1 /*
2 * Low-level SPU handling
3 *
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5 *
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #undef DEBUG
24
25 #include <linux/interrupt.h>
26 #include <linux/list.h>
27 #include <linux/module.h>
28 #include <linux/ptrace.h>
29 #include <linux/slab.h>
30 #include <linux/wait.h>
31 #include <linux/mm.h>
32 #include <linux/io.h>
33 #include <linux/mutex.h>
34 #include <linux/linux_logo.h>
35 #include <linux/syscore_ops.h>
36 #include <asm/spu.h>
37 #include <asm/spu_priv1.h>
38 #include <asm/spu_csa.h>
39 #include <asm/xmon.h>
40 #include <asm/prom.h>
41 #include <asm/kexec.h>
42
43 const struct spu_management_ops *spu_management_ops;
44 EXPORT_SYMBOL_GPL(spu_management_ops);
45
46 const struct spu_priv1_ops *spu_priv1_ops;
47 EXPORT_SYMBOL_GPL(spu_priv1_ops);
48
49 struct cbe_spu_info cbe_spu_info[MAX_NUMNODES];
50 EXPORT_SYMBOL_GPL(cbe_spu_info);
51
52 /*
53 * The spufs fault-handling code needs to call force_sig_info to raise signals
54 * on DMA errors. Export it here to avoid general kernel-wide access to this
55 * function
56 */
57 EXPORT_SYMBOL_GPL(force_sig_info);
58
59 /*
60 * Protects cbe_spu_info and spu->number.
61 */
62 static DEFINE_SPINLOCK(spu_lock);
63
64 /*
65 * List of all spus in the system.
66 *
67 * This list is iterated by callers from irq context and callers that
68 * want to sleep. Thus modifications need to be done with both
69 * spu_full_list_lock and spu_full_list_mutex held, while iterating
70 * through it requires either of these locks.
71 *
72 * In addition spu_full_list_lock protects all assignmens to
73 * spu->mm.
74 */
75 static LIST_HEAD(spu_full_list);
76 static DEFINE_SPINLOCK(spu_full_list_lock);
77 static DEFINE_MUTEX(spu_full_list_mutex);
78
spu_invalidate_slbs(struct spu * spu)79 void spu_invalidate_slbs(struct spu *spu)
80 {
81 struct spu_priv2 __iomem *priv2 = spu->priv2;
82 unsigned long flags;
83
84 spin_lock_irqsave(&spu->register_lock, flags);
85 if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK)
86 out_be64(&priv2->slb_invalidate_all_W, 0UL);
87 spin_unlock_irqrestore(&spu->register_lock, flags);
88 }
89 EXPORT_SYMBOL_GPL(spu_invalidate_slbs);
90
91 /* This is called by the MM core when a segment size is changed, to
92 * request a flush of all the SPEs using a given mm
93 */
spu_flush_all_slbs(struct mm_struct * mm)94 void spu_flush_all_slbs(struct mm_struct *mm)
95 {
96 struct spu *spu;
97 unsigned long flags;
98
99 spin_lock_irqsave(&spu_full_list_lock, flags);
100 list_for_each_entry(spu, &spu_full_list, full_list) {
101 if (spu->mm == mm)
102 spu_invalidate_slbs(spu);
103 }
104 spin_unlock_irqrestore(&spu_full_list_lock, flags);
105 }
106
107 /* The hack below stinks... try to do something better one of
108 * these days... Does it even work properly with NR_CPUS == 1 ?
109 */
mm_needs_global_tlbie(struct mm_struct * mm)110 static inline void mm_needs_global_tlbie(struct mm_struct *mm)
111 {
112 int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1;
113
114 /* Global TLBIE broadcast required with SPEs. */
115 bitmap_fill(cpumask_bits(mm_cpumask(mm)), nr);
116 }
117
spu_associate_mm(struct spu * spu,struct mm_struct * mm)118 void spu_associate_mm(struct spu *spu, struct mm_struct *mm)
119 {
120 unsigned long flags;
121
122 spin_lock_irqsave(&spu_full_list_lock, flags);
123 spu->mm = mm;
124 spin_unlock_irqrestore(&spu_full_list_lock, flags);
125 if (mm)
126 mm_needs_global_tlbie(mm);
127 }
128 EXPORT_SYMBOL_GPL(spu_associate_mm);
129
spu_64k_pages_available(void)130 int spu_64k_pages_available(void)
131 {
132 return mmu_psize_defs[MMU_PAGE_64K].shift != 0;
133 }
134 EXPORT_SYMBOL_GPL(spu_64k_pages_available);
135
spu_restart_dma(struct spu * spu)136 static void spu_restart_dma(struct spu *spu)
137 {
138 struct spu_priv2 __iomem *priv2 = spu->priv2;
139
140 if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags))
141 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
142 else {
143 set_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
144 mb();
145 }
146 }
147
spu_load_slb(struct spu * spu,int slbe,struct copro_slb * slb)148 static inline void spu_load_slb(struct spu *spu, int slbe, struct copro_slb *slb)
149 {
150 struct spu_priv2 __iomem *priv2 = spu->priv2;
151
152 pr_debug("%s: adding SLB[%d] 0x%016llx 0x%016llx\n",
153 __func__, slbe, slb->vsid, slb->esid);
154
155 out_be64(&priv2->slb_index_W, slbe);
156 /* set invalid before writing vsid */
157 out_be64(&priv2->slb_esid_RW, 0);
158 /* now it's safe to write the vsid */
159 out_be64(&priv2->slb_vsid_RW, slb->vsid);
160 /* setting the new esid makes the entry valid again */
161 out_be64(&priv2->slb_esid_RW, slb->esid);
162 }
163
__spu_trap_data_seg(struct spu * spu,unsigned long ea)164 static int __spu_trap_data_seg(struct spu *spu, unsigned long ea)
165 {
166 struct copro_slb slb;
167 int ret;
168
169 ret = copro_calculate_slb(spu->mm, ea, &slb);
170 if (ret)
171 return ret;
172
173 spu_load_slb(spu, spu->slb_replace, &slb);
174
175 spu->slb_replace++;
176 if (spu->slb_replace >= 8)
177 spu->slb_replace = 0;
178
179 spu_restart_dma(spu);
180 spu->stats.slb_flt++;
181 return 0;
182 }
183
184 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); //XXX
__spu_trap_data_map(struct spu * spu,unsigned long ea,u64 dsisr)185 static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr)
186 {
187 int ret;
188
189 pr_debug("%s, %llx, %lx\n", __func__, dsisr, ea);
190
191 /*
192 * Handle kernel space hash faults immediately. User hash
193 * faults need to be deferred to process context.
194 */
195 if ((dsisr & MFC_DSISR_PTE_NOT_FOUND) &&
196 (REGION_ID(ea) != USER_REGION_ID)) {
197
198 spin_unlock(&spu->register_lock);
199 ret = hash_page(ea, _PAGE_PRESENT, 0x300);
200 spin_lock(&spu->register_lock);
201
202 if (!ret) {
203 spu_restart_dma(spu);
204 return 0;
205 }
206 }
207
208 spu->class_1_dar = ea;
209 spu->class_1_dsisr = dsisr;
210
211 spu->stop_callback(spu, 1);
212
213 spu->class_1_dar = 0;
214 spu->class_1_dsisr = 0;
215
216 return 0;
217 }
218
__spu_kernel_slb(void * addr,struct copro_slb * slb)219 static void __spu_kernel_slb(void *addr, struct copro_slb *slb)
220 {
221 unsigned long ea = (unsigned long)addr;
222 u64 llp;
223
224 if (REGION_ID(ea) == KERNEL_REGION_ID)
225 llp = mmu_psize_defs[mmu_linear_psize].sllp;
226 else
227 llp = mmu_psize_defs[mmu_virtual_psize].sllp;
228
229 slb->vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M) << SLB_VSID_SHIFT) |
230 SLB_VSID_KERNEL | llp;
231 slb->esid = (ea & ESID_MASK) | SLB_ESID_V;
232 }
233
234 /**
235 * Given an array of @nr_slbs SLB entries, @slbs, return non-zero if the
236 * address @new_addr is present.
237 */
__slb_present(struct copro_slb * slbs,int nr_slbs,void * new_addr)238 static inline int __slb_present(struct copro_slb *slbs, int nr_slbs,
239 void *new_addr)
240 {
241 unsigned long ea = (unsigned long)new_addr;
242 int i;
243
244 for (i = 0; i < nr_slbs; i++)
245 if (!((slbs[i].esid ^ ea) & ESID_MASK))
246 return 1;
247
248 return 0;
249 }
250
251 /**
252 * Setup the SPU kernel SLBs, in preparation for a context save/restore. We
253 * need to map both the context save area, and the save/restore code.
254 *
255 * Because the lscsa and code may cross segment boundaires, we check to see
256 * if mappings are required for the start and end of each range. We currently
257 * assume that the mappings are smaller that one segment - if not, something
258 * is seriously wrong.
259 */
spu_setup_kernel_slbs(struct spu * spu,struct spu_lscsa * lscsa,void * code,int code_size)260 void spu_setup_kernel_slbs(struct spu *spu, struct spu_lscsa *lscsa,
261 void *code, int code_size)
262 {
263 struct copro_slb slbs[4];
264 int i, nr_slbs = 0;
265 /* start and end addresses of both mappings */
266 void *addrs[] = {
267 lscsa, (void *)lscsa + sizeof(*lscsa) - 1,
268 code, code + code_size - 1
269 };
270
271 /* check the set of addresses, and create a new entry in the slbs array
272 * if there isn't already a SLB for that address */
273 for (i = 0; i < ARRAY_SIZE(addrs); i++) {
274 if (__slb_present(slbs, nr_slbs, addrs[i]))
275 continue;
276
277 __spu_kernel_slb(addrs[i], &slbs[nr_slbs]);
278 nr_slbs++;
279 }
280
281 spin_lock_irq(&spu->register_lock);
282 /* Add the set of SLBs */
283 for (i = 0; i < nr_slbs; i++)
284 spu_load_slb(spu, i, &slbs[i]);
285 spin_unlock_irq(&spu->register_lock);
286 }
287 EXPORT_SYMBOL_GPL(spu_setup_kernel_slbs);
288
289 static irqreturn_t
spu_irq_class_0(int irq,void * data)290 spu_irq_class_0(int irq, void *data)
291 {
292 struct spu *spu;
293 unsigned long stat, mask;
294
295 spu = data;
296
297 spin_lock(&spu->register_lock);
298 mask = spu_int_mask_get(spu, 0);
299 stat = spu_int_stat_get(spu, 0) & mask;
300
301 spu->class_0_pending |= stat;
302 spu->class_0_dar = spu_mfc_dar_get(spu);
303 spu->stop_callback(spu, 0);
304 spu->class_0_pending = 0;
305 spu->class_0_dar = 0;
306
307 spu_int_stat_clear(spu, 0, stat);
308 spin_unlock(&spu->register_lock);
309
310 return IRQ_HANDLED;
311 }
312
313 static irqreturn_t
spu_irq_class_1(int irq,void * data)314 spu_irq_class_1(int irq, void *data)
315 {
316 struct spu *spu;
317 unsigned long stat, mask, dar, dsisr;
318
319 spu = data;
320
321 /* atomically read & clear class1 status. */
322 spin_lock(&spu->register_lock);
323 mask = spu_int_mask_get(spu, 1);
324 stat = spu_int_stat_get(spu, 1) & mask;
325 dar = spu_mfc_dar_get(spu);
326 dsisr = spu_mfc_dsisr_get(spu);
327 if (stat & CLASS1_STORAGE_FAULT_INTR)
328 spu_mfc_dsisr_set(spu, 0ul);
329 spu_int_stat_clear(spu, 1, stat);
330
331 pr_debug("%s: %lx %lx %lx %lx\n", __func__, mask, stat,
332 dar, dsisr);
333
334 if (stat & CLASS1_SEGMENT_FAULT_INTR)
335 __spu_trap_data_seg(spu, dar);
336
337 if (stat & CLASS1_STORAGE_FAULT_INTR)
338 __spu_trap_data_map(spu, dar, dsisr);
339
340 if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_GET_INTR)
341 ;
342
343 if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_PUT_INTR)
344 ;
345
346 spu->class_1_dsisr = 0;
347 spu->class_1_dar = 0;
348
349 spin_unlock(&spu->register_lock);
350
351 return stat ? IRQ_HANDLED : IRQ_NONE;
352 }
353
354 static irqreturn_t
spu_irq_class_2(int irq,void * data)355 spu_irq_class_2(int irq, void *data)
356 {
357 struct spu *spu;
358 unsigned long stat;
359 unsigned long mask;
360 const int mailbox_intrs =
361 CLASS2_MAILBOX_THRESHOLD_INTR | CLASS2_MAILBOX_INTR;
362
363 spu = data;
364 spin_lock(&spu->register_lock);
365 stat = spu_int_stat_get(spu, 2);
366 mask = spu_int_mask_get(spu, 2);
367 /* ignore interrupts we're not waiting for */
368 stat &= mask;
369 /* mailbox interrupts are level triggered. mask them now before
370 * acknowledging */
371 if (stat & mailbox_intrs)
372 spu_int_mask_and(spu, 2, ~(stat & mailbox_intrs));
373 /* acknowledge all interrupts before the callbacks */
374 spu_int_stat_clear(spu, 2, stat);
375
376 pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask);
377
378 if (stat & CLASS2_MAILBOX_INTR)
379 spu->ibox_callback(spu);
380
381 if (stat & CLASS2_SPU_STOP_INTR)
382 spu->stop_callback(spu, 2);
383
384 if (stat & CLASS2_SPU_HALT_INTR)
385 spu->stop_callback(spu, 2);
386
387 if (stat & CLASS2_SPU_DMA_TAG_GROUP_COMPLETE_INTR)
388 spu->mfc_callback(spu);
389
390 if (stat & CLASS2_MAILBOX_THRESHOLD_INTR)
391 spu->wbox_callback(spu);
392
393 spu->stats.class2_intr++;
394
395 spin_unlock(&spu->register_lock);
396
397 return stat ? IRQ_HANDLED : IRQ_NONE;
398 }
399
spu_request_irqs(struct spu * spu)400 static int spu_request_irqs(struct spu *spu)
401 {
402 int ret = 0;
403
404 if (spu->irqs[0] != NO_IRQ) {
405 snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0",
406 spu->number);
407 ret = request_irq(spu->irqs[0], spu_irq_class_0,
408 0, spu->irq_c0, spu);
409 if (ret)
410 goto bail0;
411 }
412 if (spu->irqs[1] != NO_IRQ) {
413 snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1",
414 spu->number);
415 ret = request_irq(spu->irqs[1], spu_irq_class_1,
416 0, spu->irq_c1, spu);
417 if (ret)
418 goto bail1;
419 }
420 if (spu->irqs[2] != NO_IRQ) {
421 snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2",
422 spu->number);
423 ret = request_irq(spu->irqs[2], spu_irq_class_2,
424 0, spu->irq_c2, spu);
425 if (ret)
426 goto bail2;
427 }
428 return 0;
429
430 bail2:
431 if (spu->irqs[1] != NO_IRQ)
432 free_irq(spu->irqs[1], spu);
433 bail1:
434 if (spu->irqs[0] != NO_IRQ)
435 free_irq(spu->irqs[0], spu);
436 bail0:
437 return ret;
438 }
439
spu_free_irqs(struct spu * spu)440 static void spu_free_irqs(struct spu *spu)
441 {
442 if (spu->irqs[0] != NO_IRQ)
443 free_irq(spu->irqs[0], spu);
444 if (spu->irqs[1] != NO_IRQ)
445 free_irq(spu->irqs[1], spu);
446 if (spu->irqs[2] != NO_IRQ)
447 free_irq(spu->irqs[2], spu);
448 }
449
spu_init_channels(struct spu * spu)450 void spu_init_channels(struct spu *spu)
451 {
452 static const struct {
453 unsigned channel;
454 unsigned count;
455 } zero_list[] = {
456 { 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, },
457 { 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, },
458 }, count_list[] = {
459 { 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, },
460 { 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, },
461 { 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, },
462 };
463 struct spu_priv2 __iomem *priv2;
464 int i;
465
466 priv2 = spu->priv2;
467
468 /* initialize all channel data to zero */
469 for (i = 0; i < ARRAY_SIZE(zero_list); i++) {
470 int count;
471
472 out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel);
473 for (count = 0; count < zero_list[i].count; count++)
474 out_be64(&priv2->spu_chnldata_RW, 0);
475 }
476
477 /* initialize channel counts to meaningful values */
478 for (i = 0; i < ARRAY_SIZE(count_list); i++) {
479 out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel);
480 out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count);
481 }
482 }
483 EXPORT_SYMBOL_GPL(spu_init_channels);
484
485 static struct bus_type spu_subsys = {
486 .name = "spu",
487 .dev_name = "spu",
488 };
489
spu_add_dev_attr(struct device_attribute * attr)490 int spu_add_dev_attr(struct device_attribute *attr)
491 {
492 struct spu *spu;
493
494 mutex_lock(&spu_full_list_mutex);
495 list_for_each_entry(spu, &spu_full_list, full_list)
496 device_create_file(&spu->dev, attr);
497 mutex_unlock(&spu_full_list_mutex);
498
499 return 0;
500 }
501 EXPORT_SYMBOL_GPL(spu_add_dev_attr);
502
spu_add_dev_attr_group(struct attribute_group * attrs)503 int spu_add_dev_attr_group(struct attribute_group *attrs)
504 {
505 struct spu *spu;
506 int rc = 0;
507
508 mutex_lock(&spu_full_list_mutex);
509 list_for_each_entry(spu, &spu_full_list, full_list) {
510 rc = sysfs_create_group(&spu->dev.kobj, attrs);
511
512 /* we're in trouble here, but try unwinding anyway */
513 if (rc) {
514 printk(KERN_ERR "%s: can't create sysfs group '%s'\n",
515 __func__, attrs->name);
516
517 list_for_each_entry_continue_reverse(spu,
518 &spu_full_list, full_list)
519 sysfs_remove_group(&spu->dev.kobj, attrs);
520 break;
521 }
522 }
523
524 mutex_unlock(&spu_full_list_mutex);
525
526 return rc;
527 }
528 EXPORT_SYMBOL_GPL(spu_add_dev_attr_group);
529
530
spu_remove_dev_attr(struct device_attribute * attr)531 void spu_remove_dev_attr(struct device_attribute *attr)
532 {
533 struct spu *spu;
534
535 mutex_lock(&spu_full_list_mutex);
536 list_for_each_entry(spu, &spu_full_list, full_list)
537 device_remove_file(&spu->dev, attr);
538 mutex_unlock(&spu_full_list_mutex);
539 }
540 EXPORT_SYMBOL_GPL(spu_remove_dev_attr);
541
spu_remove_dev_attr_group(struct attribute_group * attrs)542 void spu_remove_dev_attr_group(struct attribute_group *attrs)
543 {
544 struct spu *spu;
545
546 mutex_lock(&spu_full_list_mutex);
547 list_for_each_entry(spu, &spu_full_list, full_list)
548 sysfs_remove_group(&spu->dev.kobj, attrs);
549 mutex_unlock(&spu_full_list_mutex);
550 }
551 EXPORT_SYMBOL_GPL(spu_remove_dev_attr_group);
552
spu_create_dev(struct spu * spu)553 static int spu_create_dev(struct spu *spu)
554 {
555 int ret;
556
557 spu->dev.id = spu->number;
558 spu->dev.bus = &spu_subsys;
559 ret = device_register(&spu->dev);
560 if (ret) {
561 printk(KERN_ERR "Can't register SPU %d with sysfs\n",
562 spu->number);
563 return ret;
564 }
565
566 sysfs_add_device_to_node(&spu->dev, spu->node);
567
568 return 0;
569 }
570
create_spu(void * data)571 static int __init create_spu(void *data)
572 {
573 struct spu *spu;
574 int ret;
575 static int number;
576 unsigned long flags;
577
578 ret = -ENOMEM;
579 spu = kzalloc(sizeof (*spu), GFP_KERNEL);
580 if (!spu)
581 goto out;
582
583 spu->alloc_state = SPU_FREE;
584
585 spin_lock_init(&spu->register_lock);
586 spin_lock(&spu_lock);
587 spu->number = number++;
588 spin_unlock(&spu_lock);
589
590 ret = spu_create_spu(spu, data);
591
592 if (ret)
593 goto out_free;
594
595 spu_mfc_sdr_setup(spu);
596 spu_mfc_sr1_set(spu, 0x33);
597 ret = spu_request_irqs(spu);
598 if (ret)
599 goto out_destroy;
600
601 ret = spu_create_dev(spu);
602 if (ret)
603 goto out_free_irqs;
604
605 mutex_lock(&cbe_spu_info[spu->node].list_mutex);
606 list_add(&spu->cbe_list, &cbe_spu_info[spu->node].spus);
607 cbe_spu_info[spu->node].n_spus++;
608 mutex_unlock(&cbe_spu_info[spu->node].list_mutex);
609
610 mutex_lock(&spu_full_list_mutex);
611 spin_lock_irqsave(&spu_full_list_lock, flags);
612 list_add(&spu->full_list, &spu_full_list);
613 spin_unlock_irqrestore(&spu_full_list_lock, flags);
614 mutex_unlock(&spu_full_list_mutex);
615
616 spu->stats.util_state = SPU_UTIL_IDLE_LOADED;
617 spu->stats.tstamp = ktime_get_ns();
618
619 INIT_LIST_HEAD(&spu->aff_list);
620
621 goto out;
622
623 out_free_irqs:
624 spu_free_irqs(spu);
625 out_destroy:
626 spu_destroy_spu(spu);
627 out_free:
628 kfree(spu);
629 out:
630 return ret;
631 }
632
633 static const char *spu_state_names[] = {
634 "user", "system", "iowait", "idle"
635 };
636
spu_acct_time(struct spu * spu,enum spu_utilization_state state)637 static unsigned long long spu_acct_time(struct spu *spu,
638 enum spu_utilization_state state)
639 {
640 unsigned long long time = spu->stats.times[state];
641
642 /*
643 * If the spu is idle or the context is stopped, utilization
644 * statistics are not updated. Apply the time delta from the
645 * last recorded state of the spu.
646 */
647 if (spu->stats.util_state == state)
648 time += ktime_get_ns() - spu->stats.tstamp;
649
650 return time / NSEC_PER_MSEC;
651 }
652
653
spu_stat_show(struct device * dev,struct device_attribute * attr,char * buf)654 static ssize_t spu_stat_show(struct device *dev,
655 struct device_attribute *attr, char *buf)
656 {
657 struct spu *spu = container_of(dev, struct spu, dev);
658
659 return sprintf(buf, "%s %llu %llu %llu %llu "
660 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
661 spu_state_names[spu->stats.util_state],
662 spu_acct_time(spu, SPU_UTIL_USER),
663 spu_acct_time(spu, SPU_UTIL_SYSTEM),
664 spu_acct_time(spu, SPU_UTIL_IOWAIT),
665 spu_acct_time(spu, SPU_UTIL_IDLE_LOADED),
666 spu->stats.vol_ctx_switch,
667 spu->stats.invol_ctx_switch,
668 spu->stats.slb_flt,
669 spu->stats.hash_flt,
670 spu->stats.min_flt,
671 spu->stats.maj_flt,
672 spu->stats.class2_intr,
673 spu->stats.libassist);
674 }
675
676 static DEVICE_ATTR(stat, 0444, spu_stat_show, NULL);
677
678 #ifdef CONFIG_KEXEC
679
680 struct crash_spu_info {
681 struct spu *spu;
682 u32 saved_spu_runcntl_RW;
683 u32 saved_spu_status_R;
684 u32 saved_spu_npc_RW;
685 u64 saved_mfc_sr1_RW;
686 u64 saved_mfc_dar;
687 u64 saved_mfc_dsisr;
688 };
689
690 #define CRASH_NUM_SPUS 16 /* Enough for current hardware */
691 static struct crash_spu_info crash_spu_info[CRASH_NUM_SPUS];
692
crash_kexec_stop_spus(void)693 static void crash_kexec_stop_spus(void)
694 {
695 struct spu *spu;
696 int i;
697 u64 tmp;
698
699 for (i = 0; i < CRASH_NUM_SPUS; i++) {
700 if (!crash_spu_info[i].spu)
701 continue;
702
703 spu = crash_spu_info[i].spu;
704
705 crash_spu_info[i].saved_spu_runcntl_RW =
706 in_be32(&spu->problem->spu_runcntl_RW);
707 crash_spu_info[i].saved_spu_status_R =
708 in_be32(&spu->problem->spu_status_R);
709 crash_spu_info[i].saved_spu_npc_RW =
710 in_be32(&spu->problem->spu_npc_RW);
711
712 crash_spu_info[i].saved_mfc_dar = spu_mfc_dar_get(spu);
713 crash_spu_info[i].saved_mfc_dsisr = spu_mfc_dsisr_get(spu);
714 tmp = spu_mfc_sr1_get(spu);
715 crash_spu_info[i].saved_mfc_sr1_RW = tmp;
716
717 tmp &= ~MFC_STATE1_MASTER_RUN_CONTROL_MASK;
718 spu_mfc_sr1_set(spu, tmp);
719
720 __delay(200);
721 }
722 }
723
crash_register_spus(struct list_head * list)724 static void crash_register_spus(struct list_head *list)
725 {
726 struct spu *spu;
727 int ret;
728
729 list_for_each_entry(spu, list, full_list) {
730 if (WARN_ON(spu->number >= CRASH_NUM_SPUS))
731 continue;
732
733 crash_spu_info[spu->number].spu = spu;
734 }
735
736 ret = crash_shutdown_register(&crash_kexec_stop_spus);
737 if (ret)
738 printk(KERN_ERR "Could not register SPU crash handler");
739 }
740
741 #else
crash_register_spus(struct list_head * list)742 static inline void crash_register_spus(struct list_head *list)
743 {
744 }
745 #endif
746
spu_shutdown(void)747 static void spu_shutdown(void)
748 {
749 struct spu *spu;
750
751 mutex_lock(&spu_full_list_mutex);
752 list_for_each_entry(spu, &spu_full_list, full_list) {
753 spu_free_irqs(spu);
754 spu_destroy_spu(spu);
755 }
756 mutex_unlock(&spu_full_list_mutex);
757 }
758
759 static struct syscore_ops spu_syscore_ops = {
760 .shutdown = spu_shutdown,
761 };
762
init_spu_base(void)763 static int __init init_spu_base(void)
764 {
765 int i, ret = 0;
766
767 for (i = 0; i < MAX_NUMNODES; i++) {
768 mutex_init(&cbe_spu_info[i].list_mutex);
769 INIT_LIST_HEAD(&cbe_spu_info[i].spus);
770 }
771
772 if (!spu_management_ops)
773 goto out;
774
775 /* create system subsystem for spus */
776 ret = subsys_system_register(&spu_subsys, NULL);
777 if (ret)
778 goto out;
779
780 ret = spu_enumerate_spus(create_spu);
781
782 if (ret < 0) {
783 printk(KERN_WARNING "%s: Error initializing spus\n",
784 __func__);
785 goto out_unregister_subsys;
786 }
787
788 if (ret > 0)
789 fb_append_extra_logo(&logo_spe_clut224, ret);
790
791 mutex_lock(&spu_full_list_mutex);
792 xmon_register_spus(&spu_full_list);
793 crash_register_spus(&spu_full_list);
794 mutex_unlock(&spu_full_list_mutex);
795 spu_add_dev_attr(&dev_attr_stat);
796 register_syscore_ops(&spu_syscore_ops);
797
798 spu_init_affinity();
799
800 return 0;
801
802 out_unregister_subsys:
803 bus_unregister(&spu_subsys);
804 out:
805 return ret;
806 }
807 module_init(init_spu_base);
808
809 MODULE_LICENSE("GPL");
810 MODULE_AUTHOR("Arnd Bergmann <arndb@de.ibm.com>");
811