1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
4 * Copyright 2013-2014 Intel Mobile Communications GmbH
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/etherdevice.h>
14 #include <linux/netdevice.h>
15 #include <linux/types.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/if_arp.h>
19 #include <linux/timer.h>
20 #include <linux/rtnetlink.h>
21
22 #include <net/mac80211.h>
23 #include "ieee80211_i.h"
24 #include "driver-ops.h"
25 #include "rate.h"
26 #include "sta_info.h"
27 #include "debugfs_sta.h"
28 #include "mesh.h"
29 #include "wme.h"
30
31 /**
32 * DOC: STA information lifetime rules
33 *
34 * STA info structures (&struct sta_info) are managed in a hash table
35 * for faster lookup and a list for iteration. They are managed using
36 * RCU, i.e. access to the list and hash table is protected by RCU.
37 *
38 * Upon allocating a STA info structure with sta_info_alloc(), the caller
39 * owns that structure. It must then insert it into the hash table using
40 * either sta_info_insert() or sta_info_insert_rcu(); only in the latter
41 * case (which acquires an rcu read section but must not be called from
42 * within one) will the pointer still be valid after the call. Note that
43 * the caller may not do much with the STA info before inserting it, in
44 * particular, it may not start any mesh peer link management or add
45 * encryption keys.
46 *
47 * When the insertion fails (sta_info_insert()) returns non-zero), the
48 * structure will have been freed by sta_info_insert()!
49 *
50 * Station entries are added by mac80211 when you establish a link with a
51 * peer. This means different things for the different type of interfaces
52 * we support. For a regular station this mean we add the AP sta when we
53 * receive an association response from the AP. For IBSS this occurs when
54 * get to know about a peer on the same IBSS. For WDS we add the sta for
55 * the peer immediately upon device open. When using AP mode we add stations
56 * for each respective station upon request from userspace through nl80211.
57 *
58 * In order to remove a STA info structure, various sta_info_destroy_*()
59 * calls are available.
60 *
61 * There is no concept of ownership on a STA entry, each structure is
62 * owned by the global hash table/list until it is removed. All users of
63 * the structure need to be RCU protected so that the structure won't be
64 * freed before they are done using it.
65 */
66
67 /* Caller must hold local->sta_mtx */
sta_info_hash_del(struct ieee80211_local * local,struct sta_info * sta)68 static int sta_info_hash_del(struct ieee80211_local *local,
69 struct sta_info *sta)
70 {
71 struct sta_info *s;
72
73 s = rcu_dereference_protected(local->sta_hash[STA_HASH(sta->sta.addr)],
74 lockdep_is_held(&local->sta_mtx));
75 if (!s)
76 return -ENOENT;
77 if (s == sta) {
78 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)],
79 s->hnext);
80 return 0;
81 }
82
83 while (rcu_access_pointer(s->hnext) &&
84 rcu_access_pointer(s->hnext) != sta)
85 s = rcu_dereference_protected(s->hnext,
86 lockdep_is_held(&local->sta_mtx));
87 if (rcu_access_pointer(s->hnext)) {
88 rcu_assign_pointer(s->hnext, sta->hnext);
89 return 0;
90 }
91
92 return -ENOENT;
93 }
94
__cleanup_single_sta(struct sta_info * sta)95 static void __cleanup_single_sta(struct sta_info *sta)
96 {
97 int ac, i;
98 struct tid_ampdu_tx *tid_tx;
99 struct ieee80211_sub_if_data *sdata = sta->sdata;
100 struct ieee80211_local *local = sdata->local;
101 struct ps_data *ps;
102
103 if (test_sta_flag(sta, WLAN_STA_PS_STA) ||
104 test_sta_flag(sta, WLAN_STA_PS_DRIVER) ||
105 test_sta_flag(sta, WLAN_STA_PS_DELIVER)) {
106 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
107 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
108 ps = &sdata->bss->ps;
109 else if (ieee80211_vif_is_mesh(&sdata->vif))
110 ps = &sdata->u.mesh.ps;
111 else
112 return;
113
114 clear_sta_flag(sta, WLAN_STA_PS_STA);
115 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
116 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
117
118 atomic_dec(&ps->num_sta_ps);
119 sta_info_recalc_tim(sta);
120 }
121
122 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
123 local->total_ps_buffered -= skb_queue_len(&sta->ps_tx_buf[ac]);
124 ieee80211_purge_tx_queue(&local->hw, &sta->ps_tx_buf[ac]);
125 ieee80211_purge_tx_queue(&local->hw, &sta->tx_filtered[ac]);
126 }
127
128 if (ieee80211_vif_is_mesh(&sdata->vif))
129 mesh_sta_cleanup(sta);
130
131 cancel_work_sync(&sta->drv_deliver_wk);
132
133 /*
134 * Destroy aggregation state here. It would be nice to wait for the
135 * driver to finish aggregation stop and then clean up, but for now
136 * drivers have to handle aggregation stop being requested, followed
137 * directly by station destruction.
138 */
139 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
140 kfree(sta->ampdu_mlme.tid_start_tx[i]);
141 tid_tx = rcu_dereference_raw(sta->ampdu_mlme.tid_tx[i]);
142 if (!tid_tx)
143 continue;
144 ieee80211_purge_tx_queue(&local->hw, &tid_tx->pending);
145 kfree(tid_tx);
146 }
147 }
148
cleanup_single_sta(struct sta_info * sta)149 static void cleanup_single_sta(struct sta_info *sta)
150 {
151 struct ieee80211_sub_if_data *sdata = sta->sdata;
152 struct ieee80211_local *local = sdata->local;
153
154 __cleanup_single_sta(sta);
155 sta_info_free(local, sta);
156 }
157
158 /* protected by RCU */
sta_info_get(struct ieee80211_sub_if_data * sdata,const u8 * addr)159 struct sta_info *sta_info_get(struct ieee80211_sub_if_data *sdata,
160 const u8 *addr)
161 {
162 struct ieee80211_local *local = sdata->local;
163 struct sta_info *sta;
164
165 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)],
166 lockdep_is_held(&local->sta_mtx));
167 while (sta) {
168 if (sta->sdata == sdata &&
169 ether_addr_equal(sta->sta.addr, addr))
170 break;
171 sta = rcu_dereference_check(sta->hnext,
172 lockdep_is_held(&local->sta_mtx));
173 }
174 return sta;
175 }
176
177 /*
178 * Get sta info either from the specified interface
179 * or from one of its vlans
180 */
sta_info_get_bss(struct ieee80211_sub_if_data * sdata,const u8 * addr)181 struct sta_info *sta_info_get_bss(struct ieee80211_sub_if_data *sdata,
182 const u8 *addr)
183 {
184 struct ieee80211_local *local = sdata->local;
185 struct sta_info *sta;
186
187 sta = rcu_dereference_check(local->sta_hash[STA_HASH(addr)],
188 lockdep_is_held(&local->sta_mtx));
189 while (sta) {
190 if ((sta->sdata == sdata ||
191 (sta->sdata->bss && sta->sdata->bss == sdata->bss)) &&
192 ether_addr_equal(sta->sta.addr, addr))
193 break;
194 sta = rcu_dereference_check(sta->hnext,
195 lockdep_is_held(&local->sta_mtx));
196 }
197 return sta;
198 }
199
sta_info_get_by_idx(struct ieee80211_sub_if_data * sdata,int idx)200 struct sta_info *sta_info_get_by_idx(struct ieee80211_sub_if_data *sdata,
201 int idx)
202 {
203 struct ieee80211_local *local = sdata->local;
204 struct sta_info *sta;
205 int i = 0;
206
207 list_for_each_entry_rcu(sta, &local->sta_list, list) {
208 if (sdata != sta->sdata)
209 continue;
210 if (i < idx) {
211 ++i;
212 continue;
213 }
214 return sta;
215 }
216
217 return NULL;
218 }
219
220 /**
221 * sta_info_free - free STA
222 *
223 * @local: pointer to the global information
224 * @sta: STA info to free
225 *
226 * This function must undo everything done by sta_info_alloc()
227 * that may happen before sta_info_insert(). It may only be
228 * called when sta_info_insert() has not been attempted (and
229 * if that fails, the station is freed anyway.)
230 */
sta_info_free(struct ieee80211_local * local,struct sta_info * sta)231 void sta_info_free(struct ieee80211_local *local, struct sta_info *sta)
232 {
233 int i;
234
235 if (sta->rate_ctrl)
236 rate_control_free_sta(sta);
237
238 if (sta->tx_lat) {
239 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
240 kfree(sta->tx_lat[i].bins);
241 kfree(sta->tx_lat);
242 }
243
244 sta_dbg(sta->sdata, "Destroyed STA %pM\n", sta->sta.addr);
245
246 kfree(rcu_dereference_raw(sta->sta.rates));
247 kfree(sta);
248 }
249
250 /* Caller must hold local->sta_mtx */
sta_info_hash_add(struct ieee80211_local * local,struct sta_info * sta)251 static void sta_info_hash_add(struct ieee80211_local *local,
252 struct sta_info *sta)
253 {
254 lockdep_assert_held(&local->sta_mtx);
255 sta->hnext = local->sta_hash[STA_HASH(sta->sta.addr)];
256 rcu_assign_pointer(local->sta_hash[STA_HASH(sta->sta.addr)], sta);
257 }
258
sta_deliver_ps_frames(struct work_struct * wk)259 static void sta_deliver_ps_frames(struct work_struct *wk)
260 {
261 struct sta_info *sta;
262
263 sta = container_of(wk, struct sta_info, drv_deliver_wk);
264
265 if (sta->dead)
266 return;
267
268 local_bh_disable();
269 if (!test_sta_flag(sta, WLAN_STA_PS_STA))
270 ieee80211_sta_ps_deliver_wakeup(sta);
271 else if (test_and_clear_sta_flag(sta, WLAN_STA_PSPOLL))
272 ieee80211_sta_ps_deliver_poll_response(sta);
273 else if (test_and_clear_sta_flag(sta, WLAN_STA_UAPSD))
274 ieee80211_sta_ps_deliver_uapsd(sta);
275 local_bh_enable();
276 }
277
sta_prepare_rate_control(struct ieee80211_local * local,struct sta_info * sta,gfp_t gfp)278 static int sta_prepare_rate_control(struct ieee80211_local *local,
279 struct sta_info *sta, gfp_t gfp)
280 {
281 if (local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL)
282 return 0;
283
284 sta->rate_ctrl = local->rate_ctrl;
285 sta->rate_ctrl_priv = rate_control_alloc_sta(sta->rate_ctrl,
286 &sta->sta, gfp);
287 if (!sta->rate_ctrl_priv)
288 return -ENOMEM;
289
290 return 0;
291 }
292
sta_info_alloc(struct ieee80211_sub_if_data * sdata,const u8 * addr,gfp_t gfp)293 struct sta_info *sta_info_alloc(struct ieee80211_sub_if_data *sdata,
294 const u8 *addr, gfp_t gfp)
295 {
296 struct ieee80211_local *local = sdata->local;
297 struct sta_info *sta;
298 struct timespec uptime;
299 struct ieee80211_tx_latency_bin_ranges *tx_latency;
300 int i;
301
302 sta = kzalloc(sizeof(*sta) + local->hw.sta_data_size, gfp);
303 if (!sta)
304 return NULL;
305
306 rcu_read_lock();
307 tx_latency = rcu_dereference(local->tx_latency);
308 /* init stations Tx latency statistics && TID bins */
309 if (tx_latency) {
310 sta->tx_lat = kzalloc(IEEE80211_NUM_TIDS *
311 sizeof(struct ieee80211_tx_latency_stat),
312 GFP_ATOMIC);
313 if (!sta->tx_lat) {
314 rcu_read_unlock();
315 goto free;
316 }
317
318 if (tx_latency->n_ranges) {
319 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
320 /* size of bins is size of the ranges +1 */
321 sta->tx_lat[i].bin_count =
322 tx_latency->n_ranges + 1;
323 sta->tx_lat[i].bins =
324 kcalloc(sta->tx_lat[i].bin_count,
325 sizeof(u32), GFP_ATOMIC);
326 if (!sta->tx_lat[i].bins) {
327 rcu_read_unlock();
328 goto free;
329 }
330 }
331 }
332 }
333 rcu_read_unlock();
334
335 spin_lock_init(&sta->lock);
336 spin_lock_init(&sta->ps_lock);
337 INIT_WORK(&sta->drv_deliver_wk, sta_deliver_ps_frames);
338 INIT_WORK(&sta->ampdu_mlme.work, ieee80211_ba_session_work);
339 mutex_init(&sta->ampdu_mlme.mtx);
340 #ifdef CONFIG_MAC80211_MESH
341 if (ieee80211_vif_is_mesh(&sdata->vif) &&
342 !sdata->u.mesh.user_mpm)
343 init_timer(&sta->plink_timer);
344 sta->nonpeer_pm = NL80211_MESH_POWER_ACTIVE;
345 #endif
346
347 memcpy(sta->sta.addr, addr, ETH_ALEN);
348 sta->local = local;
349 sta->sdata = sdata;
350 sta->last_rx = jiffies;
351
352 sta->sta_state = IEEE80211_STA_NONE;
353
354 ktime_get_ts(&uptime);
355 sta->last_connected = uptime.tv_sec;
356 ewma_init(&sta->avg_signal, 1024, 8);
357 for (i = 0; i < ARRAY_SIZE(sta->chain_signal_avg); i++)
358 ewma_init(&sta->chain_signal_avg[i], 1024, 8);
359
360 if (sta_prepare_rate_control(local, sta, gfp))
361 goto free;
362
363 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
364 /*
365 * timer_to_tid must be initialized with identity mapping
366 * to enable session_timer's data differentiation. See
367 * sta_rx_agg_session_timer_expired for usage.
368 */
369 sta->timer_to_tid[i] = i;
370 }
371 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
372 skb_queue_head_init(&sta->ps_tx_buf[i]);
373 skb_queue_head_init(&sta->tx_filtered[i]);
374 }
375
376 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
377 sta->last_seq_ctrl[i] = cpu_to_le16(USHRT_MAX);
378
379 sta->sta.smps_mode = IEEE80211_SMPS_OFF;
380 if (sdata->vif.type == NL80211_IFTYPE_AP ||
381 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
382 struct ieee80211_supported_band *sband =
383 local->hw.wiphy->bands[ieee80211_get_sdata_band(sdata)];
384 u8 smps = (sband->ht_cap.cap & IEEE80211_HT_CAP_SM_PS) >>
385 IEEE80211_HT_CAP_SM_PS_SHIFT;
386 /*
387 * Assume that hostapd advertises our caps in the beacon and
388 * this is the known_smps_mode for a station that just assciated
389 */
390 switch (smps) {
391 case WLAN_HT_SMPS_CONTROL_DISABLED:
392 sta->known_smps_mode = IEEE80211_SMPS_OFF;
393 break;
394 case WLAN_HT_SMPS_CONTROL_STATIC:
395 sta->known_smps_mode = IEEE80211_SMPS_STATIC;
396 break;
397 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
398 sta->known_smps_mode = IEEE80211_SMPS_DYNAMIC;
399 break;
400 default:
401 WARN_ON(1);
402 }
403 }
404
405 sta_dbg(sdata, "Allocated STA %pM\n", sta->sta.addr);
406 return sta;
407
408 free:
409 if (sta->tx_lat) {
410 for (i = 0; i < IEEE80211_NUM_TIDS; i++)
411 kfree(sta->tx_lat[i].bins);
412 kfree(sta->tx_lat);
413 }
414 kfree(sta);
415 return NULL;
416 }
417
sta_info_insert_check(struct sta_info * sta)418 static int sta_info_insert_check(struct sta_info *sta)
419 {
420 struct ieee80211_sub_if_data *sdata = sta->sdata;
421
422 /*
423 * Can't be a WARN_ON because it can be triggered through a race:
424 * something inserts a STA (on one CPU) without holding the RTNL
425 * and another CPU turns off the net device.
426 */
427 if (unlikely(!ieee80211_sdata_running(sdata)))
428 return -ENETDOWN;
429
430 if (WARN_ON(ether_addr_equal(sta->sta.addr, sdata->vif.addr) ||
431 is_multicast_ether_addr(sta->sta.addr)))
432 return -EINVAL;
433
434 return 0;
435 }
436
sta_info_insert_drv_state(struct ieee80211_local * local,struct ieee80211_sub_if_data * sdata,struct sta_info * sta)437 static int sta_info_insert_drv_state(struct ieee80211_local *local,
438 struct ieee80211_sub_if_data *sdata,
439 struct sta_info *sta)
440 {
441 enum ieee80211_sta_state state;
442 int err = 0;
443
444 for (state = IEEE80211_STA_NOTEXIST; state < sta->sta_state; state++) {
445 err = drv_sta_state(local, sdata, sta, state, state + 1);
446 if (err)
447 break;
448 }
449
450 if (!err) {
451 /*
452 * Drivers using legacy sta_add/sta_remove callbacks only
453 * get uploaded set to true after sta_add is called.
454 */
455 if (!local->ops->sta_add)
456 sta->uploaded = true;
457 return 0;
458 }
459
460 if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
461 sdata_info(sdata,
462 "failed to move IBSS STA %pM to state %d (%d) - keeping it anyway\n",
463 sta->sta.addr, state + 1, err);
464 err = 0;
465 }
466
467 /* unwind on error */
468 for (; state > IEEE80211_STA_NOTEXIST; state--)
469 WARN_ON(drv_sta_state(local, sdata, sta, state, state - 1));
470
471 return err;
472 }
473
474 /*
475 * should be called with sta_mtx locked
476 * this function replaces the mutex lock
477 * with a RCU lock
478 */
sta_info_insert_finish(struct sta_info * sta)479 static int sta_info_insert_finish(struct sta_info *sta) __acquires(RCU)
480 {
481 struct ieee80211_local *local = sta->local;
482 struct ieee80211_sub_if_data *sdata = sta->sdata;
483 struct station_info sinfo;
484 int err = 0;
485
486 lockdep_assert_held(&local->sta_mtx);
487
488 /* check if STA exists already */
489 if (sta_info_get_bss(sdata, sta->sta.addr)) {
490 err = -EEXIST;
491 goto out_err;
492 }
493
494 local->num_sta++;
495 local->sta_generation++;
496 smp_mb();
497
498 /* simplify things and don't accept BA sessions yet */
499 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
500
501 /* make the station visible */
502 sta_info_hash_add(local, sta);
503
504 list_add_rcu(&sta->list, &local->sta_list);
505
506 /* notify driver */
507 err = sta_info_insert_drv_state(local, sdata, sta);
508 if (err)
509 goto out_remove;
510
511 set_sta_flag(sta, WLAN_STA_INSERTED);
512 /* accept BA sessions now */
513 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
514
515 ieee80211_recalc_min_chandef(sdata);
516 ieee80211_sta_debugfs_add(sta);
517 rate_control_add_sta_debugfs(sta);
518
519 memset(&sinfo, 0, sizeof(sinfo));
520 sinfo.filled = 0;
521 sinfo.generation = local->sta_generation;
522 cfg80211_new_sta(sdata->dev, sta->sta.addr, &sinfo, GFP_KERNEL);
523
524 sta_dbg(sdata, "Inserted STA %pM\n", sta->sta.addr);
525
526 /* move reference to rcu-protected */
527 rcu_read_lock();
528 mutex_unlock(&local->sta_mtx);
529
530 if (ieee80211_vif_is_mesh(&sdata->vif))
531 mesh_accept_plinks_update(sdata);
532
533 return 0;
534 out_remove:
535 sta_info_hash_del(local, sta);
536 list_del_rcu(&sta->list);
537 local->num_sta--;
538 synchronize_net();
539 __cleanup_single_sta(sta);
540 out_err:
541 mutex_unlock(&local->sta_mtx);
542 rcu_read_lock();
543 return err;
544 }
545
sta_info_insert_rcu(struct sta_info * sta)546 int sta_info_insert_rcu(struct sta_info *sta) __acquires(RCU)
547 {
548 struct ieee80211_local *local = sta->local;
549 int err;
550
551 might_sleep();
552
553 err = sta_info_insert_check(sta);
554 if (err) {
555 rcu_read_lock();
556 goto out_free;
557 }
558
559 mutex_lock(&local->sta_mtx);
560
561 err = sta_info_insert_finish(sta);
562 if (err)
563 goto out_free;
564
565 return 0;
566 out_free:
567 sta_info_free(local, sta);
568 return err;
569 }
570
sta_info_insert(struct sta_info * sta)571 int sta_info_insert(struct sta_info *sta)
572 {
573 int err = sta_info_insert_rcu(sta);
574
575 rcu_read_unlock();
576
577 return err;
578 }
579
__bss_tim_set(u8 * tim,u16 id)580 static inline void __bss_tim_set(u8 *tim, u16 id)
581 {
582 /*
583 * This format has been mandated by the IEEE specifications,
584 * so this line may not be changed to use the __set_bit() format.
585 */
586 tim[id / 8] |= (1 << (id % 8));
587 }
588
__bss_tim_clear(u8 * tim,u16 id)589 static inline void __bss_tim_clear(u8 *tim, u16 id)
590 {
591 /*
592 * This format has been mandated by the IEEE specifications,
593 * so this line may not be changed to use the __clear_bit() format.
594 */
595 tim[id / 8] &= ~(1 << (id % 8));
596 }
597
__bss_tim_get(u8 * tim,u16 id)598 static inline bool __bss_tim_get(u8 *tim, u16 id)
599 {
600 /*
601 * This format has been mandated by the IEEE specifications,
602 * so this line may not be changed to use the test_bit() format.
603 */
604 return tim[id / 8] & (1 << (id % 8));
605 }
606
ieee80211_tids_for_ac(int ac)607 static unsigned long ieee80211_tids_for_ac(int ac)
608 {
609 /* If we ever support TIDs > 7, this obviously needs to be adjusted */
610 switch (ac) {
611 case IEEE80211_AC_VO:
612 return BIT(6) | BIT(7);
613 case IEEE80211_AC_VI:
614 return BIT(4) | BIT(5);
615 case IEEE80211_AC_BE:
616 return BIT(0) | BIT(3);
617 case IEEE80211_AC_BK:
618 return BIT(1) | BIT(2);
619 default:
620 WARN_ON(1);
621 return 0;
622 }
623 }
624
sta_info_recalc_tim(struct sta_info * sta)625 void sta_info_recalc_tim(struct sta_info *sta)
626 {
627 struct ieee80211_local *local = sta->local;
628 struct ps_data *ps;
629 bool indicate_tim = false;
630 u8 ignore_for_tim = sta->sta.uapsd_queues;
631 int ac;
632 u16 id;
633
634 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
635 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
636 if (WARN_ON_ONCE(!sta->sdata->bss))
637 return;
638
639 ps = &sta->sdata->bss->ps;
640 id = sta->sta.aid;
641 #ifdef CONFIG_MAC80211_MESH
642 } else if (ieee80211_vif_is_mesh(&sta->sdata->vif)) {
643 ps = &sta->sdata->u.mesh.ps;
644 /* TIM map only for 1 <= PLID <= IEEE80211_MAX_AID */
645 id = sta->plid % (IEEE80211_MAX_AID + 1);
646 #endif
647 } else {
648 return;
649 }
650
651 /* No need to do anything if the driver does all */
652 if (local->hw.flags & IEEE80211_HW_AP_LINK_PS)
653 return;
654
655 if (sta->dead)
656 goto done;
657
658 /*
659 * If all ACs are delivery-enabled then we should build
660 * the TIM bit for all ACs anyway; if only some are then
661 * we ignore those and build the TIM bit using only the
662 * non-enabled ones.
663 */
664 if (ignore_for_tim == BIT(IEEE80211_NUM_ACS) - 1)
665 ignore_for_tim = 0;
666
667 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
668 unsigned long tids;
669
670 if (ignore_for_tim & BIT(ac))
671 continue;
672
673 indicate_tim |= !skb_queue_empty(&sta->tx_filtered[ac]) ||
674 !skb_queue_empty(&sta->ps_tx_buf[ac]);
675 if (indicate_tim)
676 break;
677
678 tids = ieee80211_tids_for_ac(ac);
679
680 indicate_tim |=
681 sta->driver_buffered_tids & tids;
682 }
683
684 done:
685 spin_lock_bh(&local->tim_lock);
686
687 if (indicate_tim == __bss_tim_get(ps->tim, id))
688 goto out_unlock;
689
690 if (indicate_tim)
691 __bss_tim_set(ps->tim, id);
692 else
693 __bss_tim_clear(ps->tim, id);
694
695 if (local->ops->set_tim) {
696 local->tim_in_locked_section = true;
697 drv_set_tim(local, &sta->sta, indicate_tim);
698 local->tim_in_locked_section = false;
699 }
700
701 out_unlock:
702 spin_unlock_bh(&local->tim_lock);
703 }
704
sta_info_buffer_expired(struct sta_info * sta,struct sk_buff * skb)705 static bool sta_info_buffer_expired(struct sta_info *sta, struct sk_buff *skb)
706 {
707 struct ieee80211_tx_info *info;
708 int timeout;
709
710 if (!skb)
711 return false;
712
713 info = IEEE80211_SKB_CB(skb);
714
715 /* Timeout: (2 * listen_interval * beacon_int * 1024 / 1000000) sec */
716 timeout = (sta->listen_interval *
717 sta->sdata->vif.bss_conf.beacon_int *
718 32 / 15625) * HZ;
719 if (timeout < STA_TX_BUFFER_EXPIRE)
720 timeout = STA_TX_BUFFER_EXPIRE;
721 return time_after(jiffies, info->control.jiffies + timeout);
722 }
723
724
sta_info_cleanup_expire_buffered_ac(struct ieee80211_local * local,struct sta_info * sta,int ac)725 static bool sta_info_cleanup_expire_buffered_ac(struct ieee80211_local *local,
726 struct sta_info *sta, int ac)
727 {
728 unsigned long flags;
729 struct sk_buff *skb;
730
731 /*
732 * First check for frames that should expire on the filtered
733 * queue. Frames here were rejected by the driver and are on
734 * a separate queue to avoid reordering with normal PS-buffered
735 * frames. They also aren't accounted for right now in the
736 * total_ps_buffered counter.
737 */
738 for (;;) {
739 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
740 skb = skb_peek(&sta->tx_filtered[ac]);
741 if (sta_info_buffer_expired(sta, skb))
742 skb = __skb_dequeue(&sta->tx_filtered[ac]);
743 else
744 skb = NULL;
745 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
746
747 /*
748 * Frames are queued in order, so if this one
749 * hasn't expired yet we can stop testing. If
750 * we actually reached the end of the queue we
751 * also need to stop, of course.
752 */
753 if (!skb)
754 break;
755 ieee80211_free_txskb(&local->hw, skb);
756 }
757
758 /*
759 * Now also check the normal PS-buffered queue, this will
760 * only find something if the filtered queue was emptied
761 * since the filtered frames are all before the normal PS
762 * buffered frames.
763 */
764 for (;;) {
765 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
766 skb = skb_peek(&sta->ps_tx_buf[ac]);
767 if (sta_info_buffer_expired(sta, skb))
768 skb = __skb_dequeue(&sta->ps_tx_buf[ac]);
769 else
770 skb = NULL;
771 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
772
773 /*
774 * frames are queued in order, so if this one
775 * hasn't expired yet (or we reached the end of
776 * the queue) we can stop testing
777 */
778 if (!skb)
779 break;
780
781 local->total_ps_buffered--;
782 ps_dbg(sta->sdata, "Buffered frame expired (STA %pM)\n",
783 sta->sta.addr);
784 ieee80211_free_txskb(&local->hw, skb);
785 }
786
787 /*
788 * Finally, recalculate the TIM bit for this station -- it might
789 * now be clear because the station was too slow to retrieve its
790 * frames.
791 */
792 sta_info_recalc_tim(sta);
793
794 /*
795 * Return whether there are any frames still buffered, this is
796 * used to check whether the cleanup timer still needs to run,
797 * if there are no frames we don't need to rearm the timer.
798 */
799 return !(skb_queue_empty(&sta->ps_tx_buf[ac]) &&
800 skb_queue_empty(&sta->tx_filtered[ac]));
801 }
802
sta_info_cleanup_expire_buffered(struct ieee80211_local * local,struct sta_info * sta)803 static bool sta_info_cleanup_expire_buffered(struct ieee80211_local *local,
804 struct sta_info *sta)
805 {
806 bool have_buffered = false;
807 int ac;
808
809 /* This is only necessary for stations on BSS/MBSS interfaces */
810 if (!sta->sdata->bss &&
811 !ieee80211_vif_is_mesh(&sta->sdata->vif))
812 return false;
813
814 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
815 have_buffered |=
816 sta_info_cleanup_expire_buffered_ac(local, sta, ac);
817
818 return have_buffered;
819 }
820
__sta_info_destroy_part1(struct sta_info * sta)821 static int __must_check __sta_info_destroy_part1(struct sta_info *sta)
822 {
823 struct ieee80211_local *local;
824 struct ieee80211_sub_if_data *sdata;
825 int ret;
826
827 might_sleep();
828
829 if (!sta)
830 return -ENOENT;
831
832 local = sta->local;
833 sdata = sta->sdata;
834
835 lockdep_assert_held(&local->sta_mtx);
836
837 /*
838 * Before removing the station from the driver and
839 * rate control, it might still start new aggregation
840 * sessions -- block that to make sure the tear-down
841 * will be sufficient.
842 */
843 set_sta_flag(sta, WLAN_STA_BLOCK_BA);
844 ieee80211_sta_tear_down_BA_sessions(sta, AGG_STOP_DESTROY_STA);
845
846 ret = sta_info_hash_del(local, sta);
847 if (WARN_ON(ret))
848 return ret;
849
850 list_del_rcu(&sta->list);
851
852 drv_sta_pre_rcu_remove(local, sta->sdata, sta);
853
854 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
855 rcu_access_pointer(sdata->u.vlan.sta) == sta)
856 RCU_INIT_POINTER(sdata->u.vlan.sta, NULL);
857
858 return 0;
859 }
860
__sta_info_destroy_part2(struct sta_info * sta)861 static void __sta_info_destroy_part2(struct sta_info *sta)
862 {
863 struct ieee80211_local *local = sta->local;
864 struct ieee80211_sub_if_data *sdata = sta->sdata;
865 int ret;
866
867 /*
868 * NOTE: This assumes at least synchronize_net() was done
869 * after _part1 and before _part2!
870 */
871
872 might_sleep();
873 lockdep_assert_held(&local->sta_mtx);
874
875 /* now keys can no longer be reached */
876 ieee80211_free_sta_keys(local, sta);
877
878 sta->dead = true;
879
880 local->num_sta--;
881 local->sta_generation++;
882
883 while (sta->sta_state > IEEE80211_STA_NONE) {
884 ret = sta_info_move_state(sta, sta->sta_state - 1);
885 if (ret) {
886 WARN_ON_ONCE(1);
887 break;
888 }
889 }
890
891 if (sta->uploaded) {
892 ret = drv_sta_state(local, sdata, sta, IEEE80211_STA_NONE,
893 IEEE80211_STA_NOTEXIST);
894 WARN_ON_ONCE(ret != 0);
895 }
896
897 sta_dbg(sdata, "Removed STA %pM\n", sta->sta.addr);
898
899 cfg80211_del_sta(sdata->dev, sta->sta.addr, GFP_KERNEL);
900
901 rate_control_remove_sta_debugfs(sta);
902 ieee80211_sta_debugfs_remove(sta);
903 ieee80211_recalc_min_chandef(sdata);
904
905 cleanup_single_sta(sta);
906 }
907
__sta_info_destroy(struct sta_info * sta)908 int __must_check __sta_info_destroy(struct sta_info *sta)
909 {
910 int err = __sta_info_destroy_part1(sta);
911
912 if (err)
913 return err;
914
915 synchronize_net();
916
917 __sta_info_destroy_part2(sta);
918
919 return 0;
920 }
921
sta_info_destroy_addr(struct ieee80211_sub_if_data * sdata,const u8 * addr)922 int sta_info_destroy_addr(struct ieee80211_sub_if_data *sdata, const u8 *addr)
923 {
924 struct sta_info *sta;
925 int ret;
926
927 mutex_lock(&sdata->local->sta_mtx);
928 sta = sta_info_get(sdata, addr);
929 ret = __sta_info_destroy(sta);
930 mutex_unlock(&sdata->local->sta_mtx);
931
932 return ret;
933 }
934
sta_info_destroy_addr_bss(struct ieee80211_sub_if_data * sdata,const u8 * addr)935 int sta_info_destroy_addr_bss(struct ieee80211_sub_if_data *sdata,
936 const u8 *addr)
937 {
938 struct sta_info *sta;
939 int ret;
940
941 mutex_lock(&sdata->local->sta_mtx);
942 sta = sta_info_get_bss(sdata, addr);
943 ret = __sta_info_destroy(sta);
944 mutex_unlock(&sdata->local->sta_mtx);
945
946 return ret;
947 }
948
sta_info_cleanup(unsigned long data)949 static void sta_info_cleanup(unsigned long data)
950 {
951 struct ieee80211_local *local = (struct ieee80211_local *) data;
952 struct sta_info *sta;
953 bool timer_needed = false;
954
955 rcu_read_lock();
956 list_for_each_entry_rcu(sta, &local->sta_list, list)
957 if (sta_info_cleanup_expire_buffered(local, sta))
958 timer_needed = true;
959 rcu_read_unlock();
960
961 if (local->quiescing)
962 return;
963
964 if (!timer_needed)
965 return;
966
967 mod_timer(&local->sta_cleanup,
968 round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL));
969 }
970
sta_info_init(struct ieee80211_local * local)971 void sta_info_init(struct ieee80211_local *local)
972 {
973 spin_lock_init(&local->tim_lock);
974 mutex_init(&local->sta_mtx);
975 INIT_LIST_HEAD(&local->sta_list);
976
977 setup_timer(&local->sta_cleanup, sta_info_cleanup,
978 (unsigned long)local);
979 }
980
sta_info_stop(struct ieee80211_local * local)981 void sta_info_stop(struct ieee80211_local *local)
982 {
983 del_timer_sync(&local->sta_cleanup);
984 }
985
986
__sta_info_flush(struct ieee80211_sub_if_data * sdata,bool vlans)987 int __sta_info_flush(struct ieee80211_sub_if_data *sdata, bool vlans)
988 {
989 struct ieee80211_local *local = sdata->local;
990 struct sta_info *sta, *tmp;
991 LIST_HEAD(free_list);
992 int ret = 0;
993
994 might_sleep();
995
996 WARN_ON(vlans && sdata->vif.type != NL80211_IFTYPE_AP);
997 WARN_ON(vlans && !sdata->bss);
998
999 mutex_lock(&local->sta_mtx);
1000 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1001 if (sdata == sta->sdata ||
1002 (vlans && sdata->bss == sta->sdata->bss)) {
1003 if (!WARN_ON(__sta_info_destroy_part1(sta)))
1004 list_add(&sta->free_list, &free_list);
1005 ret++;
1006 }
1007 }
1008
1009 if (!list_empty(&free_list)) {
1010 synchronize_net();
1011 list_for_each_entry_safe(sta, tmp, &free_list, free_list)
1012 __sta_info_destroy_part2(sta);
1013 }
1014 mutex_unlock(&local->sta_mtx);
1015
1016 return ret;
1017 }
1018
ieee80211_sta_expire(struct ieee80211_sub_if_data * sdata,unsigned long exp_time)1019 void ieee80211_sta_expire(struct ieee80211_sub_if_data *sdata,
1020 unsigned long exp_time)
1021 {
1022 struct ieee80211_local *local = sdata->local;
1023 struct sta_info *sta, *tmp;
1024
1025 mutex_lock(&local->sta_mtx);
1026
1027 list_for_each_entry_safe(sta, tmp, &local->sta_list, list) {
1028 if (sdata != sta->sdata)
1029 continue;
1030
1031 if (time_after(jiffies, sta->last_rx + exp_time)) {
1032 sta_dbg(sta->sdata, "expiring inactive STA %pM\n",
1033 sta->sta.addr);
1034
1035 if (ieee80211_vif_is_mesh(&sdata->vif) &&
1036 test_sta_flag(sta, WLAN_STA_PS_STA))
1037 atomic_dec(&sdata->u.mesh.ps.num_sta_ps);
1038
1039 WARN_ON(__sta_info_destroy(sta));
1040 }
1041 }
1042
1043 mutex_unlock(&local->sta_mtx);
1044 }
1045
ieee80211_find_sta_by_ifaddr(struct ieee80211_hw * hw,const u8 * addr,const u8 * localaddr)1046 struct ieee80211_sta *ieee80211_find_sta_by_ifaddr(struct ieee80211_hw *hw,
1047 const u8 *addr,
1048 const u8 *localaddr)
1049 {
1050 struct sta_info *sta, *nxt;
1051
1052 /*
1053 * Just return a random station if localaddr is NULL
1054 * ... first in list.
1055 */
1056 for_each_sta_info(hw_to_local(hw), addr, sta, nxt) {
1057 if (localaddr &&
1058 !ether_addr_equal(sta->sdata->vif.addr, localaddr))
1059 continue;
1060 if (!sta->uploaded)
1061 return NULL;
1062 return &sta->sta;
1063 }
1064
1065 return NULL;
1066 }
1067 EXPORT_SYMBOL_GPL(ieee80211_find_sta_by_ifaddr);
1068
ieee80211_find_sta(struct ieee80211_vif * vif,const u8 * addr)1069 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_vif *vif,
1070 const u8 *addr)
1071 {
1072 struct sta_info *sta;
1073
1074 if (!vif)
1075 return NULL;
1076
1077 sta = sta_info_get_bss(vif_to_sdata(vif), addr);
1078 if (!sta)
1079 return NULL;
1080
1081 if (!sta->uploaded)
1082 return NULL;
1083
1084 return &sta->sta;
1085 }
1086 EXPORT_SYMBOL(ieee80211_find_sta);
1087
1088 /* powersave support code */
ieee80211_sta_ps_deliver_wakeup(struct sta_info * sta)1089 void ieee80211_sta_ps_deliver_wakeup(struct sta_info *sta)
1090 {
1091 struct ieee80211_sub_if_data *sdata = sta->sdata;
1092 struct ieee80211_local *local = sdata->local;
1093 struct sk_buff_head pending;
1094 int filtered = 0, buffered = 0, ac;
1095 unsigned long flags;
1096 struct ps_data *ps;
1097
1098 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1099 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
1100 u.ap);
1101
1102 if (sdata->vif.type == NL80211_IFTYPE_AP)
1103 ps = &sdata->bss->ps;
1104 else if (ieee80211_vif_is_mesh(&sdata->vif))
1105 ps = &sdata->u.mesh.ps;
1106 else
1107 return;
1108
1109 clear_sta_flag(sta, WLAN_STA_SP);
1110
1111 BUILD_BUG_ON(BITS_TO_LONGS(IEEE80211_NUM_TIDS) > 1);
1112 sta->driver_buffered_tids = 0;
1113
1114 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1115 drv_sta_notify(local, sdata, STA_NOTIFY_AWAKE, &sta->sta);
1116
1117 skb_queue_head_init(&pending);
1118
1119 /* sync with ieee80211_tx_h_unicast_ps_buf */
1120 spin_lock(&sta->ps_lock);
1121 /* Send all buffered frames to the station */
1122 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1123 int count = skb_queue_len(&pending), tmp;
1124
1125 spin_lock_irqsave(&sta->tx_filtered[ac].lock, flags);
1126 skb_queue_splice_tail_init(&sta->tx_filtered[ac], &pending);
1127 spin_unlock_irqrestore(&sta->tx_filtered[ac].lock, flags);
1128 tmp = skb_queue_len(&pending);
1129 filtered += tmp - count;
1130 count = tmp;
1131
1132 spin_lock_irqsave(&sta->ps_tx_buf[ac].lock, flags);
1133 skb_queue_splice_tail_init(&sta->ps_tx_buf[ac], &pending);
1134 spin_unlock_irqrestore(&sta->ps_tx_buf[ac].lock, flags);
1135 tmp = skb_queue_len(&pending);
1136 buffered += tmp - count;
1137 }
1138
1139 ieee80211_add_pending_skbs(local, &pending);
1140
1141 /* now we're no longer in the deliver code */
1142 clear_sta_flag(sta, WLAN_STA_PS_DELIVER);
1143
1144 /* The station might have polled and then woken up before we responded,
1145 * so clear these flags now to avoid them sticking around.
1146 */
1147 clear_sta_flag(sta, WLAN_STA_PSPOLL);
1148 clear_sta_flag(sta, WLAN_STA_UAPSD);
1149 spin_unlock(&sta->ps_lock);
1150
1151 atomic_dec(&ps->num_sta_ps);
1152
1153 /* This station just woke up and isn't aware of our SMPS state */
1154 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1155 !ieee80211_smps_is_restrictive(sta->known_smps_mode,
1156 sdata->smps_mode) &&
1157 sta->known_smps_mode != sdata->bss->req_smps &&
1158 sta_info_tx_streams(sta) != 1) {
1159 ht_dbg(sdata,
1160 "%pM just woke up and MIMO capable - update SMPS\n",
1161 sta->sta.addr);
1162 ieee80211_send_smps_action(sdata, sdata->bss->req_smps,
1163 sta->sta.addr,
1164 sdata->vif.bss_conf.bssid);
1165 }
1166
1167 local->total_ps_buffered -= buffered;
1168
1169 sta_info_recalc_tim(sta);
1170
1171 ps_dbg(sdata,
1172 "STA %pM aid %d sending %d filtered/%d PS frames since STA not sleeping anymore\n",
1173 sta->sta.addr, sta->sta.aid, filtered, buffered);
1174 }
1175
ieee80211_send_null_response(struct ieee80211_sub_if_data * sdata,struct sta_info * sta,int tid,enum ieee80211_frame_release_type reason,bool call_driver)1176 static void ieee80211_send_null_response(struct ieee80211_sub_if_data *sdata,
1177 struct sta_info *sta, int tid,
1178 enum ieee80211_frame_release_type reason,
1179 bool call_driver)
1180 {
1181 struct ieee80211_local *local = sdata->local;
1182 struct ieee80211_qos_hdr *nullfunc;
1183 struct sk_buff *skb;
1184 int size = sizeof(*nullfunc);
1185 __le16 fc;
1186 bool qos = sta->sta.wme;
1187 struct ieee80211_tx_info *info;
1188 struct ieee80211_chanctx_conf *chanctx_conf;
1189
1190 if (qos) {
1191 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1192 IEEE80211_STYPE_QOS_NULLFUNC |
1193 IEEE80211_FCTL_FROMDS);
1194 } else {
1195 size -= 2;
1196 fc = cpu_to_le16(IEEE80211_FTYPE_DATA |
1197 IEEE80211_STYPE_NULLFUNC |
1198 IEEE80211_FCTL_FROMDS);
1199 }
1200
1201 skb = dev_alloc_skb(local->hw.extra_tx_headroom + size);
1202 if (!skb)
1203 return;
1204
1205 skb_reserve(skb, local->hw.extra_tx_headroom);
1206
1207 nullfunc = (void *) skb_put(skb, size);
1208 nullfunc->frame_control = fc;
1209 nullfunc->duration_id = 0;
1210 memcpy(nullfunc->addr1, sta->sta.addr, ETH_ALEN);
1211 memcpy(nullfunc->addr2, sdata->vif.addr, ETH_ALEN);
1212 memcpy(nullfunc->addr3, sdata->vif.addr, ETH_ALEN);
1213 nullfunc->seq_ctrl = 0;
1214
1215 skb->priority = tid;
1216 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]);
1217 if (qos) {
1218 nullfunc->qos_ctrl = cpu_to_le16(tid);
1219
1220 if (reason == IEEE80211_FRAME_RELEASE_UAPSD)
1221 nullfunc->qos_ctrl |=
1222 cpu_to_le16(IEEE80211_QOS_CTL_EOSP);
1223 }
1224
1225 info = IEEE80211_SKB_CB(skb);
1226
1227 /*
1228 * Tell TX path to send this frame even though the
1229 * STA may still remain is PS mode after this frame
1230 * exchange. Also set EOSP to indicate this packet
1231 * ends the poll/service period.
1232 */
1233 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1234 IEEE80211_TX_CTL_PS_RESPONSE |
1235 IEEE80211_TX_STATUS_EOSP |
1236 IEEE80211_TX_CTL_REQ_TX_STATUS;
1237
1238 if (call_driver)
1239 drv_allow_buffered_frames(local, sta, BIT(tid), 1,
1240 reason, false);
1241
1242 skb->dev = sdata->dev;
1243
1244 rcu_read_lock();
1245 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1246 if (WARN_ON(!chanctx_conf)) {
1247 rcu_read_unlock();
1248 kfree_skb(skb);
1249 return;
1250 }
1251
1252 ieee80211_xmit(sdata, skb, chanctx_conf->def.chan->band);
1253 rcu_read_unlock();
1254 }
1255
find_highest_prio_tid(unsigned long tids)1256 static int find_highest_prio_tid(unsigned long tids)
1257 {
1258 /* lower 3 TIDs aren't ordered perfectly */
1259 if (tids & 0xF8)
1260 return fls(tids) - 1;
1261 /* TID 0 is BE just like TID 3 */
1262 if (tids & BIT(0))
1263 return 0;
1264 return fls(tids) - 1;
1265 }
1266
1267 static void
ieee80211_sta_ps_deliver_response(struct sta_info * sta,int n_frames,u8 ignored_acs,enum ieee80211_frame_release_type reason)1268 ieee80211_sta_ps_deliver_response(struct sta_info *sta,
1269 int n_frames, u8 ignored_acs,
1270 enum ieee80211_frame_release_type reason)
1271 {
1272 struct ieee80211_sub_if_data *sdata = sta->sdata;
1273 struct ieee80211_local *local = sdata->local;
1274 bool more_data = false;
1275 int ac;
1276 unsigned long driver_release_tids = 0;
1277 struct sk_buff_head frames;
1278
1279 /* Service or PS-Poll period starts */
1280 set_sta_flag(sta, WLAN_STA_SP);
1281
1282 __skb_queue_head_init(&frames);
1283
1284 /* Get response frame(s) and more data bit for the last one. */
1285 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1286 unsigned long tids;
1287
1288 if (ignored_acs & BIT(ac))
1289 continue;
1290
1291 tids = ieee80211_tids_for_ac(ac);
1292
1293 /* if we already have frames from software, then we can't also
1294 * release from hardware queues
1295 */
1296 if (skb_queue_empty(&frames))
1297 driver_release_tids |= sta->driver_buffered_tids & tids;
1298
1299 if (driver_release_tids) {
1300 /* If the driver has data on more than one TID then
1301 * certainly there's more data if we release just a
1302 * single frame now (from a single TID). This will
1303 * only happen for PS-Poll.
1304 */
1305 if (reason == IEEE80211_FRAME_RELEASE_PSPOLL &&
1306 hweight16(driver_release_tids) > 1) {
1307 more_data = true;
1308 driver_release_tids =
1309 BIT(find_highest_prio_tid(
1310 driver_release_tids));
1311 break;
1312 }
1313 } else {
1314 struct sk_buff *skb;
1315
1316 while (n_frames > 0) {
1317 skb = skb_dequeue(&sta->tx_filtered[ac]);
1318 if (!skb) {
1319 skb = skb_dequeue(
1320 &sta->ps_tx_buf[ac]);
1321 if (skb)
1322 local->total_ps_buffered--;
1323 }
1324 if (!skb)
1325 break;
1326 n_frames--;
1327 __skb_queue_tail(&frames, skb);
1328 }
1329 }
1330
1331 /* If we have more frames buffered on this AC, then set the
1332 * more-data bit and abort the loop since we can't send more
1333 * data from other ACs before the buffered frames from this.
1334 */
1335 if (!skb_queue_empty(&sta->tx_filtered[ac]) ||
1336 !skb_queue_empty(&sta->ps_tx_buf[ac])) {
1337 more_data = true;
1338 break;
1339 }
1340 }
1341
1342 if (skb_queue_empty(&frames) && !driver_release_tids) {
1343 int tid;
1344
1345 /*
1346 * For PS-Poll, this can only happen due to a race condition
1347 * when we set the TIM bit and the station notices it, but
1348 * before it can poll for the frame we expire it.
1349 *
1350 * For uAPSD, this is said in the standard (11.2.1.5 h):
1351 * At each unscheduled SP for a non-AP STA, the AP shall
1352 * attempt to transmit at least one MSDU or MMPDU, but no
1353 * more than the value specified in the Max SP Length field
1354 * in the QoS Capability element from delivery-enabled ACs,
1355 * that are destined for the non-AP STA.
1356 *
1357 * Since we have no other MSDU/MMPDU, transmit a QoS null frame.
1358 */
1359
1360 /* This will evaluate to 1, 3, 5 or 7. */
1361 tid = 7 - ((ffs(~ignored_acs) - 1) << 1);
1362
1363 ieee80211_send_null_response(sdata, sta, tid, reason, true);
1364 } else if (!driver_release_tids) {
1365 struct sk_buff_head pending;
1366 struct sk_buff *skb;
1367 int num = 0;
1368 u16 tids = 0;
1369 bool need_null = false;
1370
1371 skb_queue_head_init(&pending);
1372
1373 while ((skb = __skb_dequeue(&frames))) {
1374 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1375 struct ieee80211_hdr *hdr = (void *) skb->data;
1376 u8 *qoshdr = NULL;
1377
1378 num++;
1379
1380 /*
1381 * Tell TX path to send this frame even though the
1382 * STA may still remain is PS mode after this frame
1383 * exchange.
1384 */
1385 info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER |
1386 IEEE80211_TX_CTL_PS_RESPONSE;
1387
1388 /*
1389 * Use MoreData flag to indicate whether there are
1390 * more buffered frames for this STA
1391 */
1392 if (more_data || !skb_queue_empty(&frames))
1393 hdr->frame_control |=
1394 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1395 else
1396 hdr->frame_control &=
1397 cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1398
1399 if (ieee80211_is_data_qos(hdr->frame_control) ||
1400 ieee80211_is_qos_nullfunc(hdr->frame_control))
1401 qoshdr = ieee80211_get_qos_ctl(hdr);
1402
1403 tids |= BIT(skb->priority);
1404
1405 __skb_queue_tail(&pending, skb);
1406
1407 /* end service period after last frame or add one */
1408 if (!skb_queue_empty(&frames))
1409 continue;
1410
1411 if (reason != IEEE80211_FRAME_RELEASE_UAPSD) {
1412 /* for PS-Poll, there's only one frame */
1413 info->flags |= IEEE80211_TX_STATUS_EOSP |
1414 IEEE80211_TX_CTL_REQ_TX_STATUS;
1415 break;
1416 }
1417
1418 /* For uAPSD, things are a bit more complicated. If the
1419 * last frame has a QoS header (i.e. is a QoS-data or
1420 * QoS-nulldata frame) then just set the EOSP bit there
1421 * and be done.
1422 * If the frame doesn't have a QoS header (which means
1423 * it should be a bufferable MMPDU) then we can't set
1424 * the EOSP bit in the QoS header; add a QoS-nulldata
1425 * frame to the list to send it after the MMPDU.
1426 *
1427 * Note that this code is only in the mac80211-release
1428 * code path, we assume that the driver will not buffer
1429 * anything but QoS-data frames, or if it does, will
1430 * create the QoS-nulldata frame by itself if needed.
1431 *
1432 * Cf. 802.11-2012 10.2.1.10 (c).
1433 */
1434 if (qoshdr) {
1435 *qoshdr |= IEEE80211_QOS_CTL_EOSP;
1436
1437 info->flags |= IEEE80211_TX_STATUS_EOSP |
1438 IEEE80211_TX_CTL_REQ_TX_STATUS;
1439 } else {
1440 /* The standard isn't completely clear on this
1441 * as it says the more-data bit should be set
1442 * if there are more BUs. The QoS-Null frame
1443 * we're about to send isn't buffered yet, we
1444 * only create it below, but let's pretend it
1445 * was buffered just in case some clients only
1446 * expect more-data=0 when eosp=1.
1447 */
1448 hdr->frame_control |=
1449 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1450 need_null = true;
1451 num++;
1452 }
1453 break;
1454 }
1455
1456 drv_allow_buffered_frames(local, sta, tids, num,
1457 reason, more_data);
1458
1459 ieee80211_add_pending_skbs(local, &pending);
1460
1461 if (need_null)
1462 ieee80211_send_null_response(
1463 sdata, sta, find_highest_prio_tid(tids),
1464 reason, false);
1465
1466 sta_info_recalc_tim(sta);
1467 } else {
1468 /*
1469 * We need to release a frame that is buffered somewhere in the
1470 * driver ... it'll have to handle that.
1471 * Note that the driver also has to check the number of frames
1472 * on the TIDs we're releasing from - if there are more than
1473 * n_frames it has to set the more-data bit (if we didn't ask
1474 * it to set it anyway due to other buffered frames); if there
1475 * are fewer than n_frames it has to make sure to adjust that
1476 * to allow the service period to end properly.
1477 */
1478 drv_release_buffered_frames(local, sta, driver_release_tids,
1479 n_frames, reason, more_data);
1480
1481 /*
1482 * Note that we don't recalculate the TIM bit here as it would
1483 * most likely have no effect at all unless the driver told us
1484 * that the TID(s) became empty before returning here from the
1485 * release function.
1486 * Either way, however, when the driver tells us that the TID(s)
1487 * became empty we'll do the TIM recalculation.
1488 */
1489 }
1490 }
1491
ieee80211_sta_ps_deliver_poll_response(struct sta_info * sta)1492 void ieee80211_sta_ps_deliver_poll_response(struct sta_info *sta)
1493 {
1494 u8 ignore_for_response = sta->sta.uapsd_queues;
1495
1496 /*
1497 * If all ACs are delivery-enabled then we should reply
1498 * from any of them, if only some are enabled we reply
1499 * only from the non-enabled ones.
1500 */
1501 if (ignore_for_response == BIT(IEEE80211_NUM_ACS) - 1)
1502 ignore_for_response = 0;
1503
1504 ieee80211_sta_ps_deliver_response(sta, 1, ignore_for_response,
1505 IEEE80211_FRAME_RELEASE_PSPOLL);
1506 }
1507
ieee80211_sta_ps_deliver_uapsd(struct sta_info * sta)1508 void ieee80211_sta_ps_deliver_uapsd(struct sta_info *sta)
1509 {
1510 int n_frames = sta->sta.max_sp;
1511 u8 delivery_enabled = sta->sta.uapsd_queues;
1512
1513 /*
1514 * If we ever grow support for TSPEC this might happen if
1515 * the TSPEC update from hostapd comes in between a trigger
1516 * frame setting WLAN_STA_UAPSD in the RX path and this
1517 * actually getting called.
1518 */
1519 if (!delivery_enabled)
1520 return;
1521
1522 switch (sta->sta.max_sp) {
1523 case 1:
1524 n_frames = 2;
1525 break;
1526 case 2:
1527 n_frames = 4;
1528 break;
1529 case 3:
1530 n_frames = 6;
1531 break;
1532 case 0:
1533 /* XXX: what is a good value? */
1534 n_frames = 8;
1535 break;
1536 }
1537
1538 ieee80211_sta_ps_deliver_response(sta, n_frames, ~delivery_enabled,
1539 IEEE80211_FRAME_RELEASE_UAPSD);
1540 }
1541
ieee80211_sta_block_awake(struct ieee80211_hw * hw,struct ieee80211_sta * pubsta,bool block)1542 void ieee80211_sta_block_awake(struct ieee80211_hw *hw,
1543 struct ieee80211_sta *pubsta, bool block)
1544 {
1545 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1546
1547 trace_api_sta_block_awake(sta->local, pubsta, block);
1548
1549 if (block) {
1550 set_sta_flag(sta, WLAN_STA_PS_DRIVER);
1551 return;
1552 }
1553
1554 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1555 return;
1556
1557 if (!test_sta_flag(sta, WLAN_STA_PS_STA)) {
1558 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1559 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1560 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1561 } else if (test_sta_flag(sta, WLAN_STA_PSPOLL) ||
1562 test_sta_flag(sta, WLAN_STA_UAPSD)) {
1563 /* must be asleep in this case */
1564 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1565 ieee80211_queue_work(hw, &sta->drv_deliver_wk);
1566 } else {
1567 clear_sta_flag(sta, WLAN_STA_PS_DRIVER);
1568 }
1569 }
1570 EXPORT_SYMBOL(ieee80211_sta_block_awake);
1571
ieee80211_sta_eosp(struct ieee80211_sta * pubsta)1572 void ieee80211_sta_eosp(struct ieee80211_sta *pubsta)
1573 {
1574 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1575 struct ieee80211_local *local = sta->local;
1576
1577 trace_api_eosp(local, pubsta);
1578
1579 clear_sta_flag(sta, WLAN_STA_SP);
1580 }
1581 EXPORT_SYMBOL(ieee80211_sta_eosp);
1582
ieee80211_sta_set_buffered(struct ieee80211_sta * pubsta,u8 tid,bool buffered)1583 void ieee80211_sta_set_buffered(struct ieee80211_sta *pubsta,
1584 u8 tid, bool buffered)
1585 {
1586 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1587
1588 if (WARN_ON(tid >= IEEE80211_NUM_TIDS))
1589 return;
1590
1591 trace_api_sta_set_buffered(sta->local, pubsta, tid, buffered);
1592
1593 if (buffered)
1594 set_bit(tid, &sta->driver_buffered_tids);
1595 else
1596 clear_bit(tid, &sta->driver_buffered_tids);
1597
1598 sta_info_recalc_tim(sta);
1599 }
1600 EXPORT_SYMBOL(ieee80211_sta_set_buffered);
1601
sta_info_move_state(struct sta_info * sta,enum ieee80211_sta_state new_state)1602 int sta_info_move_state(struct sta_info *sta,
1603 enum ieee80211_sta_state new_state)
1604 {
1605 might_sleep();
1606
1607 if (sta->sta_state == new_state)
1608 return 0;
1609
1610 /* check allowed transitions first */
1611
1612 switch (new_state) {
1613 case IEEE80211_STA_NONE:
1614 if (sta->sta_state != IEEE80211_STA_AUTH)
1615 return -EINVAL;
1616 break;
1617 case IEEE80211_STA_AUTH:
1618 if (sta->sta_state != IEEE80211_STA_NONE &&
1619 sta->sta_state != IEEE80211_STA_ASSOC)
1620 return -EINVAL;
1621 break;
1622 case IEEE80211_STA_ASSOC:
1623 if (sta->sta_state != IEEE80211_STA_AUTH &&
1624 sta->sta_state != IEEE80211_STA_AUTHORIZED)
1625 return -EINVAL;
1626 break;
1627 case IEEE80211_STA_AUTHORIZED:
1628 if (sta->sta_state != IEEE80211_STA_ASSOC)
1629 return -EINVAL;
1630 break;
1631 default:
1632 WARN(1, "invalid state %d", new_state);
1633 return -EINVAL;
1634 }
1635
1636 sta_dbg(sta->sdata, "moving STA %pM to state %d\n",
1637 sta->sta.addr, new_state);
1638
1639 /*
1640 * notify the driver before the actual changes so it can
1641 * fail the transition
1642 */
1643 if (test_sta_flag(sta, WLAN_STA_INSERTED)) {
1644 int err = drv_sta_state(sta->local, sta->sdata, sta,
1645 sta->sta_state, new_state);
1646 if (err)
1647 return err;
1648 }
1649
1650 /* reflect the change in all state variables */
1651
1652 switch (new_state) {
1653 case IEEE80211_STA_NONE:
1654 if (sta->sta_state == IEEE80211_STA_AUTH)
1655 clear_bit(WLAN_STA_AUTH, &sta->_flags);
1656 break;
1657 case IEEE80211_STA_AUTH:
1658 if (sta->sta_state == IEEE80211_STA_NONE)
1659 set_bit(WLAN_STA_AUTH, &sta->_flags);
1660 else if (sta->sta_state == IEEE80211_STA_ASSOC)
1661 clear_bit(WLAN_STA_ASSOC, &sta->_flags);
1662 break;
1663 case IEEE80211_STA_ASSOC:
1664 if (sta->sta_state == IEEE80211_STA_AUTH) {
1665 set_bit(WLAN_STA_ASSOC, &sta->_flags);
1666 } else if (sta->sta_state == IEEE80211_STA_AUTHORIZED) {
1667 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1668 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1669 !sta->sdata->u.vlan.sta))
1670 atomic_dec(&sta->sdata->bss->num_mcast_sta);
1671 clear_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1672 }
1673 break;
1674 case IEEE80211_STA_AUTHORIZED:
1675 if (sta->sta_state == IEEE80211_STA_ASSOC) {
1676 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1677 (sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1678 !sta->sdata->u.vlan.sta))
1679 atomic_inc(&sta->sdata->bss->num_mcast_sta);
1680 set_bit(WLAN_STA_AUTHORIZED, &sta->_flags);
1681 }
1682 break;
1683 default:
1684 break;
1685 }
1686
1687 sta->sta_state = new_state;
1688
1689 return 0;
1690 }
1691
sta_info_tx_streams(struct sta_info * sta)1692 u8 sta_info_tx_streams(struct sta_info *sta)
1693 {
1694 struct ieee80211_sta_ht_cap *ht_cap = &sta->sta.ht_cap;
1695 u8 rx_streams;
1696
1697 if (!sta->sta.ht_cap.ht_supported)
1698 return 1;
1699
1700 if (sta->sta.vht_cap.vht_supported) {
1701 int i;
1702 u16 tx_mcs_map =
1703 le16_to_cpu(sta->sta.vht_cap.vht_mcs.tx_mcs_map);
1704
1705 for (i = 7; i >= 0; i--)
1706 if ((tx_mcs_map & (0x3 << (i * 2))) !=
1707 IEEE80211_VHT_MCS_NOT_SUPPORTED)
1708 return i + 1;
1709 }
1710
1711 if (ht_cap->mcs.rx_mask[3])
1712 rx_streams = 4;
1713 else if (ht_cap->mcs.rx_mask[2])
1714 rx_streams = 3;
1715 else if (ht_cap->mcs.rx_mask[1])
1716 rx_streams = 2;
1717 else
1718 rx_streams = 1;
1719
1720 if (!(ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_RX_DIFF))
1721 return rx_streams;
1722
1723 return ((ht_cap->mcs.tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
1724 >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT) + 1;
1725 }
1726
sta_set_sinfo(struct sta_info * sta,struct station_info * sinfo)1727 void sta_set_sinfo(struct sta_info *sta, struct station_info *sinfo)
1728 {
1729 struct ieee80211_sub_if_data *sdata = sta->sdata;
1730 struct ieee80211_local *local = sdata->local;
1731 struct rate_control_ref *ref = NULL;
1732 struct timespec uptime;
1733 u64 packets = 0;
1734 u32 thr = 0;
1735 int i, ac;
1736
1737 if (test_sta_flag(sta, WLAN_STA_RATE_CONTROL))
1738 ref = local->rate_ctrl;
1739
1740 sinfo->generation = sdata->local->sta_generation;
1741
1742 sinfo->filled = STATION_INFO_INACTIVE_TIME |
1743 STATION_INFO_RX_BYTES64 |
1744 STATION_INFO_TX_BYTES64 |
1745 STATION_INFO_RX_PACKETS |
1746 STATION_INFO_TX_PACKETS |
1747 STATION_INFO_TX_RETRIES |
1748 STATION_INFO_TX_FAILED |
1749 STATION_INFO_TX_BITRATE |
1750 STATION_INFO_RX_BITRATE |
1751 STATION_INFO_RX_DROP_MISC |
1752 STATION_INFO_BSS_PARAM |
1753 STATION_INFO_CONNECTED_TIME |
1754 STATION_INFO_STA_FLAGS |
1755 STATION_INFO_BEACON_LOSS_COUNT;
1756
1757 ktime_get_ts(&uptime);
1758 sinfo->connected_time = uptime.tv_sec - sta->last_connected;
1759
1760 sinfo->inactive_time = jiffies_to_msecs(jiffies - sta->last_rx);
1761 sinfo->tx_bytes = 0;
1762 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1763 sinfo->tx_bytes += sta->tx_bytes[ac];
1764 packets += sta->tx_packets[ac];
1765 }
1766 sinfo->tx_packets = packets;
1767 sinfo->rx_bytes = sta->rx_bytes;
1768 sinfo->rx_packets = sta->rx_packets;
1769 sinfo->tx_retries = sta->tx_retry_count;
1770 sinfo->tx_failed = sta->tx_retry_failed;
1771 sinfo->rx_dropped_misc = sta->rx_dropped;
1772 sinfo->beacon_loss_count = sta->beacon_loss_count;
1773
1774 if ((sta->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) ||
1775 (sta->local->hw.flags & IEEE80211_HW_SIGNAL_UNSPEC)) {
1776 sinfo->filled |= STATION_INFO_SIGNAL | STATION_INFO_SIGNAL_AVG;
1777 if (!local->ops->get_rssi ||
1778 drv_get_rssi(local, sdata, &sta->sta, &sinfo->signal))
1779 sinfo->signal = (s8)sta->last_signal;
1780 sinfo->signal_avg = (s8) -ewma_read(&sta->avg_signal);
1781 }
1782 if (sta->chains) {
1783 sinfo->filled |= STATION_INFO_CHAIN_SIGNAL |
1784 STATION_INFO_CHAIN_SIGNAL_AVG;
1785
1786 sinfo->chains = sta->chains;
1787 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
1788 sinfo->chain_signal[i] = sta->chain_signal_last[i];
1789 sinfo->chain_signal_avg[i] =
1790 (s8) -ewma_read(&sta->chain_signal_avg[i]);
1791 }
1792 }
1793
1794 sta_set_rate_info_tx(sta, &sta->last_tx_rate, &sinfo->txrate);
1795 sta_set_rate_info_rx(sta, &sinfo->rxrate);
1796
1797 if (ieee80211_vif_is_mesh(&sdata->vif)) {
1798 #ifdef CONFIG_MAC80211_MESH
1799 sinfo->filled |= STATION_INFO_LLID |
1800 STATION_INFO_PLID |
1801 STATION_INFO_PLINK_STATE |
1802 STATION_INFO_LOCAL_PM |
1803 STATION_INFO_PEER_PM |
1804 STATION_INFO_NONPEER_PM;
1805
1806 sinfo->llid = sta->llid;
1807 sinfo->plid = sta->plid;
1808 sinfo->plink_state = sta->plink_state;
1809 if (test_sta_flag(sta, WLAN_STA_TOFFSET_KNOWN)) {
1810 sinfo->filled |= STATION_INFO_T_OFFSET;
1811 sinfo->t_offset = sta->t_offset;
1812 }
1813 sinfo->local_pm = sta->local_pm;
1814 sinfo->peer_pm = sta->peer_pm;
1815 sinfo->nonpeer_pm = sta->nonpeer_pm;
1816 #endif
1817 }
1818
1819 sinfo->bss_param.flags = 0;
1820 if (sdata->vif.bss_conf.use_cts_prot)
1821 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_CTS_PROT;
1822 if (sdata->vif.bss_conf.use_short_preamble)
1823 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_PREAMBLE;
1824 if (sdata->vif.bss_conf.use_short_slot)
1825 sinfo->bss_param.flags |= BSS_PARAM_FLAGS_SHORT_SLOT_TIME;
1826 sinfo->bss_param.dtim_period = sdata->vif.bss_conf.dtim_period;
1827 sinfo->bss_param.beacon_interval = sdata->vif.bss_conf.beacon_int;
1828
1829 sinfo->sta_flags.set = 0;
1830 sinfo->sta_flags.mask = BIT(NL80211_STA_FLAG_AUTHORIZED) |
1831 BIT(NL80211_STA_FLAG_SHORT_PREAMBLE) |
1832 BIT(NL80211_STA_FLAG_WME) |
1833 BIT(NL80211_STA_FLAG_MFP) |
1834 BIT(NL80211_STA_FLAG_AUTHENTICATED) |
1835 BIT(NL80211_STA_FLAG_ASSOCIATED) |
1836 BIT(NL80211_STA_FLAG_TDLS_PEER);
1837 if (test_sta_flag(sta, WLAN_STA_AUTHORIZED))
1838 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHORIZED);
1839 if (test_sta_flag(sta, WLAN_STA_SHORT_PREAMBLE))
1840 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_SHORT_PREAMBLE);
1841 if (sta->sta.wme)
1842 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_WME);
1843 if (test_sta_flag(sta, WLAN_STA_MFP))
1844 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_MFP);
1845 if (test_sta_flag(sta, WLAN_STA_AUTH))
1846 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_AUTHENTICATED);
1847 if (test_sta_flag(sta, WLAN_STA_ASSOC))
1848 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_ASSOCIATED);
1849 if (test_sta_flag(sta, WLAN_STA_TDLS_PEER))
1850 sinfo->sta_flags.set |= BIT(NL80211_STA_FLAG_TDLS_PEER);
1851
1852 /* check if the driver has a SW RC implementation */
1853 if (ref && ref->ops->get_expected_throughput)
1854 thr = ref->ops->get_expected_throughput(sta->rate_ctrl_priv);
1855 else
1856 thr = drv_get_expected_throughput(local, &sta->sta);
1857
1858 if (thr != 0) {
1859 sinfo->filled |= STATION_INFO_EXPECTED_THROUGHPUT;
1860 sinfo->expected_throughput = thr;
1861 }
1862 }
1863