1 /*
2 * spu_switch.c
3 *
4 * (C) Copyright IBM Corp. 2005
5 *
6 * Author: Mark Nutter <mnutter@us.ibm.com>
7 *
8 * Host-side part of SPU context switch sequence outlined in
9 * Synergistic Processor Element, Book IV.
10 *
11 * A fully premptive switch of an SPE is very expensive in terms
12 * of time and system resources. SPE Book IV indicates that SPE
13 * allocation should follow a "serially reusable device" model,
14 * in which the SPE is assigned a task until it completes. When
15 * this is not possible, this sequence may be used to premptively
16 * save, and then later (optionally) restore the context of a
17 * program executing on an SPE.
18 *
19 *
20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2, or (at your option)
23 * any later version.
24 *
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with this program; if not, write to the Free Software
32 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/export.h>
36 #include <linux/errno.h>
37 #include <linux/hardirq.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/smp.h>
43 #include <linux/stddef.h>
44 #include <linux/unistd.h>
45
46 #include <asm/io.h>
47 #include <asm/spu.h>
48 #include <asm/spu_priv1.h>
49 #include <asm/spu_csa.h>
50 #include <asm/mmu_context.h>
51
52 #include "spufs.h"
53
54 #include "spu_save_dump.h"
55 #include "spu_restore_dump.h"
56
57 #if 0
58 #define POLL_WHILE_TRUE(_c) { \
59 do { \
60 } while (_c); \
61 }
62 #else
63 #define RELAX_SPIN_COUNT 1000
64 #define POLL_WHILE_TRUE(_c) { \
65 do { \
66 int _i; \
67 for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
68 cpu_relax(); \
69 } \
70 if (unlikely(_c)) yield(); \
71 else break; \
72 } while (_c); \
73 }
74 #endif /* debug */
75
76 #define POLL_WHILE_FALSE(_c) POLL_WHILE_TRUE(!(_c))
77
acquire_spu_lock(struct spu * spu)78 static inline void acquire_spu_lock(struct spu *spu)
79 {
80 /* Save, Step 1:
81 * Restore, Step 1:
82 * Acquire SPU-specific mutual exclusion lock.
83 * TBD.
84 */
85 }
86
release_spu_lock(struct spu * spu)87 static inline void release_spu_lock(struct spu *spu)
88 {
89 /* Restore, Step 76:
90 * Release SPU-specific mutual exclusion lock.
91 * TBD.
92 */
93 }
94
check_spu_isolate(struct spu_state * csa,struct spu * spu)95 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
96 {
97 struct spu_problem __iomem *prob = spu->problem;
98 u32 isolate_state;
99
100 /* Save, Step 2:
101 * Save, Step 6:
102 * If SPU_Status[E,L,IS] any field is '1', this
103 * SPU is in isolate state and cannot be context
104 * saved at this time.
105 */
106 isolate_state = SPU_STATUS_ISOLATED_STATE |
107 SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
108 return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
109 }
110
disable_interrupts(struct spu_state * csa,struct spu * spu)111 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
112 {
113 /* Save, Step 3:
114 * Restore, Step 2:
115 * Save INT_Mask_class0 in CSA.
116 * Write INT_MASK_class0 with value of 0.
117 * Save INT_Mask_class1 in CSA.
118 * Write INT_MASK_class1 with value of 0.
119 * Save INT_Mask_class2 in CSA.
120 * Write INT_MASK_class2 with value of 0.
121 * Synchronize all three interrupts to be sure
122 * we no longer execute a handler on another CPU.
123 */
124 spin_lock_irq(&spu->register_lock);
125 if (csa) {
126 csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
127 csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
128 csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
129 }
130 spu_int_mask_set(spu, 0, 0ul);
131 spu_int_mask_set(spu, 1, 0ul);
132 spu_int_mask_set(spu, 2, 0ul);
133 eieio();
134 spin_unlock_irq(&spu->register_lock);
135
136 /*
137 * This flag needs to be set before calling synchronize_irq so
138 * that the update will be visible to the relevant handlers
139 * via a simple load.
140 */
141 set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
142 clear_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
143 synchronize_irq(spu->irqs[0]);
144 synchronize_irq(spu->irqs[1]);
145 synchronize_irq(spu->irqs[2]);
146 }
147
set_watchdog_timer(struct spu_state * csa,struct spu * spu)148 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
149 {
150 /* Save, Step 4:
151 * Restore, Step 25.
152 * Set a software watchdog timer, which specifies the
153 * maximum allowable time for a context save sequence.
154 *
155 * For present, this implementation will not set a global
156 * watchdog timer, as virtualization & variable system load
157 * may cause unpredictable execution times.
158 */
159 }
160
inhibit_user_access(struct spu_state * csa,struct spu * spu)161 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
162 {
163 /* Save, Step 5:
164 * Restore, Step 3:
165 * Inhibit user-space access (if provided) to this
166 * SPU by unmapping the virtual pages assigned to
167 * the SPU memory-mapped I/O (MMIO) for problem
168 * state. TBD.
169 */
170 }
171
set_switch_pending(struct spu_state * csa,struct spu * spu)172 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
173 {
174 /* Save, Step 7:
175 * Restore, Step 5:
176 * Set a software context switch pending flag.
177 * Done above in Step 3 - disable_interrupts().
178 */
179 }
180
save_mfc_cntl(struct spu_state * csa,struct spu * spu)181 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
182 {
183 struct spu_priv2 __iomem *priv2 = spu->priv2;
184
185 /* Save, Step 8:
186 * Suspend DMA and save MFC_CNTL.
187 */
188 switch (in_be64(&priv2->mfc_control_RW) &
189 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
190 case MFC_CNTL_SUSPEND_IN_PROGRESS:
191 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
192 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
193 MFC_CNTL_SUSPEND_COMPLETE);
194 /* fall through */
195 case MFC_CNTL_SUSPEND_COMPLETE:
196 if (csa)
197 csa->priv2.mfc_control_RW =
198 in_be64(&priv2->mfc_control_RW) |
199 MFC_CNTL_SUSPEND_DMA_QUEUE;
200 break;
201 case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
202 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
203 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
204 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
205 MFC_CNTL_SUSPEND_COMPLETE);
206 if (csa)
207 csa->priv2.mfc_control_RW =
208 in_be64(&priv2->mfc_control_RW) &
209 ~MFC_CNTL_SUSPEND_DMA_QUEUE &
210 ~MFC_CNTL_SUSPEND_MASK;
211 break;
212 }
213 }
214
save_spu_runcntl(struct spu_state * csa,struct spu * spu)215 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
216 {
217 struct spu_problem __iomem *prob = spu->problem;
218
219 /* Save, Step 9:
220 * Save SPU_Runcntl in the CSA. This value contains
221 * the "Application Desired State".
222 */
223 csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
224 }
225
save_mfc_sr1(struct spu_state * csa,struct spu * spu)226 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
227 {
228 /* Save, Step 10:
229 * Save MFC_SR1 in the CSA.
230 */
231 csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
232 }
233
save_spu_status(struct spu_state * csa,struct spu * spu)234 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
235 {
236 struct spu_problem __iomem *prob = spu->problem;
237
238 /* Save, Step 11:
239 * Read SPU_Status[R], and save to CSA.
240 */
241 if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
242 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
243 } else {
244 u32 stopped;
245
246 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
247 eieio();
248 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
249 SPU_STATUS_RUNNING);
250 stopped =
251 SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
252 SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
253 if ((in_be32(&prob->spu_status_R) & stopped) == 0)
254 csa->prob.spu_status_R = SPU_STATUS_RUNNING;
255 else
256 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
257 }
258 }
259
save_mfc_stopped_status(struct spu_state * csa,struct spu * spu)260 static inline void save_mfc_stopped_status(struct spu_state *csa,
261 struct spu *spu)
262 {
263 struct spu_priv2 __iomem *priv2 = spu->priv2;
264 const u64 mask = MFC_CNTL_DECREMENTER_RUNNING |
265 MFC_CNTL_DMA_QUEUES_EMPTY;
266
267 /* Save, Step 12:
268 * Read MFC_CNTL[Ds]. Update saved copy of
269 * CSA.MFC_CNTL[Ds].
270 *
271 * update: do the same with MFC_CNTL[Q].
272 */
273 csa->priv2.mfc_control_RW &= ~mask;
274 csa->priv2.mfc_control_RW |= in_be64(&priv2->mfc_control_RW) & mask;
275 }
276
halt_mfc_decr(struct spu_state * csa,struct spu * spu)277 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
278 {
279 struct spu_priv2 __iomem *priv2 = spu->priv2;
280
281 /* Save, Step 13:
282 * Write MFC_CNTL[Dh] set to a '1' to halt
283 * the decrementer.
284 */
285 out_be64(&priv2->mfc_control_RW,
286 MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK);
287 eieio();
288 }
289
save_timebase(struct spu_state * csa,struct spu * spu)290 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
291 {
292 /* Save, Step 14:
293 * Read PPE Timebase High and Timebase low registers
294 * and save in CSA. TBD.
295 */
296 csa->suspend_time = get_cycles();
297 }
298
remove_other_spu_access(struct spu_state * csa,struct spu * spu)299 static inline void remove_other_spu_access(struct spu_state *csa,
300 struct spu *spu)
301 {
302 /* Save, Step 15:
303 * Remove other SPU access to this SPU by unmapping
304 * this SPU's pages from their address space. TBD.
305 */
306 }
307
do_mfc_mssync(struct spu_state * csa,struct spu * spu)308 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
309 {
310 struct spu_problem __iomem *prob = spu->problem;
311
312 /* Save, Step 16:
313 * Restore, Step 11.
314 * Write SPU_MSSync register. Poll SPU_MSSync[P]
315 * for a value of 0.
316 */
317 out_be64(&prob->spc_mssync_RW, 1UL);
318 POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
319 }
320
issue_mfc_tlbie(struct spu_state * csa,struct spu * spu)321 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
322 {
323 /* Save, Step 17:
324 * Restore, Step 12.
325 * Restore, Step 48.
326 * Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
327 * Then issue a PPE sync instruction.
328 */
329 spu_tlb_invalidate(spu);
330 mb();
331 }
332
handle_pending_interrupts(struct spu_state * csa,struct spu * spu)333 static inline void handle_pending_interrupts(struct spu_state *csa,
334 struct spu *spu)
335 {
336 /* Save, Step 18:
337 * Handle any pending interrupts from this SPU
338 * here. This is OS or hypervisor specific. One
339 * option is to re-enable interrupts to handle any
340 * pending interrupts, with the interrupt handlers
341 * recognizing the software Context Switch Pending
342 * flag, to ensure the SPU execution or MFC command
343 * queue is not restarted. TBD.
344 */
345 }
346
save_mfc_queues(struct spu_state * csa,struct spu * spu)347 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
348 {
349 struct spu_priv2 __iomem *priv2 = spu->priv2;
350 int i;
351
352 /* Save, Step 19:
353 * If MFC_Cntl[Se]=0 then save
354 * MFC command queues.
355 */
356 if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
357 for (i = 0; i < 8; i++) {
358 csa->priv2.puq[i].mfc_cq_data0_RW =
359 in_be64(&priv2->puq[i].mfc_cq_data0_RW);
360 csa->priv2.puq[i].mfc_cq_data1_RW =
361 in_be64(&priv2->puq[i].mfc_cq_data1_RW);
362 csa->priv2.puq[i].mfc_cq_data2_RW =
363 in_be64(&priv2->puq[i].mfc_cq_data2_RW);
364 csa->priv2.puq[i].mfc_cq_data3_RW =
365 in_be64(&priv2->puq[i].mfc_cq_data3_RW);
366 }
367 for (i = 0; i < 16; i++) {
368 csa->priv2.spuq[i].mfc_cq_data0_RW =
369 in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
370 csa->priv2.spuq[i].mfc_cq_data1_RW =
371 in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
372 csa->priv2.spuq[i].mfc_cq_data2_RW =
373 in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
374 csa->priv2.spuq[i].mfc_cq_data3_RW =
375 in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
376 }
377 }
378 }
379
save_ppu_querymask(struct spu_state * csa,struct spu * spu)380 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
381 {
382 struct spu_problem __iomem *prob = spu->problem;
383
384 /* Save, Step 20:
385 * Save the PPU_QueryMask register
386 * in the CSA.
387 */
388 csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
389 }
390
save_ppu_querytype(struct spu_state * csa,struct spu * spu)391 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
392 {
393 struct spu_problem __iomem *prob = spu->problem;
394
395 /* Save, Step 21:
396 * Save the PPU_QueryType register
397 * in the CSA.
398 */
399 csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
400 }
401
save_ppu_tagstatus(struct spu_state * csa,struct spu * spu)402 static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu)
403 {
404 struct spu_problem __iomem *prob = spu->problem;
405
406 /* Save the Prxy_TagStatus register in the CSA.
407 *
408 * It is unnecessary to restore dma_tagstatus_R, however,
409 * dma_tagstatus_R in the CSA is accessed via backing_ops, so
410 * we must save it.
411 */
412 csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R);
413 }
414
save_mfc_csr_tsq(struct spu_state * csa,struct spu * spu)415 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
416 {
417 struct spu_priv2 __iomem *priv2 = spu->priv2;
418
419 /* Save, Step 22:
420 * Save the MFC_CSR_TSQ register
421 * in the LSCSA.
422 */
423 csa->priv2.spu_tag_status_query_RW =
424 in_be64(&priv2->spu_tag_status_query_RW);
425 }
426
save_mfc_csr_cmd(struct spu_state * csa,struct spu * spu)427 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
428 {
429 struct spu_priv2 __iomem *priv2 = spu->priv2;
430
431 /* Save, Step 23:
432 * Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
433 * registers in the CSA.
434 */
435 csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
436 csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
437 }
438
save_mfc_csr_ato(struct spu_state * csa,struct spu * spu)439 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
440 {
441 struct spu_priv2 __iomem *priv2 = spu->priv2;
442
443 /* Save, Step 24:
444 * Save the MFC_CSR_ATO register in
445 * the CSA.
446 */
447 csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
448 }
449
save_mfc_tclass_id(struct spu_state * csa,struct spu * spu)450 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
451 {
452 /* Save, Step 25:
453 * Save the MFC_TCLASS_ID register in
454 * the CSA.
455 */
456 csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
457 }
458
set_mfc_tclass_id(struct spu_state * csa,struct spu * spu)459 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
460 {
461 /* Save, Step 26:
462 * Restore, Step 23.
463 * Write the MFC_TCLASS_ID register with
464 * the value 0x10000000.
465 */
466 spu_mfc_tclass_id_set(spu, 0x10000000);
467 eieio();
468 }
469
purge_mfc_queue(struct spu_state * csa,struct spu * spu)470 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
471 {
472 struct spu_priv2 __iomem *priv2 = spu->priv2;
473
474 /* Save, Step 27:
475 * Restore, Step 14.
476 * Write MFC_CNTL[Pc]=1 (purge queue).
477 */
478 out_be64(&priv2->mfc_control_RW,
479 MFC_CNTL_PURGE_DMA_REQUEST |
480 MFC_CNTL_SUSPEND_MASK);
481 eieio();
482 }
483
wait_purge_complete(struct spu_state * csa,struct spu * spu)484 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
485 {
486 struct spu_priv2 __iomem *priv2 = spu->priv2;
487
488 /* Save, Step 28:
489 * Poll MFC_CNTL[Ps] until value '11' is read
490 * (purge complete).
491 */
492 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
493 MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
494 MFC_CNTL_PURGE_DMA_COMPLETE);
495 }
496
setup_mfc_sr1(struct spu_state * csa,struct spu * spu)497 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
498 {
499 /* Save, Step 30:
500 * Restore, Step 18:
501 * Write MFC_SR1 with MFC_SR1[D=0,S=1] and
502 * MFC_SR1[TL,R,Pr,T] set correctly for the
503 * OS specific environment.
504 *
505 * Implementation note: The SPU-side code
506 * for save/restore is privileged, so the
507 * MFC_SR1[Pr] bit is not set.
508 *
509 */
510 spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
511 MFC_STATE1_RELOCATE_MASK |
512 MFC_STATE1_BUS_TLBIE_MASK));
513 }
514
save_spu_npc(struct spu_state * csa,struct spu * spu)515 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
516 {
517 struct spu_problem __iomem *prob = spu->problem;
518
519 /* Save, Step 31:
520 * Save SPU_NPC in the CSA.
521 */
522 csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
523 }
524
save_spu_privcntl(struct spu_state * csa,struct spu * spu)525 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
526 {
527 struct spu_priv2 __iomem *priv2 = spu->priv2;
528
529 /* Save, Step 32:
530 * Save SPU_PrivCntl in the CSA.
531 */
532 csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
533 }
534
reset_spu_privcntl(struct spu_state * csa,struct spu * spu)535 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
536 {
537 struct spu_priv2 __iomem *priv2 = spu->priv2;
538
539 /* Save, Step 33:
540 * Restore, Step 16:
541 * Write SPU_PrivCntl[S,Le,A] fields reset to 0.
542 */
543 out_be64(&priv2->spu_privcntl_RW, 0UL);
544 eieio();
545 }
546
save_spu_lslr(struct spu_state * csa,struct spu * spu)547 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
548 {
549 struct spu_priv2 __iomem *priv2 = spu->priv2;
550
551 /* Save, Step 34:
552 * Save SPU_LSLR in the CSA.
553 */
554 csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
555 }
556
reset_spu_lslr(struct spu_state * csa,struct spu * spu)557 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
558 {
559 struct spu_priv2 __iomem *priv2 = spu->priv2;
560
561 /* Save, Step 35:
562 * Restore, Step 17.
563 * Reset SPU_LSLR.
564 */
565 out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
566 eieio();
567 }
568
save_spu_cfg(struct spu_state * csa,struct spu * spu)569 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
570 {
571 struct spu_priv2 __iomem *priv2 = spu->priv2;
572
573 /* Save, Step 36:
574 * Save SPU_Cfg in the CSA.
575 */
576 csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
577 }
578
save_pm_trace(struct spu_state * csa,struct spu * spu)579 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
580 {
581 /* Save, Step 37:
582 * Save PM_Trace_Tag_Wait_Mask in the CSA.
583 * Not performed by this implementation.
584 */
585 }
586
save_mfc_rag(struct spu_state * csa,struct spu * spu)587 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
588 {
589 /* Save, Step 38:
590 * Save RA_GROUP_ID register and the
591 * RA_ENABLE reigster in the CSA.
592 */
593 csa->priv1.resource_allocation_groupID_RW =
594 spu_resource_allocation_groupID_get(spu);
595 csa->priv1.resource_allocation_enable_RW =
596 spu_resource_allocation_enable_get(spu);
597 }
598
save_ppu_mb_stat(struct spu_state * csa,struct spu * spu)599 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
600 {
601 struct spu_problem __iomem *prob = spu->problem;
602
603 /* Save, Step 39:
604 * Save MB_Stat register in the CSA.
605 */
606 csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
607 }
608
save_ppu_mb(struct spu_state * csa,struct spu * spu)609 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
610 {
611 struct spu_problem __iomem *prob = spu->problem;
612
613 /* Save, Step 40:
614 * Save the PPU_MB register in the CSA.
615 */
616 csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
617 }
618
save_ppuint_mb(struct spu_state * csa,struct spu * spu)619 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
620 {
621 struct spu_priv2 __iomem *priv2 = spu->priv2;
622
623 /* Save, Step 41:
624 * Save the PPUINT_MB register in the CSA.
625 */
626 csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
627 }
628
save_ch_part1(struct spu_state * csa,struct spu * spu)629 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
630 {
631 struct spu_priv2 __iomem *priv2 = spu->priv2;
632 u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
633 int i;
634
635 /* Save, Step 42:
636 */
637
638 /* Save CH 1, without channel count */
639 out_be64(&priv2->spu_chnlcntptr_RW, 1);
640 csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
641
642 /* Save the following CH: [0,3,4,24,25,27] */
643 for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
644 idx = ch_indices[i];
645 out_be64(&priv2->spu_chnlcntptr_RW, idx);
646 eieio();
647 csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
648 csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
649 out_be64(&priv2->spu_chnldata_RW, 0UL);
650 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
651 eieio();
652 }
653 }
654
save_spu_mb(struct spu_state * csa,struct spu * spu)655 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
656 {
657 struct spu_priv2 __iomem *priv2 = spu->priv2;
658 int i;
659
660 /* Save, Step 43:
661 * Save SPU Read Mailbox Channel.
662 */
663 out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
664 eieio();
665 csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
666 for (i = 0; i < 4; i++) {
667 csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
668 }
669 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
670 eieio();
671 }
672
save_mfc_cmd(struct spu_state * csa,struct spu * spu)673 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
674 {
675 struct spu_priv2 __iomem *priv2 = spu->priv2;
676
677 /* Save, Step 44:
678 * Save MFC_CMD Channel.
679 */
680 out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
681 eieio();
682 csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
683 eieio();
684 }
685
reset_ch(struct spu_state * csa,struct spu * spu)686 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
687 {
688 struct spu_priv2 __iomem *priv2 = spu->priv2;
689 u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
690 u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
691 u64 idx;
692 int i;
693
694 /* Save, Step 45:
695 * Reset the following CH: [21, 23, 28, 30]
696 */
697 for (i = 0; i < 4; i++) {
698 idx = ch_indices[i];
699 out_be64(&priv2->spu_chnlcntptr_RW, idx);
700 eieio();
701 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
702 eieio();
703 }
704 }
705
resume_mfc_queue(struct spu_state * csa,struct spu * spu)706 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
707 {
708 struct spu_priv2 __iomem *priv2 = spu->priv2;
709
710 /* Save, Step 46:
711 * Restore, Step 25.
712 * Write MFC_CNTL[Sc]=0 (resume queue processing).
713 */
714 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
715 }
716
setup_mfc_slbs(struct spu_state * csa,struct spu * spu,unsigned int * code,int code_size)717 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu,
718 unsigned int *code, int code_size)
719 {
720 /* Save, Step 47:
721 * Restore, Step 30.
722 * If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
723 * register, then initialize SLB_VSID and SLB_ESID
724 * to provide access to SPU context save code and
725 * LSCSA.
726 *
727 * This implementation places both the context
728 * switch code and LSCSA in kernel address space.
729 *
730 * Further this implementation assumes that the
731 * MFC_SR1[R]=1 (in other words, assume that
732 * translation is desired by OS environment).
733 */
734 spu_invalidate_slbs(spu);
735 spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size);
736 }
737
set_switch_active(struct spu_state * csa,struct spu * spu)738 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
739 {
740 /* Save, Step 48:
741 * Restore, Step 23.
742 * Change the software context switch pending flag
743 * to context switch active. This implementation does
744 * not uses a switch active flag.
745 *
746 * Now that we have saved the mfc in the csa, we can add in the
747 * restart command if an exception occurred.
748 */
749 if (test_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags))
750 csa->priv2.mfc_control_RW |= MFC_CNTL_RESTART_DMA_COMMAND;
751 clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
752 mb();
753 }
754
enable_interrupts(struct spu_state * csa,struct spu * spu)755 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
756 {
757 unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
758 CLASS1_ENABLE_STORAGE_FAULT_INTR;
759
760 /* Save, Step 49:
761 * Restore, Step 22:
762 * Reset and then enable interrupts, as
763 * needed by OS.
764 *
765 * This implementation enables only class1
766 * (translation) interrupts.
767 */
768 spin_lock_irq(&spu->register_lock);
769 spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
770 spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
771 spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
772 spu_int_mask_set(spu, 0, 0ul);
773 spu_int_mask_set(spu, 1, class1_mask);
774 spu_int_mask_set(spu, 2, 0ul);
775 spin_unlock_irq(&spu->register_lock);
776 }
777
send_mfc_dma(struct spu * spu,unsigned long ea,unsigned int ls_offset,unsigned int size,unsigned int tag,unsigned int rclass,unsigned int cmd)778 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
779 unsigned int ls_offset, unsigned int size,
780 unsigned int tag, unsigned int rclass,
781 unsigned int cmd)
782 {
783 struct spu_problem __iomem *prob = spu->problem;
784 union mfc_tag_size_class_cmd command;
785 unsigned int transfer_size;
786 volatile unsigned int status = 0x0;
787
788 while (size > 0) {
789 transfer_size =
790 (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
791 command.u.mfc_size = transfer_size;
792 command.u.mfc_tag = tag;
793 command.u.mfc_rclassid = rclass;
794 command.u.mfc_cmd = cmd;
795 do {
796 out_be32(&prob->mfc_lsa_W, ls_offset);
797 out_be64(&prob->mfc_ea_W, ea);
798 out_be64(&prob->mfc_union_W.all64, command.all64);
799 status =
800 in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
801 if (unlikely(status & 0x2)) {
802 cpu_relax();
803 }
804 } while (status & 0x3);
805 size -= transfer_size;
806 ea += transfer_size;
807 ls_offset += transfer_size;
808 }
809 return 0;
810 }
811
save_ls_16kb(struct spu_state * csa,struct spu * spu)812 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
813 {
814 unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
815 unsigned int ls_offset = 0x0;
816 unsigned int size = 16384;
817 unsigned int tag = 0;
818 unsigned int rclass = 0;
819 unsigned int cmd = MFC_PUT_CMD;
820
821 /* Save, Step 50:
822 * Issue a DMA command to copy the first 16K bytes
823 * of local storage to the CSA.
824 */
825 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
826 }
827
set_spu_npc(struct spu_state * csa,struct spu * spu)828 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
829 {
830 struct spu_problem __iomem *prob = spu->problem;
831
832 /* Save, Step 51:
833 * Restore, Step 31.
834 * Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
835 * point address of context save code in local
836 * storage.
837 *
838 * This implementation uses SPU-side save/restore
839 * programs with entry points at LSA of 0.
840 */
841 out_be32(&prob->spu_npc_RW, 0);
842 eieio();
843 }
844
set_signot1(struct spu_state * csa,struct spu * spu)845 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
846 {
847 struct spu_problem __iomem *prob = spu->problem;
848 union {
849 u64 ull;
850 u32 ui[2];
851 } addr64;
852
853 /* Save, Step 52:
854 * Restore, Step 32:
855 * Write SPU_Sig_Notify_1 register with upper 32-bits
856 * of the CSA.LSCSA effective address.
857 */
858 addr64.ull = (u64) csa->lscsa;
859 out_be32(&prob->signal_notify1, addr64.ui[0]);
860 eieio();
861 }
862
set_signot2(struct spu_state * csa,struct spu * spu)863 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
864 {
865 struct spu_problem __iomem *prob = spu->problem;
866 union {
867 u64 ull;
868 u32 ui[2];
869 } addr64;
870
871 /* Save, Step 53:
872 * Restore, Step 33:
873 * Write SPU_Sig_Notify_2 register with lower 32-bits
874 * of the CSA.LSCSA effective address.
875 */
876 addr64.ull = (u64) csa->lscsa;
877 out_be32(&prob->signal_notify2, addr64.ui[1]);
878 eieio();
879 }
880
send_save_code(struct spu_state * csa,struct spu * spu)881 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
882 {
883 unsigned long addr = (unsigned long)&spu_save_code[0];
884 unsigned int ls_offset = 0x0;
885 unsigned int size = sizeof(spu_save_code);
886 unsigned int tag = 0;
887 unsigned int rclass = 0;
888 unsigned int cmd = MFC_GETFS_CMD;
889
890 /* Save, Step 54:
891 * Issue a DMA command to copy context save code
892 * to local storage and start SPU.
893 */
894 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
895 }
896
set_ppu_querymask(struct spu_state * csa,struct spu * spu)897 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
898 {
899 struct spu_problem __iomem *prob = spu->problem;
900
901 /* Save, Step 55:
902 * Restore, Step 38.
903 * Write PPU_QueryMask=1 (enable Tag Group 0)
904 * and issue eieio instruction.
905 */
906 out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
907 eieio();
908 }
909
wait_tag_complete(struct spu_state * csa,struct spu * spu)910 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
911 {
912 struct spu_problem __iomem *prob = spu->problem;
913 u32 mask = MFC_TAGID_TO_TAGMASK(0);
914 unsigned long flags;
915
916 /* Save, Step 56:
917 * Restore, Step 39.
918 * Restore, Step 39.
919 * Restore, Step 46.
920 * Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
921 * or write PPU_QueryType[TS]=01 and wait for Tag Group
922 * Complete Interrupt. Write INT_Stat_Class0 or
923 * INT_Stat_Class2 with value of 'handled'.
924 */
925 POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
926
927 local_irq_save(flags);
928 spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
929 spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
930 local_irq_restore(flags);
931 }
932
wait_spu_stopped(struct spu_state * csa,struct spu * spu)933 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
934 {
935 struct spu_problem __iomem *prob = spu->problem;
936 unsigned long flags;
937
938 /* Save, Step 57:
939 * Restore, Step 40.
940 * Poll until SPU_Status[R]=0 or wait for SPU Class 0
941 * or SPU Class 2 interrupt. Write INT_Stat_class0
942 * or INT_Stat_class2 with value of handled.
943 */
944 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
945
946 local_irq_save(flags);
947 spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
948 spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
949 local_irq_restore(flags);
950 }
951
check_save_status(struct spu_state * csa,struct spu * spu)952 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
953 {
954 struct spu_problem __iomem *prob = spu->problem;
955 u32 complete;
956
957 /* Save, Step 54:
958 * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
959 * context save succeeded, otherwise context save
960 * failed.
961 */
962 complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
963 SPU_STATUS_STOPPED_BY_STOP);
964 return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
965 }
966
terminate_spu_app(struct spu_state * csa,struct spu * spu)967 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
968 {
969 /* Restore, Step 4:
970 * If required, notify the "using application" that
971 * the SPU task has been terminated. TBD.
972 */
973 }
974
suspend_mfc_and_halt_decr(struct spu_state * csa,struct spu * spu)975 static inline void suspend_mfc_and_halt_decr(struct spu_state *csa,
976 struct spu *spu)
977 {
978 struct spu_priv2 __iomem *priv2 = spu->priv2;
979
980 /* Restore, Step 7:
981 * Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend
982 * the queue and halt the decrementer.
983 */
984 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
985 MFC_CNTL_DECREMENTER_HALTED);
986 eieio();
987 }
988
wait_suspend_mfc_complete(struct spu_state * csa,struct spu * spu)989 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
990 struct spu *spu)
991 {
992 struct spu_priv2 __iomem *priv2 = spu->priv2;
993
994 /* Restore, Step 8:
995 * Restore, Step 47.
996 * Poll MFC_CNTL[Ss] until 11 is returned.
997 */
998 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
999 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
1000 MFC_CNTL_SUSPEND_COMPLETE);
1001 }
1002
suspend_spe(struct spu_state * csa,struct spu * spu)1003 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
1004 {
1005 struct spu_problem __iomem *prob = spu->problem;
1006
1007 /* Restore, Step 9:
1008 * If SPU_Status[R]=1, stop SPU execution
1009 * and wait for stop to complete.
1010 *
1011 * Returns 1 if SPU_Status[R]=1 on entry.
1012 * 0 otherwise
1013 */
1014 if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1015 if (in_be32(&prob->spu_status_R) &
1016 SPU_STATUS_ISOLATED_EXIT_STATUS) {
1017 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1018 SPU_STATUS_RUNNING);
1019 }
1020 if ((in_be32(&prob->spu_status_R) &
1021 SPU_STATUS_ISOLATED_LOAD_STATUS)
1022 || (in_be32(&prob->spu_status_R) &
1023 SPU_STATUS_ISOLATED_STATE)) {
1024 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1025 eieio();
1026 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1027 SPU_STATUS_RUNNING);
1028 out_be32(&prob->spu_runcntl_RW, 0x2);
1029 eieio();
1030 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1031 SPU_STATUS_RUNNING);
1032 }
1033 if (in_be32(&prob->spu_status_R) &
1034 SPU_STATUS_WAITING_FOR_CHANNEL) {
1035 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1036 eieio();
1037 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1038 SPU_STATUS_RUNNING);
1039 }
1040 return 1;
1041 }
1042 return 0;
1043 }
1044
clear_spu_status(struct spu_state * csa,struct spu * spu)1045 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1046 {
1047 struct spu_problem __iomem *prob = spu->problem;
1048
1049 /* Restore, Step 10:
1050 * If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1051 * release SPU from isolate state.
1052 */
1053 if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1054 if (in_be32(&prob->spu_status_R) &
1055 SPU_STATUS_ISOLATED_EXIT_STATUS) {
1056 spu_mfc_sr1_set(spu,
1057 MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1058 eieio();
1059 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1060 eieio();
1061 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1062 SPU_STATUS_RUNNING);
1063 }
1064 if ((in_be32(&prob->spu_status_R) &
1065 SPU_STATUS_ISOLATED_LOAD_STATUS)
1066 || (in_be32(&prob->spu_status_R) &
1067 SPU_STATUS_ISOLATED_STATE)) {
1068 spu_mfc_sr1_set(spu,
1069 MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1070 eieio();
1071 out_be32(&prob->spu_runcntl_RW, 0x2);
1072 eieio();
1073 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1074 SPU_STATUS_RUNNING);
1075 }
1076 }
1077 }
1078
reset_ch_part1(struct spu_state * csa,struct spu * spu)1079 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1080 {
1081 struct spu_priv2 __iomem *priv2 = spu->priv2;
1082 u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1083 u64 idx;
1084 int i;
1085
1086 /* Restore, Step 20:
1087 */
1088
1089 /* Reset CH 1 */
1090 out_be64(&priv2->spu_chnlcntptr_RW, 1);
1091 out_be64(&priv2->spu_chnldata_RW, 0UL);
1092
1093 /* Reset the following CH: [0,3,4,24,25,27] */
1094 for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1095 idx = ch_indices[i];
1096 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1097 eieio();
1098 out_be64(&priv2->spu_chnldata_RW, 0UL);
1099 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1100 eieio();
1101 }
1102 }
1103
reset_ch_part2(struct spu_state * csa,struct spu * spu)1104 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1105 {
1106 struct spu_priv2 __iomem *priv2 = spu->priv2;
1107 u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1108 u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1109 u64 idx;
1110 int i;
1111
1112 /* Restore, Step 21:
1113 * Reset the following CH: [21, 23, 28, 29, 30]
1114 */
1115 for (i = 0; i < 5; i++) {
1116 idx = ch_indices[i];
1117 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1118 eieio();
1119 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1120 eieio();
1121 }
1122 }
1123
setup_spu_status_part1(struct spu_state * csa,struct spu * spu)1124 static inline void setup_spu_status_part1(struct spu_state *csa,
1125 struct spu *spu)
1126 {
1127 u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1128 u32 status_I = SPU_STATUS_INVALID_INSTR;
1129 u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1130 u32 status_S = SPU_STATUS_SINGLE_STEP;
1131 u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1132 u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1133 u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1134 u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1135 u32 status_code;
1136
1137 /* Restore, Step 27:
1138 * If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1139 * instruction sequence to the end of the SPU based restore
1140 * code (after the "context restored" stop and signal) to
1141 * restore the correct SPU status.
1142 *
1143 * NOTE: Rather than modifying the SPU executable, we
1144 * instead add a new 'stopped_status' field to the
1145 * LSCSA. The SPU-side restore reads this field and
1146 * takes the appropriate action when exiting.
1147 */
1148
1149 status_code =
1150 (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1151 if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1152
1153 /* SPU_Status[P,I]=1 - Illegal Instruction followed
1154 * by Stop and Signal instruction, followed by 'br -4'.
1155 *
1156 */
1157 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1158 csa->lscsa->stopped_status.slot[1] = status_code;
1159
1160 } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1161
1162 /* SPU_Status[P,H]=1 - Halt Conditional, followed
1163 * by Stop and Signal instruction, followed by
1164 * 'br -4'.
1165 */
1166 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1167 csa->lscsa->stopped_status.slot[1] = status_code;
1168
1169 } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1170
1171 /* SPU_Status[S,P]=1 - Stop and Signal instruction
1172 * followed by 'br -4'.
1173 */
1174 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1175 csa->lscsa->stopped_status.slot[1] = status_code;
1176
1177 } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1178
1179 /* SPU_Status[S,I]=1 - Illegal instruction followed
1180 * by 'br -4'.
1181 */
1182 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1183 csa->lscsa->stopped_status.slot[1] = status_code;
1184
1185 } else if ((csa->prob.spu_status_R & status_P) == status_P) {
1186
1187 /* SPU_Status[P]=1 - Stop and Signal instruction
1188 * followed by 'br -4'.
1189 */
1190 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1191 csa->lscsa->stopped_status.slot[1] = status_code;
1192
1193 } else if ((csa->prob.spu_status_R & status_H) == status_H) {
1194
1195 /* SPU_Status[H]=1 - Halt Conditional, followed
1196 * by 'br -4'.
1197 */
1198 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1199
1200 } else if ((csa->prob.spu_status_R & status_S) == status_S) {
1201
1202 /* SPU_Status[S]=1 - Two nop instructions.
1203 */
1204 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1205
1206 } else if ((csa->prob.spu_status_R & status_I) == status_I) {
1207
1208 /* SPU_Status[I]=1 - Illegal instruction followed
1209 * by 'br -4'.
1210 */
1211 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1212
1213 }
1214 }
1215
setup_spu_status_part2(struct spu_state * csa,struct spu * spu)1216 static inline void setup_spu_status_part2(struct spu_state *csa,
1217 struct spu *spu)
1218 {
1219 u32 mask;
1220
1221 /* Restore, Step 28:
1222 * If the CSA.SPU_Status[I,S,H,P,R]=0 then
1223 * add a 'br *' instruction to the end of
1224 * the SPU based restore code.
1225 *
1226 * NOTE: Rather than modifying the SPU executable, we
1227 * instead add a new 'stopped_status' field to the
1228 * LSCSA. The SPU-side restore reads this field and
1229 * takes the appropriate action when exiting.
1230 */
1231 mask = SPU_STATUS_INVALID_INSTR |
1232 SPU_STATUS_SINGLE_STEP |
1233 SPU_STATUS_STOPPED_BY_HALT |
1234 SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1235 if (!(csa->prob.spu_status_R & mask)) {
1236 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1237 }
1238 }
1239
restore_mfc_rag(struct spu_state * csa,struct spu * spu)1240 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1241 {
1242 /* Restore, Step 29:
1243 * Restore RA_GROUP_ID register and the
1244 * RA_ENABLE reigster from the CSA.
1245 */
1246 spu_resource_allocation_groupID_set(spu,
1247 csa->priv1.resource_allocation_groupID_RW);
1248 spu_resource_allocation_enable_set(spu,
1249 csa->priv1.resource_allocation_enable_RW);
1250 }
1251
send_restore_code(struct spu_state * csa,struct spu * spu)1252 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1253 {
1254 unsigned long addr = (unsigned long)&spu_restore_code[0];
1255 unsigned int ls_offset = 0x0;
1256 unsigned int size = sizeof(spu_restore_code);
1257 unsigned int tag = 0;
1258 unsigned int rclass = 0;
1259 unsigned int cmd = MFC_GETFS_CMD;
1260
1261 /* Restore, Step 37:
1262 * Issue MFC DMA command to copy context
1263 * restore code to local storage.
1264 */
1265 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1266 }
1267
setup_decr(struct spu_state * csa,struct spu * spu)1268 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1269 {
1270 /* Restore, Step 34:
1271 * If CSA.MFC_CNTL[Ds]=1 (decrementer was
1272 * running) then adjust decrementer, set
1273 * decrementer running status in LSCSA,
1274 * and set decrementer "wrapped" status
1275 * in LSCSA.
1276 */
1277 if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1278 cycles_t resume_time = get_cycles();
1279 cycles_t delta_time = resume_time - csa->suspend_time;
1280
1281 csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING;
1282 if (csa->lscsa->decr.slot[0] < delta_time) {
1283 csa->lscsa->decr_status.slot[0] |=
1284 SPU_DECR_STATUS_WRAPPED;
1285 }
1286
1287 csa->lscsa->decr.slot[0] -= delta_time;
1288 } else {
1289 csa->lscsa->decr_status.slot[0] = 0;
1290 }
1291 }
1292
setup_ppu_mb(struct spu_state * csa,struct spu * spu)1293 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1294 {
1295 /* Restore, Step 35:
1296 * Copy the CSA.PU_MB data into the LSCSA.
1297 */
1298 csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1299 }
1300
setup_ppuint_mb(struct spu_state * csa,struct spu * spu)1301 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1302 {
1303 /* Restore, Step 36:
1304 * Copy the CSA.PUINT_MB data into the LSCSA.
1305 */
1306 csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1307 }
1308
check_restore_status(struct spu_state * csa,struct spu * spu)1309 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1310 {
1311 struct spu_problem __iomem *prob = spu->problem;
1312 u32 complete;
1313
1314 /* Restore, Step 40:
1315 * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1316 * context restore succeeded, otherwise context restore
1317 * failed.
1318 */
1319 complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1320 SPU_STATUS_STOPPED_BY_STOP);
1321 return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1322 }
1323
restore_spu_privcntl(struct spu_state * csa,struct spu * spu)1324 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1325 {
1326 struct spu_priv2 __iomem *priv2 = spu->priv2;
1327
1328 /* Restore, Step 41:
1329 * Restore SPU_PrivCntl from the CSA.
1330 */
1331 out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1332 eieio();
1333 }
1334
restore_status_part1(struct spu_state * csa,struct spu * spu)1335 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1336 {
1337 struct spu_problem __iomem *prob = spu->problem;
1338 u32 mask;
1339
1340 /* Restore, Step 42:
1341 * If any CSA.SPU_Status[I,S,H,P]=1, then
1342 * restore the error or single step state.
1343 */
1344 mask = SPU_STATUS_INVALID_INSTR |
1345 SPU_STATUS_SINGLE_STEP |
1346 SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1347 if (csa->prob.spu_status_R & mask) {
1348 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1349 eieio();
1350 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1351 SPU_STATUS_RUNNING);
1352 }
1353 }
1354
restore_status_part2(struct spu_state * csa,struct spu * spu)1355 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1356 {
1357 struct spu_problem __iomem *prob = spu->problem;
1358 u32 mask;
1359
1360 /* Restore, Step 43:
1361 * If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1362 * SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1363 * then write '00' to SPU_RunCntl[R0R1] and wait
1364 * for SPU_Status[R]=0.
1365 */
1366 mask = SPU_STATUS_INVALID_INSTR |
1367 SPU_STATUS_SINGLE_STEP |
1368 SPU_STATUS_STOPPED_BY_HALT |
1369 SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1370 if (!(csa->prob.spu_status_R & mask)) {
1371 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1372 eieio();
1373 POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1374 SPU_STATUS_RUNNING);
1375 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1376 eieio();
1377 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1378 SPU_STATUS_RUNNING);
1379 }
1380 }
1381
restore_ls_16kb(struct spu_state * csa,struct spu * spu)1382 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1383 {
1384 unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1385 unsigned int ls_offset = 0x0;
1386 unsigned int size = 16384;
1387 unsigned int tag = 0;
1388 unsigned int rclass = 0;
1389 unsigned int cmd = MFC_GET_CMD;
1390
1391 /* Restore, Step 44:
1392 * Issue a DMA command to restore the first
1393 * 16kb of local storage from CSA.
1394 */
1395 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1396 }
1397
suspend_mfc(struct spu_state * csa,struct spu * spu)1398 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1399 {
1400 struct spu_priv2 __iomem *priv2 = spu->priv2;
1401
1402 /* Restore, Step 47.
1403 * Write MFC_Cntl[Sc,Sm]='1','0' to suspend
1404 * the queue.
1405 */
1406 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
1407 eieio();
1408 }
1409
clear_interrupts(struct spu_state * csa,struct spu * spu)1410 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1411 {
1412 /* Restore, Step 49:
1413 * Write INT_MASK_class0 with value of 0.
1414 * Write INT_MASK_class1 with value of 0.
1415 * Write INT_MASK_class2 with value of 0.
1416 * Write INT_STAT_class0 with value of -1.
1417 * Write INT_STAT_class1 with value of -1.
1418 * Write INT_STAT_class2 with value of -1.
1419 */
1420 spin_lock_irq(&spu->register_lock);
1421 spu_int_mask_set(spu, 0, 0ul);
1422 spu_int_mask_set(spu, 1, 0ul);
1423 spu_int_mask_set(spu, 2, 0ul);
1424 spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
1425 spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
1426 spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
1427 spin_unlock_irq(&spu->register_lock);
1428 }
1429
restore_mfc_queues(struct spu_state * csa,struct spu * spu)1430 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1431 {
1432 struct spu_priv2 __iomem *priv2 = spu->priv2;
1433 int i;
1434
1435 /* Restore, Step 50:
1436 * If MFC_Cntl[Se]!=0 then restore
1437 * MFC command queues.
1438 */
1439 if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1440 for (i = 0; i < 8; i++) {
1441 out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1442 csa->priv2.puq[i].mfc_cq_data0_RW);
1443 out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1444 csa->priv2.puq[i].mfc_cq_data1_RW);
1445 out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1446 csa->priv2.puq[i].mfc_cq_data2_RW);
1447 out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1448 csa->priv2.puq[i].mfc_cq_data3_RW);
1449 }
1450 for (i = 0; i < 16; i++) {
1451 out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1452 csa->priv2.spuq[i].mfc_cq_data0_RW);
1453 out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1454 csa->priv2.spuq[i].mfc_cq_data1_RW);
1455 out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1456 csa->priv2.spuq[i].mfc_cq_data2_RW);
1457 out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1458 csa->priv2.spuq[i].mfc_cq_data3_RW);
1459 }
1460 }
1461 eieio();
1462 }
1463
restore_ppu_querymask(struct spu_state * csa,struct spu * spu)1464 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1465 {
1466 struct spu_problem __iomem *prob = spu->problem;
1467
1468 /* Restore, Step 51:
1469 * Restore the PPU_QueryMask register from CSA.
1470 */
1471 out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1472 eieio();
1473 }
1474
restore_ppu_querytype(struct spu_state * csa,struct spu * spu)1475 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1476 {
1477 struct spu_problem __iomem *prob = spu->problem;
1478
1479 /* Restore, Step 52:
1480 * Restore the PPU_QueryType register from CSA.
1481 */
1482 out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1483 eieio();
1484 }
1485
restore_mfc_csr_tsq(struct spu_state * csa,struct spu * spu)1486 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1487 {
1488 struct spu_priv2 __iomem *priv2 = spu->priv2;
1489
1490 /* Restore, Step 53:
1491 * Restore the MFC_CSR_TSQ register from CSA.
1492 */
1493 out_be64(&priv2->spu_tag_status_query_RW,
1494 csa->priv2.spu_tag_status_query_RW);
1495 eieio();
1496 }
1497
restore_mfc_csr_cmd(struct spu_state * csa,struct spu * spu)1498 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1499 {
1500 struct spu_priv2 __iomem *priv2 = spu->priv2;
1501
1502 /* Restore, Step 54:
1503 * Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1504 * registers from CSA.
1505 */
1506 out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1507 out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1508 eieio();
1509 }
1510
restore_mfc_csr_ato(struct spu_state * csa,struct spu * spu)1511 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1512 {
1513 struct spu_priv2 __iomem *priv2 = spu->priv2;
1514
1515 /* Restore, Step 55:
1516 * Restore the MFC_CSR_ATO register from CSA.
1517 */
1518 out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1519 }
1520
restore_mfc_tclass_id(struct spu_state * csa,struct spu * spu)1521 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1522 {
1523 /* Restore, Step 56:
1524 * Restore the MFC_TCLASS_ID register from CSA.
1525 */
1526 spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1527 eieio();
1528 }
1529
set_llr_event(struct spu_state * csa,struct spu * spu)1530 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1531 {
1532 u64 ch0_cnt, ch0_data;
1533 u64 ch1_data;
1534
1535 /* Restore, Step 57:
1536 * Set the Lock Line Reservation Lost Event by:
1537 * 1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1538 * 2. If CSA.SPU_Channel_0_Count=0 and
1539 * CSA.SPU_Wr_Event_Mask[Lr]=1 and
1540 * CSA.SPU_Event_Status[Lr]=0 then set
1541 * CSA.SPU_Event_Status_Count=1.
1542 */
1543 ch0_cnt = csa->spu_chnlcnt_RW[0];
1544 ch0_data = csa->spu_chnldata_RW[0];
1545 ch1_data = csa->spu_chnldata_RW[1];
1546 csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1547 if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1548 (ch1_data & MFC_LLR_LOST_EVENT)) {
1549 csa->spu_chnlcnt_RW[0] = 1;
1550 }
1551 }
1552
restore_decr_wrapped(struct spu_state * csa,struct spu * spu)1553 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1554 {
1555 /* Restore, Step 58:
1556 * If the status of the CSA software decrementer
1557 * "wrapped" flag is set, OR in a '1' to
1558 * CSA.SPU_Event_Status[Tm].
1559 */
1560 if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED))
1561 return;
1562
1563 if ((csa->spu_chnlcnt_RW[0] == 0) &&
1564 (csa->spu_chnldata_RW[1] & 0x20) &&
1565 !(csa->spu_chnldata_RW[0] & 0x20))
1566 csa->spu_chnlcnt_RW[0] = 1;
1567
1568 csa->spu_chnldata_RW[0] |= 0x20;
1569 }
1570
restore_ch_part1(struct spu_state * csa,struct spu * spu)1571 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1572 {
1573 struct spu_priv2 __iomem *priv2 = spu->priv2;
1574 u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1575 int i;
1576
1577 /* Restore, Step 59:
1578 * Restore the following CH: [0,3,4,24,25,27]
1579 */
1580 for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1581 idx = ch_indices[i];
1582 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1583 eieio();
1584 out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1585 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1586 eieio();
1587 }
1588 }
1589
restore_ch_part2(struct spu_state * csa,struct spu * spu)1590 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1591 {
1592 struct spu_priv2 __iomem *priv2 = spu->priv2;
1593 u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1594 u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1595 u64 idx;
1596 int i;
1597
1598 /* Restore, Step 60:
1599 * Restore the following CH: [9,21,23].
1600 */
1601 ch_counts[0] = 1UL;
1602 ch_counts[1] = csa->spu_chnlcnt_RW[21];
1603 ch_counts[2] = 1UL;
1604 for (i = 0; i < 3; i++) {
1605 idx = ch_indices[i];
1606 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1607 eieio();
1608 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1609 eieio();
1610 }
1611 }
1612
restore_spu_lslr(struct spu_state * csa,struct spu * spu)1613 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1614 {
1615 struct spu_priv2 __iomem *priv2 = spu->priv2;
1616
1617 /* Restore, Step 61:
1618 * Restore the SPU_LSLR register from CSA.
1619 */
1620 out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1621 eieio();
1622 }
1623
restore_spu_cfg(struct spu_state * csa,struct spu * spu)1624 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1625 {
1626 struct spu_priv2 __iomem *priv2 = spu->priv2;
1627
1628 /* Restore, Step 62:
1629 * Restore the SPU_Cfg register from CSA.
1630 */
1631 out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1632 eieio();
1633 }
1634
restore_pm_trace(struct spu_state * csa,struct spu * spu)1635 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1636 {
1637 /* Restore, Step 63:
1638 * Restore PM_Trace_Tag_Wait_Mask from CSA.
1639 * Not performed by this implementation.
1640 */
1641 }
1642
restore_spu_npc(struct spu_state * csa,struct spu * spu)1643 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1644 {
1645 struct spu_problem __iomem *prob = spu->problem;
1646
1647 /* Restore, Step 64:
1648 * Restore SPU_NPC from CSA.
1649 */
1650 out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1651 eieio();
1652 }
1653
restore_spu_mb(struct spu_state * csa,struct spu * spu)1654 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1655 {
1656 struct spu_priv2 __iomem *priv2 = spu->priv2;
1657 int i;
1658
1659 /* Restore, Step 65:
1660 * Restore MFC_RdSPU_MB from CSA.
1661 */
1662 out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1663 eieio();
1664 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1665 for (i = 0; i < 4; i++) {
1666 out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1667 }
1668 eieio();
1669 }
1670
check_ppu_mb_stat(struct spu_state * csa,struct spu * spu)1671 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1672 {
1673 struct spu_problem __iomem *prob = spu->problem;
1674 u32 dummy = 0;
1675
1676 /* Restore, Step 66:
1677 * If CSA.MB_Stat[P]=0 (mailbox empty) then
1678 * read from the PPU_MB register.
1679 */
1680 if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1681 dummy = in_be32(&prob->pu_mb_R);
1682 eieio();
1683 }
1684 }
1685
check_ppuint_mb_stat(struct spu_state * csa,struct spu * spu)1686 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1687 {
1688 struct spu_priv2 __iomem *priv2 = spu->priv2;
1689 u64 dummy = 0UL;
1690
1691 /* Restore, Step 66:
1692 * If CSA.MB_Stat[I]=0 (mailbox empty) then
1693 * read from the PPUINT_MB register.
1694 */
1695 if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1696 dummy = in_be64(&priv2->puint_mb_R);
1697 eieio();
1698 spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1699 eieio();
1700 }
1701 }
1702
restore_mfc_sr1(struct spu_state * csa,struct spu * spu)1703 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1704 {
1705 /* Restore, Step 69:
1706 * Restore the MFC_SR1 register from CSA.
1707 */
1708 spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1709 eieio();
1710 }
1711
set_int_route(struct spu_state * csa,struct spu * spu)1712 static inline void set_int_route(struct spu_state *csa, struct spu *spu)
1713 {
1714 struct spu_context *ctx = spu->ctx;
1715
1716 spu_cpu_affinity_set(spu, ctx->last_ran);
1717 }
1718
restore_other_spu_access(struct spu_state * csa,struct spu * spu)1719 static inline void restore_other_spu_access(struct spu_state *csa,
1720 struct spu *spu)
1721 {
1722 /* Restore, Step 70:
1723 * Restore other SPU mappings to this SPU. TBD.
1724 */
1725 }
1726
restore_spu_runcntl(struct spu_state * csa,struct spu * spu)1727 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1728 {
1729 struct spu_problem __iomem *prob = spu->problem;
1730
1731 /* Restore, Step 71:
1732 * If CSA.SPU_Status[R]=1 then write
1733 * SPU_RunCntl[R0R1]='01'.
1734 */
1735 if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1736 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1737 eieio();
1738 }
1739 }
1740
restore_mfc_cntl(struct spu_state * csa,struct spu * spu)1741 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1742 {
1743 struct spu_priv2 __iomem *priv2 = spu->priv2;
1744
1745 /* Restore, Step 72:
1746 * Restore the MFC_CNTL register for the CSA.
1747 */
1748 out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1749 eieio();
1750
1751 /*
1752 * The queue is put back into the same state that was evident prior to
1753 * the context switch. The suspend flag is added to the saved state in
1754 * the csa, if the operational state was suspending or suspended. In
1755 * this case, the code that suspended the mfc is responsible for
1756 * continuing it. Note that SPE faults do not change the operational
1757 * state of the spu.
1758 */
1759 }
1760
enable_user_access(struct spu_state * csa,struct spu * spu)1761 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1762 {
1763 /* Restore, Step 73:
1764 * Enable user-space access (if provided) to this
1765 * SPU by mapping the virtual pages assigned to
1766 * the SPU memory-mapped I/O (MMIO) for problem
1767 * state. TBD.
1768 */
1769 }
1770
reset_switch_active(struct spu_state * csa,struct spu * spu)1771 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1772 {
1773 /* Restore, Step 74:
1774 * Reset the "context switch active" flag.
1775 * Not performed by this implementation.
1776 */
1777 }
1778
reenable_interrupts(struct spu_state * csa,struct spu * spu)1779 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1780 {
1781 /* Restore, Step 75:
1782 * Re-enable SPU interrupts.
1783 */
1784 spin_lock_irq(&spu->register_lock);
1785 spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1786 spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1787 spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1788 spin_unlock_irq(&spu->register_lock);
1789 }
1790
quiece_spu(struct spu_state * prev,struct spu * spu)1791 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1792 {
1793 /*
1794 * Combined steps 2-18 of SPU context save sequence, which
1795 * quiesce the SPU state (disable SPU execution, MFC command
1796 * queues, decrementer, SPU interrupts, etc.).
1797 *
1798 * Returns 0 on success.
1799 * 2 if failed step 2.
1800 * 6 if failed step 6.
1801 */
1802
1803 if (check_spu_isolate(prev, spu)) { /* Step 2. */
1804 return 2;
1805 }
1806 disable_interrupts(prev, spu); /* Step 3. */
1807 set_watchdog_timer(prev, spu); /* Step 4. */
1808 inhibit_user_access(prev, spu); /* Step 5. */
1809 if (check_spu_isolate(prev, spu)) { /* Step 6. */
1810 return 6;
1811 }
1812 set_switch_pending(prev, spu); /* Step 7. */
1813 save_mfc_cntl(prev, spu); /* Step 8. */
1814 save_spu_runcntl(prev, spu); /* Step 9. */
1815 save_mfc_sr1(prev, spu); /* Step 10. */
1816 save_spu_status(prev, spu); /* Step 11. */
1817 save_mfc_stopped_status(prev, spu); /* Step 12. */
1818 halt_mfc_decr(prev, spu); /* Step 13. */
1819 save_timebase(prev, spu); /* Step 14. */
1820 remove_other_spu_access(prev, spu); /* Step 15. */
1821 do_mfc_mssync(prev, spu); /* Step 16. */
1822 issue_mfc_tlbie(prev, spu); /* Step 17. */
1823 handle_pending_interrupts(prev, spu); /* Step 18. */
1824
1825 return 0;
1826 }
1827
save_csa(struct spu_state * prev,struct spu * spu)1828 static void save_csa(struct spu_state *prev, struct spu *spu)
1829 {
1830 /*
1831 * Combine steps 19-44 of SPU context save sequence, which
1832 * save regions of the privileged & problem state areas.
1833 */
1834
1835 save_mfc_queues(prev, spu); /* Step 19. */
1836 save_ppu_querymask(prev, spu); /* Step 20. */
1837 save_ppu_querytype(prev, spu); /* Step 21. */
1838 save_ppu_tagstatus(prev, spu); /* NEW. */
1839 save_mfc_csr_tsq(prev, spu); /* Step 22. */
1840 save_mfc_csr_cmd(prev, spu); /* Step 23. */
1841 save_mfc_csr_ato(prev, spu); /* Step 24. */
1842 save_mfc_tclass_id(prev, spu); /* Step 25. */
1843 set_mfc_tclass_id(prev, spu); /* Step 26. */
1844 save_mfc_cmd(prev, spu); /* Step 26a - moved from 44. */
1845 purge_mfc_queue(prev, spu); /* Step 27. */
1846 wait_purge_complete(prev, spu); /* Step 28. */
1847 setup_mfc_sr1(prev, spu); /* Step 30. */
1848 save_spu_npc(prev, spu); /* Step 31. */
1849 save_spu_privcntl(prev, spu); /* Step 32. */
1850 reset_spu_privcntl(prev, spu); /* Step 33. */
1851 save_spu_lslr(prev, spu); /* Step 34. */
1852 reset_spu_lslr(prev, spu); /* Step 35. */
1853 save_spu_cfg(prev, spu); /* Step 36. */
1854 save_pm_trace(prev, spu); /* Step 37. */
1855 save_mfc_rag(prev, spu); /* Step 38. */
1856 save_ppu_mb_stat(prev, spu); /* Step 39. */
1857 save_ppu_mb(prev, spu); /* Step 40. */
1858 save_ppuint_mb(prev, spu); /* Step 41. */
1859 save_ch_part1(prev, spu); /* Step 42. */
1860 save_spu_mb(prev, spu); /* Step 43. */
1861 reset_ch(prev, spu); /* Step 45. */
1862 }
1863
save_lscsa(struct spu_state * prev,struct spu * spu)1864 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1865 {
1866 /*
1867 * Perform steps 46-57 of SPU context save sequence,
1868 * which save regions of the local store and register
1869 * file.
1870 */
1871
1872 resume_mfc_queue(prev, spu); /* Step 46. */
1873 /* Step 47. */
1874 setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code));
1875 set_switch_active(prev, spu); /* Step 48. */
1876 enable_interrupts(prev, spu); /* Step 49. */
1877 save_ls_16kb(prev, spu); /* Step 50. */
1878 set_spu_npc(prev, spu); /* Step 51. */
1879 set_signot1(prev, spu); /* Step 52. */
1880 set_signot2(prev, spu); /* Step 53. */
1881 send_save_code(prev, spu); /* Step 54. */
1882 set_ppu_querymask(prev, spu); /* Step 55. */
1883 wait_tag_complete(prev, spu); /* Step 56. */
1884 wait_spu_stopped(prev, spu); /* Step 57. */
1885 }
1886
force_spu_isolate_exit(struct spu * spu)1887 static void force_spu_isolate_exit(struct spu *spu)
1888 {
1889 struct spu_problem __iomem *prob = spu->problem;
1890 struct spu_priv2 __iomem *priv2 = spu->priv2;
1891
1892 /* Stop SPE execution and wait for completion. */
1893 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1894 iobarrier_rw();
1895 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1896
1897 /* Restart SPE master runcntl. */
1898 spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1899 iobarrier_w();
1900
1901 /* Initiate isolate exit request and wait for completion. */
1902 out_be64(&priv2->spu_privcntl_RW, 4LL);
1903 iobarrier_w();
1904 out_be32(&prob->spu_runcntl_RW, 2);
1905 iobarrier_rw();
1906 POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1907 & SPU_STATUS_STOPPED_BY_STOP));
1908
1909 /* Reset load request to normal. */
1910 out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1911 iobarrier_w();
1912 }
1913
1914 /**
1915 * stop_spu_isolate
1916 * Check SPU run-control state and force isolated
1917 * exit function as necessary.
1918 */
stop_spu_isolate(struct spu * spu)1919 static void stop_spu_isolate(struct spu *spu)
1920 {
1921 struct spu_problem __iomem *prob = spu->problem;
1922
1923 if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1924 /* The SPU is in isolated state; the only way
1925 * to get it out is to perform an isolated
1926 * exit (clean) operation.
1927 */
1928 force_spu_isolate_exit(spu);
1929 }
1930 }
1931
harvest(struct spu_state * prev,struct spu * spu)1932 static void harvest(struct spu_state *prev, struct spu *spu)
1933 {
1934 /*
1935 * Perform steps 2-25 of SPU context restore sequence,
1936 * which resets an SPU either after a failed save, or
1937 * when using SPU for first time.
1938 */
1939
1940 disable_interrupts(prev, spu); /* Step 2. */
1941 inhibit_user_access(prev, spu); /* Step 3. */
1942 terminate_spu_app(prev, spu); /* Step 4. */
1943 set_switch_pending(prev, spu); /* Step 5. */
1944 stop_spu_isolate(spu); /* NEW. */
1945 remove_other_spu_access(prev, spu); /* Step 6. */
1946 suspend_mfc_and_halt_decr(prev, spu); /* Step 7. */
1947 wait_suspend_mfc_complete(prev, spu); /* Step 8. */
1948 if (!suspend_spe(prev, spu)) /* Step 9. */
1949 clear_spu_status(prev, spu); /* Step 10. */
1950 do_mfc_mssync(prev, spu); /* Step 11. */
1951 issue_mfc_tlbie(prev, spu); /* Step 12. */
1952 handle_pending_interrupts(prev, spu); /* Step 13. */
1953 purge_mfc_queue(prev, spu); /* Step 14. */
1954 wait_purge_complete(prev, spu); /* Step 15. */
1955 reset_spu_privcntl(prev, spu); /* Step 16. */
1956 reset_spu_lslr(prev, spu); /* Step 17. */
1957 setup_mfc_sr1(prev, spu); /* Step 18. */
1958 spu_invalidate_slbs(spu); /* Step 19. */
1959 reset_ch_part1(prev, spu); /* Step 20. */
1960 reset_ch_part2(prev, spu); /* Step 21. */
1961 enable_interrupts(prev, spu); /* Step 22. */
1962 set_switch_active(prev, spu); /* Step 23. */
1963 set_mfc_tclass_id(prev, spu); /* Step 24. */
1964 resume_mfc_queue(prev, spu); /* Step 25. */
1965 }
1966
restore_lscsa(struct spu_state * next,struct spu * spu)1967 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1968 {
1969 /*
1970 * Perform steps 26-40 of SPU context restore sequence,
1971 * which restores regions of the local store and register
1972 * file.
1973 */
1974
1975 set_watchdog_timer(next, spu); /* Step 26. */
1976 setup_spu_status_part1(next, spu); /* Step 27. */
1977 setup_spu_status_part2(next, spu); /* Step 28. */
1978 restore_mfc_rag(next, spu); /* Step 29. */
1979 /* Step 30. */
1980 setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code));
1981 set_spu_npc(next, spu); /* Step 31. */
1982 set_signot1(next, spu); /* Step 32. */
1983 set_signot2(next, spu); /* Step 33. */
1984 setup_decr(next, spu); /* Step 34. */
1985 setup_ppu_mb(next, spu); /* Step 35. */
1986 setup_ppuint_mb(next, spu); /* Step 36. */
1987 send_restore_code(next, spu); /* Step 37. */
1988 set_ppu_querymask(next, spu); /* Step 38. */
1989 wait_tag_complete(next, spu); /* Step 39. */
1990 wait_spu_stopped(next, spu); /* Step 40. */
1991 }
1992
restore_csa(struct spu_state * next,struct spu * spu)1993 static void restore_csa(struct spu_state *next, struct spu *spu)
1994 {
1995 /*
1996 * Combine steps 41-76 of SPU context restore sequence, which
1997 * restore regions of the privileged & problem state areas.
1998 */
1999
2000 restore_spu_privcntl(next, spu); /* Step 41. */
2001 restore_status_part1(next, spu); /* Step 42. */
2002 restore_status_part2(next, spu); /* Step 43. */
2003 restore_ls_16kb(next, spu); /* Step 44. */
2004 wait_tag_complete(next, spu); /* Step 45. */
2005 suspend_mfc(next, spu); /* Step 46. */
2006 wait_suspend_mfc_complete(next, spu); /* Step 47. */
2007 issue_mfc_tlbie(next, spu); /* Step 48. */
2008 clear_interrupts(next, spu); /* Step 49. */
2009 restore_mfc_queues(next, spu); /* Step 50. */
2010 restore_ppu_querymask(next, spu); /* Step 51. */
2011 restore_ppu_querytype(next, spu); /* Step 52. */
2012 restore_mfc_csr_tsq(next, spu); /* Step 53. */
2013 restore_mfc_csr_cmd(next, spu); /* Step 54. */
2014 restore_mfc_csr_ato(next, spu); /* Step 55. */
2015 restore_mfc_tclass_id(next, spu); /* Step 56. */
2016 set_llr_event(next, spu); /* Step 57. */
2017 restore_decr_wrapped(next, spu); /* Step 58. */
2018 restore_ch_part1(next, spu); /* Step 59. */
2019 restore_ch_part2(next, spu); /* Step 60. */
2020 restore_spu_lslr(next, spu); /* Step 61. */
2021 restore_spu_cfg(next, spu); /* Step 62. */
2022 restore_pm_trace(next, spu); /* Step 63. */
2023 restore_spu_npc(next, spu); /* Step 64. */
2024 restore_spu_mb(next, spu); /* Step 65. */
2025 check_ppu_mb_stat(next, spu); /* Step 66. */
2026 check_ppuint_mb_stat(next, spu); /* Step 67. */
2027 spu_invalidate_slbs(spu); /* Modified Step 68. */
2028 restore_mfc_sr1(next, spu); /* Step 69. */
2029 set_int_route(next, spu); /* NEW */
2030 restore_other_spu_access(next, spu); /* Step 70. */
2031 restore_spu_runcntl(next, spu); /* Step 71. */
2032 restore_mfc_cntl(next, spu); /* Step 72. */
2033 enable_user_access(next, spu); /* Step 73. */
2034 reset_switch_active(next, spu); /* Step 74. */
2035 reenable_interrupts(next, spu); /* Step 75. */
2036 }
2037
__do_spu_save(struct spu_state * prev,struct spu * spu)2038 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2039 {
2040 int rc;
2041
2042 /*
2043 * SPU context save can be broken into three phases:
2044 *
2045 * (a) quiesce [steps 2-16].
2046 * (b) save of CSA, performed by PPE [steps 17-42]
2047 * (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2048 *
2049 * Returns 0 on success.
2050 * 2,6 if failed to quiece SPU
2051 * 53 if SPU-side of save failed.
2052 */
2053
2054 rc = quiece_spu(prev, spu); /* Steps 2-16. */
2055 switch (rc) {
2056 default:
2057 case 2:
2058 case 6:
2059 harvest(prev, spu);
2060 return rc;
2061 break;
2062 case 0:
2063 break;
2064 }
2065 save_csa(prev, spu); /* Steps 17-43. */
2066 save_lscsa(prev, spu); /* Steps 44-53. */
2067 return check_save_status(prev, spu); /* Step 54. */
2068 }
2069
__do_spu_restore(struct spu_state * next,struct spu * spu)2070 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2071 {
2072 int rc;
2073
2074 /*
2075 * SPU context restore can be broken into three phases:
2076 *
2077 * (a) harvest (or reset) SPU [steps 2-24].
2078 * (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2079 * (c) restore CSA [steps 41-76], performed by PPE.
2080 *
2081 * The 'harvest' step is not performed here, but rather
2082 * as needed below.
2083 */
2084
2085 restore_lscsa(next, spu); /* Steps 24-39. */
2086 rc = check_restore_status(next, spu); /* Step 40. */
2087 switch (rc) {
2088 default:
2089 /* Failed. Return now. */
2090 return rc;
2091 break;
2092 case 0:
2093 /* Fall through to next step. */
2094 break;
2095 }
2096 restore_csa(next, spu);
2097
2098 return 0;
2099 }
2100
2101 /**
2102 * spu_save - SPU context save, with locking.
2103 * @prev: pointer to SPU context save area, to be saved.
2104 * @spu: pointer to SPU iomem structure.
2105 *
2106 * Acquire locks, perform the save operation then return.
2107 */
spu_save(struct spu_state * prev,struct spu * spu)2108 int spu_save(struct spu_state *prev, struct spu *spu)
2109 {
2110 int rc;
2111
2112 acquire_spu_lock(spu); /* Step 1. */
2113 rc = __do_spu_save(prev, spu); /* Steps 2-53. */
2114 release_spu_lock(spu);
2115 if (rc != 0 && rc != 2 && rc != 6) {
2116 panic("%s failed on SPU[%d], rc=%d.\n",
2117 __func__, spu->number, rc);
2118 }
2119 return 0;
2120 }
2121 EXPORT_SYMBOL_GPL(spu_save);
2122
2123 /**
2124 * spu_restore - SPU context restore, with harvest and locking.
2125 * @new: pointer to SPU context save area, to be restored.
2126 * @spu: pointer to SPU iomem structure.
2127 *
2128 * Perform harvest + restore, as we may not be coming
2129 * from a previous successful save operation, and the
2130 * hardware state is unknown.
2131 */
spu_restore(struct spu_state * new,struct spu * spu)2132 int spu_restore(struct spu_state *new, struct spu *spu)
2133 {
2134 int rc;
2135
2136 acquire_spu_lock(spu);
2137 harvest(NULL, spu);
2138 spu->slb_replace = 0;
2139 rc = __do_spu_restore(new, spu);
2140 release_spu_lock(spu);
2141 if (rc) {
2142 panic("%s failed on SPU[%d] rc=%d.\n",
2143 __func__, spu->number, rc);
2144 }
2145 return rc;
2146 }
2147 EXPORT_SYMBOL_GPL(spu_restore);
2148
init_prob(struct spu_state * csa)2149 static void init_prob(struct spu_state *csa)
2150 {
2151 csa->spu_chnlcnt_RW[9] = 1;
2152 csa->spu_chnlcnt_RW[21] = 16;
2153 csa->spu_chnlcnt_RW[23] = 1;
2154 csa->spu_chnlcnt_RW[28] = 1;
2155 csa->spu_chnlcnt_RW[30] = 1;
2156 csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2157 csa->prob.mb_stat_R = 0x000400;
2158 }
2159
init_priv1(struct spu_state * csa)2160 static void init_priv1(struct spu_state *csa)
2161 {
2162 /* Enable decode, relocate, tlbie response, master runcntl. */
2163 csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2164 MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2165 MFC_STATE1_PROBLEM_STATE_MASK |
2166 MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2167
2168 /* Enable OS-specific set of interrupts. */
2169 csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2170 CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2171 CLASS0_ENABLE_SPU_ERROR_INTR;
2172 csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2173 CLASS1_ENABLE_STORAGE_FAULT_INTR;
2174 csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2175 CLASS2_ENABLE_SPU_HALT_INTR |
2176 CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2177 }
2178
init_priv2(struct spu_state * csa)2179 static void init_priv2(struct spu_state *csa)
2180 {
2181 csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2182 csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2183 MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2184 MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2185 }
2186
2187 /**
2188 * spu_alloc_csa - allocate and initialize an SPU context save area.
2189 *
2190 * Allocate and initialize the contents of an SPU context save area.
2191 * This includes enabling address translation, interrupt masks, etc.,
2192 * as appropriate for the given OS environment.
2193 *
2194 * Note that storage for the 'lscsa' is allocated separately,
2195 * as it is by far the largest of the context save regions,
2196 * and may need to be pinned or otherwise specially aligned.
2197 */
spu_init_csa(struct spu_state * csa)2198 int spu_init_csa(struct spu_state *csa)
2199 {
2200 int rc;
2201
2202 if (!csa)
2203 return -EINVAL;
2204 memset(csa, 0, sizeof(struct spu_state));
2205
2206 rc = spu_alloc_lscsa(csa);
2207 if (rc)
2208 return rc;
2209
2210 spin_lock_init(&csa->register_lock);
2211
2212 init_prob(csa);
2213 init_priv1(csa);
2214 init_priv2(csa);
2215
2216 return 0;
2217 }
2218
spu_fini_csa(struct spu_state * csa)2219 void spu_fini_csa(struct spu_state *csa)
2220 {
2221 spu_free_lscsa(csa);
2222 }
2223