• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 
ath9k_hw_analog_shift_regwrite(struct ath_hw * ah,u32 reg,u32 val)19 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
20 {
21         REG_WRITE(ah, reg, val);
22 
23         if (ah->config.analog_shiftreg)
24 		udelay(100);
25 }
26 
ath9k_hw_analog_shift_rmw(struct ath_hw * ah,u32 reg,u32 mask,u32 shift,u32 val)27 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
28 			       u32 shift, u32 val)
29 {
30 	u32 regVal;
31 
32 	regVal = REG_READ(ah, reg) & ~mask;
33 	regVal |= (val << shift) & mask;
34 
35 	REG_WRITE(ah, reg, regVal);
36 
37 	if (ah->config.analog_shiftreg)
38 		udelay(100);
39 }
40 
ath9k_hw_interpolate(u16 target,u16 srcLeft,u16 srcRight,int16_t targetLeft,int16_t targetRight)41 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
42 			     int16_t targetLeft, int16_t targetRight)
43 {
44 	int16_t rv;
45 
46 	if (srcRight == srcLeft) {
47 		rv = targetLeft;
48 	} else {
49 		rv = (int16_t) (((target - srcLeft) * targetRight +
50 				 (srcRight - target) * targetLeft) /
51 				(srcRight - srcLeft));
52 	}
53 	return rv;
54 }
55 
ath9k_hw_get_lower_upper_index(u8 target,u8 * pList,u16 listSize,u16 * indexL,u16 * indexR)56 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
57 				    u16 *indexL, u16 *indexR)
58 {
59 	u16 i;
60 
61 	if (target <= pList[0]) {
62 		*indexL = *indexR = 0;
63 		return true;
64 	}
65 	if (target >= pList[listSize - 1]) {
66 		*indexL = *indexR = (u16) (listSize - 1);
67 		return true;
68 	}
69 
70 	for (i = 0; i < listSize - 1; i++) {
71 		if (pList[i] == target) {
72 			*indexL = *indexR = i;
73 			return true;
74 		}
75 		if (target < pList[i + 1]) {
76 			*indexL = i;
77 			*indexR = (u16) (i + 1);
78 			return false;
79 		}
80 	}
81 	return false;
82 }
83 
ath9k_hw_usb_gen_fill_eeprom(struct ath_hw * ah,u16 * eep_data,int eep_start_loc,int size)84 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
85 				  int eep_start_loc, int size)
86 {
87 	int i = 0, j, addr;
88 	u32 addrdata[8];
89 	u32 data[8];
90 
91 	for (addr = 0; addr < size; addr++) {
92 		addrdata[i] = AR5416_EEPROM_OFFSET +
93 			((addr + eep_start_loc) << AR5416_EEPROM_S);
94 		i++;
95 		if (i == 8) {
96 			REG_READ_MULTI(ah, addrdata, data, i);
97 
98 			for (j = 0; j < i; j++) {
99 				*eep_data = data[j];
100 				eep_data++;
101 			}
102 			i = 0;
103 		}
104 	}
105 
106 	if (i != 0) {
107 		REG_READ_MULTI(ah, addrdata, data, i);
108 
109 		for (j = 0; j < i; j++) {
110 			*eep_data = data[j];
111 			eep_data++;
112 		}
113 	}
114 }
115 
ath9k_hw_nvram_read_blob(struct ath_hw * ah,u32 off,u16 * data)116 static bool ath9k_hw_nvram_read_blob(struct ath_hw *ah, u32 off,
117 				     u16 *data)
118 {
119 	u16 *blob_data;
120 
121 	if (off * sizeof(u16) > ah->eeprom_blob->size)
122 		return false;
123 
124 	blob_data = (u16 *)ah->eeprom_blob->data;
125 	*data =  blob_data[off];
126 	return true;
127 }
128 
ath9k_hw_nvram_read(struct ath_hw * ah,u32 off,u16 * data)129 bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
130 {
131 	struct ath_common *common = ath9k_hw_common(ah);
132 	bool ret;
133 
134 	if (ah->eeprom_blob)
135 		ret = ath9k_hw_nvram_read_blob(ah, off, data);
136 	else
137 		ret = common->bus_ops->eeprom_read(common, off, data);
138 
139 	if (!ret)
140 		ath_dbg(common, EEPROM,
141 			"unable to read eeprom region at offset %u\n", off);
142 
143 	return ret;
144 }
145 
ath9k_hw_fill_vpd_table(u8 pwrMin,u8 pwrMax,u8 * pPwrList,u8 * pVpdList,u16 numIntercepts,u8 * pRetVpdList)146 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
147 			     u8 *pVpdList, u16 numIntercepts,
148 			     u8 *pRetVpdList)
149 {
150 	u16 i, k;
151 	u8 currPwr = pwrMin;
152 	u16 idxL = 0, idxR = 0;
153 
154 	for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
155 		ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
156 					       numIntercepts, &(idxL),
157 					       &(idxR));
158 		if (idxR < 1)
159 			idxR = 1;
160 		if (idxL == numIntercepts - 1)
161 			idxL = (u16) (numIntercepts - 2);
162 		if (pPwrList[idxL] == pPwrList[idxR])
163 			k = pVpdList[idxL];
164 		else
165 			k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
166 				   (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
167 				  (pPwrList[idxR] - pPwrList[idxL]));
168 		pRetVpdList[i] = (u8) k;
169 		currPwr += 2;
170 	}
171 }
172 
ath9k_hw_get_legacy_target_powers(struct ath_hw * ah,struct ath9k_channel * chan,struct cal_target_power_leg * powInfo,u16 numChannels,struct cal_target_power_leg * pNewPower,u16 numRates,bool isExtTarget)173 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
174 				       struct ath9k_channel *chan,
175 				       struct cal_target_power_leg *powInfo,
176 				       u16 numChannels,
177 				       struct cal_target_power_leg *pNewPower,
178 				       u16 numRates, bool isExtTarget)
179 {
180 	struct chan_centers centers;
181 	u16 clo, chi;
182 	int i;
183 	int matchIndex = -1, lowIndex = -1;
184 	u16 freq;
185 
186 	ath9k_hw_get_channel_centers(ah, chan, &centers);
187 	freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
188 
189 	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
190 				       IS_CHAN_2GHZ(chan))) {
191 		matchIndex = 0;
192 	} else {
193 		for (i = 0; (i < numChannels) &&
194 			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
195 			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
196 						       IS_CHAN_2GHZ(chan))) {
197 				matchIndex = i;
198 				break;
199 			} else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
200 						IS_CHAN_2GHZ(chan)) && i > 0 &&
201 				   freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
202 						IS_CHAN_2GHZ(chan))) {
203 				lowIndex = i - 1;
204 				break;
205 			}
206 		}
207 		if ((matchIndex == -1) && (lowIndex == -1))
208 			matchIndex = i - 1;
209 	}
210 
211 	if (matchIndex != -1) {
212 		*pNewPower = powInfo[matchIndex];
213 	} else {
214 		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
215 					 IS_CHAN_2GHZ(chan));
216 		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
217 					 IS_CHAN_2GHZ(chan));
218 
219 		for (i = 0; i < numRates; i++) {
220 			pNewPower->tPow2x[i] =
221 				(u8)ath9k_hw_interpolate(freq, clo, chi,
222 						powInfo[lowIndex].tPow2x[i],
223 						powInfo[lowIndex + 1].tPow2x[i]);
224 		}
225 	}
226 }
227 
ath9k_hw_get_target_powers(struct ath_hw * ah,struct ath9k_channel * chan,struct cal_target_power_ht * powInfo,u16 numChannels,struct cal_target_power_ht * pNewPower,u16 numRates,bool isHt40Target)228 void ath9k_hw_get_target_powers(struct ath_hw *ah,
229 				struct ath9k_channel *chan,
230 				struct cal_target_power_ht *powInfo,
231 				u16 numChannels,
232 				struct cal_target_power_ht *pNewPower,
233 				u16 numRates, bool isHt40Target)
234 {
235 	struct chan_centers centers;
236 	u16 clo, chi;
237 	int i;
238 	int matchIndex = -1, lowIndex = -1;
239 	u16 freq;
240 
241 	ath9k_hw_get_channel_centers(ah, chan, &centers);
242 	freq = isHt40Target ? centers.synth_center : centers.ctl_center;
243 
244 	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
245 		matchIndex = 0;
246 	} else {
247 		for (i = 0; (i < numChannels) &&
248 			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
249 			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
250 						       IS_CHAN_2GHZ(chan))) {
251 				matchIndex = i;
252 				break;
253 			} else
254 				if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
255 						IS_CHAN_2GHZ(chan)) && i > 0 &&
256 				    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
257 						IS_CHAN_2GHZ(chan))) {
258 					lowIndex = i - 1;
259 					break;
260 				}
261 		}
262 		if ((matchIndex == -1) && (lowIndex == -1))
263 			matchIndex = i - 1;
264 	}
265 
266 	if (matchIndex != -1) {
267 		*pNewPower = powInfo[matchIndex];
268 	} else {
269 		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
270 					 IS_CHAN_2GHZ(chan));
271 		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
272 					 IS_CHAN_2GHZ(chan));
273 
274 		for (i = 0; i < numRates; i++) {
275 			pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
276 						clo, chi,
277 						powInfo[lowIndex].tPow2x[i],
278 						powInfo[lowIndex + 1].tPow2x[i]);
279 		}
280 	}
281 }
282 
ath9k_hw_get_max_edge_power(u16 freq,struct cal_ctl_edges * pRdEdgesPower,bool is2GHz,int num_band_edges)283 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
284 				bool is2GHz, int num_band_edges)
285 {
286 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
287 	int i;
288 
289 	for (i = 0; (i < num_band_edges) &&
290 		     (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
291 		if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
292 			twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
293 			break;
294 		} else if ((i > 0) &&
295 			   (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
296 						      is2GHz))) {
297 			if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
298 					       is2GHz) < freq &&
299 			    CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
300 				twiceMaxEdgePower =
301 					CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
302 			}
303 			break;
304 		}
305 	}
306 
307 	return twiceMaxEdgePower;
308 }
309 
ath9k_hw_get_scaled_power(struct ath_hw * ah,u16 power_limit,u8 antenna_reduction)310 u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
311 			      u8 antenna_reduction)
312 {
313 	u16 reduction = antenna_reduction;
314 
315 	/*
316 	 * Reduce scaled Power by number of chains active
317 	 * to get the per chain tx power level.
318 	 */
319 	switch (ar5416_get_ntxchains(ah->txchainmask)) {
320 	case 1:
321 		break;
322 	case 2:
323 		reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
324 		break;
325 	case 3:
326 		reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
327 		break;
328 	}
329 
330 	if (power_limit > reduction)
331 		power_limit -= reduction;
332 	else
333 		power_limit = 0;
334 
335 	return power_limit;
336 }
337 
ath9k_hw_update_regulatory_maxpower(struct ath_hw * ah)338 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
339 {
340 	struct ath_common *common = ath9k_hw_common(ah);
341 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
342 
343 	switch (ar5416_get_ntxchains(ah->txchainmask)) {
344 	case 1:
345 		break;
346 	case 2:
347 		regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
348 		break;
349 	case 3:
350 		regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
351 		break;
352 	default:
353 		ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
354 		break;
355 	}
356 }
357 
ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw * ah,struct ath9k_channel * chan,void * pRawDataSet,u8 * bChans,u16 availPiers,u16 tPdGainOverlap,u16 * pPdGainBoundaries,u8 * pPDADCValues,u16 numXpdGains)358 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
359 				struct ath9k_channel *chan,
360 				void *pRawDataSet,
361 				u8 *bChans, u16 availPiers,
362 				u16 tPdGainOverlap,
363 				u16 *pPdGainBoundaries, u8 *pPDADCValues,
364 				u16 numXpdGains)
365 {
366 	int i, j, k;
367 	int16_t ss;
368 	u16 idxL = 0, idxR = 0, numPiers;
369 	static u8 vpdTableL[AR5416_NUM_PD_GAINS]
370 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
371 	static u8 vpdTableR[AR5416_NUM_PD_GAINS]
372 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
373 	static u8 vpdTableI[AR5416_NUM_PD_GAINS]
374 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
375 
376 	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
377 	u8 minPwrT4[AR5416_NUM_PD_GAINS];
378 	u8 maxPwrT4[AR5416_NUM_PD_GAINS];
379 	int16_t vpdStep;
380 	int16_t tmpVal;
381 	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
382 	bool match;
383 	int16_t minDelta = 0;
384 	struct chan_centers centers;
385 	int pdgain_boundary_default;
386 	struct cal_data_per_freq *data_def = pRawDataSet;
387 	struct cal_data_per_freq_4k *data_4k = pRawDataSet;
388 	struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
389 	bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
390 	int intercepts;
391 
392 	if (AR_SREV_9287(ah))
393 		intercepts = AR9287_PD_GAIN_ICEPTS;
394 	else
395 		intercepts = AR5416_PD_GAIN_ICEPTS;
396 
397 	memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
398 	ath9k_hw_get_channel_centers(ah, chan, &centers);
399 
400 	for (numPiers = 0; numPiers < availPiers; numPiers++) {
401 		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
402 			break;
403 	}
404 
405 	match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
406 							     IS_CHAN_2GHZ(chan)),
407 					       bChans, numPiers, &idxL, &idxR);
408 
409 	if (match) {
410 		if (AR_SREV_9287(ah)) {
411 			for (i = 0; i < numXpdGains; i++) {
412 				minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
413 				maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
414 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
415 						data_9287[idxL].pwrPdg[i],
416 						data_9287[idxL].vpdPdg[i],
417 						intercepts,
418 						vpdTableI[i]);
419 			}
420 		} else if (eeprom_4k) {
421 			for (i = 0; i < numXpdGains; i++) {
422 				minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
423 				maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
424 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
425 						data_4k[idxL].pwrPdg[i],
426 						data_4k[idxL].vpdPdg[i],
427 						intercepts,
428 						vpdTableI[i]);
429 			}
430 		} else {
431 			for (i = 0; i < numXpdGains; i++) {
432 				minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
433 				maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
434 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
435 						data_def[idxL].pwrPdg[i],
436 						data_def[idxL].vpdPdg[i],
437 						intercepts,
438 						vpdTableI[i]);
439 			}
440 		}
441 	} else {
442 		for (i = 0; i < numXpdGains; i++) {
443 			if (AR_SREV_9287(ah)) {
444 				pVpdL = data_9287[idxL].vpdPdg[i];
445 				pPwrL = data_9287[idxL].pwrPdg[i];
446 				pVpdR = data_9287[idxR].vpdPdg[i];
447 				pPwrR = data_9287[idxR].pwrPdg[i];
448 			} else if (eeprom_4k) {
449 				pVpdL = data_4k[idxL].vpdPdg[i];
450 				pPwrL = data_4k[idxL].pwrPdg[i];
451 				pVpdR = data_4k[idxR].vpdPdg[i];
452 				pPwrR = data_4k[idxR].pwrPdg[i];
453 			} else {
454 				pVpdL = data_def[idxL].vpdPdg[i];
455 				pPwrL = data_def[idxL].pwrPdg[i];
456 				pVpdR = data_def[idxR].vpdPdg[i];
457 				pPwrR = data_def[idxR].pwrPdg[i];
458 			}
459 
460 			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
461 
462 			maxPwrT4[i] =
463 				min(pPwrL[intercepts - 1],
464 				    pPwrR[intercepts - 1]);
465 
466 
467 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
468 						pPwrL, pVpdL,
469 						intercepts,
470 						vpdTableL[i]);
471 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
472 						pPwrR, pVpdR,
473 						intercepts,
474 						vpdTableR[i]);
475 
476 			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
477 				vpdTableI[i][j] =
478 					(u8)(ath9k_hw_interpolate((u16)
479 					     FREQ2FBIN(centers.
480 						       synth_center,
481 						       IS_CHAN_2GHZ
482 						       (chan)),
483 					     bChans[idxL], bChans[idxR],
484 					     vpdTableL[i][j], vpdTableR[i][j]));
485 			}
486 		}
487 	}
488 
489 	k = 0;
490 
491 	for (i = 0; i < numXpdGains; i++) {
492 		if (i == (numXpdGains - 1))
493 			pPdGainBoundaries[i] =
494 				(u16)(maxPwrT4[i] / 2);
495 		else
496 			pPdGainBoundaries[i] =
497 				(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
498 
499 		pPdGainBoundaries[i] =
500 			min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
501 
502 		minDelta = 0;
503 
504 		if (i == 0) {
505 			if (AR_SREV_9280_20_OR_LATER(ah))
506 				ss = (int16_t)(0 - (minPwrT4[i] / 2));
507 			else
508 				ss = 0;
509 		} else {
510 			ss = (int16_t)((pPdGainBoundaries[i - 1] -
511 					(minPwrT4[i] / 2)) -
512 				       tPdGainOverlap + 1 + minDelta);
513 		}
514 		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
515 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
516 
517 		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
518 			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
519 			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
520 			ss++;
521 		}
522 
523 		sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
524 		tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
525 				(minPwrT4[i] / 2));
526 		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
527 			tgtIndex : sizeCurrVpdTable;
528 
529 		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
530 			pPDADCValues[k++] = vpdTableI[i][ss++];
531 		}
532 
533 		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
534 				    vpdTableI[i][sizeCurrVpdTable - 2]);
535 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
536 
537 		if (tgtIndex >= maxIndex) {
538 			while ((ss <= tgtIndex) &&
539 			       (k < (AR5416_NUM_PDADC_VALUES - 1))) {
540 				tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
541 						    (ss - maxIndex + 1) * vpdStep));
542 				pPDADCValues[k++] = (u8)((tmpVal > 255) ?
543 							 255 : tmpVal);
544 				ss++;
545 			}
546 		}
547 	}
548 
549 	if (eeprom_4k)
550 		pdgain_boundary_default = 58;
551 	else
552 		pdgain_boundary_default = pPdGainBoundaries[i - 1];
553 
554 	while (i < AR5416_PD_GAINS_IN_MASK) {
555 		pPdGainBoundaries[i] = pdgain_boundary_default;
556 		i++;
557 	}
558 
559 	while (k < AR5416_NUM_PDADC_VALUES) {
560 		pPDADCValues[k] = pPDADCValues[k - 1];
561 		k++;
562 	}
563 }
564 
ath9k_hw_eeprom_init(struct ath_hw * ah)565 int ath9k_hw_eeprom_init(struct ath_hw *ah)
566 {
567 	int status;
568 
569 	if (AR_SREV_9300_20_OR_LATER(ah))
570 		ah->eep_ops = &eep_ar9300_ops;
571 	else if (AR_SREV_9287(ah)) {
572 		ah->eep_ops = &eep_ar9287_ops;
573 	} else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
574 		ah->eep_ops = &eep_4k_ops;
575 	} else {
576 		ah->eep_ops = &eep_def_ops;
577 	}
578 
579 	if (!ah->eep_ops->fill_eeprom(ah))
580 		return -EIO;
581 
582 	status = ah->eep_ops->check_eeprom(ah);
583 
584 	return status;
585 }
586