720 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1721 else
1722 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1723 if (snd_BUG_ON(err < 0))
1724 return err;
1725 }
1726 return 0;
1727 }
1728
snd_pcm_lib_ioctl_reset(struct snd_pcm_substream * substream,void * arg)1729 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1730 void *arg)
1731 {
1732 struct snd_pcm_runtime *runtime = substream->runtime;
1733 unsigned long flags;
1734 snd_pcm_stream_lock_irqsave(substream, flags);
1735 if (snd_pcm_running(substream) &&
1736 snd_pcm_update_hw_ptr(substream) >= 0)
1737 runtime->status->hw_ptr %= runtime->buffer_size;
1738 else {
1739 runtime->status->hw_ptr = 0;
1740 runtime->hw_ptr_wrap = 0;
1741 }
1742 snd_pcm_stream_unlock_irqrestore(substream, flags);
1743 return 0;
1744 }
1745
snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream * substream,void * arg)1746 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1747 void *arg)
1748 {
1749 struct snd_pcm_channel_info *info = arg;
1750 struct snd_pcm_runtime *runtime = substream->runtime;
1751 int width;
1752 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1753 info->offset = -1;
1754 return 0;
1755 }
1756 width = snd_pcm_format_physical_width(runtime->format);
1757 if (width < 0)
1758 return width;
1759 info->offset = 0;
1760 switch (runtime->access) {
1761 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1762 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1763 info->first = info->channel * width;
1764 info->step = runtime->channels * width;
1765 break;
1766 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1767 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1768 {
1769 size_t size = runtime->dma_bytes / runtime->channels;
1770 info->first = info->channel * size * 8;
1771 info->step = width;
1772 break;
1773 }
1774 default:
1775 snd_BUG();
1776 break;
1777 }
1778 return 0;
1779 }
1780
snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream * substream,void * arg)1781 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1782 void *arg)
1783 {
1784 struct snd_pcm_hw_params *params = arg;
1785 snd_pcm_format_t format;
1786 int channels;
1787 ssize_t frame_size;
1788
1789 params->fifo_size = substream->runtime->hw.fifo_size;
1790 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1791 format = params_format(params);
1792 channels = params_channels(params);
1793 frame_size = snd_pcm_format_size(format, channels);
1794 if (frame_size > 0)
1795 params->fifo_size /= (unsigned)frame_size;
1796 }
1797 return 0;
1798 }
1799
1800 /**
1801 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1802 * @substream: the pcm substream instance
1803 * @cmd: ioctl command
1804 * @arg: ioctl argument
1805 *
1806 * Processes the generic ioctl commands for PCM.
1807 * Can be passed as the ioctl callback for PCM ops.
1808 *
1809 * Return: Zero if successful, or a negative error code on failure.
1810 */
snd_pcm_lib_ioctl(struct snd_pcm_substream * substream,unsigned int cmd,void * arg)1811 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1812 unsigned int cmd, void *arg)
1813 {
1814 switch (cmd) {
1815 case SNDRV_PCM_IOCTL1_INFO:
1816 return 0;
1817 case SNDRV_PCM_IOCTL1_RESET:
1818 return snd_pcm_lib_ioctl_reset(substream, arg);
1819 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1820 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1821 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1822 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1823 }
1824 return -ENXIO;
1825 }
1826
1827 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1828
1829 /**
1830 * snd_pcm_period_elapsed - update the pcm status for the next period
1831 * @substream: the pcm substream instance
1832 *
1833 * This function is called from the interrupt handler when the
1834 * PCM has processed the period size. It will update the current
1835 * pointer, wake up sleepers, etc.
1836 *
1837 * Even if more than one periods have elapsed since the last call, you
1838 * have to call this only once.
1839 */
snd_pcm_period_elapsed(struct snd_pcm_substream * substream)1840 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1841 {
1842 struct snd_pcm_runtime *runtime;
1843 unsigned long flags;
1844
1845 if (PCM_RUNTIME_CHECK(substream))
1846 return;
1847 runtime = substream->runtime;
1848
1849 if (runtime->transfer_ack_begin)
1850 runtime->transfer_ack_begin(substream);
1851
1852 snd_pcm_stream_lock_irqsave(substream, flags);
1853 if (!snd_pcm_running(substream) ||
1854 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1855 goto _end;
1856
1857 if (substream->timer_running)
1858 snd_timer_interrupt(substream->timer, 1);
1859 _end:
1860 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1861 snd_pcm_stream_unlock_irqrestore(substream, flags);
1862 if (runtime->transfer_ack_end)
1863 runtime->transfer_ack_end(substream);
1864 }
1865
1866 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1867
1868 /*
1869 * Wait until avail_min data becomes available
1870 * Returns a negative error code if any error occurs during operation.
1871 * The available space is stored on availp. When err = 0 and avail = 0
1872 * on the capture stream, it indicates the stream is in DRAINING state.
1873 */
wait_for_avail(struct snd_pcm_substream * substream,snd_pcm_uframes_t * availp)1874 static int wait_for_avail(struct snd_pcm_substream *substream,
1875 snd_pcm_uframes_t *availp)
1876 {
1877 struct snd_pcm_runtime *runtime = substream->runtime;
1878 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1879 wait_queue_t wait;
1880 int err = 0;
1881 snd_pcm_uframes_t avail = 0;
1882 long wait_time, tout;
1883
1884 init_waitqueue_entry(&wait, current);
1885 set_current_state(TASK_INTERRUPTIBLE);
1886 add_wait_queue(&runtime->tsleep, &wait);
1887
1888 if (runtime->no_period_wakeup)
1889 wait_time = MAX_SCHEDULE_TIMEOUT;
1890 else {
1891 wait_time = 10;
1892 if (runtime->rate) {
1893 long t = runtime->period_size * 2 / runtime->rate;
1894 wait_time = max(t, wait_time);
1895 }
1896 wait_time = msecs_to_jiffies(wait_time * 1000);
1897 }
1898
1899 for (;;) {
1900 if (signal_pending(current)) {
1901 err = -ERESTARTSYS;
1902 break;
1903 }
1904
1905 /*
1906 * We need to check if space became available already
1907 * (and thus the wakeup happened already) first to close
1908 * the race of space already having become available.
1909 * This check must happen after been added to the waitqueue
1910 * and having current state be INTERRUPTIBLE.
1911 */
1912 if (is_playback)
1913 avail = snd_pcm_playback_avail(runtime);
1914 else
1915 avail = snd_pcm_capture_avail(runtime);
1916 if (avail >= runtime->twake)
1917 break;
1918 snd_pcm_stream_unlock_irq(substream);
1919
1920 tout = schedule_timeout(wait_time);
1921
1922 snd_pcm_stream_lock_irq(substream);
1923 set_current_state(TASK_INTERRUPTIBLE);
1924 switch (runtime->status->state) {
1925 case SNDRV_PCM_STATE_SUSPENDED:
1926 err = -ESTRPIPE;
1927 goto _endloop;
1928 case SNDRV_PCM_STATE_XRUN:
1929 err = -EPIPE;
1930 goto _endloop;
1931 case SNDRV_PCM_STATE_DRAINING:
1932 if (is_playback)
1933 err = -EPIPE;
1934 else
1935 avail = 0; /* indicate draining */
1936 goto _endloop;
1937 case SNDRV_PCM_STATE_OPEN:
1938 case SNDRV_PCM_STATE_SETUP:
1939 case SNDRV_PCM_STATE_DISCONNECTED:
1940 err = -EBADFD;
1941 goto _endloop;
1942 case SNDRV_PCM_STATE_PAUSED:
1943 continue;
1944 }
1945 if (!tout) {
1946 pcm_dbg(substream->pcm,
1947 "%s write error (DMA or IRQ trouble?)\n",
1948 is_playback ? "playback" : "capture");
1949 err = -EIO;
1950 break;
1951 }
1952 }
1953 _endloop:
1954 set_current_state(TASK_RUNNING);
1955 remove_wait_queue(&runtime->tsleep, &wait);
1956 *availp = avail;
1957 return err;
1958 }
1959
snd_pcm_lib_write_transfer(struct snd_pcm_substream * substream,unsigned int hwoff,unsigned long data,unsigned int off,snd_pcm_uframes_t frames)1960 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1961 unsigned int hwoff,
1962 unsigned long data, unsigned int off,
1963 snd_pcm_uframes_t frames)
1964 {
1965 struct snd_pcm_runtime *runtime = substream->runtime;
1966 int err;
1967 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1968 if (substream->ops->copy) {
1969 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1970 return err;
1971 } else {
1972 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1973 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1974 return -EFAULT;
1975 }
1976 return 0;
1977 }
1978
1979 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1980 unsigned long data, unsigned int off,
1981 snd_pcm_uframes_t size);
1982
snd_pcm_lib_write1(struct snd_pcm_substream * substream,unsigned long data,snd_pcm_uframes_t size,int nonblock,transfer_f transfer)1983 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1984 unsigned long data,
1985 snd_pcm_uframes_t size,
1986 int nonblock,
1987 transfer_f transfer)
1988 {
1989 struct snd_pcm_runtime *runtime = substream->runtime;
1990 snd_pcm_uframes_t xfer = 0;
1991 snd_pcm_uframes_t offset = 0;
1992 snd_pcm_uframes_t avail;
1993 int err = 0;
1994
1995 if (size == 0)
1996 return 0;
1997
1998 snd_pcm_stream_lock_irq(substream);
1999 switch (runtime->status->state) {
2000 case SNDRV_PCM_STATE_PREPARED:
2001 case SNDRV_PCM_STATE_RUNNING:
2002 case SNDRV_PCM_STATE_PAUSED:
2003 break;
2004 case SNDRV_PCM_STATE_XRUN:
2005 err = -EPIPE;
2006 goto _end_unlock;
2007 case SNDRV_PCM_STATE_SUSPENDED:
2008 err = -ESTRPIPE;
2009 goto _end_unlock;
2010 default:
2011 err = -EBADFD;
2012 goto _end_unlock;
2013 }
2014
2015 runtime->twake = runtime->control->avail_min ? : 1;
2016 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2017 snd_pcm_update_hw_ptr(substream);
2018 avail = snd_pcm_playback_avail(runtime);
2019 while (size > 0) {
2020 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2021 snd_pcm_uframes_t cont;
2022 if (!avail) {
2023 if (nonblock) {
2024 err = -EAGAIN;
2025 goto _end_unlock;
2026 }
2027 runtime->twake = min_t(snd_pcm_uframes_t, size,
2028 runtime->control->avail_min ? : 1);
2029 err = wait_for_avail(substream, &avail);
2030 if (err < 0)
2031 goto _end_unlock;
2032 }
2033 frames = size > avail ? avail : size;
2034 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2035 if (frames > cont)
2036 frames = cont;
2037 if (snd_BUG_ON(!frames)) {
2038 runtime->twake = 0;
2039 snd_pcm_stream_unlock_irq(substream);
2040 return -EINVAL;
2041 }
2042 appl_ptr = runtime->control->appl_ptr;
2043 appl_ofs = appl_ptr % runtime->buffer_size;
2044 snd_pcm_stream_unlock_irq(substream);
2045 err = transfer(substream, appl_ofs, data, offset, frames);
2046 snd_pcm_stream_lock_irq(substream);
2047 if (err < 0)
2048 goto _end_unlock;
2049 switch (runtime->status->state) {
2050 case SNDRV_PCM_STATE_XRUN:
2051 err = -EPIPE;
2052 goto _end_unlock;
2053 case SNDRV_PCM_STATE_SUSPENDED:
2054 err = -ESTRPIPE;
2055 goto _end_unlock;
2056 default:
2057 break;
2058 }
2059 appl_ptr += frames;
2060 if (appl_ptr >= runtime->boundary)
2061 appl_ptr -= runtime->boundary;
2062 runtime->control->appl_ptr = appl_ptr;
2063 if (substream->ops->ack)
2064 substream->ops->ack(substream);
2065
2066 offset += frames;
2067 size -= frames;
2068 xfer += frames;
2069 avail -= frames;
2070 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
2071 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2072 err = snd_pcm_start(substream);
2073 if (err < 0)
2074 goto _end_unlock;
2075 }
2076 }
2077 _end_unlock:
2078 runtime->twake = 0;
2079 if (xfer > 0 && err >= 0)
2080 snd_pcm_update_state(substream, runtime);
2081 snd_pcm_stream_unlock_irq(substream);
2082 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2083 }
2084
2085 /* sanity-check for read/write methods */
pcm_sanity_check(struct snd_pcm_substream * substream)2086 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2087 {
2088 struct snd_pcm_runtime *runtime;
2089 if (PCM_RUNTIME_CHECK(substream))
2090 return -ENXIO;
2091 runtime = substream->runtime;
2092 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2093 return -EINVAL;
2094 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2095 return -EBADFD;
2096 return 0;
2097 }
2098
snd_pcm_lib_write(struct snd_pcm_substream * substream,const void __user * buf,snd_pcm_uframes_t size)2099 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2100 {
2101 struct snd_pcm_runtime *runtime;
2102 int nonblock;
2103 int err;
2104
2105 err = pcm_sanity_check(substream);
2106 if (err < 0)
2107 return err;
2108 runtime = substream->runtime;
2109 nonblock = !!(substream->f_flags & O_NONBLOCK);
2110
2111 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2112 runtime->channels > 1)
2113 return -EINVAL;
2114 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2115 snd_pcm_lib_write_transfer);
2116 }
2117
2118 EXPORT_SYMBOL(snd_pcm_lib_write);
2119
snd_pcm_lib_writev_transfer(struct snd_pcm_substream * substream,unsigned int hwoff,unsigned long data,unsigned int off,snd_pcm_uframes_t frames)2120 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2121 unsigned int hwoff,
2122 unsigned long data, unsigned int off,
2123 snd_pcm_uframes_t frames)
2124 {
2125 struct snd_pcm_runtime *runtime = substream->runtime;
2126 int err;
2127 void __user **bufs = (void __user **)data;
2128 int channels = runtime->channels;
2129 int c;
2130 if (substream->ops->copy) {
2131 if (snd_BUG_ON(!substream->ops->silence))
2132 return -EINVAL;
2133 for (c = 0; c < channels; ++c, ++bufs) {
2134 if (*bufs == NULL) {
2135 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2136 return err;
2137 } else {
2138 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2139 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2140 return err;
2141 }
2142 }
2143 } else {
2144 /* default transfer behaviour */
2145 size_t dma_csize = runtime->dma_bytes / channels;
2146 for (c = 0; c < channels; ++c, ++bufs) {
2147 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2148 if (*bufs == NULL) {
2149 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2150 } else {
2151 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2152 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2153 return -EFAULT;
2154 }
2155 }
2156 }
2157 return 0;
2158 }
2159
snd_pcm_lib_writev(struct snd_pcm_substream * substream,void __user ** bufs,snd_pcm_uframes_t frames)2160 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2161 void __user **bufs,
2162 snd_pcm_uframes_t frames)
2163 {
2164 struct snd_pcm_runtime *runtime;
2165 int nonblock;
2166 int err;
2167
2168 err = pcm_sanity_check(substream);
2169 if (err < 0)
2170 return err;
2171 runtime = substream->runtime;
2172 nonblock = !!(substream->f_flags & O_NONBLOCK);
2173
2174 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2175 return -EINVAL;
2176 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2177 nonblock, snd_pcm_lib_writev_transfer);
2178 }
2179
2180 EXPORT_SYMBOL(snd_pcm_lib_writev);
2181
snd_pcm_lib_read_transfer(struct snd_pcm_substream * substream,unsigned int hwoff,unsigned long data,unsigned int off,snd_pcm_uframes_t frames)2182 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2183 unsigned int hwoff,
2184 unsigned long data, unsigned int off,
2185 snd_pcm_uframes_t frames)
2186 {
2187 struct snd_pcm_runtime *runtime = substream->runtime;
2188 int err;
2189 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2190 if (substream->ops->copy) {
2191 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2192 return err;
2193 } else {
2194 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2195 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2196 return -EFAULT;
2197 }
2198 return 0;
2199 }
2200
snd_pcm_lib_read1(struct snd_pcm_substream * substream,unsigned long data,snd_pcm_uframes_t size,int nonblock,transfer_f transfer)2201 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2202 unsigned long data,
2203 snd_pcm_uframes_t size,
2204 int nonblock,
2205 transfer_f transfer)
2206 {
2207 struct snd_pcm_runtime *runtime = substream->runtime;
2208 snd_pcm_uframes_t xfer = 0;
2209 snd_pcm_uframes_t offset = 0;
2210 snd_pcm_uframes_t avail;
2211 int err = 0;
2212
2213 if (size == 0)
2214 return 0;
2215
2216 snd_pcm_stream_lock_irq(substream);
2217 switch (runtime->status->state) {
2218 case SNDRV_PCM_STATE_PREPARED:
2219 if (size >= runtime->start_threshold) {
2220 err = snd_pcm_start(substream);
2221 if (err < 0)
2222 goto _end_unlock;
2223 }
2224 break;
2225 case SNDRV_PCM_STATE_DRAINING:
2226 case SNDRV_PCM_STATE_RUNNING:
2227 case SNDRV_PCM_STATE_PAUSED:
2228 break;
2229 case SNDRV_PCM_STATE_XRUN:
2230 err = -EPIPE;
2231 goto _end_unlock;
2232 case SNDRV_PCM_STATE_SUSPENDED:
2233 err = -ESTRPIPE;
2234 goto _end_unlock;
2235 default:
2236 err = -EBADFD;
2237 goto _end_unlock;
2238 }
2239
2240 runtime->twake = runtime->control->avail_min ? : 1;
2241 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2242 snd_pcm_update_hw_ptr(substream);
2243 avail = snd_pcm_capture_avail(runtime);
2244 while (size > 0) {
2245 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2246 snd_pcm_uframes_t cont;
2247 if (!avail) {
2248 if (runtime->status->state ==
2249 SNDRV_PCM_STATE_DRAINING) {
2250 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2251 goto _end_unlock;
2252 }
2253 if (nonblock) {
2254 err = -EAGAIN;
2255 goto _end_unlock;
2256 }
2257 runtime->twake = min_t(snd_pcm_uframes_t, size,
2258 runtime->control->avail_min ? : 1);
2259 err = wait_for_avail(substream, &avail);
2260 if (err < 0)
2261 goto _end_unlock;
2262 if (!avail)
2263 continue; /* draining */
2264 }
2265 frames = size > avail ? avail : size;
2266 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2267 if (frames > cont)
2268 frames = cont;
2269 if (snd_BUG_ON(!frames)) {
2270 runtime->twake = 0;
2271 snd_pcm_stream_unlock_irq(substream);
2272 return -EINVAL;
2273 }
2274 appl_ptr = runtime->control->appl_ptr;
2275 appl_ofs = appl_ptr % runtime->buffer_size;
2276 snd_pcm_stream_unlock_irq(substream);
2277 err = transfer(substream, appl_ofs, data, offset, frames);
2278 snd_pcm_stream_lock_irq(substream);
2279 if (err < 0)
2280 goto _end_unlock;
2281 switch (runtime->status->state) {
2282 case SNDRV_PCM_STATE_XRUN:
2283 err = -EPIPE;
2284 goto _end_unlock;
2285 case SNDRV_PCM_STATE_SUSPENDED:
2286 err = -ESTRPIPE;
2287 goto _end_unlock;
2288 default:
2289 break;
2290 }
2291 appl_ptr += frames;
2292 if (appl_ptr >= runtime->boundary)
2293 appl_ptr -= runtime->boundary;
2294 runtime->control->appl_ptr = appl_ptr;
2295 if (substream->ops->ack)
2296 substream->ops->ack(substream);
2297
2298 offset += frames;
2299 size -= frames;
2300 xfer += frames;
2301 avail -= frames;
2302 }
2303 _end_unlock:
2304 runtime->twake = 0;
2305 if (xfer > 0 && err >= 0)
2306 snd_pcm_update_state(substream, runtime);
2307 snd_pcm_stream_unlock_irq(substream);
2308 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2309 }
2310
snd_pcm_lib_read(struct snd_pcm_substream * substream,void __user * buf,snd_pcm_uframes_t size)2311 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2312 {
2313 struct snd_pcm_runtime *runtime;
2314 int nonblock;
2315 int err;
2316
2317 err = pcm_sanity_check(substream);
2318 if (err < 0)
2319 return err;
2320 runtime = substream->runtime;
2321 nonblock = !!(substream->f_flags & O_NONBLOCK);
2322 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2323 return -EINVAL;
2324 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2325 }
2326
2327 EXPORT_SYMBOL(snd_pcm_lib_read);
2328
snd_pcm_lib_readv_transfer(struct snd_pcm_substream * substream,unsigned int hwoff,unsigned long data,unsigned int off,snd_pcm_uframes_t frames)2329 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2330 unsigned int hwoff,
2331 unsigned long data, unsigned int off,
2332 snd_pcm_uframes_t frames)
2333 {
2334 struct snd_pcm_runtime *runtime = substream->runtime;
2335 int err;
2336 void __user **bufs = (void __user **)data;
2337 int channels = runtime->channels;
2338 int c;
2339 if (substream->ops->copy) {
2340 for (c = 0; c < channels; ++c, ++bufs) {
2341 char __user *buf;
2342 if (*bufs == NULL)
2343 continue;
2344 buf = *bufs + samples_to_bytes(runtime, off);
2345 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2346 return err;
2347 }
2348 } else {
2349 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2350 for (c = 0; c < channels; ++c, ++bufs) {
2351 char *hwbuf;
2352 char __user *buf;
2353 if (*bufs == NULL)
2354 continue;
2355
2356 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2357 buf = *bufs + samples_to_bytes(runtime, off);
2358 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2359 return -EFAULT;
2360 }
2361 }
2362 return 0;
2363 }
2364
snd_pcm_lib_readv(struct snd_pcm_substream * substream,void __user ** bufs,snd_pcm_uframes_t frames)2365 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2366 void __user **bufs,
2367 snd_pcm_uframes_t frames)
2368 {
2369 struct snd_pcm_runtime *runtime;
2370 int nonblock;
2371 int err;
2372
2373 err = pcm_sanity_check(substream);
2374 if (err < 0)
2375 return err;
2376 runtime = substream->runtime;
2377 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2378 return -EBADFD;
2379
2380 nonblock = !!(substream->f_flags & O_NONBLOCK);
2381 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2382 return -EINVAL;
2383 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2384 }
2385
2386 EXPORT_SYMBOL(snd_pcm_lib_readv);
2387
2388 /*
2389 * standard channel mapping helpers
2390 */
2391
2392 /* default channel maps for multi-channel playbacks, up to 8 channels */
2393 const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2394 { .channels = 1,
2395 .map = { SNDRV_CHMAP_MONO } },
2396 { .channels = 2,
2397 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2398 { .channels = 4,
2399 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2400 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2401 { .channels = 6,
2402 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2403 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2404 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2405 { .channels = 8,
2406 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2407 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2408 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2409 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2410 { }
2411 };
2412 EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2413
2414 /* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2415 const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2416 { .channels = 1,
2417 .map = { SNDRV_CHMAP_MONO } },
2418 { .channels = 2,
2419 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2420 { .channels = 4,
2421 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2422 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2423 { .channels = 6,
2424 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2425 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2426 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2427 { .channels = 8,
2428 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2429 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2430 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2431 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2432 { }
2433 };
2434 EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2435
valid_chmap_channels(const struct snd_pcm_chmap * info,int ch)2436 static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2437 {
2438 if (ch > info->max_channels)
2439 return false;
2440 return !info->channel_mask || (info->channel_mask & (1U << ch));
2441 }
2442
pcm_chmap_ctl_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)2443 static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2444 struct snd_ctl_elem_info *uinfo)
2445 {
2446 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2447
2448 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2449 uinfo->count = 0;
2450 uinfo->count = info->max_channels;
2451 uinfo->value.integer.min = 0;
2452 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2453 return 0;
2454 }
2455
2456 /* get callback for channel map ctl element
2457 * stores the channel position firstly matching with the current channels
2458 */
pcm_chmap_ctl_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)2459 static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2460 struct snd_ctl_elem_value *ucontrol)
2461 {
2462 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2463 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2464 struct snd_pcm_substream *substream;
2465 const struct snd_pcm_chmap_elem *map;
2466
2467 if (snd_BUG_ON(!info->chmap))
2468 return -EINVAL;
2469 substream = snd_pcm_chmap_substream(info, idx);
2470 if (!substream)
2471 return -ENODEV;
2472 memset(ucontrol->value.integer.value, 0,
2473 sizeof(ucontrol->value.integer.value));
2474 if (!substream->runtime)
2475 return 0; /* no channels set */
2476 for (map = info->chmap; map->channels; map++) {
2477 int i;
2478 if (map->channels == substream->runtime->channels &&
2479 valid_chmap_channels(info, map->channels)) {
2480 for (i = 0; i < map->channels; i++)
2481 ucontrol->value.integer.value[i] = map->map[i];
2482 return 0;
2483 }
2484 }
2485 return -EINVAL;
2486 }
2487
2488 /* tlv callback for channel map ctl element
2489 * expands the pre-defined channel maps in a form of TLV
2490 */
pcm_chmap_ctl_tlv(struct snd_kcontrol * kcontrol,int op_flag,unsigned int size,unsigned int __user * tlv)2491 static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2492 unsigned int size, unsigned int __user *tlv)
2493 {
2494 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2495 const struct snd_pcm_chmap_elem *map;
2496 unsigned int __user *dst;
2497 int c, count = 0;
2498
2499 if (snd_BUG_ON(!info->chmap))
2500 return -EINVAL;
2501 if (size < 8)
2502 return -ENOMEM;
2503 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2504 return -EFAULT;
2505 size -= 8;
2506 dst = tlv + 2;
2507 for (map = info->chmap; map->channels; map++) {
2508 int chs_bytes = map->channels * 4;
2509 if (!valid_chmap_channels(info, map->channels))
2510 continue;
2511 if (size < 8)
2512 return -ENOMEM;
2513 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2514 put_user(chs_bytes, dst + 1))
2515 return -EFAULT;
2516 dst += 2;
2517 size -= 8;
2518 count += 8;
2519 if (size < chs_bytes)
2520 return -ENOMEM;
2521 size -= chs_bytes;
2522 count += chs_bytes;
2523 for (c = 0; c < map->channels; c++) {
2524 if (put_user(map->map[c], dst))
2525 return -EFAULT;
2526 dst++;
2527 }
2528 }
2529 if (put_user(count, tlv + 1))
2530 return -EFAULT;
2531 return 0;
2532 }
2533
pcm_chmap_ctl_private_free(struct snd_kcontrol * kcontrol)2534 static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2535 {
2536 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2537 info->pcm->streams[info->stream].chmap_kctl = NULL;
2538 kfree(info);
2539 }
2540
2541 /**
2542 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2543 * @pcm: the assigned PCM instance
2544 * @stream: stream direction
2545 * @chmap: channel map elements (for query)
2546 * @max_channels: the max number of channels for the stream
2547 * @private_value: the value passed to each kcontrol's private_value field
2548 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2549 *
2550 * Create channel-mapping control elements assigned to the given PCM stream(s).
2551 * Return: Zero if successful, or a negative error value.
2552 */
snd_pcm_add_chmap_ctls(struct snd_pcm * pcm,int stream,const struct snd_pcm_chmap_elem * chmap,int max_channels,unsigned long private_value,struct snd_pcm_chmap ** info_ret)2553 int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2554 const struct snd_pcm_chmap_elem *chmap,
2555 int max_channels,
2556 unsigned long private_value,
2557 struct snd_pcm_chmap **info_ret)
2558 {
2559 struct snd_pcm_chmap *info;
2560 struct snd_kcontrol_new knew = {
2561 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2562 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2563 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2564 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2565 .info = pcm_chmap_ctl_info,
2566 .get = pcm_chmap_ctl_get,
2567 .tlv.c = pcm_chmap_ctl_tlv,
2568 };
2569 int err;
2570
2571 info = kzalloc(sizeof(*info), GFP_KERNEL);
2572 if (!info)
2573 return -ENOMEM;
2574 info->pcm = pcm;
2575 info->stream = stream;
2576 info->chmap = chmap;
2577 info->max_channels = max_channels;
2578 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2579 knew.name = "Playback Channel Map";
2580 else
2581 knew.name = "Capture Channel Map";
2582 knew.device = pcm->device;
2583 knew.count = pcm->streams[stream].substream_count;
2584 knew.private_value = private_value;
2585 info->kctl = snd_ctl_new1(&knew, info);
2586 if (!info->kctl) {
2587 kfree(info);
2588 return -ENOMEM;
2589 }
2590 info->kctl->private_free = pcm_chmap_ctl_private_free;
2591 err = snd_ctl_add(pcm->card, info->kctl);
2592 if (err < 0)
2593 return err;
2594 pcm->streams[stream].chmap_kctl = info->kctl;
2595 if (info_ret)
2596 *info_ret = info;
2597 return 0;
2598 }
2599 EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
2600