• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/mutex.h>
30 #include <linux/of_device.h>
31 #include <linux/of_irq.h>
32 #include <linux/clk/clk-conf.h>
33 #include <linux/slab.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/spi/spi.h>
36 #include <linux/of_gpio.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/pm_domain.h>
39 #include <linux/export.h>
40 #include <linux/sched/rt.h>
41 #include <linux/delay.h>
42 #include <linux/kthread.h>
43 #include <linux/ioport.h>
44 #include <linux/acpi.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/spi.h>
48 
spidev_release(struct device * dev)49 static void spidev_release(struct device *dev)
50 {
51 	struct spi_device	*spi = to_spi_device(dev);
52 
53 	/* spi masters may cleanup for released devices */
54 	if (spi->master->cleanup)
55 		spi->master->cleanup(spi);
56 
57 	spi_master_put(spi->master);
58 	kfree(spi);
59 }
60 
61 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)62 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
63 {
64 	const struct spi_device	*spi = to_spi_device(dev);
65 	int len;
66 
67 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
68 	if (len != -ENODEV)
69 		return len;
70 
71 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
72 }
73 static DEVICE_ATTR_RO(modalias);
74 
75 static struct attribute *spi_dev_attrs[] = {
76 	&dev_attr_modalias.attr,
77 	NULL,
78 };
79 ATTRIBUTE_GROUPS(spi_dev);
80 
81 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
82  * and the sysfs version makes coldplug work too.
83  */
84 
spi_match_id(const struct spi_device_id * id,const struct spi_device * sdev)85 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
86 						const struct spi_device *sdev)
87 {
88 	while (id->name[0]) {
89 		if (!strcmp(sdev->modalias, id->name))
90 			return id;
91 		id++;
92 	}
93 	return NULL;
94 }
95 
spi_get_device_id(const struct spi_device * sdev)96 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
97 {
98 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
99 
100 	return spi_match_id(sdrv->id_table, sdev);
101 }
102 EXPORT_SYMBOL_GPL(spi_get_device_id);
103 
spi_match_device(struct device * dev,struct device_driver * drv)104 static int spi_match_device(struct device *dev, struct device_driver *drv)
105 {
106 	const struct spi_device	*spi = to_spi_device(dev);
107 	const struct spi_driver	*sdrv = to_spi_driver(drv);
108 
109 	/* Attempt an OF style match */
110 	if (of_driver_match_device(dev, drv))
111 		return 1;
112 
113 	/* Then try ACPI */
114 	if (acpi_driver_match_device(dev, drv))
115 		return 1;
116 
117 	if (sdrv->id_table)
118 		return !!spi_match_id(sdrv->id_table, spi);
119 
120 	return strcmp(spi->modalias, drv->name) == 0;
121 }
122 
spi_uevent(struct device * dev,struct kobj_uevent_env * env)123 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
124 {
125 	const struct spi_device		*spi = to_spi_device(dev);
126 	int rc;
127 
128 	rc = acpi_device_uevent_modalias(dev, env);
129 	if (rc != -ENODEV)
130 		return rc;
131 
132 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
133 	return 0;
134 }
135 
136 #ifdef CONFIG_PM_SLEEP
spi_legacy_suspend(struct device * dev,pm_message_t message)137 static int spi_legacy_suspend(struct device *dev, pm_message_t message)
138 {
139 	int			value = 0;
140 	struct spi_driver	*drv = to_spi_driver(dev->driver);
141 
142 	/* suspend will stop irqs and dma; no more i/o */
143 	if (drv) {
144 		if (drv->suspend)
145 			value = drv->suspend(to_spi_device(dev), message);
146 		else
147 			dev_dbg(dev, "... can't suspend\n");
148 	}
149 	return value;
150 }
151 
spi_legacy_resume(struct device * dev)152 static int spi_legacy_resume(struct device *dev)
153 {
154 	int			value = 0;
155 	struct spi_driver	*drv = to_spi_driver(dev->driver);
156 
157 	/* resume may restart the i/o queue */
158 	if (drv) {
159 		if (drv->resume)
160 			value = drv->resume(to_spi_device(dev));
161 		else
162 			dev_dbg(dev, "... can't resume\n");
163 	}
164 	return value;
165 }
166 
spi_pm_suspend(struct device * dev)167 static int spi_pm_suspend(struct device *dev)
168 {
169 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
170 
171 	if (pm)
172 		return pm_generic_suspend(dev);
173 	else
174 		return spi_legacy_suspend(dev, PMSG_SUSPEND);
175 }
176 
spi_pm_resume(struct device * dev)177 static int spi_pm_resume(struct device *dev)
178 {
179 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
180 
181 	if (pm)
182 		return pm_generic_resume(dev);
183 	else
184 		return spi_legacy_resume(dev);
185 }
186 
spi_pm_freeze(struct device * dev)187 static int spi_pm_freeze(struct device *dev)
188 {
189 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
190 
191 	if (pm)
192 		return pm_generic_freeze(dev);
193 	else
194 		return spi_legacy_suspend(dev, PMSG_FREEZE);
195 }
196 
spi_pm_thaw(struct device * dev)197 static int spi_pm_thaw(struct device *dev)
198 {
199 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
200 
201 	if (pm)
202 		return pm_generic_thaw(dev);
203 	else
204 		return spi_legacy_resume(dev);
205 }
206 
spi_pm_poweroff(struct device * dev)207 static int spi_pm_poweroff(struct device *dev)
208 {
209 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
210 
211 	if (pm)
212 		return pm_generic_poweroff(dev);
213 	else
214 		return spi_legacy_suspend(dev, PMSG_HIBERNATE);
215 }
216 
spi_pm_restore(struct device * dev)217 static int spi_pm_restore(struct device *dev)
218 {
219 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
220 
221 	if (pm)
222 		return pm_generic_restore(dev);
223 	else
224 		return spi_legacy_resume(dev);
225 }
226 #else
227 #define spi_pm_suspend	NULL
228 #define spi_pm_resume	NULL
229 #define spi_pm_freeze	NULL
230 #define spi_pm_thaw	NULL
231 #define spi_pm_poweroff	NULL
232 #define spi_pm_restore	NULL
233 #endif
234 
235 static const struct dev_pm_ops spi_pm = {
236 	.suspend = spi_pm_suspend,
237 	.resume = spi_pm_resume,
238 	.freeze = spi_pm_freeze,
239 	.thaw = spi_pm_thaw,
240 	.poweroff = spi_pm_poweroff,
241 	.restore = spi_pm_restore,
242 	SET_RUNTIME_PM_OPS(
243 		pm_generic_runtime_suspend,
244 		pm_generic_runtime_resume,
245 		NULL
246 	)
247 };
248 
249 struct bus_type spi_bus_type = {
250 	.name		= "spi",
251 	.dev_groups	= spi_dev_groups,
252 	.match		= spi_match_device,
253 	.uevent		= spi_uevent,
254 	.pm		= &spi_pm,
255 };
256 EXPORT_SYMBOL_GPL(spi_bus_type);
257 
258 
spi_drv_probe(struct device * dev)259 static int spi_drv_probe(struct device *dev)
260 {
261 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
262 	int ret;
263 
264 	ret = of_clk_set_defaults(dev->of_node, false);
265 	if (ret)
266 		return ret;
267 
268 	ret = dev_pm_domain_attach(dev, true);
269 	if (ret != -EPROBE_DEFER) {
270 		ret = sdrv->probe(to_spi_device(dev));
271 		if (ret)
272 			dev_pm_domain_detach(dev, true);
273 	}
274 
275 	return ret;
276 }
277 
spi_drv_remove(struct device * dev)278 static int spi_drv_remove(struct device *dev)
279 {
280 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
281 	int ret;
282 
283 	ret = sdrv->remove(to_spi_device(dev));
284 	dev_pm_domain_detach(dev, true);
285 
286 	return ret;
287 }
288 
spi_drv_shutdown(struct device * dev)289 static void spi_drv_shutdown(struct device *dev)
290 {
291 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
292 
293 	sdrv->shutdown(to_spi_device(dev));
294 }
295 
296 /**
297  * spi_register_driver - register a SPI driver
298  * @sdrv: the driver to register
299  * Context: can sleep
300  */
spi_register_driver(struct spi_driver * sdrv)301 int spi_register_driver(struct spi_driver *sdrv)
302 {
303 	sdrv->driver.bus = &spi_bus_type;
304 	if (sdrv->probe)
305 		sdrv->driver.probe = spi_drv_probe;
306 	if (sdrv->remove)
307 		sdrv->driver.remove = spi_drv_remove;
308 	if (sdrv->shutdown)
309 		sdrv->driver.shutdown = spi_drv_shutdown;
310 	return driver_register(&sdrv->driver);
311 }
312 EXPORT_SYMBOL_GPL(spi_register_driver);
313 
314 /*-------------------------------------------------------------------------*/
315 
316 /* SPI devices should normally not be created by SPI device drivers; that
317  * would make them board-specific.  Similarly with SPI master drivers.
318  * Device registration normally goes into like arch/.../mach.../board-YYY.c
319  * with other readonly (flashable) information about mainboard devices.
320  */
321 
322 struct boardinfo {
323 	struct list_head	list;
324 	struct spi_board_info	board_info;
325 };
326 
327 static LIST_HEAD(board_list);
328 static LIST_HEAD(spi_master_list);
329 
330 /*
331  * Used to protect add/del opertion for board_info list and
332  * spi_master list, and their matching process
333  */
334 static DEFINE_MUTEX(board_lock);
335 
336 /**
337  * spi_alloc_device - Allocate a new SPI device
338  * @master: Controller to which device is connected
339  * Context: can sleep
340  *
341  * Allows a driver to allocate and initialize a spi_device without
342  * registering it immediately.  This allows a driver to directly
343  * fill the spi_device with device parameters before calling
344  * spi_add_device() on it.
345  *
346  * Caller is responsible to call spi_add_device() on the returned
347  * spi_device structure to add it to the SPI master.  If the caller
348  * needs to discard the spi_device without adding it, then it should
349  * call spi_dev_put() on it.
350  *
351  * Returns a pointer to the new device, or NULL.
352  */
spi_alloc_device(struct spi_master * master)353 struct spi_device *spi_alloc_device(struct spi_master *master)
354 {
355 	struct spi_device	*spi;
356 
357 	if (!spi_master_get(master))
358 		return NULL;
359 
360 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
361 	if (!spi) {
362 		spi_master_put(master);
363 		return NULL;
364 	}
365 
366 	spi->master = master;
367 	spi->dev.parent = &master->dev;
368 	spi->dev.bus = &spi_bus_type;
369 	spi->dev.release = spidev_release;
370 	spi->cs_gpio = -ENOENT;
371 	device_initialize(&spi->dev);
372 	return spi;
373 }
374 EXPORT_SYMBOL_GPL(spi_alloc_device);
375 
spi_dev_set_name(struct spi_device * spi)376 static void spi_dev_set_name(struct spi_device *spi)
377 {
378 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
379 
380 	if (adev) {
381 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
382 		return;
383 	}
384 
385 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
386 		     spi->chip_select);
387 }
388 
spi_dev_check(struct device * dev,void * data)389 static int spi_dev_check(struct device *dev, void *data)
390 {
391 	struct spi_device *spi = to_spi_device(dev);
392 	struct spi_device *new_spi = data;
393 
394 	if (spi->master == new_spi->master &&
395 	    spi->chip_select == new_spi->chip_select)
396 		return -EBUSY;
397 	return 0;
398 }
399 
400 /**
401  * spi_add_device - Add spi_device allocated with spi_alloc_device
402  * @spi: spi_device to register
403  *
404  * Companion function to spi_alloc_device.  Devices allocated with
405  * spi_alloc_device can be added onto the spi bus with this function.
406  *
407  * Returns 0 on success; negative errno on failure
408  */
spi_add_device(struct spi_device * spi)409 int spi_add_device(struct spi_device *spi)
410 {
411 	static DEFINE_MUTEX(spi_add_lock);
412 	struct spi_master *master = spi->master;
413 	struct device *dev = master->dev.parent;
414 	int status;
415 
416 	/* Chipselects are numbered 0..max; validate. */
417 	if (spi->chip_select >= master->num_chipselect) {
418 		dev_err(dev, "cs%d >= max %d\n",
419 			spi->chip_select,
420 			master->num_chipselect);
421 		return -EINVAL;
422 	}
423 
424 	/* Set the bus ID string */
425 	spi_dev_set_name(spi);
426 
427 	/* We need to make sure there's no other device with this
428 	 * chipselect **BEFORE** we call setup(), else we'll trash
429 	 * its configuration.  Lock against concurrent add() calls.
430 	 */
431 	mutex_lock(&spi_add_lock);
432 
433 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
434 	if (status) {
435 		dev_err(dev, "chipselect %d already in use\n",
436 				spi->chip_select);
437 		goto done;
438 	}
439 
440 	if (master->cs_gpios)
441 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
442 
443 	/* Drivers may modify this initial i/o setup, but will
444 	 * normally rely on the device being setup.  Devices
445 	 * using SPI_CS_HIGH can't coexist well otherwise...
446 	 */
447 	status = spi_setup(spi);
448 	if (status < 0) {
449 		dev_err(dev, "can't setup %s, status %d\n",
450 				dev_name(&spi->dev), status);
451 		goto done;
452 	}
453 
454 	/* Device may be bound to an active driver when this returns */
455 	status = device_add(&spi->dev);
456 	if (status < 0)
457 		dev_err(dev, "can't add %s, status %d\n",
458 				dev_name(&spi->dev), status);
459 	else
460 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
461 
462 done:
463 	mutex_unlock(&spi_add_lock);
464 	return status;
465 }
466 EXPORT_SYMBOL_GPL(spi_add_device);
467 
468 /**
469  * spi_new_device - instantiate one new SPI device
470  * @master: Controller to which device is connected
471  * @chip: Describes the SPI device
472  * Context: can sleep
473  *
474  * On typical mainboards, this is purely internal; and it's not needed
475  * after board init creates the hard-wired devices.  Some development
476  * platforms may not be able to use spi_register_board_info though, and
477  * this is exported so that for example a USB or parport based adapter
478  * driver could add devices (which it would learn about out-of-band).
479  *
480  * Returns the new device, or NULL.
481  */
spi_new_device(struct spi_master * master,struct spi_board_info * chip)482 struct spi_device *spi_new_device(struct spi_master *master,
483 				  struct spi_board_info *chip)
484 {
485 	struct spi_device	*proxy;
486 	int			status;
487 
488 	/* NOTE:  caller did any chip->bus_num checks necessary.
489 	 *
490 	 * Also, unless we change the return value convention to use
491 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
492 	 * suggests syslogged diagnostics are best here (ugh).
493 	 */
494 
495 	proxy = spi_alloc_device(master);
496 	if (!proxy)
497 		return NULL;
498 
499 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
500 
501 	proxy->chip_select = chip->chip_select;
502 	proxy->max_speed_hz = chip->max_speed_hz;
503 	proxy->mode = chip->mode;
504 	proxy->irq = chip->irq;
505 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
506 	proxy->dev.platform_data = (void *) chip->platform_data;
507 	proxy->controller_data = chip->controller_data;
508 	proxy->controller_state = NULL;
509 
510 	status = spi_add_device(proxy);
511 	if (status < 0) {
512 		spi_dev_put(proxy);
513 		return NULL;
514 	}
515 
516 	return proxy;
517 }
518 EXPORT_SYMBOL_GPL(spi_new_device);
519 
spi_match_master_to_boardinfo(struct spi_master * master,struct spi_board_info * bi)520 static void spi_match_master_to_boardinfo(struct spi_master *master,
521 				struct spi_board_info *bi)
522 {
523 	struct spi_device *dev;
524 
525 	if (master->bus_num != bi->bus_num)
526 		return;
527 
528 	dev = spi_new_device(master, bi);
529 	if (!dev)
530 		dev_err(master->dev.parent, "can't create new device for %s\n",
531 			bi->modalias);
532 }
533 
534 /**
535  * spi_register_board_info - register SPI devices for a given board
536  * @info: array of chip descriptors
537  * @n: how many descriptors are provided
538  * Context: can sleep
539  *
540  * Board-specific early init code calls this (probably during arch_initcall)
541  * with segments of the SPI device table.  Any device nodes are created later,
542  * after the relevant parent SPI controller (bus_num) is defined.  We keep
543  * this table of devices forever, so that reloading a controller driver will
544  * not make Linux forget about these hard-wired devices.
545  *
546  * Other code can also call this, e.g. a particular add-on board might provide
547  * SPI devices through its expansion connector, so code initializing that board
548  * would naturally declare its SPI devices.
549  *
550  * The board info passed can safely be __initdata ... but be careful of
551  * any embedded pointers (platform_data, etc), they're copied as-is.
552  */
spi_register_board_info(struct spi_board_info const * info,unsigned n)553 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
554 {
555 	struct boardinfo *bi;
556 	int i;
557 
558 	if (!n)
559 		return -EINVAL;
560 
561 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
562 	if (!bi)
563 		return -ENOMEM;
564 
565 	for (i = 0; i < n; i++, bi++, info++) {
566 		struct spi_master *master;
567 
568 		memcpy(&bi->board_info, info, sizeof(*info));
569 		mutex_lock(&board_lock);
570 		list_add_tail(&bi->list, &board_list);
571 		list_for_each_entry(master, &spi_master_list, list)
572 			spi_match_master_to_boardinfo(master, &bi->board_info);
573 		mutex_unlock(&board_lock);
574 	}
575 
576 	return 0;
577 }
578 
579 /*-------------------------------------------------------------------------*/
580 
spi_set_cs(struct spi_device * spi,bool enable)581 static void spi_set_cs(struct spi_device *spi, bool enable)
582 {
583 	if (spi->mode & SPI_CS_HIGH)
584 		enable = !enable;
585 
586 	if (spi->cs_gpio >= 0)
587 		gpio_set_value(spi->cs_gpio, !enable);
588 	else if (spi->master->set_cs)
589 		spi->master->set_cs(spi, !enable);
590 }
591 
592 #ifdef CONFIG_HAS_DMA
spi_map_buf(struct spi_master * master,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir)593 static int spi_map_buf(struct spi_master *master, struct device *dev,
594 		       struct sg_table *sgt, void *buf, size_t len,
595 		       enum dma_data_direction dir)
596 {
597 	const bool vmalloced_buf = is_vmalloc_addr(buf);
598 	const int desc_len = vmalloced_buf ? PAGE_SIZE : master->max_dma_len;
599 	const int sgs = DIV_ROUND_UP(len, desc_len);
600 	struct page *vm_page;
601 	void *sg_buf;
602 	size_t min;
603 	int i, ret;
604 
605 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
606 	if (ret != 0)
607 		return ret;
608 
609 	for (i = 0; i < sgs; i++) {
610 		min = min_t(size_t, len, desc_len);
611 
612 		if (vmalloced_buf) {
613 			vm_page = vmalloc_to_page(buf);
614 			if (!vm_page) {
615 				sg_free_table(sgt);
616 				return -ENOMEM;
617 			}
618 			sg_set_page(&sgt->sgl[i], vm_page,
619 				    min, offset_in_page(buf));
620 		} else {
621 			sg_buf = buf;
622 			sg_set_buf(&sgt->sgl[i], sg_buf, min);
623 		}
624 
625 
626 		buf += min;
627 		len -= min;
628 	}
629 
630 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
631 	if (!ret)
632 		ret = -ENOMEM;
633 	if (ret < 0) {
634 		sg_free_table(sgt);
635 		return ret;
636 	}
637 
638 	sgt->nents = ret;
639 
640 	return 0;
641 }
642 
spi_unmap_buf(struct spi_master * master,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)643 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
644 			  struct sg_table *sgt, enum dma_data_direction dir)
645 {
646 	if (sgt->orig_nents) {
647 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
648 		sg_free_table(sgt);
649 	}
650 }
651 
__spi_map_msg(struct spi_master * master,struct spi_message * msg)652 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
653 {
654 	struct device *tx_dev, *rx_dev;
655 	struct spi_transfer *xfer;
656 	int ret;
657 
658 	if (!master->can_dma)
659 		return 0;
660 
661 	tx_dev = master->dma_tx->device->dev;
662 	rx_dev = master->dma_rx->device->dev;
663 
664 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
665 		if (!master->can_dma(master, msg->spi, xfer))
666 			continue;
667 
668 		if (xfer->tx_buf != NULL) {
669 			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
670 					  (void *)xfer->tx_buf, xfer->len,
671 					  DMA_TO_DEVICE);
672 			if (ret != 0)
673 				return ret;
674 		}
675 
676 		if (xfer->rx_buf != NULL) {
677 			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
678 					  xfer->rx_buf, xfer->len,
679 					  DMA_FROM_DEVICE);
680 			if (ret != 0) {
681 				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
682 					      DMA_TO_DEVICE);
683 				return ret;
684 			}
685 		}
686 	}
687 
688 	master->cur_msg_mapped = true;
689 
690 	return 0;
691 }
692 
spi_unmap_msg(struct spi_master * master,struct spi_message * msg)693 static int spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
694 {
695 	struct spi_transfer *xfer;
696 	struct device *tx_dev, *rx_dev;
697 
698 	if (!master->cur_msg_mapped || !master->can_dma)
699 		return 0;
700 
701 	tx_dev = master->dma_tx->device->dev;
702 	rx_dev = master->dma_rx->device->dev;
703 
704 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
705 		if (!master->can_dma(master, msg->spi, xfer))
706 			continue;
707 
708 		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
709 		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
710 	}
711 
712 	return 0;
713 }
714 #else /* !CONFIG_HAS_DMA */
__spi_map_msg(struct spi_master * master,struct spi_message * msg)715 static inline int __spi_map_msg(struct spi_master *master,
716 				struct spi_message *msg)
717 {
718 	return 0;
719 }
720 
spi_unmap_msg(struct spi_master * master,struct spi_message * msg)721 static inline int spi_unmap_msg(struct spi_master *master,
722 				struct spi_message *msg)
723 {
724 	return 0;
725 }
726 #endif /* !CONFIG_HAS_DMA */
727 
spi_map_msg(struct spi_master * master,struct spi_message * msg)728 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
729 {
730 	struct spi_transfer *xfer;
731 	void *tmp;
732 	unsigned int max_tx, max_rx;
733 
734 	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
735 		max_tx = 0;
736 		max_rx = 0;
737 
738 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
739 			if ((master->flags & SPI_MASTER_MUST_TX) &&
740 			    !xfer->tx_buf)
741 				max_tx = max(xfer->len, max_tx);
742 			if ((master->flags & SPI_MASTER_MUST_RX) &&
743 			    !xfer->rx_buf)
744 				max_rx = max(xfer->len, max_rx);
745 		}
746 
747 		if (max_tx) {
748 			tmp = krealloc(master->dummy_tx, max_tx,
749 				       GFP_KERNEL | GFP_DMA);
750 			if (!tmp)
751 				return -ENOMEM;
752 			master->dummy_tx = tmp;
753 			memset(tmp, 0, max_tx);
754 		}
755 
756 		if (max_rx) {
757 			tmp = krealloc(master->dummy_rx, max_rx,
758 				       GFP_KERNEL | GFP_DMA);
759 			if (!tmp)
760 				return -ENOMEM;
761 			master->dummy_rx = tmp;
762 		}
763 
764 		if (max_tx || max_rx) {
765 			list_for_each_entry(xfer, &msg->transfers,
766 					    transfer_list) {
767 				if (!xfer->tx_buf)
768 					xfer->tx_buf = master->dummy_tx;
769 				if (!xfer->rx_buf)
770 					xfer->rx_buf = master->dummy_rx;
771 			}
772 		}
773 	}
774 
775 	return __spi_map_msg(master, msg);
776 }
777 
778 /*
779  * spi_transfer_one_message - Default implementation of transfer_one_message()
780  *
781  * This is a standard implementation of transfer_one_message() for
782  * drivers which impelment a transfer_one() operation.  It provides
783  * standard handling of delays and chip select management.
784  */
spi_transfer_one_message(struct spi_master * master,struct spi_message * msg)785 static int spi_transfer_one_message(struct spi_master *master,
786 				    struct spi_message *msg)
787 {
788 	struct spi_transfer *xfer;
789 	bool keep_cs = false;
790 	int ret = 0;
791 	int ms = 1;
792 
793 	spi_set_cs(msg->spi, true);
794 
795 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
796 		trace_spi_transfer_start(msg, xfer);
797 
798 		if (xfer->tx_buf || xfer->rx_buf) {
799 			reinit_completion(&master->xfer_completion);
800 
801 			ret = master->transfer_one(master, msg->spi, xfer);
802 			if (ret < 0) {
803 				dev_err(&msg->spi->dev,
804 					"SPI transfer failed: %d\n", ret);
805 				goto out;
806 			}
807 
808 			if (ret > 0) {
809 				ret = 0;
810 				ms = xfer->len * 8 * 1000 / xfer->speed_hz;
811 				ms += ms + 100; /* some tolerance */
812 
813 				ms = wait_for_completion_timeout(&master->xfer_completion,
814 								 msecs_to_jiffies(ms));
815 			}
816 
817 			if (ms == 0) {
818 				dev_err(&msg->spi->dev,
819 					"SPI transfer timed out\n");
820 				msg->status = -ETIMEDOUT;
821 			}
822 		} else {
823 			if (xfer->len)
824 				dev_err(&msg->spi->dev,
825 					"Bufferless transfer has length %u\n",
826 					xfer->len);
827 		}
828 
829 		trace_spi_transfer_stop(msg, xfer);
830 
831 		if (msg->status != -EINPROGRESS)
832 			goto out;
833 
834 		if (xfer->delay_usecs)
835 			udelay(xfer->delay_usecs);
836 
837 		if (xfer->cs_change) {
838 			if (list_is_last(&xfer->transfer_list,
839 					 &msg->transfers)) {
840 				keep_cs = true;
841 			} else {
842 				spi_set_cs(msg->spi, false);
843 				udelay(10);
844 				spi_set_cs(msg->spi, true);
845 			}
846 		}
847 
848 		msg->actual_length += xfer->len;
849 	}
850 
851 out:
852 	if (ret != 0 || !keep_cs)
853 		spi_set_cs(msg->spi, false);
854 
855 	if (msg->status == -EINPROGRESS)
856 		msg->status = ret;
857 
858 	spi_finalize_current_message(master);
859 
860 	return ret;
861 }
862 
863 /**
864  * spi_finalize_current_transfer - report completion of a transfer
865  * @master: the master reporting completion
866  *
867  * Called by SPI drivers using the core transfer_one_message()
868  * implementation to notify it that the current interrupt driven
869  * transfer has finished and the next one may be scheduled.
870  */
spi_finalize_current_transfer(struct spi_master * master)871 void spi_finalize_current_transfer(struct spi_master *master)
872 {
873 	complete(&master->xfer_completion);
874 }
875 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
876 
877 /**
878  * spi_pump_messages - kthread work function which processes spi message queue
879  * @work: pointer to kthread work struct contained in the master struct
880  *
881  * This function checks if there is any spi message in the queue that
882  * needs processing and if so call out to the driver to initialize hardware
883  * and transfer each message.
884  *
885  */
spi_pump_messages(struct kthread_work * work)886 static void spi_pump_messages(struct kthread_work *work)
887 {
888 	struct spi_master *master =
889 		container_of(work, struct spi_master, pump_messages);
890 	unsigned long flags;
891 	bool was_busy = false;
892 	int ret;
893 
894 	/* Lock queue and check for queue work */
895 	spin_lock_irqsave(&master->queue_lock, flags);
896 	if (list_empty(&master->queue) || !master->running) {
897 		if (!master->busy) {
898 			spin_unlock_irqrestore(&master->queue_lock, flags);
899 			return;
900 		}
901 		master->busy = false;
902 		spin_unlock_irqrestore(&master->queue_lock, flags);
903 		kfree(master->dummy_rx);
904 		master->dummy_rx = NULL;
905 		kfree(master->dummy_tx);
906 		master->dummy_tx = NULL;
907 		if (master->unprepare_transfer_hardware &&
908 		    master->unprepare_transfer_hardware(master))
909 			dev_err(&master->dev,
910 				"failed to unprepare transfer hardware\n");
911 		if (master->auto_runtime_pm) {
912 			pm_runtime_mark_last_busy(master->dev.parent);
913 			pm_runtime_put_autosuspend(master->dev.parent);
914 		}
915 		trace_spi_master_idle(master);
916 		return;
917 	}
918 
919 	/* Make sure we are not already running a message */
920 	if (master->cur_msg) {
921 		spin_unlock_irqrestore(&master->queue_lock, flags);
922 		return;
923 	}
924 	/* Extract head of queue */
925 	master->cur_msg =
926 		list_first_entry(&master->queue, struct spi_message, queue);
927 
928 	list_del_init(&master->cur_msg->queue);
929 	if (master->busy)
930 		was_busy = true;
931 	else
932 		master->busy = true;
933 	spin_unlock_irqrestore(&master->queue_lock, flags);
934 
935 	if (!was_busy && master->auto_runtime_pm) {
936 		ret = pm_runtime_get_sync(master->dev.parent);
937 		if (ret < 0) {
938 			dev_err(&master->dev, "Failed to power device: %d\n",
939 				ret);
940 			return;
941 		}
942 	}
943 
944 	if (!was_busy)
945 		trace_spi_master_busy(master);
946 
947 	if (!was_busy && master->prepare_transfer_hardware) {
948 		ret = master->prepare_transfer_hardware(master);
949 		if (ret) {
950 			dev_err(&master->dev,
951 				"failed to prepare transfer hardware\n");
952 
953 			if (master->auto_runtime_pm)
954 				pm_runtime_put(master->dev.parent);
955 			return;
956 		}
957 	}
958 
959 	trace_spi_message_start(master->cur_msg);
960 
961 	if (master->prepare_message) {
962 		ret = master->prepare_message(master, master->cur_msg);
963 		if (ret) {
964 			dev_err(&master->dev,
965 				"failed to prepare message: %d\n", ret);
966 			master->cur_msg->status = ret;
967 			spi_finalize_current_message(master);
968 			return;
969 		}
970 		master->cur_msg_prepared = true;
971 	}
972 
973 	ret = spi_map_msg(master, master->cur_msg);
974 	if (ret) {
975 		master->cur_msg->status = ret;
976 		spi_finalize_current_message(master);
977 		return;
978 	}
979 
980 	ret = master->transfer_one_message(master, master->cur_msg);
981 	if (ret) {
982 		dev_err(&master->dev,
983 			"failed to transfer one message from queue\n");
984 		return;
985 	}
986 }
987 
spi_init_queue(struct spi_master * master)988 static int spi_init_queue(struct spi_master *master)
989 {
990 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
991 
992 	INIT_LIST_HEAD(&master->queue);
993 	spin_lock_init(&master->queue_lock);
994 
995 	master->running = false;
996 	master->busy = false;
997 
998 	init_kthread_worker(&master->kworker);
999 	master->kworker_task = kthread_run(kthread_worker_fn,
1000 					   &master->kworker, "%s",
1001 					   dev_name(&master->dev));
1002 	if (IS_ERR(master->kworker_task)) {
1003 		dev_err(&master->dev, "failed to create message pump task\n");
1004 		return -ENOMEM;
1005 	}
1006 	init_kthread_work(&master->pump_messages, spi_pump_messages);
1007 
1008 	/*
1009 	 * Master config will indicate if this controller should run the
1010 	 * message pump with high (realtime) priority to reduce the transfer
1011 	 * latency on the bus by minimising the delay between a transfer
1012 	 * request and the scheduling of the message pump thread. Without this
1013 	 * setting the message pump thread will remain at default priority.
1014 	 */
1015 	if (master->rt) {
1016 		dev_info(&master->dev,
1017 			"will run message pump with realtime priority\n");
1018 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1019 	}
1020 
1021 	return 0;
1022 }
1023 
1024 /**
1025  * spi_get_next_queued_message() - called by driver to check for queued
1026  * messages
1027  * @master: the master to check for queued messages
1028  *
1029  * If there are more messages in the queue, the next message is returned from
1030  * this call.
1031  */
spi_get_next_queued_message(struct spi_master * master)1032 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1033 {
1034 	struct spi_message *next;
1035 	unsigned long flags;
1036 
1037 	/* get a pointer to the next message, if any */
1038 	spin_lock_irqsave(&master->queue_lock, flags);
1039 	next = list_first_entry_or_null(&master->queue, struct spi_message,
1040 					queue);
1041 	spin_unlock_irqrestore(&master->queue_lock, flags);
1042 
1043 	return next;
1044 }
1045 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1046 
1047 /**
1048  * spi_finalize_current_message() - the current message is complete
1049  * @master: the master to return the message to
1050  *
1051  * Called by the driver to notify the core that the message in the front of the
1052  * queue is complete and can be removed from the queue.
1053  */
spi_finalize_current_message(struct spi_master * master)1054 void spi_finalize_current_message(struct spi_master *master)
1055 {
1056 	struct spi_message *mesg;
1057 	unsigned long flags;
1058 	int ret;
1059 
1060 	spin_lock_irqsave(&master->queue_lock, flags);
1061 	mesg = master->cur_msg;
1062 	spin_unlock_irqrestore(&master->queue_lock, flags);
1063 
1064 	spi_unmap_msg(master, mesg);
1065 
1066 	if (master->cur_msg_prepared && master->unprepare_message) {
1067 		ret = master->unprepare_message(master, mesg);
1068 		if (ret) {
1069 			dev_err(&master->dev,
1070 				"failed to unprepare message: %d\n", ret);
1071 		}
1072 	}
1073 
1074 	spin_lock_irqsave(&master->queue_lock, flags);
1075 	master->cur_msg = NULL;
1076 	master->cur_msg_prepared = false;
1077 	queue_kthread_work(&master->kworker, &master->pump_messages);
1078 	spin_unlock_irqrestore(&master->queue_lock, flags);
1079 
1080 	trace_spi_message_done(mesg);
1081 
1082 	mesg->state = NULL;
1083 	if (mesg->complete)
1084 		mesg->complete(mesg->context);
1085 }
1086 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1087 
spi_start_queue(struct spi_master * master)1088 static int spi_start_queue(struct spi_master *master)
1089 {
1090 	unsigned long flags;
1091 
1092 	spin_lock_irqsave(&master->queue_lock, flags);
1093 
1094 	if (master->running || master->busy) {
1095 		spin_unlock_irqrestore(&master->queue_lock, flags);
1096 		return -EBUSY;
1097 	}
1098 
1099 	master->running = true;
1100 	master->cur_msg = NULL;
1101 	spin_unlock_irqrestore(&master->queue_lock, flags);
1102 
1103 	queue_kthread_work(&master->kworker, &master->pump_messages);
1104 
1105 	return 0;
1106 }
1107 
spi_stop_queue(struct spi_master * master)1108 static int spi_stop_queue(struct spi_master *master)
1109 {
1110 	unsigned long flags;
1111 	unsigned limit = 500;
1112 	int ret = 0;
1113 
1114 	spin_lock_irqsave(&master->queue_lock, flags);
1115 
1116 	/*
1117 	 * This is a bit lame, but is optimized for the common execution path.
1118 	 * A wait_queue on the master->busy could be used, but then the common
1119 	 * execution path (pump_messages) would be required to call wake_up or
1120 	 * friends on every SPI message. Do this instead.
1121 	 */
1122 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1123 		spin_unlock_irqrestore(&master->queue_lock, flags);
1124 		usleep_range(10000, 11000);
1125 		spin_lock_irqsave(&master->queue_lock, flags);
1126 	}
1127 
1128 	if (!list_empty(&master->queue) || master->busy)
1129 		ret = -EBUSY;
1130 	else
1131 		master->running = false;
1132 
1133 	spin_unlock_irqrestore(&master->queue_lock, flags);
1134 
1135 	if (ret) {
1136 		dev_warn(&master->dev,
1137 			 "could not stop message queue\n");
1138 		return ret;
1139 	}
1140 	return ret;
1141 }
1142 
spi_destroy_queue(struct spi_master * master)1143 static int spi_destroy_queue(struct spi_master *master)
1144 {
1145 	int ret;
1146 
1147 	ret = spi_stop_queue(master);
1148 
1149 	/*
1150 	 * flush_kthread_worker will block until all work is done.
1151 	 * If the reason that stop_queue timed out is that the work will never
1152 	 * finish, then it does no good to call flush/stop thread, so
1153 	 * return anyway.
1154 	 */
1155 	if (ret) {
1156 		dev_err(&master->dev, "problem destroying queue\n");
1157 		return ret;
1158 	}
1159 
1160 	flush_kthread_worker(&master->kworker);
1161 	kthread_stop(master->kworker_task);
1162 
1163 	return 0;
1164 }
1165 
1166 /**
1167  * spi_queued_transfer - transfer function for queued transfers
1168  * @spi: spi device which is requesting transfer
1169  * @msg: spi message which is to handled is queued to driver queue
1170  */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)1171 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1172 {
1173 	struct spi_master *master = spi->master;
1174 	unsigned long flags;
1175 
1176 	spin_lock_irqsave(&master->queue_lock, flags);
1177 
1178 	if (!master->running) {
1179 		spin_unlock_irqrestore(&master->queue_lock, flags);
1180 		return -ESHUTDOWN;
1181 	}
1182 	msg->actual_length = 0;
1183 	msg->status = -EINPROGRESS;
1184 
1185 	list_add_tail(&msg->queue, &master->queue);
1186 	if (!master->busy)
1187 		queue_kthread_work(&master->kworker, &master->pump_messages);
1188 
1189 	spin_unlock_irqrestore(&master->queue_lock, flags);
1190 	return 0;
1191 }
1192 
spi_master_initialize_queue(struct spi_master * master)1193 static int spi_master_initialize_queue(struct spi_master *master)
1194 {
1195 	int ret;
1196 
1197 	master->transfer = spi_queued_transfer;
1198 	if (!master->transfer_one_message)
1199 		master->transfer_one_message = spi_transfer_one_message;
1200 
1201 	/* Initialize and start queue */
1202 	ret = spi_init_queue(master);
1203 	if (ret) {
1204 		dev_err(&master->dev, "problem initializing queue\n");
1205 		goto err_init_queue;
1206 	}
1207 	master->queued = true;
1208 	ret = spi_start_queue(master);
1209 	if (ret) {
1210 		dev_err(&master->dev, "problem starting queue\n");
1211 		goto err_start_queue;
1212 	}
1213 
1214 	return 0;
1215 
1216 err_start_queue:
1217 	spi_destroy_queue(master);
1218 err_init_queue:
1219 	return ret;
1220 }
1221 
1222 /*-------------------------------------------------------------------------*/
1223 
1224 #if defined(CONFIG_OF)
1225 /**
1226  * of_register_spi_devices() - Register child devices onto the SPI bus
1227  * @master:	Pointer to spi_master device
1228  *
1229  * Registers an spi_device for each child node of master node which has a 'reg'
1230  * property.
1231  */
of_register_spi_devices(struct spi_master * master)1232 static void of_register_spi_devices(struct spi_master *master)
1233 {
1234 	struct spi_device *spi;
1235 	struct device_node *nc;
1236 	int rc;
1237 	u32 value;
1238 
1239 	if (!master->dev.of_node)
1240 		return;
1241 
1242 	for_each_available_child_of_node(master->dev.of_node, nc) {
1243 		/* Alloc an spi_device */
1244 		spi = spi_alloc_device(master);
1245 		if (!spi) {
1246 			dev_err(&master->dev, "spi_device alloc error for %s\n",
1247 				nc->full_name);
1248 			spi_dev_put(spi);
1249 			continue;
1250 		}
1251 
1252 		/* Select device driver */
1253 		if (of_modalias_node(nc, spi->modalias,
1254 				     sizeof(spi->modalias)) < 0) {
1255 			dev_err(&master->dev, "cannot find modalias for %s\n",
1256 				nc->full_name);
1257 			spi_dev_put(spi);
1258 			continue;
1259 		}
1260 
1261 		/* Device address */
1262 		rc = of_property_read_u32(nc, "reg", &value);
1263 		if (rc) {
1264 			dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1265 				nc->full_name, rc);
1266 			spi_dev_put(spi);
1267 			continue;
1268 		}
1269 		spi->chip_select = value;
1270 
1271 		/* Mode (clock phase/polarity/etc.) */
1272 		if (of_find_property(nc, "spi-cpha", NULL))
1273 			spi->mode |= SPI_CPHA;
1274 		if (of_find_property(nc, "spi-cpol", NULL))
1275 			spi->mode |= SPI_CPOL;
1276 		if (of_find_property(nc, "spi-cs-high", NULL))
1277 			spi->mode |= SPI_CS_HIGH;
1278 		if (of_find_property(nc, "spi-3wire", NULL))
1279 			spi->mode |= SPI_3WIRE;
1280 		if (of_find_property(nc, "spi-lsb-first", NULL))
1281 			spi->mode |= SPI_LSB_FIRST;
1282 
1283 		/* Device DUAL/QUAD mode */
1284 		if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1285 			switch (value) {
1286 			case 1:
1287 				break;
1288 			case 2:
1289 				spi->mode |= SPI_TX_DUAL;
1290 				break;
1291 			case 4:
1292 				spi->mode |= SPI_TX_QUAD;
1293 				break;
1294 			default:
1295 				dev_warn(&master->dev,
1296 					 "spi-tx-bus-width %d not supported\n",
1297 					 value);
1298 				break;
1299 			}
1300 		}
1301 
1302 		if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1303 			switch (value) {
1304 			case 1:
1305 				break;
1306 			case 2:
1307 				spi->mode |= SPI_RX_DUAL;
1308 				break;
1309 			case 4:
1310 				spi->mode |= SPI_RX_QUAD;
1311 				break;
1312 			default:
1313 				dev_warn(&master->dev,
1314 					 "spi-rx-bus-width %d not supported\n",
1315 					 value);
1316 				break;
1317 			}
1318 		}
1319 
1320 		/* Device speed */
1321 		rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1322 		if (rc) {
1323 			dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1324 				nc->full_name, rc);
1325 			spi_dev_put(spi);
1326 			continue;
1327 		}
1328 		spi->max_speed_hz = value;
1329 
1330 		/* IRQ */
1331 		spi->irq = irq_of_parse_and_map(nc, 0);
1332 
1333 		/* Store a pointer to the node in the device structure */
1334 		of_node_get(nc);
1335 		spi->dev.of_node = nc;
1336 
1337 		/* Register the new device */
1338 		request_module("%s%s", SPI_MODULE_PREFIX, spi->modalias);
1339 		rc = spi_add_device(spi);
1340 		if (rc) {
1341 			dev_err(&master->dev, "spi_device register error %s\n",
1342 				nc->full_name);
1343 			spi_dev_put(spi);
1344 		}
1345 
1346 	}
1347 }
1348 #else
of_register_spi_devices(struct spi_master * master)1349 static void of_register_spi_devices(struct spi_master *master) { }
1350 #endif
1351 
1352 #ifdef CONFIG_ACPI
acpi_spi_add_resource(struct acpi_resource * ares,void * data)1353 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1354 {
1355 	struct spi_device *spi = data;
1356 
1357 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1358 		struct acpi_resource_spi_serialbus *sb;
1359 
1360 		sb = &ares->data.spi_serial_bus;
1361 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1362 			spi->chip_select = sb->device_selection;
1363 			spi->max_speed_hz = sb->connection_speed;
1364 
1365 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1366 				spi->mode |= SPI_CPHA;
1367 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1368 				spi->mode |= SPI_CPOL;
1369 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1370 				spi->mode |= SPI_CS_HIGH;
1371 		}
1372 	} else if (spi->irq < 0) {
1373 		struct resource r;
1374 
1375 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1376 			spi->irq = r.start;
1377 	}
1378 
1379 	/* Always tell the ACPI core to skip this resource */
1380 	return 1;
1381 }
1382 
acpi_spi_add_device(acpi_handle handle,u32 level,void * data,void ** return_value)1383 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1384 				       void *data, void **return_value)
1385 {
1386 	struct spi_master *master = data;
1387 	struct list_head resource_list;
1388 	struct acpi_device *adev;
1389 	struct spi_device *spi;
1390 	int ret;
1391 
1392 	if (acpi_bus_get_device(handle, &adev))
1393 		return AE_OK;
1394 	if (acpi_bus_get_status(adev) || !adev->status.present)
1395 		return AE_OK;
1396 
1397 	spi = spi_alloc_device(master);
1398 	if (!spi) {
1399 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1400 			dev_name(&adev->dev));
1401 		return AE_NO_MEMORY;
1402 	}
1403 
1404 	ACPI_COMPANION_SET(&spi->dev, adev);
1405 	spi->irq = -1;
1406 
1407 	INIT_LIST_HEAD(&resource_list);
1408 	ret = acpi_dev_get_resources(adev, &resource_list,
1409 				     acpi_spi_add_resource, spi);
1410 	acpi_dev_free_resource_list(&resource_list);
1411 
1412 	if (ret < 0 || !spi->max_speed_hz) {
1413 		spi_dev_put(spi);
1414 		return AE_OK;
1415 	}
1416 
1417 	adev->power.flags.ignore_parent = true;
1418 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1419 	if (spi_add_device(spi)) {
1420 		adev->power.flags.ignore_parent = false;
1421 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1422 			dev_name(&adev->dev));
1423 		spi_dev_put(spi);
1424 	}
1425 
1426 	return AE_OK;
1427 }
1428 
acpi_register_spi_devices(struct spi_master * master)1429 static void acpi_register_spi_devices(struct spi_master *master)
1430 {
1431 	acpi_status status;
1432 	acpi_handle handle;
1433 
1434 	handle = ACPI_HANDLE(master->dev.parent);
1435 	if (!handle)
1436 		return;
1437 
1438 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1439 				     acpi_spi_add_device, NULL,
1440 				     master, NULL);
1441 	if (ACPI_FAILURE(status))
1442 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1443 }
1444 #else
acpi_register_spi_devices(struct spi_master * master)1445 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1446 #endif /* CONFIG_ACPI */
1447 
spi_master_release(struct device * dev)1448 static void spi_master_release(struct device *dev)
1449 {
1450 	struct spi_master *master;
1451 
1452 	master = container_of(dev, struct spi_master, dev);
1453 	kfree(master);
1454 }
1455 
1456 static struct class spi_master_class = {
1457 	.name		= "spi_master",
1458 	.owner		= THIS_MODULE,
1459 	.dev_release	= spi_master_release,
1460 };
1461 
1462 
1463 
1464 /**
1465  * spi_alloc_master - allocate SPI master controller
1466  * @dev: the controller, possibly using the platform_bus
1467  * @size: how much zeroed driver-private data to allocate; the pointer to this
1468  *	memory is in the driver_data field of the returned device,
1469  *	accessible with spi_master_get_devdata().
1470  * Context: can sleep
1471  *
1472  * This call is used only by SPI master controller drivers, which are the
1473  * only ones directly touching chip registers.  It's how they allocate
1474  * an spi_master structure, prior to calling spi_register_master().
1475  *
1476  * This must be called from context that can sleep.  It returns the SPI
1477  * master structure on success, else NULL.
1478  *
1479  * The caller is responsible for assigning the bus number and initializing
1480  * the master's methods before calling spi_register_master(); and (after errors
1481  * adding the device) calling spi_master_put() to prevent a memory leak.
1482  */
spi_alloc_master(struct device * dev,unsigned size)1483 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1484 {
1485 	struct spi_master	*master;
1486 
1487 	if (!dev)
1488 		return NULL;
1489 
1490 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1491 	if (!master)
1492 		return NULL;
1493 
1494 	device_initialize(&master->dev);
1495 	master->bus_num = -1;
1496 	master->num_chipselect = 1;
1497 	master->dev.class = &spi_master_class;
1498 	master->dev.parent = get_device(dev);
1499 	spi_master_set_devdata(master, &master[1]);
1500 
1501 	return master;
1502 }
1503 EXPORT_SYMBOL_GPL(spi_alloc_master);
1504 
1505 #ifdef CONFIG_OF
of_spi_register_master(struct spi_master * master)1506 static int of_spi_register_master(struct spi_master *master)
1507 {
1508 	int nb, i, *cs;
1509 	struct device_node *np = master->dev.of_node;
1510 
1511 	if (!np)
1512 		return 0;
1513 
1514 	nb = of_gpio_named_count(np, "cs-gpios");
1515 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1516 
1517 	/* Return error only for an incorrectly formed cs-gpios property */
1518 	if (nb == 0 || nb == -ENOENT)
1519 		return 0;
1520 	else if (nb < 0)
1521 		return nb;
1522 
1523 	cs = devm_kzalloc(&master->dev,
1524 			  sizeof(int) * master->num_chipselect,
1525 			  GFP_KERNEL);
1526 	master->cs_gpios = cs;
1527 
1528 	if (!master->cs_gpios)
1529 		return -ENOMEM;
1530 
1531 	for (i = 0; i < master->num_chipselect; i++)
1532 		cs[i] = -ENOENT;
1533 
1534 	for (i = 0; i < nb; i++)
1535 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1536 
1537 	return 0;
1538 }
1539 #else
of_spi_register_master(struct spi_master * master)1540 static int of_spi_register_master(struct spi_master *master)
1541 {
1542 	return 0;
1543 }
1544 #endif
1545 
1546 /**
1547  * spi_register_master - register SPI master controller
1548  * @master: initialized master, originally from spi_alloc_master()
1549  * Context: can sleep
1550  *
1551  * SPI master controllers connect to their drivers using some non-SPI bus,
1552  * such as the platform bus.  The final stage of probe() in that code
1553  * includes calling spi_register_master() to hook up to this SPI bus glue.
1554  *
1555  * SPI controllers use board specific (often SOC specific) bus numbers,
1556  * and board-specific addressing for SPI devices combines those numbers
1557  * with chip select numbers.  Since SPI does not directly support dynamic
1558  * device identification, boards need configuration tables telling which
1559  * chip is at which address.
1560  *
1561  * This must be called from context that can sleep.  It returns zero on
1562  * success, else a negative error code (dropping the master's refcount).
1563  * After a successful return, the caller is responsible for calling
1564  * spi_unregister_master().
1565  */
spi_register_master(struct spi_master * master)1566 int spi_register_master(struct spi_master *master)
1567 {
1568 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1569 	struct device		*dev = master->dev.parent;
1570 	struct boardinfo	*bi;
1571 	int			status = -ENODEV;
1572 	int			dynamic = 0;
1573 
1574 	if (!dev)
1575 		return -ENODEV;
1576 
1577 	status = of_spi_register_master(master);
1578 	if (status)
1579 		return status;
1580 
1581 	/* even if it's just one always-selected device, there must
1582 	 * be at least one chipselect
1583 	 */
1584 	if (master->num_chipselect == 0)
1585 		return -EINVAL;
1586 
1587 	if ((master->bus_num < 0) && master->dev.of_node)
1588 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1589 
1590 	/* convention:  dynamically assigned bus IDs count down from the max */
1591 	if (master->bus_num < 0) {
1592 		/* FIXME switch to an IDR based scheme, something like
1593 		 * I2C now uses, so we can't run out of "dynamic" IDs
1594 		 */
1595 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1596 		dynamic = 1;
1597 	}
1598 
1599 	spin_lock_init(&master->bus_lock_spinlock);
1600 	mutex_init(&master->bus_lock_mutex);
1601 	master->bus_lock_flag = 0;
1602 	init_completion(&master->xfer_completion);
1603 	if (!master->max_dma_len)
1604 		master->max_dma_len = INT_MAX;
1605 
1606 	/* register the device, then userspace will see it.
1607 	 * registration fails if the bus ID is in use.
1608 	 */
1609 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1610 	status = device_add(&master->dev);
1611 	if (status < 0)
1612 		goto done;
1613 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1614 			dynamic ? " (dynamic)" : "");
1615 
1616 	/* If we're using a queued driver, start the queue */
1617 	if (master->transfer)
1618 		dev_info(dev, "master is unqueued, this is deprecated\n");
1619 	else {
1620 		status = spi_master_initialize_queue(master);
1621 		if (status) {
1622 			device_del(&master->dev);
1623 			goto done;
1624 		}
1625 	}
1626 
1627 	mutex_lock(&board_lock);
1628 	list_add_tail(&master->list, &spi_master_list);
1629 	list_for_each_entry(bi, &board_list, list)
1630 		spi_match_master_to_boardinfo(master, &bi->board_info);
1631 	mutex_unlock(&board_lock);
1632 
1633 	/* Register devices from the device tree and ACPI */
1634 	of_register_spi_devices(master);
1635 	acpi_register_spi_devices(master);
1636 done:
1637 	return status;
1638 }
1639 EXPORT_SYMBOL_GPL(spi_register_master);
1640 
devm_spi_unregister(struct device * dev,void * res)1641 static void devm_spi_unregister(struct device *dev, void *res)
1642 {
1643 	spi_unregister_master(*(struct spi_master **)res);
1644 }
1645 
1646 /**
1647  * dev_spi_register_master - register managed SPI master controller
1648  * @dev:    device managing SPI master
1649  * @master: initialized master, originally from spi_alloc_master()
1650  * Context: can sleep
1651  *
1652  * Register a SPI device as with spi_register_master() which will
1653  * automatically be unregister
1654  */
devm_spi_register_master(struct device * dev,struct spi_master * master)1655 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1656 {
1657 	struct spi_master **ptr;
1658 	int ret;
1659 
1660 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1661 	if (!ptr)
1662 		return -ENOMEM;
1663 
1664 	ret = spi_register_master(master);
1665 	if (!ret) {
1666 		*ptr = master;
1667 		devres_add(dev, ptr);
1668 	} else {
1669 		devres_free(ptr);
1670 	}
1671 
1672 	return ret;
1673 }
1674 EXPORT_SYMBOL_GPL(devm_spi_register_master);
1675 
__unregister(struct device * dev,void * null)1676 static int __unregister(struct device *dev, void *null)
1677 {
1678 	spi_unregister_device(to_spi_device(dev));
1679 	return 0;
1680 }
1681 
1682 /**
1683  * spi_unregister_master - unregister SPI master controller
1684  * @master: the master being unregistered
1685  * Context: can sleep
1686  *
1687  * This call is used only by SPI master controller drivers, which are the
1688  * only ones directly touching chip registers.
1689  *
1690  * This must be called from context that can sleep.
1691  */
spi_unregister_master(struct spi_master * master)1692 void spi_unregister_master(struct spi_master *master)
1693 {
1694 	int dummy;
1695 
1696 	if (master->queued) {
1697 		if (spi_destroy_queue(master))
1698 			dev_err(&master->dev, "queue remove failed\n");
1699 	}
1700 
1701 	mutex_lock(&board_lock);
1702 	list_del(&master->list);
1703 	mutex_unlock(&board_lock);
1704 
1705 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
1706 	device_unregister(&master->dev);
1707 }
1708 EXPORT_SYMBOL_GPL(spi_unregister_master);
1709 
spi_master_suspend(struct spi_master * master)1710 int spi_master_suspend(struct spi_master *master)
1711 {
1712 	int ret;
1713 
1714 	/* Basically no-ops for non-queued masters */
1715 	if (!master->queued)
1716 		return 0;
1717 
1718 	ret = spi_stop_queue(master);
1719 	if (ret)
1720 		dev_err(&master->dev, "queue stop failed\n");
1721 
1722 	return ret;
1723 }
1724 EXPORT_SYMBOL_GPL(spi_master_suspend);
1725 
spi_master_resume(struct spi_master * master)1726 int spi_master_resume(struct spi_master *master)
1727 {
1728 	int ret;
1729 
1730 	if (!master->queued)
1731 		return 0;
1732 
1733 	ret = spi_start_queue(master);
1734 	if (ret)
1735 		dev_err(&master->dev, "queue restart failed\n");
1736 
1737 	return ret;
1738 }
1739 EXPORT_SYMBOL_GPL(spi_master_resume);
1740 
__spi_master_match(struct device * dev,const void * data)1741 static int __spi_master_match(struct device *dev, const void *data)
1742 {
1743 	struct spi_master *m;
1744 	const u16 *bus_num = data;
1745 
1746 	m = container_of(dev, struct spi_master, dev);
1747 	return m->bus_num == *bus_num;
1748 }
1749 
1750 /**
1751  * spi_busnum_to_master - look up master associated with bus_num
1752  * @bus_num: the master's bus number
1753  * Context: can sleep
1754  *
1755  * This call may be used with devices that are registered after
1756  * arch init time.  It returns a refcounted pointer to the relevant
1757  * spi_master (which the caller must release), or NULL if there is
1758  * no such master registered.
1759  */
spi_busnum_to_master(u16 bus_num)1760 struct spi_master *spi_busnum_to_master(u16 bus_num)
1761 {
1762 	struct device		*dev;
1763 	struct spi_master	*master = NULL;
1764 
1765 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
1766 				__spi_master_match);
1767 	if (dev)
1768 		master = container_of(dev, struct spi_master, dev);
1769 	/* reference got in class_find_device */
1770 	return master;
1771 }
1772 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
1773 
1774 
1775 /*-------------------------------------------------------------------------*/
1776 
1777 /* Core methods for SPI master protocol drivers.  Some of the
1778  * other core methods are currently defined as inline functions.
1779  */
1780 
1781 /**
1782  * spi_setup - setup SPI mode and clock rate
1783  * @spi: the device whose settings are being modified
1784  * Context: can sleep, and no requests are queued to the device
1785  *
1786  * SPI protocol drivers may need to update the transfer mode if the
1787  * device doesn't work with its default.  They may likewise need
1788  * to update clock rates or word sizes from initial values.  This function
1789  * changes those settings, and must be called from a context that can sleep.
1790  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1791  * effect the next time the device is selected and data is transferred to
1792  * or from it.  When this function returns, the spi device is deselected.
1793  *
1794  * Note that this call will fail if the protocol driver specifies an option
1795  * that the underlying controller or its driver does not support.  For
1796  * example, not all hardware supports wire transfers using nine bit words,
1797  * LSB-first wire encoding, or active-high chipselects.
1798  */
spi_setup(struct spi_device * spi)1799 int spi_setup(struct spi_device *spi)
1800 {
1801 	unsigned	bad_bits, ugly_bits;
1802 	int		status = 0;
1803 
1804 	/* check mode to prevent that DUAL and QUAD set at the same time
1805 	 */
1806 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
1807 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
1808 		dev_err(&spi->dev,
1809 		"setup: can not select dual and quad at the same time\n");
1810 		return -EINVAL;
1811 	}
1812 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1813 	 */
1814 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
1815 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
1816 		return -EINVAL;
1817 	/* help drivers fail *cleanly* when they need options
1818 	 * that aren't supported with their current master
1819 	 */
1820 	bad_bits = spi->mode & ~spi->master->mode_bits;
1821 	ugly_bits = bad_bits &
1822 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
1823 	if (ugly_bits) {
1824 		dev_warn(&spi->dev,
1825 			 "setup: ignoring unsupported mode bits %x\n",
1826 			 ugly_bits);
1827 		spi->mode &= ~ugly_bits;
1828 		bad_bits &= ~ugly_bits;
1829 	}
1830 	if (bad_bits) {
1831 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
1832 			bad_bits);
1833 		return -EINVAL;
1834 	}
1835 
1836 	if (!spi->bits_per_word)
1837 		spi->bits_per_word = 8;
1838 
1839 	if (!spi->max_speed_hz)
1840 		spi->max_speed_hz = spi->master->max_speed_hz;
1841 
1842 	if (spi->master->setup)
1843 		status = spi->master->setup(spi);
1844 
1845 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1846 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
1847 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
1848 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
1849 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
1850 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
1851 			spi->bits_per_word, spi->max_speed_hz,
1852 			status);
1853 
1854 	return status;
1855 }
1856 EXPORT_SYMBOL_GPL(spi_setup);
1857 
__spi_validate(struct spi_device * spi,struct spi_message * message)1858 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
1859 {
1860 	struct spi_master *master = spi->master;
1861 	struct spi_transfer *xfer;
1862 	int w_size;
1863 
1864 	if (list_empty(&message->transfers))
1865 		return -EINVAL;
1866 
1867 	/* Half-duplex links include original MicroWire, and ones with
1868 	 * only one data pin like SPI_3WIRE (switches direction) or where
1869 	 * either MOSI or MISO is missing.  They can also be caused by
1870 	 * software limitations.
1871 	 */
1872 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
1873 			|| (spi->mode & SPI_3WIRE)) {
1874 		unsigned flags = master->flags;
1875 
1876 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
1877 			if (xfer->rx_buf && xfer->tx_buf)
1878 				return -EINVAL;
1879 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
1880 				return -EINVAL;
1881 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
1882 				return -EINVAL;
1883 		}
1884 	}
1885 
1886 	/**
1887 	 * Set transfer bits_per_word and max speed as spi device default if
1888 	 * it is not set for this transfer.
1889 	 * Set transfer tx_nbits and rx_nbits as single transfer default
1890 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1891 	 */
1892 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
1893 		message->frame_length += xfer->len;
1894 		if (!xfer->bits_per_word)
1895 			xfer->bits_per_word = spi->bits_per_word;
1896 
1897 		if (!xfer->speed_hz)
1898 			xfer->speed_hz = spi->max_speed_hz;
1899 
1900 		if (master->max_speed_hz &&
1901 		    xfer->speed_hz > master->max_speed_hz)
1902 			xfer->speed_hz = master->max_speed_hz;
1903 
1904 		if (master->bits_per_word_mask) {
1905 			/* Only 32 bits fit in the mask */
1906 			if (xfer->bits_per_word > 32)
1907 				return -EINVAL;
1908 			if (!(master->bits_per_word_mask &
1909 					BIT(xfer->bits_per_word - 1)))
1910 				return -EINVAL;
1911 		}
1912 
1913 		/*
1914 		 * SPI transfer length should be multiple of SPI word size
1915 		 * where SPI word size should be power-of-two multiple
1916 		 */
1917 		if (xfer->bits_per_word <= 8)
1918 			w_size = 1;
1919 		else if (xfer->bits_per_word <= 16)
1920 			w_size = 2;
1921 		else
1922 			w_size = 4;
1923 
1924 		/* No partial transfers accepted */
1925 		if (xfer->len % w_size)
1926 			return -EINVAL;
1927 
1928 		if (xfer->speed_hz && master->min_speed_hz &&
1929 		    xfer->speed_hz < master->min_speed_hz)
1930 			return -EINVAL;
1931 
1932 		if (xfer->tx_buf && !xfer->tx_nbits)
1933 			xfer->tx_nbits = SPI_NBITS_SINGLE;
1934 		if (xfer->rx_buf && !xfer->rx_nbits)
1935 			xfer->rx_nbits = SPI_NBITS_SINGLE;
1936 		/* check transfer tx/rx_nbits:
1937 		 * 1. check the value matches one of single, dual and quad
1938 		 * 2. check tx/rx_nbits match the mode in spi_device
1939 		 */
1940 		if (xfer->tx_buf) {
1941 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
1942 				xfer->tx_nbits != SPI_NBITS_DUAL &&
1943 				xfer->tx_nbits != SPI_NBITS_QUAD)
1944 				return -EINVAL;
1945 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
1946 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
1947 				return -EINVAL;
1948 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
1949 				!(spi->mode & SPI_TX_QUAD))
1950 				return -EINVAL;
1951 		}
1952 		/* check transfer rx_nbits */
1953 		if (xfer->rx_buf) {
1954 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
1955 				xfer->rx_nbits != SPI_NBITS_DUAL &&
1956 				xfer->rx_nbits != SPI_NBITS_QUAD)
1957 				return -EINVAL;
1958 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
1959 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
1960 				return -EINVAL;
1961 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
1962 				!(spi->mode & SPI_RX_QUAD))
1963 				return -EINVAL;
1964 		}
1965 	}
1966 
1967 	message->status = -EINPROGRESS;
1968 
1969 	return 0;
1970 }
1971 
__spi_async(struct spi_device * spi,struct spi_message * message)1972 static int __spi_async(struct spi_device *spi, struct spi_message *message)
1973 {
1974 	struct spi_master *master = spi->master;
1975 
1976 	message->spi = spi;
1977 
1978 	trace_spi_message_submit(message);
1979 
1980 	return master->transfer(spi, message);
1981 }
1982 
1983 /**
1984  * spi_async - asynchronous SPI transfer
1985  * @spi: device with which data will be exchanged
1986  * @message: describes the data transfers, including completion callback
1987  * Context: any (irqs may be blocked, etc)
1988  *
1989  * This call may be used in_irq and other contexts which can't sleep,
1990  * as well as from task contexts which can sleep.
1991  *
1992  * The completion callback is invoked in a context which can't sleep.
1993  * Before that invocation, the value of message->status is undefined.
1994  * When the callback is issued, message->status holds either zero (to
1995  * indicate complete success) or a negative error code.  After that
1996  * callback returns, the driver which issued the transfer request may
1997  * deallocate the associated memory; it's no longer in use by any SPI
1998  * core or controller driver code.
1999  *
2000  * Note that although all messages to a spi_device are handled in
2001  * FIFO order, messages may go to different devices in other orders.
2002  * Some device might be higher priority, or have various "hard" access
2003  * time requirements, for example.
2004  *
2005  * On detection of any fault during the transfer, processing of
2006  * the entire message is aborted, and the device is deselected.
2007  * Until returning from the associated message completion callback,
2008  * no other spi_message queued to that device will be processed.
2009  * (This rule applies equally to all the synchronous transfer calls,
2010  * which are wrappers around this core asynchronous primitive.)
2011  */
spi_async(struct spi_device * spi,struct spi_message * message)2012 int spi_async(struct spi_device *spi, struct spi_message *message)
2013 {
2014 	struct spi_master *master = spi->master;
2015 	int ret;
2016 	unsigned long flags;
2017 
2018 	ret = __spi_validate(spi, message);
2019 	if (ret != 0)
2020 		return ret;
2021 
2022 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2023 
2024 	if (master->bus_lock_flag)
2025 		ret = -EBUSY;
2026 	else
2027 		ret = __spi_async(spi, message);
2028 
2029 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2030 
2031 	return ret;
2032 }
2033 EXPORT_SYMBOL_GPL(spi_async);
2034 
2035 /**
2036  * spi_async_locked - version of spi_async with exclusive bus usage
2037  * @spi: device with which data will be exchanged
2038  * @message: describes the data transfers, including completion callback
2039  * Context: any (irqs may be blocked, etc)
2040  *
2041  * This call may be used in_irq and other contexts which can't sleep,
2042  * as well as from task contexts which can sleep.
2043  *
2044  * The completion callback is invoked in a context which can't sleep.
2045  * Before that invocation, the value of message->status is undefined.
2046  * When the callback is issued, message->status holds either zero (to
2047  * indicate complete success) or a negative error code.  After that
2048  * callback returns, the driver which issued the transfer request may
2049  * deallocate the associated memory; it's no longer in use by any SPI
2050  * core or controller driver code.
2051  *
2052  * Note that although all messages to a spi_device are handled in
2053  * FIFO order, messages may go to different devices in other orders.
2054  * Some device might be higher priority, or have various "hard" access
2055  * time requirements, for example.
2056  *
2057  * On detection of any fault during the transfer, processing of
2058  * the entire message is aborted, and the device is deselected.
2059  * Until returning from the associated message completion callback,
2060  * no other spi_message queued to that device will be processed.
2061  * (This rule applies equally to all the synchronous transfer calls,
2062  * which are wrappers around this core asynchronous primitive.)
2063  */
spi_async_locked(struct spi_device * spi,struct spi_message * message)2064 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2065 {
2066 	struct spi_master *master = spi->master;
2067 	int ret;
2068 	unsigned long flags;
2069 
2070 	ret = __spi_validate(spi, message);
2071 	if (ret != 0)
2072 		return ret;
2073 
2074 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2075 
2076 	ret = __spi_async(spi, message);
2077 
2078 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2079 
2080 	return ret;
2081 
2082 }
2083 EXPORT_SYMBOL_GPL(spi_async_locked);
2084 
2085 
2086 /*-------------------------------------------------------------------------*/
2087 
2088 /* Utility methods for SPI master protocol drivers, layered on
2089  * top of the core.  Some other utility methods are defined as
2090  * inline functions.
2091  */
2092 
spi_complete(void * arg)2093 static void spi_complete(void *arg)
2094 {
2095 	complete(arg);
2096 }
2097 
__spi_sync(struct spi_device * spi,struct spi_message * message,int bus_locked)2098 static int __spi_sync(struct spi_device *spi, struct spi_message *message,
2099 		      int bus_locked)
2100 {
2101 	DECLARE_COMPLETION_ONSTACK(done);
2102 	int status;
2103 	struct spi_master *master = spi->master;
2104 
2105 	message->complete = spi_complete;
2106 	message->context = &done;
2107 
2108 	if (!bus_locked)
2109 		mutex_lock(&master->bus_lock_mutex);
2110 
2111 	status = spi_async_locked(spi, message);
2112 
2113 	if (!bus_locked)
2114 		mutex_unlock(&master->bus_lock_mutex);
2115 
2116 	if (status == 0) {
2117 		wait_for_completion(&done);
2118 		status = message->status;
2119 	}
2120 	message->context = NULL;
2121 	return status;
2122 }
2123 
2124 /**
2125  * spi_sync - blocking/synchronous SPI data transfers
2126  * @spi: device with which data will be exchanged
2127  * @message: describes the data transfers
2128  * Context: can sleep
2129  *
2130  * This call may only be used from a context that may sleep.  The sleep
2131  * is non-interruptible, and has no timeout.  Low-overhead controller
2132  * drivers may DMA directly into and out of the message buffers.
2133  *
2134  * Note that the SPI device's chip select is active during the message,
2135  * and then is normally disabled between messages.  Drivers for some
2136  * frequently-used devices may want to minimize costs of selecting a chip,
2137  * by leaving it selected in anticipation that the next message will go
2138  * to the same chip.  (That may increase power usage.)
2139  *
2140  * Also, the caller is guaranteeing that the memory associated with the
2141  * message will not be freed before this call returns.
2142  *
2143  * It returns zero on success, else a negative error code.
2144  */
spi_sync(struct spi_device * spi,struct spi_message * message)2145 int spi_sync(struct spi_device *spi, struct spi_message *message)
2146 {
2147 	return __spi_sync(spi, message, 0);
2148 }
2149 EXPORT_SYMBOL_GPL(spi_sync);
2150 
2151 /**
2152  * spi_sync_locked - version of spi_sync with exclusive bus usage
2153  * @spi: device with which data will be exchanged
2154  * @message: describes the data transfers
2155  * Context: can sleep
2156  *
2157  * This call may only be used from a context that may sleep.  The sleep
2158  * is non-interruptible, and has no timeout.  Low-overhead controller
2159  * drivers may DMA directly into and out of the message buffers.
2160  *
2161  * This call should be used by drivers that require exclusive access to the
2162  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2163  * be released by a spi_bus_unlock call when the exclusive access is over.
2164  *
2165  * It returns zero on success, else a negative error code.
2166  */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)2167 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2168 {
2169 	return __spi_sync(spi, message, 1);
2170 }
2171 EXPORT_SYMBOL_GPL(spi_sync_locked);
2172 
2173 /**
2174  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2175  * @master: SPI bus master that should be locked for exclusive bus access
2176  * Context: can sleep
2177  *
2178  * This call may only be used from a context that may sleep.  The sleep
2179  * is non-interruptible, and has no timeout.
2180  *
2181  * This call should be used by drivers that require exclusive access to the
2182  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2183  * exclusive access is over. Data transfer must be done by spi_sync_locked
2184  * and spi_async_locked calls when the SPI bus lock is held.
2185  *
2186  * It returns zero on success, else a negative error code.
2187  */
spi_bus_lock(struct spi_master * master)2188 int spi_bus_lock(struct spi_master *master)
2189 {
2190 	unsigned long flags;
2191 
2192 	mutex_lock(&master->bus_lock_mutex);
2193 
2194 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2195 	master->bus_lock_flag = 1;
2196 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2197 
2198 	/* mutex remains locked until spi_bus_unlock is called */
2199 
2200 	return 0;
2201 }
2202 EXPORT_SYMBOL_GPL(spi_bus_lock);
2203 
2204 /**
2205  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2206  * @master: SPI bus master that was locked for exclusive bus access
2207  * Context: can sleep
2208  *
2209  * This call may only be used from a context that may sleep.  The sleep
2210  * is non-interruptible, and has no timeout.
2211  *
2212  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2213  * call.
2214  *
2215  * It returns zero on success, else a negative error code.
2216  */
spi_bus_unlock(struct spi_master * master)2217 int spi_bus_unlock(struct spi_master *master)
2218 {
2219 	master->bus_lock_flag = 0;
2220 
2221 	mutex_unlock(&master->bus_lock_mutex);
2222 
2223 	return 0;
2224 }
2225 EXPORT_SYMBOL_GPL(spi_bus_unlock);
2226 
2227 /* portable code must never pass more than 32 bytes */
2228 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
2229 
2230 static u8	*buf;
2231 
2232 /**
2233  * spi_write_then_read - SPI synchronous write followed by read
2234  * @spi: device with which data will be exchanged
2235  * @txbuf: data to be written (need not be dma-safe)
2236  * @n_tx: size of txbuf, in bytes
2237  * @rxbuf: buffer into which data will be read (need not be dma-safe)
2238  * @n_rx: size of rxbuf, in bytes
2239  * Context: can sleep
2240  *
2241  * This performs a half duplex MicroWire style transaction with the
2242  * device, sending txbuf and then reading rxbuf.  The return value
2243  * is zero for success, else a negative errno status code.
2244  * This call may only be used from a context that may sleep.
2245  *
2246  * Parameters to this routine are always copied using a small buffer;
2247  * portable code should never use this for more than 32 bytes.
2248  * Performance-sensitive or bulk transfer code should instead use
2249  * spi_{async,sync}() calls with dma-safe buffers.
2250  */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)2251 int spi_write_then_read(struct spi_device *spi,
2252 		const void *txbuf, unsigned n_tx,
2253 		void *rxbuf, unsigned n_rx)
2254 {
2255 	static DEFINE_MUTEX(lock);
2256 
2257 	int			status;
2258 	struct spi_message	message;
2259 	struct spi_transfer	x[2];
2260 	u8			*local_buf;
2261 
2262 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
2263 	 * copying here, (as a pure convenience thing), but we can
2264 	 * keep heap costs out of the hot path unless someone else is
2265 	 * using the pre-allocated buffer or the transfer is too large.
2266 	 */
2267 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
2268 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
2269 				    GFP_KERNEL | GFP_DMA);
2270 		if (!local_buf)
2271 			return -ENOMEM;
2272 	} else {
2273 		local_buf = buf;
2274 	}
2275 
2276 	spi_message_init(&message);
2277 	memset(x, 0, sizeof(x));
2278 	if (n_tx) {
2279 		x[0].len = n_tx;
2280 		spi_message_add_tail(&x[0], &message);
2281 	}
2282 	if (n_rx) {
2283 		x[1].len = n_rx;
2284 		spi_message_add_tail(&x[1], &message);
2285 	}
2286 
2287 	memcpy(local_buf, txbuf, n_tx);
2288 	x[0].tx_buf = local_buf;
2289 	x[1].rx_buf = local_buf + n_tx;
2290 
2291 	/* do the i/o */
2292 	status = spi_sync(spi, &message);
2293 	if (status == 0)
2294 		memcpy(rxbuf, x[1].rx_buf, n_rx);
2295 
2296 	if (x[0].tx_buf == buf)
2297 		mutex_unlock(&lock);
2298 	else
2299 		kfree(local_buf);
2300 
2301 	return status;
2302 }
2303 EXPORT_SYMBOL_GPL(spi_write_then_read);
2304 
2305 /*-------------------------------------------------------------------------*/
2306 
spi_init(void)2307 static int __init spi_init(void)
2308 {
2309 	int	status;
2310 
2311 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
2312 	if (!buf) {
2313 		status = -ENOMEM;
2314 		goto err0;
2315 	}
2316 
2317 	status = bus_register(&spi_bus_type);
2318 	if (status < 0)
2319 		goto err1;
2320 
2321 	status = class_register(&spi_master_class);
2322 	if (status < 0)
2323 		goto err2;
2324 	return 0;
2325 
2326 err2:
2327 	bus_unregister(&spi_bus_type);
2328 err1:
2329 	kfree(buf);
2330 	buf = NULL;
2331 err0:
2332 	return status;
2333 }
2334 
2335 /* board_info is normally registered in arch_initcall(),
2336  * but even essential drivers wait till later
2337  *
2338  * REVISIT only boardinfo really needs static linking. the rest (device and
2339  * driver registration) _could_ be dynamically linked (modular) ... costs
2340  * include needing to have boardinfo data structures be much more public.
2341  */
2342 postcore_initcall(spi_init);
2343 
2344