1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 *
85 *
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
90 */
91
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
93
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
120
121 #include <asm/uaccess.h>
122
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
134
135 #include <linux/filter.h>
136
137 #include <trace/events/sock.h>
138
139 #ifdef CONFIG_INET
140 #include <net/tcp.h>
141 #endif
142
143 #include <net/busy_poll.h>
144
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
147
148 /**
149 * sk_ns_capable - General socket capability test
150 * @sk: Socket to use a capability on or through
151 * @user_ns: The user namespace of the capability to use
152 * @cap: The capability to use
153 *
154 * Test to see if the opener of the socket had when the socket was
155 * created and the current process has the capability @cap in the user
156 * namespace @user_ns.
157 */
sk_ns_capable(const struct sock * sk,struct user_namespace * user_ns,int cap)158 bool sk_ns_capable(const struct sock *sk,
159 struct user_namespace *user_ns, int cap)
160 {
161 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
162 ns_capable(user_ns, cap);
163 }
164 EXPORT_SYMBOL(sk_ns_capable);
165
166 /**
167 * sk_capable - Socket global capability test
168 * @sk: Socket to use a capability on or through
169 * @cap: The global capability to use
170 *
171 * Test to see if the opener of the socket had when the socket was
172 * created and the current process has the capability @cap in all user
173 * namespaces.
174 */
sk_capable(const struct sock * sk,int cap)175 bool sk_capable(const struct sock *sk, int cap)
176 {
177 return sk_ns_capable(sk, &init_user_ns, cap);
178 }
179 EXPORT_SYMBOL(sk_capable);
180
181 /**
182 * sk_net_capable - Network namespace socket capability test
183 * @sk: Socket to use a capability on or through
184 * @cap: The capability to use
185 *
186 * Test to see if the opener of the socket had when the socket was created
187 * and the current process has the capability @cap over the network namespace
188 * the socket is a member of.
189 */
sk_net_capable(const struct sock * sk,int cap)190 bool sk_net_capable(const struct sock *sk, int cap)
191 {
192 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
193 }
194 EXPORT_SYMBOL(sk_net_capable);
195
196
197 #ifdef CONFIG_MEMCG_KMEM
mem_cgroup_sockets_init(struct mem_cgroup * memcg,struct cgroup_subsys * ss)198 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
199 {
200 struct proto *proto;
201 int ret = 0;
202
203 mutex_lock(&proto_list_mutex);
204 list_for_each_entry(proto, &proto_list, node) {
205 if (proto->init_cgroup) {
206 ret = proto->init_cgroup(memcg, ss);
207 if (ret)
208 goto out;
209 }
210 }
211
212 mutex_unlock(&proto_list_mutex);
213 return ret;
214 out:
215 list_for_each_entry_continue_reverse(proto, &proto_list, node)
216 if (proto->destroy_cgroup)
217 proto->destroy_cgroup(memcg);
218 mutex_unlock(&proto_list_mutex);
219 return ret;
220 }
221
mem_cgroup_sockets_destroy(struct mem_cgroup * memcg)222 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
223 {
224 struct proto *proto;
225
226 mutex_lock(&proto_list_mutex);
227 list_for_each_entry_reverse(proto, &proto_list, node)
228 if (proto->destroy_cgroup)
229 proto->destroy_cgroup(memcg);
230 mutex_unlock(&proto_list_mutex);
231 }
232 #endif
233
234 /*
235 * Each address family might have different locking rules, so we have
236 * one slock key per address family:
237 */
238 static struct lock_class_key af_family_keys[AF_MAX];
239 static struct lock_class_key af_family_slock_keys[AF_MAX];
240
241 #if defined(CONFIG_MEMCG_KMEM)
242 struct static_key memcg_socket_limit_enabled;
243 EXPORT_SYMBOL(memcg_socket_limit_enabled);
244 #endif
245
246 /*
247 * Make lock validator output more readable. (we pre-construct these
248 * strings build-time, so that runtime initialization of socket
249 * locks is fast):
250 */
251 static const char *const af_family_key_strings[AF_MAX+1] = {
252 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
253 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
254 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
255 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
256 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
257 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
258 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
259 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
260 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
261 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
262 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
263 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
264 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
265 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
266 };
267 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
268 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
269 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
270 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
271 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
272 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
273 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
274 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
275 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
276 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
277 "slock-27" , "slock-28" , "slock-AF_CAN" ,
278 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
279 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
280 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
281 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
282 };
283 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
284 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
285 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
286 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
287 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
288 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
289 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
290 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
291 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
292 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
293 "clock-27" , "clock-28" , "clock-AF_CAN" ,
294 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
295 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
296 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
297 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
298 };
299
300 /*
301 * sk_callback_lock locking rules are per-address-family,
302 * so split the lock classes by using a per-AF key:
303 */
304 static struct lock_class_key af_callback_keys[AF_MAX];
305
306 /* Take into consideration the size of the struct sk_buff overhead in the
307 * determination of these values, since that is non-constant across
308 * platforms. This makes socket queueing behavior and performance
309 * not depend upon such differences.
310 */
311 #define _SK_MEM_PACKETS 256
312 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
313 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
314 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
315
316 /* Run time adjustable parameters. */
317 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
318 EXPORT_SYMBOL(sysctl_wmem_max);
319 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
320 EXPORT_SYMBOL(sysctl_rmem_max);
321 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
322 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
323
324 /* Maximal space eaten by iovec or ancillary data plus some space */
325 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
326 EXPORT_SYMBOL(sysctl_optmem_max);
327
328 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
329 EXPORT_SYMBOL_GPL(memalloc_socks);
330
331 /**
332 * sk_set_memalloc - sets %SOCK_MEMALLOC
333 * @sk: socket to set it on
334 *
335 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
336 * It's the responsibility of the admin to adjust min_free_kbytes
337 * to meet the requirements
338 */
sk_set_memalloc(struct sock * sk)339 void sk_set_memalloc(struct sock *sk)
340 {
341 sock_set_flag(sk, SOCK_MEMALLOC);
342 sk->sk_allocation |= __GFP_MEMALLOC;
343 static_key_slow_inc(&memalloc_socks);
344 }
345 EXPORT_SYMBOL_GPL(sk_set_memalloc);
346
sk_clear_memalloc(struct sock * sk)347 void sk_clear_memalloc(struct sock *sk)
348 {
349 sock_reset_flag(sk, SOCK_MEMALLOC);
350 sk->sk_allocation &= ~__GFP_MEMALLOC;
351 static_key_slow_dec(&memalloc_socks);
352
353 /*
354 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
355 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
356 * it has rmem allocations there is a risk that the user of the
357 * socket cannot make forward progress due to exceeding the rmem
358 * limits. By rights, sk_clear_memalloc() should only be called
359 * on sockets being torn down but warn and reset the accounting if
360 * that assumption breaks.
361 */
362 if (WARN_ON(sk->sk_forward_alloc))
363 sk_mem_reclaim(sk);
364 }
365 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
366
__sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)367 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
368 {
369 int ret;
370 unsigned long pflags = current->flags;
371
372 /* these should have been dropped before queueing */
373 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
374
375 current->flags |= PF_MEMALLOC;
376 ret = sk->sk_backlog_rcv(sk, skb);
377 tsk_restore_flags(current, pflags, PF_MEMALLOC);
378
379 return ret;
380 }
381 EXPORT_SYMBOL(__sk_backlog_rcv);
382
sock_set_timeout(long * timeo_p,char __user * optval,int optlen)383 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
384 {
385 struct timeval tv;
386
387 if (optlen < sizeof(tv))
388 return -EINVAL;
389 if (copy_from_user(&tv, optval, sizeof(tv)))
390 return -EFAULT;
391 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
392 return -EDOM;
393
394 if (tv.tv_sec < 0) {
395 static int warned __read_mostly;
396
397 *timeo_p = 0;
398 if (warned < 10 && net_ratelimit()) {
399 warned++;
400 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
401 __func__, current->comm, task_pid_nr(current));
402 }
403 return 0;
404 }
405 *timeo_p = MAX_SCHEDULE_TIMEOUT;
406 if (tv.tv_sec == 0 && tv.tv_usec == 0)
407 return 0;
408 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
409 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
410 return 0;
411 }
412
sock_warn_obsolete_bsdism(const char * name)413 static void sock_warn_obsolete_bsdism(const char *name)
414 {
415 static int warned;
416 static char warncomm[TASK_COMM_LEN];
417 if (strcmp(warncomm, current->comm) && warned < 5) {
418 strcpy(warncomm, current->comm);
419 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
420 warncomm, name);
421 warned++;
422 }
423 }
424
sock_disable_timestamp(struct sock * sk,unsigned long flags)425 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
426 {
427 if (sk->sk_flags & flags) {
428 sk->sk_flags &= ~flags;
429 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
430 net_disable_timestamp();
431 }
432 }
433
434
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)435 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
436 {
437 int err;
438 unsigned long flags;
439 struct sk_buff_head *list = &sk->sk_receive_queue;
440
441 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
442 atomic_inc(&sk->sk_drops);
443 trace_sock_rcvqueue_full(sk, skb);
444 return -ENOMEM;
445 }
446
447 err = sk_filter(sk, skb);
448 if (err)
449 return err;
450
451 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
452 atomic_inc(&sk->sk_drops);
453 return -ENOBUFS;
454 }
455
456 skb->dev = NULL;
457 skb_set_owner_r(skb, sk);
458
459 /* we escape from rcu protected region, make sure we dont leak
460 * a norefcounted dst
461 */
462 skb_dst_force(skb);
463
464 spin_lock_irqsave(&list->lock, flags);
465 skb->dropcount = atomic_read(&sk->sk_drops);
466 __skb_queue_tail(list, skb);
467 spin_unlock_irqrestore(&list->lock, flags);
468
469 if (!sock_flag(sk, SOCK_DEAD))
470 sk->sk_data_ready(sk);
471 return 0;
472 }
473 EXPORT_SYMBOL(sock_queue_rcv_skb);
474
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)475 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
476 {
477 int rc = NET_RX_SUCCESS;
478
479 if (sk_filter(sk, skb))
480 goto discard_and_relse;
481
482 skb->dev = NULL;
483
484 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
485 atomic_inc(&sk->sk_drops);
486 goto discard_and_relse;
487 }
488 if (nested)
489 bh_lock_sock_nested(sk);
490 else
491 bh_lock_sock(sk);
492 if (!sock_owned_by_user(sk)) {
493 /*
494 * trylock + unlock semantics:
495 */
496 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
497
498 rc = sk_backlog_rcv(sk, skb);
499
500 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
501 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
502 bh_unlock_sock(sk);
503 atomic_inc(&sk->sk_drops);
504 goto discard_and_relse;
505 }
506
507 bh_unlock_sock(sk);
508 out:
509 sock_put(sk);
510 return rc;
511 discard_and_relse:
512 kfree_skb(skb);
513 goto out;
514 }
515 EXPORT_SYMBOL(sk_receive_skb);
516
__sk_dst_check(struct sock * sk,u32 cookie)517 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
518 {
519 struct dst_entry *dst = __sk_dst_get(sk);
520
521 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
522 sk_tx_queue_clear(sk);
523 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
524 dst_release(dst);
525 return NULL;
526 }
527
528 return dst;
529 }
530 EXPORT_SYMBOL(__sk_dst_check);
531
sk_dst_check(struct sock * sk,u32 cookie)532 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
533 {
534 struct dst_entry *dst = sk_dst_get(sk);
535
536 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
537 sk_dst_reset(sk);
538 dst_release(dst);
539 return NULL;
540 }
541
542 return dst;
543 }
544 EXPORT_SYMBOL(sk_dst_check);
545
sock_setbindtodevice(struct sock * sk,char __user * optval,int optlen)546 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
547 int optlen)
548 {
549 int ret = -ENOPROTOOPT;
550 #ifdef CONFIG_NETDEVICES
551 struct net *net = sock_net(sk);
552 char devname[IFNAMSIZ];
553 int index;
554
555 /* Sorry... */
556 ret = -EPERM;
557 if (!ns_capable(net->user_ns, CAP_NET_RAW))
558 goto out;
559
560 ret = -EINVAL;
561 if (optlen < 0)
562 goto out;
563
564 /* Bind this socket to a particular device like "eth0",
565 * as specified in the passed interface name. If the
566 * name is "" or the option length is zero the socket
567 * is not bound.
568 */
569 if (optlen > IFNAMSIZ - 1)
570 optlen = IFNAMSIZ - 1;
571 memset(devname, 0, sizeof(devname));
572
573 ret = -EFAULT;
574 if (copy_from_user(devname, optval, optlen))
575 goto out;
576
577 index = 0;
578 if (devname[0] != '\0') {
579 struct net_device *dev;
580
581 rcu_read_lock();
582 dev = dev_get_by_name_rcu(net, devname);
583 if (dev)
584 index = dev->ifindex;
585 rcu_read_unlock();
586 ret = -ENODEV;
587 if (!dev)
588 goto out;
589 }
590
591 lock_sock(sk);
592 sk->sk_bound_dev_if = index;
593 sk_dst_reset(sk);
594 release_sock(sk);
595
596 ret = 0;
597
598 out:
599 #endif
600
601 return ret;
602 }
603
sock_getbindtodevice(struct sock * sk,char __user * optval,int __user * optlen,int len)604 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
605 int __user *optlen, int len)
606 {
607 int ret = -ENOPROTOOPT;
608 #ifdef CONFIG_NETDEVICES
609 struct net *net = sock_net(sk);
610 char devname[IFNAMSIZ];
611
612 if (sk->sk_bound_dev_if == 0) {
613 len = 0;
614 goto zero;
615 }
616
617 ret = -EINVAL;
618 if (len < IFNAMSIZ)
619 goto out;
620
621 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
622 if (ret)
623 goto out;
624
625 len = strlen(devname) + 1;
626
627 ret = -EFAULT;
628 if (copy_to_user(optval, devname, len))
629 goto out;
630
631 zero:
632 ret = -EFAULT;
633 if (put_user(len, optlen))
634 goto out;
635
636 ret = 0;
637
638 out:
639 #endif
640
641 return ret;
642 }
643
sock_valbool_flag(struct sock * sk,int bit,int valbool)644 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
645 {
646 if (valbool)
647 sock_set_flag(sk, bit);
648 else
649 sock_reset_flag(sk, bit);
650 }
651
sk_mc_loop(struct sock * sk)652 bool sk_mc_loop(struct sock *sk)
653 {
654 if (dev_recursion_level())
655 return false;
656 if (!sk)
657 return true;
658 switch (sk->sk_family) {
659 case AF_INET:
660 return inet_sk(sk)->mc_loop;
661 #if IS_ENABLED(CONFIG_IPV6)
662 case AF_INET6:
663 return inet6_sk(sk)->mc_loop;
664 #endif
665 }
666 WARN_ON(1);
667 return true;
668 }
669 EXPORT_SYMBOL(sk_mc_loop);
670
671 /*
672 * This is meant for all protocols to use and covers goings on
673 * at the socket level. Everything here is generic.
674 */
675
sock_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)676 int sock_setsockopt(struct socket *sock, int level, int optname,
677 char __user *optval, unsigned int optlen)
678 {
679 struct sock *sk = sock->sk;
680 int val;
681 int valbool;
682 struct linger ling;
683 int ret = 0;
684
685 /*
686 * Options without arguments
687 */
688
689 if (optname == SO_BINDTODEVICE)
690 return sock_setbindtodevice(sk, optval, optlen);
691
692 if (optlen < sizeof(int))
693 return -EINVAL;
694
695 if (get_user(val, (int __user *)optval))
696 return -EFAULT;
697
698 valbool = val ? 1 : 0;
699
700 lock_sock(sk);
701
702 switch (optname) {
703 case SO_DEBUG:
704 if (val && !capable(CAP_NET_ADMIN))
705 ret = -EACCES;
706 else
707 sock_valbool_flag(sk, SOCK_DBG, valbool);
708 break;
709 case SO_REUSEADDR:
710 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
711 break;
712 case SO_REUSEPORT:
713 sk->sk_reuseport = valbool;
714 break;
715 case SO_TYPE:
716 case SO_PROTOCOL:
717 case SO_DOMAIN:
718 case SO_ERROR:
719 ret = -ENOPROTOOPT;
720 break;
721 case SO_DONTROUTE:
722 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
723 break;
724 case SO_BROADCAST:
725 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
726 break;
727 case SO_SNDBUF:
728 /* Don't error on this BSD doesn't and if you think
729 * about it this is right. Otherwise apps have to
730 * play 'guess the biggest size' games. RCVBUF/SNDBUF
731 * are treated in BSD as hints
732 */
733 val = min_t(u32, val, sysctl_wmem_max);
734 set_sndbuf:
735 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
736 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
737 /* Wake up sending tasks if we upped the value. */
738 sk->sk_write_space(sk);
739 break;
740
741 case SO_SNDBUFFORCE:
742 if (!capable(CAP_NET_ADMIN)) {
743 ret = -EPERM;
744 break;
745 }
746 goto set_sndbuf;
747
748 case SO_RCVBUF:
749 /* Don't error on this BSD doesn't and if you think
750 * about it this is right. Otherwise apps have to
751 * play 'guess the biggest size' games. RCVBUF/SNDBUF
752 * are treated in BSD as hints
753 */
754 val = min_t(u32, val, sysctl_rmem_max);
755 set_rcvbuf:
756 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
757 /*
758 * We double it on the way in to account for
759 * "struct sk_buff" etc. overhead. Applications
760 * assume that the SO_RCVBUF setting they make will
761 * allow that much actual data to be received on that
762 * socket.
763 *
764 * Applications are unaware that "struct sk_buff" and
765 * other overheads allocate from the receive buffer
766 * during socket buffer allocation.
767 *
768 * And after considering the possible alternatives,
769 * returning the value we actually used in getsockopt
770 * is the most desirable behavior.
771 */
772 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
773 break;
774
775 case SO_RCVBUFFORCE:
776 if (!capable(CAP_NET_ADMIN)) {
777 ret = -EPERM;
778 break;
779 }
780 goto set_rcvbuf;
781
782 case SO_KEEPALIVE:
783 #ifdef CONFIG_INET
784 if (sk->sk_protocol == IPPROTO_TCP &&
785 sk->sk_type == SOCK_STREAM)
786 tcp_set_keepalive(sk, valbool);
787 #endif
788 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
789 break;
790
791 case SO_OOBINLINE:
792 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
793 break;
794
795 case SO_NO_CHECK:
796 sk->sk_no_check_tx = valbool;
797 break;
798
799 case SO_PRIORITY:
800 if ((val >= 0 && val <= 6) ||
801 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
802 sk->sk_priority = val;
803 else
804 ret = -EPERM;
805 break;
806
807 case SO_LINGER:
808 if (optlen < sizeof(ling)) {
809 ret = -EINVAL; /* 1003.1g */
810 break;
811 }
812 if (copy_from_user(&ling, optval, sizeof(ling))) {
813 ret = -EFAULT;
814 break;
815 }
816 if (!ling.l_onoff)
817 sock_reset_flag(sk, SOCK_LINGER);
818 else {
819 #if (BITS_PER_LONG == 32)
820 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
821 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
822 else
823 #endif
824 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
825 sock_set_flag(sk, SOCK_LINGER);
826 }
827 break;
828
829 case SO_BSDCOMPAT:
830 sock_warn_obsolete_bsdism("setsockopt");
831 break;
832
833 case SO_PASSCRED:
834 if (valbool)
835 set_bit(SOCK_PASSCRED, &sock->flags);
836 else
837 clear_bit(SOCK_PASSCRED, &sock->flags);
838 break;
839
840 case SO_TIMESTAMP:
841 case SO_TIMESTAMPNS:
842 if (valbool) {
843 if (optname == SO_TIMESTAMP)
844 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
845 else
846 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
847 sock_set_flag(sk, SOCK_RCVTSTAMP);
848 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
849 } else {
850 sock_reset_flag(sk, SOCK_RCVTSTAMP);
851 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
852 }
853 break;
854
855 case SO_TIMESTAMPING:
856 if (val & ~SOF_TIMESTAMPING_MASK) {
857 ret = -EINVAL;
858 break;
859 }
860 if (val & SOF_TIMESTAMPING_OPT_ID &&
861 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
862 if (sk->sk_protocol == IPPROTO_TCP &&
863 sk->sk_type == SOCK_STREAM) {
864 if (sk->sk_state != TCP_ESTABLISHED) {
865 ret = -EINVAL;
866 break;
867 }
868 sk->sk_tskey = tcp_sk(sk)->snd_una;
869 } else {
870 sk->sk_tskey = 0;
871 }
872 }
873 sk->sk_tsflags = val;
874 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
875 sock_enable_timestamp(sk,
876 SOCK_TIMESTAMPING_RX_SOFTWARE);
877 else
878 sock_disable_timestamp(sk,
879 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
880 break;
881
882 case SO_RCVLOWAT:
883 if (val < 0)
884 val = INT_MAX;
885 sk->sk_rcvlowat = val ? : 1;
886 break;
887
888 case SO_RCVTIMEO:
889 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
890 break;
891
892 case SO_SNDTIMEO:
893 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
894 break;
895
896 case SO_ATTACH_FILTER:
897 ret = -EINVAL;
898 if (optlen == sizeof(struct sock_fprog)) {
899 struct sock_fprog fprog;
900
901 ret = -EFAULT;
902 if (copy_from_user(&fprog, optval, sizeof(fprog)))
903 break;
904
905 ret = sk_attach_filter(&fprog, sk);
906 }
907 break;
908
909 case SO_DETACH_FILTER:
910 ret = sk_detach_filter(sk);
911 break;
912
913 case SO_LOCK_FILTER:
914 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
915 ret = -EPERM;
916 else
917 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
918 break;
919
920 case SO_PASSSEC:
921 if (valbool)
922 set_bit(SOCK_PASSSEC, &sock->flags);
923 else
924 clear_bit(SOCK_PASSSEC, &sock->flags);
925 break;
926 case SO_MARK:
927 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
928 ret = -EPERM;
929 else
930 sk->sk_mark = val;
931 break;
932
933 /* We implement the SO_SNDLOWAT etc to
934 not be settable (1003.1g 5.3) */
935 case SO_RXQ_OVFL:
936 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
937 break;
938
939 case SO_WIFI_STATUS:
940 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
941 break;
942
943 case SO_PEEK_OFF:
944 if (sock->ops->set_peek_off)
945 ret = sock->ops->set_peek_off(sk, val);
946 else
947 ret = -EOPNOTSUPP;
948 break;
949
950 case SO_NOFCS:
951 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
952 break;
953
954 case SO_SELECT_ERR_QUEUE:
955 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
956 break;
957
958 #ifdef CONFIG_NET_RX_BUSY_POLL
959 case SO_BUSY_POLL:
960 /* allow unprivileged users to decrease the value */
961 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
962 ret = -EPERM;
963 else {
964 if (val < 0)
965 ret = -EINVAL;
966 else
967 sk->sk_ll_usec = val;
968 }
969 break;
970 #endif
971
972 case SO_MAX_PACING_RATE:
973 sk->sk_max_pacing_rate = val;
974 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
975 sk->sk_max_pacing_rate);
976 break;
977
978 default:
979 ret = -ENOPROTOOPT;
980 break;
981 }
982 release_sock(sk);
983 return ret;
984 }
985 EXPORT_SYMBOL(sock_setsockopt);
986
987
cred_to_ucred(struct pid * pid,const struct cred * cred,struct ucred * ucred)988 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
989 struct ucred *ucred)
990 {
991 ucred->pid = pid_vnr(pid);
992 ucred->uid = ucred->gid = -1;
993 if (cred) {
994 struct user_namespace *current_ns = current_user_ns();
995
996 ucred->uid = from_kuid_munged(current_ns, cred->euid);
997 ucred->gid = from_kgid_munged(current_ns, cred->egid);
998 }
999 }
1000
sock_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1001 int sock_getsockopt(struct socket *sock, int level, int optname,
1002 char __user *optval, int __user *optlen)
1003 {
1004 struct sock *sk = sock->sk;
1005
1006 union {
1007 int val;
1008 struct linger ling;
1009 struct timeval tm;
1010 } v;
1011
1012 int lv = sizeof(int);
1013 int len;
1014
1015 if (get_user(len, optlen))
1016 return -EFAULT;
1017 if (len < 0)
1018 return -EINVAL;
1019
1020 memset(&v, 0, sizeof(v));
1021
1022 switch (optname) {
1023 case SO_DEBUG:
1024 v.val = sock_flag(sk, SOCK_DBG);
1025 break;
1026
1027 case SO_DONTROUTE:
1028 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1029 break;
1030
1031 case SO_BROADCAST:
1032 v.val = sock_flag(sk, SOCK_BROADCAST);
1033 break;
1034
1035 case SO_SNDBUF:
1036 v.val = sk->sk_sndbuf;
1037 break;
1038
1039 case SO_RCVBUF:
1040 v.val = sk->sk_rcvbuf;
1041 break;
1042
1043 case SO_REUSEADDR:
1044 v.val = sk->sk_reuse;
1045 break;
1046
1047 case SO_REUSEPORT:
1048 v.val = sk->sk_reuseport;
1049 break;
1050
1051 case SO_KEEPALIVE:
1052 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1053 break;
1054
1055 case SO_TYPE:
1056 v.val = sk->sk_type;
1057 break;
1058
1059 case SO_PROTOCOL:
1060 v.val = sk->sk_protocol;
1061 break;
1062
1063 case SO_DOMAIN:
1064 v.val = sk->sk_family;
1065 break;
1066
1067 case SO_ERROR:
1068 v.val = -sock_error(sk);
1069 if (v.val == 0)
1070 v.val = xchg(&sk->sk_err_soft, 0);
1071 break;
1072
1073 case SO_OOBINLINE:
1074 v.val = sock_flag(sk, SOCK_URGINLINE);
1075 break;
1076
1077 case SO_NO_CHECK:
1078 v.val = sk->sk_no_check_tx;
1079 break;
1080
1081 case SO_PRIORITY:
1082 v.val = sk->sk_priority;
1083 break;
1084
1085 case SO_LINGER:
1086 lv = sizeof(v.ling);
1087 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1088 v.ling.l_linger = sk->sk_lingertime / HZ;
1089 break;
1090
1091 case SO_BSDCOMPAT:
1092 sock_warn_obsolete_bsdism("getsockopt");
1093 break;
1094
1095 case SO_TIMESTAMP:
1096 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1097 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1098 break;
1099
1100 case SO_TIMESTAMPNS:
1101 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1102 break;
1103
1104 case SO_TIMESTAMPING:
1105 v.val = sk->sk_tsflags;
1106 break;
1107
1108 case SO_RCVTIMEO:
1109 lv = sizeof(struct timeval);
1110 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1111 v.tm.tv_sec = 0;
1112 v.tm.tv_usec = 0;
1113 } else {
1114 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1115 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1116 }
1117 break;
1118
1119 case SO_SNDTIMEO:
1120 lv = sizeof(struct timeval);
1121 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1122 v.tm.tv_sec = 0;
1123 v.tm.tv_usec = 0;
1124 } else {
1125 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1126 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1127 }
1128 break;
1129
1130 case SO_RCVLOWAT:
1131 v.val = sk->sk_rcvlowat;
1132 break;
1133
1134 case SO_SNDLOWAT:
1135 v.val = 1;
1136 break;
1137
1138 case SO_PASSCRED:
1139 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1140 break;
1141
1142 case SO_PEERCRED:
1143 {
1144 struct ucred peercred;
1145 if (len > sizeof(peercred))
1146 len = sizeof(peercred);
1147 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1148 if (copy_to_user(optval, &peercred, len))
1149 return -EFAULT;
1150 goto lenout;
1151 }
1152
1153 case SO_PEERNAME:
1154 {
1155 char address[128];
1156
1157 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1158 return -ENOTCONN;
1159 if (lv < len)
1160 return -EINVAL;
1161 if (copy_to_user(optval, address, len))
1162 return -EFAULT;
1163 goto lenout;
1164 }
1165
1166 /* Dubious BSD thing... Probably nobody even uses it, but
1167 * the UNIX standard wants it for whatever reason... -DaveM
1168 */
1169 case SO_ACCEPTCONN:
1170 v.val = sk->sk_state == TCP_LISTEN;
1171 break;
1172
1173 case SO_PASSSEC:
1174 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1175 break;
1176
1177 case SO_PEERSEC:
1178 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1179
1180 case SO_MARK:
1181 v.val = sk->sk_mark;
1182 break;
1183
1184 case SO_RXQ_OVFL:
1185 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1186 break;
1187
1188 case SO_WIFI_STATUS:
1189 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1190 break;
1191
1192 case SO_PEEK_OFF:
1193 if (!sock->ops->set_peek_off)
1194 return -EOPNOTSUPP;
1195
1196 v.val = sk->sk_peek_off;
1197 break;
1198 case SO_NOFCS:
1199 v.val = sock_flag(sk, SOCK_NOFCS);
1200 break;
1201
1202 case SO_BINDTODEVICE:
1203 return sock_getbindtodevice(sk, optval, optlen, len);
1204
1205 case SO_GET_FILTER:
1206 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1207 if (len < 0)
1208 return len;
1209
1210 goto lenout;
1211
1212 case SO_LOCK_FILTER:
1213 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1214 break;
1215
1216 case SO_BPF_EXTENSIONS:
1217 v.val = bpf_tell_extensions();
1218 break;
1219
1220 case SO_SELECT_ERR_QUEUE:
1221 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1222 break;
1223
1224 #ifdef CONFIG_NET_RX_BUSY_POLL
1225 case SO_BUSY_POLL:
1226 v.val = sk->sk_ll_usec;
1227 break;
1228 #endif
1229
1230 case SO_MAX_PACING_RATE:
1231 v.val = sk->sk_max_pacing_rate;
1232 break;
1233
1234 default:
1235 return -ENOPROTOOPT;
1236 }
1237
1238 if (len > lv)
1239 len = lv;
1240 if (copy_to_user(optval, &v, len))
1241 return -EFAULT;
1242 lenout:
1243 if (put_user(len, optlen))
1244 return -EFAULT;
1245 return 0;
1246 }
1247
1248 /*
1249 * Initialize an sk_lock.
1250 *
1251 * (We also register the sk_lock with the lock validator.)
1252 */
sock_lock_init(struct sock * sk)1253 static inline void sock_lock_init(struct sock *sk)
1254 {
1255 sock_lock_init_class_and_name(sk,
1256 af_family_slock_key_strings[sk->sk_family],
1257 af_family_slock_keys + sk->sk_family,
1258 af_family_key_strings[sk->sk_family],
1259 af_family_keys + sk->sk_family);
1260 }
1261
1262 /*
1263 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1264 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1265 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1266 */
sock_copy(struct sock * nsk,const struct sock * osk)1267 static void sock_copy(struct sock *nsk, const struct sock *osk)
1268 {
1269 #ifdef CONFIG_SECURITY_NETWORK
1270 void *sptr = nsk->sk_security;
1271 #endif
1272 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1273
1274 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1275 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1276
1277 #ifdef CONFIG_SECURITY_NETWORK
1278 nsk->sk_security = sptr;
1279 security_sk_clone(osk, nsk);
1280 #endif
1281 }
1282
sk_prot_clear_portaddr_nulls(struct sock * sk,int size)1283 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1284 {
1285 unsigned long nulls1, nulls2;
1286
1287 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1288 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1289 if (nulls1 > nulls2)
1290 swap(nulls1, nulls2);
1291
1292 if (nulls1 != 0)
1293 memset((char *)sk, 0, nulls1);
1294 memset((char *)sk + nulls1 + sizeof(void *), 0,
1295 nulls2 - nulls1 - sizeof(void *));
1296 memset((char *)sk + nulls2 + sizeof(void *), 0,
1297 size - nulls2 - sizeof(void *));
1298 }
1299 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1300
sk_prot_alloc(struct proto * prot,gfp_t priority,int family)1301 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1302 int family)
1303 {
1304 struct sock *sk;
1305 struct kmem_cache *slab;
1306
1307 slab = prot->slab;
1308 if (slab != NULL) {
1309 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1310 if (!sk)
1311 return sk;
1312 if (priority & __GFP_ZERO) {
1313 if (prot->clear_sk)
1314 prot->clear_sk(sk, prot->obj_size);
1315 else
1316 sk_prot_clear_nulls(sk, prot->obj_size);
1317 }
1318 } else
1319 sk = kmalloc(prot->obj_size, priority);
1320
1321 if (sk != NULL) {
1322 kmemcheck_annotate_bitfield(sk, flags);
1323
1324 if (security_sk_alloc(sk, family, priority))
1325 goto out_free;
1326
1327 if (!try_module_get(prot->owner))
1328 goto out_free_sec;
1329 sk_tx_queue_clear(sk);
1330 }
1331
1332 return sk;
1333
1334 out_free_sec:
1335 security_sk_free(sk);
1336 out_free:
1337 if (slab != NULL)
1338 kmem_cache_free(slab, sk);
1339 else
1340 kfree(sk);
1341 return NULL;
1342 }
1343
sk_prot_free(struct proto * prot,struct sock * sk)1344 static void sk_prot_free(struct proto *prot, struct sock *sk)
1345 {
1346 struct kmem_cache *slab;
1347 struct module *owner;
1348
1349 owner = prot->owner;
1350 slab = prot->slab;
1351
1352 security_sk_free(sk);
1353 if (slab != NULL)
1354 kmem_cache_free(slab, sk);
1355 else
1356 kfree(sk);
1357 module_put(owner);
1358 }
1359
1360 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
sock_update_netprioidx(struct sock * sk)1361 void sock_update_netprioidx(struct sock *sk)
1362 {
1363 if (in_interrupt())
1364 return;
1365
1366 sk->sk_cgrp_prioidx = task_netprioidx(current);
1367 }
1368 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1369 #endif
1370
1371 /**
1372 * sk_alloc - All socket objects are allocated here
1373 * @net: the applicable net namespace
1374 * @family: protocol family
1375 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1376 * @prot: struct proto associated with this new sock instance
1377 */
sk_alloc(struct net * net,int family,gfp_t priority,struct proto * prot)1378 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1379 struct proto *prot)
1380 {
1381 struct sock *sk;
1382
1383 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1384 if (sk) {
1385 sk->sk_family = family;
1386 /*
1387 * See comment in struct sock definition to understand
1388 * why we need sk_prot_creator -acme
1389 */
1390 sk->sk_prot = sk->sk_prot_creator = prot;
1391 sock_lock_init(sk);
1392 sock_net_set(sk, get_net(net));
1393 atomic_set(&sk->sk_wmem_alloc, 1);
1394
1395 sock_update_classid(sk);
1396 sock_update_netprioidx(sk);
1397 }
1398
1399 return sk;
1400 }
1401 EXPORT_SYMBOL(sk_alloc);
1402
__sk_free(struct sock * sk)1403 static void __sk_free(struct sock *sk)
1404 {
1405 struct sk_filter *filter;
1406
1407 if (sk->sk_destruct)
1408 sk->sk_destruct(sk);
1409
1410 filter = rcu_dereference_check(sk->sk_filter,
1411 atomic_read(&sk->sk_wmem_alloc) == 0);
1412 if (filter) {
1413 sk_filter_uncharge(sk, filter);
1414 RCU_INIT_POINTER(sk->sk_filter, NULL);
1415 }
1416
1417 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1418
1419 if (atomic_read(&sk->sk_omem_alloc))
1420 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1421 __func__, atomic_read(&sk->sk_omem_alloc));
1422
1423 if (sk->sk_frag.page) {
1424 put_page(sk->sk_frag.page);
1425 sk->sk_frag.page = NULL;
1426 }
1427
1428 if (sk->sk_peer_cred)
1429 put_cred(sk->sk_peer_cred);
1430 put_pid(sk->sk_peer_pid);
1431 put_net(sock_net(sk));
1432 sk_prot_free(sk->sk_prot_creator, sk);
1433 }
1434
sk_free(struct sock * sk)1435 void sk_free(struct sock *sk)
1436 {
1437 /*
1438 * We subtract one from sk_wmem_alloc and can know if
1439 * some packets are still in some tx queue.
1440 * If not null, sock_wfree() will call __sk_free(sk) later
1441 */
1442 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1443 __sk_free(sk);
1444 }
1445 EXPORT_SYMBOL(sk_free);
1446
1447 /*
1448 * Last sock_put should drop reference to sk->sk_net. It has already
1449 * been dropped in sk_change_net. Taking reference to stopping namespace
1450 * is not an option.
1451 * Take reference to a socket to remove it from hash _alive_ and after that
1452 * destroy it in the context of init_net.
1453 */
sk_release_kernel(struct sock * sk)1454 void sk_release_kernel(struct sock *sk)
1455 {
1456 if (sk == NULL || sk->sk_socket == NULL)
1457 return;
1458
1459 sock_hold(sk);
1460 sock_release(sk->sk_socket);
1461 release_net(sock_net(sk));
1462 sock_net_set(sk, get_net(&init_net));
1463 sock_put(sk);
1464 }
1465 EXPORT_SYMBOL(sk_release_kernel);
1466
sk_update_clone(const struct sock * sk,struct sock * newsk)1467 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1468 {
1469 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1470 sock_update_memcg(newsk);
1471 }
1472
1473 /**
1474 * sk_clone_lock - clone a socket, and lock its clone
1475 * @sk: the socket to clone
1476 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1477 *
1478 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1479 */
sk_clone_lock(const struct sock * sk,const gfp_t priority)1480 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1481 {
1482 struct sock *newsk;
1483 bool is_charged = true;
1484
1485 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1486 if (newsk != NULL) {
1487 struct sk_filter *filter;
1488
1489 sock_copy(newsk, sk);
1490
1491 newsk->sk_prot_creator = sk->sk_prot;
1492
1493 /* SANITY */
1494 get_net(sock_net(newsk));
1495 sk_node_init(&newsk->sk_node);
1496 sock_lock_init(newsk);
1497 bh_lock_sock(newsk);
1498 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1499 newsk->sk_backlog.len = 0;
1500
1501 atomic_set(&newsk->sk_rmem_alloc, 0);
1502 /*
1503 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1504 */
1505 atomic_set(&newsk->sk_wmem_alloc, 1);
1506 atomic_set(&newsk->sk_omem_alloc, 0);
1507 skb_queue_head_init(&newsk->sk_receive_queue);
1508 skb_queue_head_init(&newsk->sk_write_queue);
1509
1510 spin_lock_init(&newsk->sk_dst_lock);
1511 rwlock_init(&newsk->sk_callback_lock);
1512 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1513 af_callback_keys + newsk->sk_family,
1514 af_family_clock_key_strings[newsk->sk_family]);
1515
1516 newsk->sk_dst_cache = NULL;
1517 newsk->sk_wmem_queued = 0;
1518 newsk->sk_forward_alloc = 0;
1519 newsk->sk_send_head = NULL;
1520 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1521
1522 sock_reset_flag(newsk, SOCK_DONE);
1523 skb_queue_head_init(&newsk->sk_error_queue);
1524
1525 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1526 if (filter != NULL)
1527 /* though it's an empty new sock, the charging may fail
1528 * if sysctl_optmem_max was changed between creation of
1529 * original socket and cloning
1530 */
1531 is_charged = sk_filter_charge(newsk, filter);
1532
1533 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk))) {
1534 /* We need to make sure that we don't uncharge the new
1535 * socket if we couldn't charge it in the first place
1536 * as otherwise we uncharge the parent's filter.
1537 */
1538 if (!is_charged)
1539 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1540 /* It is still raw copy of parent, so invalidate
1541 * destructor and make plain sk_free() */
1542 newsk->sk_destruct = NULL;
1543 bh_unlock_sock(newsk);
1544 sk_free(newsk);
1545 newsk = NULL;
1546 goto out;
1547 }
1548
1549 newsk->sk_err = 0;
1550 newsk->sk_priority = 0;
1551 /*
1552 * Before updating sk_refcnt, we must commit prior changes to memory
1553 * (Documentation/RCU/rculist_nulls.txt for details)
1554 */
1555 smp_wmb();
1556 atomic_set(&newsk->sk_refcnt, 2);
1557
1558 /*
1559 * Increment the counter in the same struct proto as the master
1560 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1561 * is the same as sk->sk_prot->socks, as this field was copied
1562 * with memcpy).
1563 *
1564 * This _changes_ the previous behaviour, where
1565 * tcp_create_openreq_child always was incrementing the
1566 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1567 * to be taken into account in all callers. -acme
1568 */
1569 sk_refcnt_debug_inc(newsk);
1570 sk_set_socket(newsk, NULL);
1571 newsk->sk_wq = NULL;
1572
1573 sk_update_clone(sk, newsk);
1574
1575 if (newsk->sk_prot->sockets_allocated)
1576 sk_sockets_allocated_inc(newsk);
1577
1578 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1579 net_enable_timestamp();
1580 }
1581 out:
1582 return newsk;
1583 }
1584 EXPORT_SYMBOL_GPL(sk_clone_lock);
1585
sk_setup_caps(struct sock * sk,struct dst_entry * dst)1586 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1587 {
1588 __sk_dst_set(sk, dst);
1589 sk->sk_route_caps = dst->dev->features;
1590 if (sk->sk_route_caps & NETIF_F_GSO)
1591 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1592 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1593 if (sk_can_gso(sk)) {
1594 if (dst->header_len) {
1595 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1596 } else {
1597 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1598 sk->sk_gso_max_size = dst->dev->gso_max_size;
1599 sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1600 }
1601 }
1602 }
1603 EXPORT_SYMBOL_GPL(sk_setup_caps);
1604
1605 /*
1606 * Simple resource managers for sockets.
1607 */
1608
1609
1610 /*
1611 * Write buffer destructor automatically called from kfree_skb.
1612 */
sock_wfree(struct sk_buff * skb)1613 void sock_wfree(struct sk_buff *skb)
1614 {
1615 struct sock *sk = skb->sk;
1616 unsigned int len = skb->truesize;
1617
1618 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1619 /*
1620 * Keep a reference on sk_wmem_alloc, this will be released
1621 * after sk_write_space() call
1622 */
1623 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1624 sk->sk_write_space(sk);
1625 len = 1;
1626 }
1627 /*
1628 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1629 * could not do because of in-flight packets
1630 */
1631 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1632 __sk_free(sk);
1633 }
1634 EXPORT_SYMBOL(sock_wfree);
1635
skb_orphan_partial(struct sk_buff * skb)1636 void skb_orphan_partial(struct sk_buff *skb)
1637 {
1638 if (skb->destructor == sock_wfree
1639 #ifdef CONFIG_INET
1640 || skb->destructor == tcp_wfree
1641 #endif
1642 ) {
1643 struct sock *sk = skb->sk;
1644
1645 if (atomic_inc_not_zero(&sk->sk_refcnt)) {
1646 atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1647 skb->destructor = sock_efree;
1648 }
1649 } else {
1650 skb_orphan(skb);
1651 }
1652 }
1653 EXPORT_SYMBOL(skb_orphan_partial);
1654
1655 /*
1656 * Read buffer destructor automatically called from kfree_skb.
1657 */
sock_rfree(struct sk_buff * skb)1658 void sock_rfree(struct sk_buff *skb)
1659 {
1660 struct sock *sk = skb->sk;
1661 unsigned int len = skb->truesize;
1662
1663 atomic_sub(len, &sk->sk_rmem_alloc);
1664 sk_mem_uncharge(sk, len);
1665 }
1666 EXPORT_SYMBOL(sock_rfree);
1667
sock_efree(struct sk_buff * skb)1668 void sock_efree(struct sk_buff *skb)
1669 {
1670 sock_put(skb->sk);
1671 }
1672 EXPORT_SYMBOL(sock_efree);
1673
1674 #ifdef CONFIG_INET
sock_edemux(struct sk_buff * skb)1675 void sock_edemux(struct sk_buff *skb)
1676 {
1677 struct sock *sk = skb->sk;
1678
1679 if (sk->sk_state == TCP_TIME_WAIT)
1680 inet_twsk_put(inet_twsk(sk));
1681 else
1682 sock_put(sk);
1683 }
1684 EXPORT_SYMBOL(sock_edemux);
1685 #endif
1686
sock_i_uid(struct sock * sk)1687 kuid_t sock_i_uid(struct sock *sk)
1688 {
1689 kuid_t uid;
1690
1691 read_lock_bh(&sk->sk_callback_lock);
1692 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1693 read_unlock_bh(&sk->sk_callback_lock);
1694 return uid;
1695 }
1696 EXPORT_SYMBOL(sock_i_uid);
1697
sock_i_ino(struct sock * sk)1698 unsigned long sock_i_ino(struct sock *sk)
1699 {
1700 unsigned long ino;
1701
1702 read_lock_bh(&sk->sk_callback_lock);
1703 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1704 read_unlock_bh(&sk->sk_callback_lock);
1705 return ino;
1706 }
1707 EXPORT_SYMBOL(sock_i_ino);
1708
1709 /*
1710 * Allocate a skb from the socket's send buffer.
1711 */
sock_wmalloc(struct sock * sk,unsigned long size,int force,gfp_t priority)1712 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1713 gfp_t priority)
1714 {
1715 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1716 struct sk_buff *skb = alloc_skb(size, priority);
1717 if (skb) {
1718 skb_set_owner_w(skb, sk);
1719 return skb;
1720 }
1721 }
1722 return NULL;
1723 }
1724 EXPORT_SYMBOL(sock_wmalloc);
1725
1726 /*
1727 * Allocate a memory block from the socket's option memory buffer.
1728 */
sock_kmalloc(struct sock * sk,int size,gfp_t priority)1729 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1730 {
1731 if ((unsigned int)size <= sysctl_optmem_max &&
1732 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1733 void *mem;
1734 /* First do the add, to avoid the race if kmalloc
1735 * might sleep.
1736 */
1737 atomic_add(size, &sk->sk_omem_alloc);
1738 mem = kmalloc(size, priority);
1739 if (mem)
1740 return mem;
1741 atomic_sub(size, &sk->sk_omem_alloc);
1742 }
1743 return NULL;
1744 }
1745 EXPORT_SYMBOL(sock_kmalloc);
1746
1747 /*
1748 * Free an option memory block.
1749 */
sock_kfree_s(struct sock * sk,void * mem,int size)1750 void sock_kfree_s(struct sock *sk, void *mem, int size)
1751 {
1752 if (WARN_ON_ONCE(!mem))
1753 return;
1754 kfree(mem);
1755 atomic_sub(size, &sk->sk_omem_alloc);
1756 }
1757 EXPORT_SYMBOL(sock_kfree_s);
1758
1759 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1760 I think, these locks should be removed for datagram sockets.
1761 */
sock_wait_for_wmem(struct sock * sk,long timeo)1762 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1763 {
1764 DEFINE_WAIT(wait);
1765
1766 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1767 for (;;) {
1768 if (!timeo)
1769 break;
1770 if (signal_pending(current))
1771 break;
1772 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1773 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1774 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1775 break;
1776 if (sk->sk_shutdown & SEND_SHUTDOWN)
1777 break;
1778 if (sk->sk_err)
1779 break;
1780 timeo = schedule_timeout(timeo);
1781 }
1782 finish_wait(sk_sleep(sk), &wait);
1783 return timeo;
1784 }
1785
1786
1787 /*
1788 * Generic send/receive buffer handlers
1789 */
1790
sock_alloc_send_pskb(struct sock * sk,unsigned long header_len,unsigned long data_len,int noblock,int * errcode,int max_page_order)1791 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1792 unsigned long data_len, int noblock,
1793 int *errcode, int max_page_order)
1794 {
1795 struct sk_buff *skb;
1796 long timeo;
1797 int err;
1798
1799 timeo = sock_sndtimeo(sk, noblock);
1800 for (;;) {
1801 err = sock_error(sk);
1802 if (err != 0)
1803 goto failure;
1804
1805 err = -EPIPE;
1806 if (sk->sk_shutdown & SEND_SHUTDOWN)
1807 goto failure;
1808
1809 if (sk_wmem_alloc_get(sk) < sk->sk_sndbuf)
1810 break;
1811
1812 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1813 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1814 err = -EAGAIN;
1815 if (!timeo)
1816 goto failure;
1817 if (signal_pending(current))
1818 goto interrupted;
1819 timeo = sock_wait_for_wmem(sk, timeo);
1820 }
1821 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
1822 errcode, sk->sk_allocation);
1823 if (skb)
1824 skb_set_owner_w(skb, sk);
1825 return skb;
1826
1827 interrupted:
1828 err = sock_intr_errno(timeo);
1829 failure:
1830 *errcode = err;
1831 return NULL;
1832 }
1833 EXPORT_SYMBOL(sock_alloc_send_pskb);
1834
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)1835 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1836 int noblock, int *errcode)
1837 {
1838 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1839 }
1840 EXPORT_SYMBOL(sock_alloc_send_skb);
1841
1842 /* On 32bit arches, an skb frag is limited to 2^15 */
1843 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1844
1845 /**
1846 * skb_page_frag_refill - check that a page_frag contains enough room
1847 * @sz: minimum size of the fragment we want to get
1848 * @pfrag: pointer to page_frag
1849 * @gfp: priority for memory allocation
1850 *
1851 * Note: While this allocator tries to use high order pages, there is
1852 * no guarantee that allocations succeed. Therefore, @sz MUST be
1853 * less or equal than PAGE_SIZE.
1854 */
skb_page_frag_refill(unsigned int sz,struct page_frag * pfrag,gfp_t gfp)1855 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
1856 {
1857 if (pfrag->page) {
1858 if (atomic_read(&pfrag->page->_count) == 1) {
1859 pfrag->offset = 0;
1860 return true;
1861 }
1862 if (pfrag->offset + sz <= pfrag->size)
1863 return true;
1864 put_page(pfrag->page);
1865 }
1866
1867 pfrag->offset = 0;
1868 if (SKB_FRAG_PAGE_ORDER) {
1869 pfrag->page = alloc_pages((gfp & ~__GFP_WAIT) | __GFP_COMP |
1870 __GFP_NOWARN | __GFP_NORETRY,
1871 SKB_FRAG_PAGE_ORDER);
1872 if (likely(pfrag->page)) {
1873 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
1874 return true;
1875 }
1876 }
1877 pfrag->page = alloc_page(gfp);
1878 if (likely(pfrag->page)) {
1879 pfrag->size = PAGE_SIZE;
1880 return true;
1881 }
1882 return false;
1883 }
1884 EXPORT_SYMBOL(skb_page_frag_refill);
1885
sk_page_frag_refill(struct sock * sk,struct page_frag * pfrag)1886 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1887 {
1888 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
1889 return true;
1890
1891 sk_enter_memory_pressure(sk);
1892 sk_stream_moderate_sndbuf(sk);
1893 return false;
1894 }
1895 EXPORT_SYMBOL(sk_page_frag_refill);
1896
__lock_sock(struct sock * sk)1897 static void __lock_sock(struct sock *sk)
1898 __releases(&sk->sk_lock.slock)
1899 __acquires(&sk->sk_lock.slock)
1900 {
1901 DEFINE_WAIT(wait);
1902
1903 for (;;) {
1904 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1905 TASK_UNINTERRUPTIBLE);
1906 spin_unlock_bh(&sk->sk_lock.slock);
1907 schedule();
1908 spin_lock_bh(&sk->sk_lock.slock);
1909 if (!sock_owned_by_user(sk))
1910 break;
1911 }
1912 finish_wait(&sk->sk_lock.wq, &wait);
1913 }
1914
__release_sock(struct sock * sk)1915 static void __release_sock(struct sock *sk)
1916 __releases(&sk->sk_lock.slock)
1917 __acquires(&sk->sk_lock.slock)
1918 {
1919 struct sk_buff *skb = sk->sk_backlog.head;
1920
1921 do {
1922 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1923 bh_unlock_sock(sk);
1924
1925 do {
1926 struct sk_buff *next = skb->next;
1927
1928 prefetch(next);
1929 WARN_ON_ONCE(skb_dst_is_noref(skb));
1930 skb->next = NULL;
1931 sk_backlog_rcv(sk, skb);
1932
1933 /*
1934 * We are in process context here with softirqs
1935 * disabled, use cond_resched_softirq() to preempt.
1936 * This is safe to do because we've taken the backlog
1937 * queue private:
1938 */
1939 cond_resched_softirq();
1940
1941 skb = next;
1942 } while (skb != NULL);
1943
1944 bh_lock_sock(sk);
1945 } while ((skb = sk->sk_backlog.head) != NULL);
1946
1947 /*
1948 * Doing the zeroing here guarantee we can not loop forever
1949 * while a wild producer attempts to flood us.
1950 */
1951 sk->sk_backlog.len = 0;
1952 }
1953
1954 /**
1955 * sk_wait_data - wait for data to arrive at sk_receive_queue
1956 * @sk: sock to wait on
1957 * @timeo: for how long
1958 *
1959 * Now socket state including sk->sk_err is changed only under lock,
1960 * hence we may omit checks after joining wait queue.
1961 * We check receive queue before schedule() only as optimization;
1962 * it is very likely that release_sock() added new data.
1963 */
sk_wait_data(struct sock * sk,long * timeo)1964 int sk_wait_data(struct sock *sk, long *timeo)
1965 {
1966 int rc;
1967 DEFINE_WAIT(wait);
1968
1969 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1970 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1971 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1972 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1973 finish_wait(sk_sleep(sk), &wait);
1974 return rc;
1975 }
1976 EXPORT_SYMBOL(sk_wait_data);
1977
1978 /**
1979 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1980 * @sk: socket
1981 * @size: memory size to allocate
1982 * @kind: allocation type
1983 *
1984 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1985 * rmem allocation. This function assumes that protocols which have
1986 * memory_pressure use sk_wmem_queued as write buffer accounting.
1987 */
__sk_mem_schedule(struct sock * sk,int size,int kind)1988 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1989 {
1990 struct proto *prot = sk->sk_prot;
1991 int amt = sk_mem_pages(size);
1992 long allocated;
1993 int parent_status = UNDER_LIMIT;
1994
1995 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1996
1997 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1998
1999 /* Under limit. */
2000 if (parent_status == UNDER_LIMIT &&
2001 allocated <= sk_prot_mem_limits(sk, 0)) {
2002 sk_leave_memory_pressure(sk);
2003 return 1;
2004 }
2005
2006 /* Under pressure. (we or our parents) */
2007 if ((parent_status > SOFT_LIMIT) ||
2008 allocated > sk_prot_mem_limits(sk, 1))
2009 sk_enter_memory_pressure(sk);
2010
2011 /* Over hard limit (we or our parents) */
2012 if ((parent_status == OVER_LIMIT) ||
2013 (allocated > sk_prot_mem_limits(sk, 2)))
2014 goto suppress_allocation;
2015
2016 /* guarantee minimum buffer size under pressure */
2017 if (kind == SK_MEM_RECV) {
2018 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
2019 return 1;
2020
2021 } else { /* SK_MEM_SEND */
2022 if (sk->sk_type == SOCK_STREAM) {
2023 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
2024 return 1;
2025 } else if (atomic_read(&sk->sk_wmem_alloc) <
2026 prot->sysctl_wmem[0])
2027 return 1;
2028 }
2029
2030 if (sk_has_memory_pressure(sk)) {
2031 int alloc;
2032
2033 if (!sk_under_memory_pressure(sk))
2034 return 1;
2035 alloc = sk_sockets_allocated_read_positive(sk);
2036 if (sk_prot_mem_limits(sk, 2) > alloc *
2037 sk_mem_pages(sk->sk_wmem_queued +
2038 atomic_read(&sk->sk_rmem_alloc) +
2039 sk->sk_forward_alloc))
2040 return 1;
2041 }
2042
2043 suppress_allocation:
2044
2045 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2046 sk_stream_moderate_sndbuf(sk);
2047
2048 /* Fail only if socket is _under_ its sndbuf.
2049 * In this case we cannot block, so that we have to fail.
2050 */
2051 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2052 return 1;
2053 }
2054
2055 trace_sock_exceed_buf_limit(sk, prot, allocated);
2056
2057 /* Alas. Undo changes. */
2058 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2059
2060 sk_memory_allocated_sub(sk, amt);
2061
2062 return 0;
2063 }
2064 EXPORT_SYMBOL(__sk_mem_schedule);
2065
2066 /**
2067 * __sk_reclaim - reclaim memory_allocated
2068 * @sk: socket
2069 */
__sk_mem_reclaim(struct sock * sk)2070 void __sk_mem_reclaim(struct sock *sk)
2071 {
2072 sk_memory_allocated_sub(sk,
2073 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2074 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2075
2076 if (sk_under_memory_pressure(sk) &&
2077 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2078 sk_leave_memory_pressure(sk);
2079 }
2080 EXPORT_SYMBOL(__sk_mem_reclaim);
2081
2082
2083 /*
2084 * Set of default routines for initialising struct proto_ops when
2085 * the protocol does not support a particular function. In certain
2086 * cases where it makes no sense for a protocol to have a "do nothing"
2087 * function, some default processing is provided.
2088 */
2089
sock_no_bind(struct socket * sock,struct sockaddr * saddr,int len)2090 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2091 {
2092 return -EOPNOTSUPP;
2093 }
2094 EXPORT_SYMBOL(sock_no_bind);
2095
sock_no_connect(struct socket * sock,struct sockaddr * saddr,int len,int flags)2096 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2097 int len, int flags)
2098 {
2099 return -EOPNOTSUPP;
2100 }
2101 EXPORT_SYMBOL(sock_no_connect);
2102
sock_no_socketpair(struct socket * sock1,struct socket * sock2)2103 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2104 {
2105 return -EOPNOTSUPP;
2106 }
2107 EXPORT_SYMBOL(sock_no_socketpair);
2108
sock_no_accept(struct socket * sock,struct socket * newsock,int flags)2109 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2110 {
2111 return -EOPNOTSUPP;
2112 }
2113 EXPORT_SYMBOL(sock_no_accept);
2114
sock_no_getname(struct socket * sock,struct sockaddr * saddr,int * len,int peer)2115 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2116 int *len, int peer)
2117 {
2118 return -EOPNOTSUPP;
2119 }
2120 EXPORT_SYMBOL(sock_no_getname);
2121
sock_no_poll(struct file * file,struct socket * sock,poll_table * pt)2122 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2123 {
2124 return 0;
2125 }
2126 EXPORT_SYMBOL(sock_no_poll);
2127
sock_no_ioctl(struct socket * sock,unsigned int cmd,unsigned long arg)2128 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2129 {
2130 return -EOPNOTSUPP;
2131 }
2132 EXPORT_SYMBOL(sock_no_ioctl);
2133
sock_no_listen(struct socket * sock,int backlog)2134 int sock_no_listen(struct socket *sock, int backlog)
2135 {
2136 return -EOPNOTSUPP;
2137 }
2138 EXPORT_SYMBOL(sock_no_listen);
2139
sock_no_shutdown(struct socket * sock,int how)2140 int sock_no_shutdown(struct socket *sock, int how)
2141 {
2142 return -EOPNOTSUPP;
2143 }
2144 EXPORT_SYMBOL(sock_no_shutdown);
2145
sock_no_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2146 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2147 char __user *optval, unsigned int optlen)
2148 {
2149 return -EOPNOTSUPP;
2150 }
2151 EXPORT_SYMBOL(sock_no_setsockopt);
2152
sock_no_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2153 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2154 char __user *optval, int __user *optlen)
2155 {
2156 return -EOPNOTSUPP;
2157 }
2158 EXPORT_SYMBOL(sock_no_getsockopt);
2159
sock_no_sendmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * m,size_t len)2160 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2161 size_t len)
2162 {
2163 return -EOPNOTSUPP;
2164 }
2165 EXPORT_SYMBOL(sock_no_sendmsg);
2166
sock_no_recvmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * m,size_t len,int flags)2167 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2168 size_t len, int flags)
2169 {
2170 return -EOPNOTSUPP;
2171 }
2172 EXPORT_SYMBOL(sock_no_recvmsg);
2173
sock_no_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)2174 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2175 {
2176 /* Mirror missing mmap method error code */
2177 return -ENODEV;
2178 }
2179 EXPORT_SYMBOL(sock_no_mmap);
2180
sock_no_sendpage(struct socket * sock,struct page * page,int offset,size_t size,int flags)2181 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2182 {
2183 ssize_t res;
2184 struct msghdr msg = {.msg_flags = flags};
2185 struct kvec iov;
2186 char *kaddr = kmap(page);
2187 iov.iov_base = kaddr + offset;
2188 iov.iov_len = size;
2189 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2190 kunmap(page);
2191 return res;
2192 }
2193 EXPORT_SYMBOL(sock_no_sendpage);
2194
2195 /*
2196 * Default Socket Callbacks
2197 */
2198
sock_def_wakeup(struct sock * sk)2199 static void sock_def_wakeup(struct sock *sk)
2200 {
2201 struct socket_wq *wq;
2202
2203 rcu_read_lock();
2204 wq = rcu_dereference(sk->sk_wq);
2205 if (wq_has_sleeper(wq))
2206 wake_up_interruptible_all(&wq->wait);
2207 rcu_read_unlock();
2208 }
2209
sock_def_error_report(struct sock * sk)2210 static void sock_def_error_report(struct sock *sk)
2211 {
2212 struct socket_wq *wq;
2213
2214 rcu_read_lock();
2215 wq = rcu_dereference(sk->sk_wq);
2216 if (wq_has_sleeper(wq))
2217 wake_up_interruptible_poll(&wq->wait, POLLERR);
2218 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2219 rcu_read_unlock();
2220 }
2221
sock_def_readable(struct sock * sk)2222 static void sock_def_readable(struct sock *sk)
2223 {
2224 struct socket_wq *wq;
2225
2226 rcu_read_lock();
2227 wq = rcu_dereference(sk->sk_wq);
2228 if (wq_has_sleeper(wq))
2229 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2230 POLLRDNORM | POLLRDBAND);
2231 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2232 rcu_read_unlock();
2233 }
2234
sock_def_write_space(struct sock * sk)2235 static void sock_def_write_space(struct sock *sk)
2236 {
2237 struct socket_wq *wq;
2238
2239 rcu_read_lock();
2240
2241 /* Do not wake up a writer until he can make "significant"
2242 * progress. --DaveM
2243 */
2244 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2245 wq = rcu_dereference(sk->sk_wq);
2246 if (wq_has_sleeper(wq))
2247 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2248 POLLWRNORM | POLLWRBAND);
2249
2250 /* Should agree with poll, otherwise some programs break */
2251 if (sock_writeable(sk))
2252 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2253 }
2254
2255 rcu_read_unlock();
2256 }
2257
sock_def_destruct(struct sock * sk)2258 static void sock_def_destruct(struct sock *sk)
2259 {
2260 kfree(sk->sk_protinfo);
2261 }
2262
sk_send_sigurg(struct sock * sk)2263 void sk_send_sigurg(struct sock *sk)
2264 {
2265 if (sk->sk_socket && sk->sk_socket->file)
2266 if (send_sigurg(&sk->sk_socket->file->f_owner))
2267 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2268 }
2269 EXPORT_SYMBOL(sk_send_sigurg);
2270
sk_reset_timer(struct sock * sk,struct timer_list * timer,unsigned long expires)2271 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2272 unsigned long expires)
2273 {
2274 if (!mod_timer(timer, expires))
2275 sock_hold(sk);
2276 }
2277 EXPORT_SYMBOL(sk_reset_timer);
2278
sk_stop_timer(struct sock * sk,struct timer_list * timer)2279 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2280 {
2281 if (del_timer(timer))
2282 __sock_put(sk);
2283 }
2284 EXPORT_SYMBOL(sk_stop_timer);
2285
sock_init_data(struct socket * sock,struct sock * sk)2286 void sock_init_data(struct socket *sock, struct sock *sk)
2287 {
2288 skb_queue_head_init(&sk->sk_receive_queue);
2289 skb_queue_head_init(&sk->sk_write_queue);
2290 skb_queue_head_init(&sk->sk_error_queue);
2291
2292 sk->sk_send_head = NULL;
2293
2294 init_timer(&sk->sk_timer);
2295
2296 sk->sk_allocation = GFP_KERNEL;
2297 sk->sk_rcvbuf = sysctl_rmem_default;
2298 sk->sk_sndbuf = sysctl_wmem_default;
2299 sk->sk_state = TCP_CLOSE;
2300 sk_set_socket(sk, sock);
2301
2302 sock_set_flag(sk, SOCK_ZAPPED);
2303
2304 if (sock) {
2305 sk->sk_type = sock->type;
2306 sk->sk_wq = sock->wq;
2307 sock->sk = sk;
2308 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2309 } else {
2310 sk->sk_wq = NULL;
2311 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2312 }
2313
2314 spin_lock_init(&sk->sk_dst_lock);
2315 rwlock_init(&sk->sk_callback_lock);
2316 lockdep_set_class_and_name(&sk->sk_callback_lock,
2317 af_callback_keys + sk->sk_family,
2318 af_family_clock_key_strings[sk->sk_family]);
2319
2320 sk->sk_state_change = sock_def_wakeup;
2321 sk->sk_data_ready = sock_def_readable;
2322 sk->sk_write_space = sock_def_write_space;
2323 sk->sk_error_report = sock_def_error_report;
2324 sk->sk_destruct = sock_def_destruct;
2325
2326 sk->sk_frag.page = NULL;
2327 sk->sk_frag.offset = 0;
2328 sk->sk_peek_off = -1;
2329
2330 sk->sk_peer_pid = NULL;
2331 sk->sk_peer_cred = NULL;
2332 sk->sk_write_pending = 0;
2333 sk->sk_rcvlowat = 1;
2334 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2335 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2336
2337 sk->sk_stamp = ktime_set(-1L, 0);
2338
2339 #ifdef CONFIG_NET_RX_BUSY_POLL
2340 sk->sk_napi_id = 0;
2341 sk->sk_ll_usec = sysctl_net_busy_read;
2342 #endif
2343
2344 sk->sk_max_pacing_rate = ~0U;
2345 sk->sk_pacing_rate = ~0U;
2346 /*
2347 * Before updating sk_refcnt, we must commit prior changes to memory
2348 * (Documentation/RCU/rculist_nulls.txt for details)
2349 */
2350 smp_wmb();
2351 atomic_set(&sk->sk_refcnt, 1);
2352 atomic_set(&sk->sk_drops, 0);
2353 }
2354 EXPORT_SYMBOL(sock_init_data);
2355
lock_sock_nested(struct sock * sk,int subclass)2356 void lock_sock_nested(struct sock *sk, int subclass)
2357 {
2358 might_sleep();
2359 spin_lock_bh(&sk->sk_lock.slock);
2360 if (sk->sk_lock.owned)
2361 __lock_sock(sk);
2362 sk->sk_lock.owned = 1;
2363 spin_unlock(&sk->sk_lock.slock);
2364 /*
2365 * The sk_lock has mutex_lock() semantics here:
2366 */
2367 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2368 local_bh_enable();
2369 }
2370 EXPORT_SYMBOL(lock_sock_nested);
2371
release_sock(struct sock * sk)2372 void release_sock(struct sock *sk)
2373 {
2374 /*
2375 * The sk_lock has mutex_unlock() semantics:
2376 */
2377 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2378
2379 spin_lock_bh(&sk->sk_lock.slock);
2380 if (sk->sk_backlog.tail)
2381 __release_sock(sk);
2382
2383 /* Warning : release_cb() might need to release sk ownership,
2384 * ie call sock_release_ownership(sk) before us.
2385 */
2386 if (sk->sk_prot->release_cb)
2387 sk->sk_prot->release_cb(sk);
2388
2389 sock_release_ownership(sk);
2390 if (waitqueue_active(&sk->sk_lock.wq))
2391 wake_up(&sk->sk_lock.wq);
2392 spin_unlock_bh(&sk->sk_lock.slock);
2393 }
2394 EXPORT_SYMBOL(release_sock);
2395
2396 /**
2397 * lock_sock_fast - fast version of lock_sock
2398 * @sk: socket
2399 *
2400 * This version should be used for very small section, where process wont block
2401 * return false if fast path is taken
2402 * sk_lock.slock locked, owned = 0, BH disabled
2403 * return true if slow path is taken
2404 * sk_lock.slock unlocked, owned = 1, BH enabled
2405 */
lock_sock_fast(struct sock * sk)2406 bool lock_sock_fast(struct sock *sk)
2407 {
2408 might_sleep();
2409 spin_lock_bh(&sk->sk_lock.slock);
2410
2411 if (!sk->sk_lock.owned)
2412 /*
2413 * Note : We must disable BH
2414 */
2415 return false;
2416
2417 __lock_sock(sk);
2418 sk->sk_lock.owned = 1;
2419 spin_unlock(&sk->sk_lock.slock);
2420 /*
2421 * The sk_lock has mutex_lock() semantics here:
2422 */
2423 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2424 local_bh_enable();
2425 return true;
2426 }
2427 EXPORT_SYMBOL(lock_sock_fast);
2428
sock_get_timestamp(struct sock * sk,struct timeval __user * userstamp)2429 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2430 {
2431 struct timeval tv;
2432 if (!sock_flag(sk, SOCK_TIMESTAMP))
2433 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2434 tv = ktime_to_timeval(sk->sk_stamp);
2435 if (tv.tv_sec == -1)
2436 return -ENOENT;
2437 if (tv.tv_sec == 0) {
2438 sk->sk_stamp = ktime_get_real();
2439 tv = ktime_to_timeval(sk->sk_stamp);
2440 }
2441 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2442 }
2443 EXPORT_SYMBOL(sock_get_timestamp);
2444
sock_get_timestampns(struct sock * sk,struct timespec __user * userstamp)2445 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2446 {
2447 struct timespec ts;
2448 if (!sock_flag(sk, SOCK_TIMESTAMP))
2449 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2450 ts = ktime_to_timespec(sk->sk_stamp);
2451 if (ts.tv_sec == -1)
2452 return -ENOENT;
2453 if (ts.tv_sec == 0) {
2454 sk->sk_stamp = ktime_get_real();
2455 ts = ktime_to_timespec(sk->sk_stamp);
2456 }
2457 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2458 }
2459 EXPORT_SYMBOL(sock_get_timestampns);
2460
sock_enable_timestamp(struct sock * sk,int flag)2461 void sock_enable_timestamp(struct sock *sk, int flag)
2462 {
2463 if (!sock_flag(sk, flag)) {
2464 unsigned long previous_flags = sk->sk_flags;
2465
2466 sock_set_flag(sk, flag);
2467 /*
2468 * we just set one of the two flags which require net
2469 * time stamping, but time stamping might have been on
2470 * already because of the other one
2471 */
2472 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2473 net_enable_timestamp();
2474 }
2475 }
2476
sock_recv_errqueue(struct sock * sk,struct msghdr * msg,int len,int level,int type)2477 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2478 int level, int type)
2479 {
2480 struct sock_exterr_skb *serr;
2481 struct sk_buff *skb;
2482 int copied, err;
2483
2484 err = -EAGAIN;
2485 skb = sock_dequeue_err_skb(sk);
2486 if (skb == NULL)
2487 goto out;
2488
2489 copied = skb->len;
2490 if (copied > len) {
2491 msg->msg_flags |= MSG_TRUNC;
2492 copied = len;
2493 }
2494 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2495 if (err)
2496 goto out_free_skb;
2497
2498 sock_recv_timestamp(msg, sk, skb);
2499
2500 serr = SKB_EXT_ERR(skb);
2501 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2502
2503 msg->msg_flags |= MSG_ERRQUEUE;
2504 err = copied;
2505
2506 out_free_skb:
2507 kfree_skb(skb);
2508 out:
2509 return err;
2510 }
2511 EXPORT_SYMBOL(sock_recv_errqueue);
2512
2513 /*
2514 * Get a socket option on an socket.
2515 *
2516 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2517 * asynchronous errors should be reported by getsockopt. We assume
2518 * this means if you specify SO_ERROR (otherwise whats the point of it).
2519 */
sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2520 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2521 char __user *optval, int __user *optlen)
2522 {
2523 struct sock *sk = sock->sk;
2524
2525 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2526 }
2527 EXPORT_SYMBOL(sock_common_getsockopt);
2528
2529 #ifdef CONFIG_COMPAT
compat_sock_common_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)2530 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2531 char __user *optval, int __user *optlen)
2532 {
2533 struct sock *sk = sock->sk;
2534
2535 if (sk->sk_prot->compat_getsockopt != NULL)
2536 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2537 optval, optlen);
2538 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2539 }
2540 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2541 #endif
2542
sock_common_recvmsg(struct kiocb * iocb,struct socket * sock,struct msghdr * msg,size_t size,int flags)2543 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2544 struct msghdr *msg, size_t size, int flags)
2545 {
2546 struct sock *sk = sock->sk;
2547 int addr_len = 0;
2548 int err;
2549
2550 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2551 flags & ~MSG_DONTWAIT, &addr_len);
2552 if (err >= 0)
2553 msg->msg_namelen = addr_len;
2554 return err;
2555 }
2556 EXPORT_SYMBOL(sock_common_recvmsg);
2557
2558 /*
2559 * Set socket options on an inet socket.
2560 */
sock_common_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2561 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2562 char __user *optval, unsigned int optlen)
2563 {
2564 struct sock *sk = sock->sk;
2565
2566 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2567 }
2568 EXPORT_SYMBOL(sock_common_setsockopt);
2569
2570 #ifdef CONFIG_COMPAT
compat_sock_common_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)2571 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2572 char __user *optval, unsigned int optlen)
2573 {
2574 struct sock *sk = sock->sk;
2575
2576 if (sk->sk_prot->compat_setsockopt != NULL)
2577 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2578 optval, optlen);
2579 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2580 }
2581 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2582 #endif
2583
sk_common_release(struct sock * sk)2584 void sk_common_release(struct sock *sk)
2585 {
2586 if (sk->sk_prot->destroy)
2587 sk->sk_prot->destroy(sk);
2588
2589 /*
2590 * Observation: when sock_common_release is called, processes have
2591 * no access to socket. But net still has.
2592 * Step one, detach it from networking:
2593 *
2594 * A. Remove from hash tables.
2595 */
2596
2597 sk->sk_prot->unhash(sk);
2598
2599 /*
2600 * In this point socket cannot receive new packets, but it is possible
2601 * that some packets are in flight because some CPU runs receiver and
2602 * did hash table lookup before we unhashed socket. They will achieve
2603 * receive queue and will be purged by socket destructor.
2604 *
2605 * Also we still have packets pending on receive queue and probably,
2606 * our own packets waiting in device queues. sock_destroy will drain
2607 * receive queue, but transmitted packets will delay socket destruction
2608 * until the last reference will be released.
2609 */
2610
2611 sock_orphan(sk);
2612
2613 xfrm_sk_free_policy(sk);
2614
2615 sk_refcnt_debug_release(sk);
2616
2617 sock_put(sk);
2618 }
2619 EXPORT_SYMBOL(sk_common_release);
2620
2621 #ifdef CONFIG_PROC_FS
2622 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2623 struct prot_inuse {
2624 int val[PROTO_INUSE_NR];
2625 };
2626
2627 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2628
2629 #ifdef CONFIG_NET_NS
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)2630 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2631 {
2632 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2633 }
2634 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2635
sock_prot_inuse_get(struct net * net,struct proto * prot)2636 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2637 {
2638 int cpu, idx = prot->inuse_idx;
2639 int res = 0;
2640
2641 for_each_possible_cpu(cpu)
2642 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2643
2644 return res >= 0 ? res : 0;
2645 }
2646 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2647
sock_inuse_init_net(struct net * net)2648 static int __net_init sock_inuse_init_net(struct net *net)
2649 {
2650 net->core.inuse = alloc_percpu(struct prot_inuse);
2651 return net->core.inuse ? 0 : -ENOMEM;
2652 }
2653
sock_inuse_exit_net(struct net * net)2654 static void __net_exit sock_inuse_exit_net(struct net *net)
2655 {
2656 free_percpu(net->core.inuse);
2657 }
2658
2659 static struct pernet_operations net_inuse_ops = {
2660 .init = sock_inuse_init_net,
2661 .exit = sock_inuse_exit_net,
2662 };
2663
net_inuse_init(void)2664 static __init int net_inuse_init(void)
2665 {
2666 if (register_pernet_subsys(&net_inuse_ops))
2667 panic("Cannot initialize net inuse counters");
2668
2669 return 0;
2670 }
2671
2672 core_initcall(net_inuse_init);
2673 #else
2674 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2675
sock_prot_inuse_add(struct net * net,struct proto * prot,int val)2676 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2677 {
2678 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2679 }
2680 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2681
sock_prot_inuse_get(struct net * net,struct proto * prot)2682 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2683 {
2684 int cpu, idx = prot->inuse_idx;
2685 int res = 0;
2686
2687 for_each_possible_cpu(cpu)
2688 res += per_cpu(prot_inuse, cpu).val[idx];
2689
2690 return res >= 0 ? res : 0;
2691 }
2692 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2693 #endif
2694
assign_proto_idx(struct proto * prot)2695 static void assign_proto_idx(struct proto *prot)
2696 {
2697 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2698
2699 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2700 pr_err("PROTO_INUSE_NR exhausted\n");
2701 return;
2702 }
2703
2704 set_bit(prot->inuse_idx, proto_inuse_idx);
2705 }
2706
release_proto_idx(struct proto * prot)2707 static void release_proto_idx(struct proto *prot)
2708 {
2709 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2710 clear_bit(prot->inuse_idx, proto_inuse_idx);
2711 }
2712 #else
assign_proto_idx(struct proto * prot)2713 static inline void assign_proto_idx(struct proto *prot)
2714 {
2715 }
2716
release_proto_idx(struct proto * prot)2717 static inline void release_proto_idx(struct proto *prot)
2718 {
2719 }
2720 #endif
2721
proto_register(struct proto * prot,int alloc_slab)2722 int proto_register(struct proto *prot, int alloc_slab)
2723 {
2724 if (alloc_slab) {
2725 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2726 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2727 NULL);
2728
2729 if (prot->slab == NULL) {
2730 pr_crit("%s: Can't create sock SLAB cache!\n",
2731 prot->name);
2732 goto out;
2733 }
2734
2735 if (prot->rsk_prot != NULL) {
2736 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2737 if (prot->rsk_prot->slab_name == NULL)
2738 goto out_free_sock_slab;
2739
2740 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2741 prot->rsk_prot->obj_size, 0,
2742 SLAB_HWCACHE_ALIGN, NULL);
2743
2744 if (prot->rsk_prot->slab == NULL) {
2745 pr_crit("%s: Can't create request sock SLAB cache!\n",
2746 prot->name);
2747 goto out_free_request_sock_slab_name;
2748 }
2749 }
2750
2751 if (prot->twsk_prot != NULL) {
2752 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2753
2754 if (prot->twsk_prot->twsk_slab_name == NULL)
2755 goto out_free_request_sock_slab;
2756
2757 prot->twsk_prot->twsk_slab =
2758 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2759 prot->twsk_prot->twsk_obj_size,
2760 0,
2761 SLAB_HWCACHE_ALIGN |
2762 prot->slab_flags,
2763 NULL);
2764 if (prot->twsk_prot->twsk_slab == NULL)
2765 goto out_free_timewait_sock_slab_name;
2766 }
2767 }
2768
2769 mutex_lock(&proto_list_mutex);
2770 list_add(&prot->node, &proto_list);
2771 assign_proto_idx(prot);
2772 mutex_unlock(&proto_list_mutex);
2773 return 0;
2774
2775 out_free_timewait_sock_slab_name:
2776 kfree(prot->twsk_prot->twsk_slab_name);
2777 out_free_request_sock_slab:
2778 if (prot->rsk_prot && prot->rsk_prot->slab) {
2779 kmem_cache_destroy(prot->rsk_prot->slab);
2780 prot->rsk_prot->slab = NULL;
2781 }
2782 out_free_request_sock_slab_name:
2783 if (prot->rsk_prot)
2784 kfree(prot->rsk_prot->slab_name);
2785 out_free_sock_slab:
2786 kmem_cache_destroy(prot->slab);
2787 prot->slab = NULL;
2788 out:
2789 return -ENOBUFS;
2790 }
2791 EXPORT_SYMBOL(proto_register);
2792
proto_unregister(struct proto * prot)2793 void proto_unregister(struct proto *prot)
2794 {
2795 mutex_lock(&proto_list_mutex);
2796 release_proto_idx(prot);
2797 list_del(&prot->node);
2798 mutex_unlock(&proto_list_mutex);
2799
2800 if (prot->slab != NULL) {
2801 kmem_cache_destroy(prot->slab);
2802 prot->slab = NULL;
2803 }
2804
2805 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2806 kmem_cache_destroy(prot->rsk_prot->slab);
2807 kfree(prot->rsk_prot->slab_name);
2808 prot->rsk_prot->slab = NULL;
2809 }
2810
2811 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2812 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2813 kfree(prot->twsk_prot->twsk_slab_name);
2814 prot->twsk_prot->twsk_slab = NULL;
2815 }
2816 }
2817 EXPORT_SYMBOL(proto_unregister);
2818
2819 #ifdef CONFIG_PROC_FS
proto_seq_start(struct seq_file * seq,loff_t * pos)2820 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2821 __acquires(proto_list_mutex)
2822 {
2823 mutex_lock(&proto_list_mutex);
2824 return seq_list_start_head(&proto_list, *pos);
2825 }
2826
proto_seq_next(struct seq_file * seq,void * v,loff_t * pos)2827 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2828 {
2829 return seq_list_next(v, &proto_list, pos);
2830 }
2831
proto_seq_stop(struct seq_file * seq,void * v)2832 static void proto_seq_stop(struct seq_file *seq, void *v)
2833 __releases(proto_list_mutex)
2834 {
2835 mutex_unlock(&proto_list_mutex);
2836 }
2837
proto_method_implemented(const void * method)2838 static char proto_method_implemented(const void *method)
2839 {
2840 return method == NULL ? 'n' : 'y';
2841 }
sock_prot_memory_allocated(struct proto * proto)2842 static long sock_prot_memory_allocated(struct proto *proto)
2843 {
2844 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2845 }
2846
sock_prot_memory_pressure(struct proto * proto)2847 static char *sock_prot_memory_pressure(struct proto *proto)
2848 {
2849 return proto->memory_pressure != NULL ?
2850 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2851 }
2852
proto_seq_printf(struct seq_file * seq,struct proto * proto)2853 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2854 {
2855
2856 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2857 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2858 proto->name,
2859 proto->obj_size,
2860 sock_prot_inuse_get(seq_file_net(seq), proto),
2861 sock_prot_memory_allocated(proto),
2862 sock_prot_memory_pressure(proto),
2863 proto->max_header,
2864 proto->slab == NULL ? "no" : "yes",
2865 module_name(proto->owner),
2866 proto_method_implemented(proto->close),
2867 proto_method_implemented(proto->connect),
2868 proto_method_implemented(proto->disconnect),
2869 proto_method_implemented(proto->accept),
2870 proto_method_implemented(proto->ioctl),
2871 proto_method_implemented(proto->init),
2872 proto_method_implemented(proto->destroy),
2873 proto_method_implemented(proto->shutdown),
2874 proto_method_implemented(proto->setsockopt),
2875 proto_method_implemented(proto->getsockopt),
2876 proto_method_implemented(proto->sendmsg),
2877 proto_method_implemented(proto->recvmsg),
2878 proto_method_implemented(proto->sendpage),
2879 proto_method_implemented(proto->bind),
2880 proto_method_implemented(proto->backlog_rcv),
2881 proto_method_implemented(proto->hash),
2882 proto_method_implemented(proto->unhash),
2883 proto_method_implemented(proto->get_port),
2884 proto_method_implemented(proto->enter_memory_pressure));
2885 }
2886
proto_seq_show(struct seq_file * seq,void * v)2887 static int proto_seq_show(struct seq_file *seq, void *v)
2888 {
2889 if (v == &proto_list)
2890 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2891 "protocol",
2892 "size",
2893 "sockets",
2894 "memory",
2895 "press",
2896 "maxhdr",
2897 "slab",
2898 "module",
2899 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2900 else
2901 proto_seq_printf(seq, list_entry(v, struct proto, node));
2902 return 0;
2903 }
2904
2905 static const struct seq_operations proto_seq_ops = {
2906 .start = proto_seq_start,
2907 .next = proto_seq_next,
2908 .stop = proto_seq_stop,
2909 .show = proto_seq_show,
2910 };
2911
proto_seq_open(struct inode * inode,struct file * file)2912 static int proto_seq_open(struct inode *inode, struct file *file)
2913 {
2914 return seq_open_net(inode, file, &proto_seq_ops,
2915 sizeof(struct seq_net_private));
2916 }
2917
2918 static const struct file_operations proto_seq_fops = {
2919 .owner = THIS_MODULE,
2920 .open = proto_seq_open,
2921 .read = seq_read,
2922 .llseek = seq_lseek,
2923 .release = seq_release_net,
2924 };
2925
proto_init_net(struct net * net)2926 static __net_init int proto_init_net(struct net *net)
2927 {
2928 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2929 return -ENOMEM;
2930
2931 return 0;
2932 }
2933
proto_exit_net(struct net * net)2934 static __net_exit void proto_exit_net(struct net *net)
2935 {
2936 remove_proc_entry("protocols", net->proc_net);
2937 }
2938
2939
2940 static __net_initdata struct pernet_operations proto_net_ops = {
2941 .init = proto_init_net,
2942 .exit = proto_exit_net,
2943 };
2944
proto_init(void)2945 static int __init proto_init(void)
2946 {
2947 return register_pernet_subsys(&proto_net_ops);
2948 }
2949
2950 subsys_initcall(proto_init);
2951
2952 #endif /* PROC_FS */
2953