• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Implement CPU time clocks for the POSIX clock interface.
3  */
4 
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15 
16 /*
17  * Called after updating RLIMIT_CPU to run cpu timer and update
18  * tsk->signal->cputime_expires expiration cache if necessary. Needs
19  * siglock protection since other code may update expiration cache as
20  * well.
21  */
update_rlimit_cpu(struct task_struct * task,unsigned long rlim_new)22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
23 {
24 	cputime_t cputime = secs_to_cputime(rlim_new);
25 
26 	spin_lock_irq(&task->sighand->siglock);
27 	set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28 	spin_unlock_irq(&task->sighand->siglock);
29 }
30 
check_clock(const clockid_t which_clock)31 static int check_clock(const clockid_t which_clock)
32 {
33 	int error = 0;
34 	struct task_struct *p;
35 	const pid_t pid = CPUCLOCK_PID(which_clock);
36 
37 	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38 		return -EINVAL;
39 
40 	if (pid == 0)
41 		return 0;
42 
43 	rcu_read_lock();
44 	p = find_task_by_vpid(pid);
45 	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46 		   same_thread_group(p, current) : has_group_leader_pid(p))) {
47 		error = -EINVAL;
48 	}
49 	rcu_read_unlock();
50 
51 	return error;
52 }
53 
54 static inline unsigned long long
timespec_to_sample(const clockid_t which_clock,const struct timespec * tp)55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
56 {
57 	unsigned long long ret;
58 
59 	ret = 0;		/* high half always zero when .cpu used */
60 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
61 		ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
62 	} else {
63 		ret = cputime_to_expires(timespec_to_cputime(tp));
64 	}
65 	return ret;
66 }
67 
sample_to_timespec(const clockid_t which_clock,unsigned long long expires,struct timespec * tp)68 static void sample_to_timespec(const clockid_t which_clock,
69 			       unsigned long long expires,
70 			       struct timespec *tp)
71 {
72 	if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
73 		*tp = ns_to_timespec(expires);
74 	else
75 		cputime_to_timespec((__force cputime_t)expires, tp);
76 }
77 
78 /*
79  * Update expiry time from increment, and increase overrun count,
80  * given the current clock sample.
81  */
bump_cpu_timer(struct k_itimer * timer,unsigned long long now)82 static void bump_cpu_timer(struct k_itimer *timer,
83 			   unsigned long long now)
84 {
85 	int i;
86 	unsigned long long delta, incr;
87 
88 	if (timer->it.cpu.incr == 0)
89 		return;
90 
91 	if (now < timer->it.cpu.expires)
92 		return;
93 
94 	incr = timer->it.cpu.incr;
95 	delta = now + incr - timer->it.cpu.expires;
96 
97 	/* Don't use (incr*2 < delta), incr*2 might overflow. */
98 	for (i = 0; incr < delta - incr; i++)
99 		incr = incr << 1;
100 
101 	for (; i >= 0; incr >>= 1, i--) {
102 		if (delta < incr)
103 			continue;
104 
105 		timer->it.cpu.expires += incr;
106 		timer->it_overrun += 1 << i;
107 		delta -= incr;
108 	}
109 }
110 
111 /**
112  * task_cputime_zero - Check a task_cputime struct for all zero fields.
113  *
114  * @cputime:	The struct to compare.
115  *
116  * Checks @cputime to see if all fields are zero.  Returns true if all fields
117  * are zero, false if any field is nonzero.
118  */
task_cputime_zero(const struct task_cputime * cputime)119 static inline int task_cputime_zero(const struct task_cputime *cputime)
120 {
121 	if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
122 		return 1;
123 	return 0;
124 }
125 
prof_ticks(struct task_struct * p)126 static inline unsigned long long prof_ticks(struct task_struct *p)
127 {
128 	cputime_t utime, stime;
129 
130 	task_cputime(p, &utime, &stime);
131 
132 	return cputime_to_expires(utime + stime);
133 }
virt_ticks(struct task_struct * p)134 static inline unsigned long long virt_ticks(struct task_struct *p)
135 {
136 	cputime_t utime;
137 
138 	task_cputime(p, &utime, NULL);
139 
140 	return cputime_to_expires(utime);
141 }
142 
143 static int
posix_cpu_clock_getres(const clockid_t which_clock,struct timespec * tp)144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
145 {
146 	int error = check_clock(which_clock);
147 	if (!error) {
148 		tp->tv_sec = 0;
149 		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
150 		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
151 			/*
152 			 * If sched_clock is using a cycle counter, we
153 			 * don't have any idea of its true resolution
154 			 * exported, but it is much more than 1s/HZ.
155 			 */
156 			tp->tv_nsec = 1;
157 		}
158 	}
159 	return error;
160 }
161 
162 static int
posix_cpu_clock_set(const clockid_t which_clock,const struct timespec * tp)163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
164 {
165 	/*
166 	 * You can never reset a CPU clock, but we check for other errors
167 	 * in the call before failing with EPERM.
168 	 */
169 	int error = check_clock(which_clock);
170 	if (error == 0) {
171 		error = -EPERM;
172 	}
173 	return error;
174 }
175 
176 
177 /*
178  * Sample a per-thread clock for the given task.
179  */
cpu_clock_sample(const clockid_t which_clock,struct task_struct * p,unsigned long long * sample)180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
181 			    unsigned long long *sample)
182 {
183 	switch (CPUCLOCK_WHICH(which_clock)) {
184 	default:
185 		return -EINVAL;
186 	case CPUCLOCK_PROF:
187 		*sample = prof_ticks(p);
188 		break;
189 	case CPUCLOCK_VIRT:
190 		*sample = virt_ticks(p);
191 		break;
192 	case CPUCLOCK_SCHED:
193 		*sample = task_sched_runtime(p);
194 		break;
195 	}
196 	return 0;
197 }
198 
update_gt_cputime(struct task_cputime * a,struct task_cputime * b)199 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
200 {
201 	if (b->utime > a->utime)
202 		a->utime = b->utime;
203 
204 	if (b->stime > a->stime)
205 		a->stime = b->stime;
206 
207 	if (b->sum_exec_runtime > a->sum_exec_runtime)
208 		a->sum_exec_runtime = b->sum_exec_runtime;
209 }
210 
thread_group_cputimer(struct task_struct * tsk,struct task_cputime * times)211 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
212 {
213 	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
214 	struct task_cputime sum;
215 	unsigned long flags;
216 
217 	if (!cputimer->running) {
218 		/*
219 		 * The POSIX timer interface allows for absolute time expiry
220 		 * values through the TIMER_ABSTIME flag, therefore we have
221 		 * to synchronize the timer to the clock every time we start
222 		 * it.
223 		 */
224 		thread_group_cputime(tsk, &sum);
225 		raw_spin_lock_irqsave(&cputimer->lock, flags);
226 		cputimer->running = 1;
227 		update_gt_cputime(&cputimer->cputime, &sum);
228 	} else
229 		raw_spin_lock_irqsave(&cputimer->lock, flags);
230 	*times = cputimer->cputime;
231 	raw_spin_unlock_irqrestore(&cputimer->lock, flags);
232 }
233 
234 /*
235  * Sample a process (thread group) clock for the given group_leader task.
236  * Must be called with task sighand lock held for safe while_each_thread()
237  * traversal.
238  */
cpu_clock_sample_group(const clockid_t which_clock,struct task_struct * p,unsigned long long * sample)239 static int cpu_clock_sample_group(const clockid_t which_clock,
240 				  struct task_struct *p,
241 				  unsigned long long *sample)
242 {
243 	struct task_cputime cputime;
244 
245 	switch (CPUCLOCK_WHICH(which_clock)) {
246 	default:
247 		return -EINVAL;
248 	case CPUCLOCK_PROF:
249 		thread_group_cputime(p, &cputime);
250 		*sample = cputime_to_expires(cputime.utime + cputime.stime);
251 		break;
252 	case CPUCLOCK_VIRT:
253 		thread_group_cputime(p, &cputime);
254 		*sample = cputime_to_expires(cputime.utime);
255 		break;
256 	case CPUCLOCK_SCHED:
257 		thread_group_cputime(p, &cputime);
258 		*sample = cputime.sum_exec_runtime;
259 		break;
260 	}
261 	return 0;
262 }
263 
posix_cpu_clock_get_task(struct task_struct * tsk,const clockid_t which_clock,struct timespec * tp)264 static int posix_cpu_clock_get_task(struct task_struct *tsk,
265 				    const clockid_t which_clock,
266 				    struct timespec *tp)
267 {
268 	int err = -EINVAL;
269 	unsigned long long rtn;
270 
271 	if (CPUCLOCK_PERTHREAD(which_clock)) {
272 		if (same_thread_group(tsk, current))
273 			err = cpu_clock_sample(which_clock, tsk, &rtn);
274 	} else {
275 		if (tsk == current || thread_group_leader(tsk))
276 			err = cpu_clock_sample_group(which_clock, tsk, &rtn);
277 	}
278 
279 	if (!err)
280 		sample_to_timespec(which_clock, rtn, tp);
281 
282 	return err;
283 }
284 
285 
posix_cpu_clock_get(const clockid_t which_clock,struct timespec * tp)286 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
287 {
288 	const pid_t pid = CPUCLOCK_PID(which_clock);
289 	int err = -EINVAL;
290 
291 	if (pid == 0) {
292 		/*
293 		 * Special case constant value for our own clocks.
294 		 * We don't have to do any lookup to find ourselves.
295 		 */
296 		err = posix_cpu_clock_get_task(current, which_clock, tp);
297 	} else {
298 		/*
299 		 * Find the given PID, and validate that the caller
300 		 * should be able to see it.
301 		 */
302 		struct task_struct *p;
303 		rcu_read_lock();
304 		p = find_task_by_vpid(pid);
305 		if (p)
306 			err = posix_cpu_clock_get_task(p, which_clock, tp);
307 		rcu_read_unlock();
308 	}
309 
310 	return err;
311 }
312 
313 
314 /*
315  * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
316  * This is called from sys_timer_create() and do_cpu_nanosleep() with the
317  * new timer already all-zeros initialized.
318  */
posix_cpu_timer_create(struct k_itimer * new_timer)319 static int posix_cpu_timer_create(struct k_itimer *new_timer)
320 {
321 	int ret = 0;
322 	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
323 	struct task_struct *p;
324 
325 	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
326 		return -EINVAL;
327 
328 	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
329 
330 	rcu_read_lock();
331 	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
332 		if (pid == 0) {
333 			p = current;
334 		} else {
335 			p = find_task_by_vpid(pid);
336 			if (p && !same_thread_group(p, current))
337 				p = NULL;
338 		}
339 	} else {
340 		if (pid == 0) {
341 			p = current->group_leader;
342 		} else {
343 			p = find_task_by_vpid(pid);
344 			if (p && !has_group_leader_pid(p))
345 				p = NULL;
346 		}
347 	}
348 	new_timer->it.cpu.task = p;
349 	if (p) {
350 		get_task_struct(p);
351 	} else {
352 		ret = -EINVAL;
353 	}
354 	rcu_read_unlock();
355 
356 	return ret;
357 }
358 
359 /*
360  * Clean up a CPU-clock timer that is about to be destroyed.
361  * This is called from timer deletion with the timer already locked.
362  * If we return TIMER_RETRY, it's necessary to release the timer's lock
363  * and try again.  (This happens when the timer is in the middle of firing.)
364  */
posix_cpu_timer_del(struct k_itimer * timer)365 static int posix_cpu_timer_del(struct k_itimer *timer)
366 {
367 	int ret = 0;
368 	unsigned long flags;
369 	struct sighand_struct *sighand;
370 	struct task_struct *p = timer->it.cpu.task;
371 
372 	WARN_ON_ONCE(p == NULL);
373 
374 	/*
375 	 * Protect against sighand release/switch in exit/exec and process/
376 	 * thread timer list entry concurrent read/writes.
377 	 */
378 	sighand = lock_task_sighand(p, &flags);
379 	if (unlikely(sighand == NULL)) {
380 		/*
381 		 * We raced with the reaping of the task.
382 		 * The deletion should have cleared us off the list.
383 		 */
384 		WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
385 	} else {
386 		if (timer->it.cpu.firing)
387 			ret = TIMER_RETRY;
388 		else
389 			list_del(&timer->it.cpu.entry);
390 
391 		unlock_task_sighand(p, &flags);
392 	}
393 
394 	if (!ret)
395 		put_task_struct(p);
396 
397 	return ret;
398 }
399 
cleanup_timers_list(struct list_head * head)400 static void cleanup_timers_list(struct list_head *head)
401 {
402 	struct cpu_timer_list *timer, *next;
403 
404 	list_for_each_entry_safe(timer, next, head, entry)
405 		list_del_init(&timer->entry);
406 }
407 
408 /*
409  * Clean out CPU timers still ticking when a thread exited.  The task
410  * pointer is cleared, and the expiry time is replaced with the residual
411  * time for later timer_gettime calls to return.
412  * This must be called with the siglock held.
413  */
cleanup_timers(struct list_head * head)414 static void cleanup_timers(struct list_head *head)
415 {
416 	cleanup_timers_list(head);
417 	cleanup_timers_list(++head);
418 	cleanup_timers_list(++head);
419 }
420 
421 /*
422  * These are both called with the siglock held, when the current thread
423  * is being reaped.  When the final (leader) thread in the group is reaped,
424  * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
425  */
posix_cpu_timers_exit(struct task_struct * tsk)426 void posix_cpu_timers_exit(struct task_struct *tsk)
427 {
428 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
429 						sizeof(unsigned long long));
430 	cleanup_timers(tsk->cpu_timers);
431 
432 }
posix_cpu_timers_exit_group(struct task_struct * tsk)433 void posix_cpu_timers_exit_group(struct task_struct *tsk)
434 {
435 	cleanup_timers(tsk->signal->cpu_timers);
436 }
437 
expires_gt(cputime_t expires,cputime_t new_exp)438 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
439 {
440 	return expires == 0 || expires > new_exp;
441 }
442 
443 /*
444  * Insert the timer on the appropriate list before any timers that
445  * expire later.  This must be called with the sighand lock held.
446  */
arm_timer(struct k_itimer * timer)447 static void arm_timer(struct k_itimer *timer)
448 {
449 	struct task_struct *p = timer->it.cpu.task;
450 	struct list_head *head, *listpos;
451 	struct task_cputime *cputime_expires;
452 	struct cpu_timer_list *const nt = &timer->it.cpu;
453 	struct cpu_timer_list *next;
454 
455 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
456 		head = p->cpu_timers;
457 		cputime_expires = &p->cputime_expires;
458 	} else {
459 		head = p->signal->cpu_timers;
460 		cputime_expires = &p->signal->cputime_expires;
461 	}
462 	head += CPUCLOCK_WHICH(timer->it_clock);
463 
464 	listpos = head;
465 	list_for_each_entry(next, head, entry) {
466 		if (nt->expires < next->expires)
467 			break;
468 		listpos = &next->entry;
469 	}
470 	list_add(&nt->entry, listpos);
471 
472 	if (listpos == head) {
473 		unsigned long long exp = nt->expires;
474 
475 		/*
476 		 * We are the new earliest-expiring POSIX 1.b timer, hence
477 		 * need to update expiration cache. Take into account that
478 		 * for process timers we share expiration cache with itimers
479 		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
480 		 */
481 
482 		switch (CPUCLOCK_WHICH(timer->it_clock)) {
483 		case CPUCLOCK_PROF:
484 			if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
485 				cputime_expires->prof_exp = expires_to_cputime(exp);
486 			break;
487 		case CPUCLOCK_VIRT:
488 			if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
489 				cputime_expires->virt_exp = expires_to_cputime(exp);
490 			break;
491 		case CPUCLOCK_SCHED:
492 			if (cputime_expires->sched_exp == 0 ||
493 			    cputime_expires->sched_exp > exp)
494 				cputime_expires->sched_exp = exp;
495 			break;
496 		}
497 	}
498 }
499 
500 /*
501  * The timer is locked, fire it and arrange for its reload.
502  */
cpu_timer_fire(struct k_itimer * timer)503 static void cpu_timer_fire(struct k_itimer *timer)
504 {
505 	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
506 		/*
507 		 * User don't want any signal.
508 		 */
509 		timer->it.cpu.expires = 0;
510 	} else if (unlikely(timer->sigq == NULL)) {
511 		/*
512 		 * This a special case for clock_nanosleep,
513 		 * not a normal timer from sys_timer_create.
514 		 */
515 		wake_up_process(timer->it_process);
516 		timer->it.cpu.expires = 0;
517 	} else if (timer->it.cpu.incr == 0) {
518 		/*
519 		 * One-shot timer.  Clear it as soon as it's fired.
520 		 */
521 		posix_timer_event(timer, 0);
522 		timer->it.cpu.expires = 0;
523 	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
524 		/*
525 		 * The signal did not get queued because the signal
526 		 * was ignored, so we won't get any callback to
527 		 * reload the timer.  But we need to keep it
528 		 * ticking in case the signal is deliverable next time.
529 		 */
530 		posix_cpu_timer_schedule(timer);
531 	}
532 }
533 
534 /*
535  * Sample a process (thread group) timer for the given group_leader task.
536  * Must be called with task sighand lock held for safe while_each_thread()
537  * traversal.
538  */
cpu_timer_sample_group(const clockid_t which_clock,struct task_struct * p,unsigned long long * sample)539 static int cpu_timer_sample_group(const clockid_t which_clock,
540 				  struct task_struct *p,
541 				  unsigned long long *sample)
542 {
543 	struct task_cputime cputime;
544 
545 	thread_group_cputimer(p, &cputime);
546 	switch (CPUCLOCK_WHICH(which_clock)) {
547 	default:
548 		return -EINVAL;
549 	case CPUCLOCK_PROF:
550 		*sample = cputime_to_expires(cputime.utime + cputime.stime);
551 		break;
552 	case CPUCLOCK_VIRT:
553 		*sample = cputime_to_expires(cputime.utime);
554 		break;
555 	case CPUCLOCK_SCHED:
556 		*sample = cputime.sum_exec_runtime;
557 		break;
558 	}
559 	return 0;
560 }
561 
562 #ifdef CONFIG_NO_HZ_FULL
nohz_kick_work_fn(struct work_struct * work)563 static void nohz_kick_work_fn(struct work_struct *work)
564 {
565 	tick_nohz_full_kick_all();
566 }
567 
568 static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
569 
570 /*
571  * We need the IPIs to be sent from sane process context.
572  * The posix cpu timers are always set with irqs disabled.
573  */
posix_cpu_timer_kick_nohz(void)574 static void posix_cpu_timer_kick_nohz(void)
575 {
576 	if (context_tracking_is_enabled())
577 		schedule_work(&nohz_kick_work);
578 }
579 
posix_cpu_timers_can_stop_tick(struct task_struct * tsk)580 bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
581 {
582 	if (!task_cputime_zero(&tsk->cputime_expires))
583 		return false;
584 
585 	if (tsk->signal->cputimer.running)
586 		return false;
587 
588 	return true;
589 }
590 #else
posix_cpu_timer_kick_nohz(void)591 static inline void posix_cpu_timer_kick_nohz(void) { }
592 #endif
593 
594 /*
595  * Guts of sys_timer_settime for CPU timers.
596  * This is called with the timer locked and interrupts disabled.
597  * If we return TIMER_RETRY, it's necessary to release the timer's lock
598  * and try again.  (This happens when the timer is in the middle of firing.)
599  */
posix_cpu_timer_set(struct k_itimer * timer,int timer_flags,struct itimerspec * new,struct itimerspec * old)600 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
601 			       struct itimerspec *new, struct itimerspec *old)
602 {
603 	unsigned long flags;
604 	struct sighand_struct *sighand;
605 	struct task_struct *p = timer->it.cpu.task;
606 	unsigned long long old_expires, new_expires, old_incr, val;
607 	int ret;
608 
609 	WARN_ON_ONCE(p == NULL);
610 
611 	new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
612 
613 	/*
614 	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
615 	 * and p->signal->cpu_timers read/write in arm_timer()
616 	 */
617 	sighand = lock_task_sighand(p, &flags);
618 	/*
619 	 * If p has just been reaped, we can no
620 	 * longer get any information about it at all.
621 	 */
622 	if (unlikely(sighand == NULL)) {
623 		return -ESRCH;
624 	}
625 
626 	/*
627 	 * Disarm any old timer after extracting its expiry time.
628 	 */
629 	WARN_ON_ONCE(!irqs_disabled());
630 
631 	ret = 0;
632 	old_incr = timer->it.cpu.incr;
633 	old_expires = timer->it.cpu.expires;
634 	if (unlikely(timer->it.cpu.firing)) {
635 		timer->it.cpu.firing = -1;
636 		ret = TIMER_RETRY;
637 	} else
638 		list_del_init(&timer->it.cpu.entry);
639 
640 	/*
641 	 * We need to sample the current value to convert the new
642 	 * value from to relative and absolute, and to convert the
643 	 * old value from absolute to relative.  To set a process
644 	 * timer, we need a sample to balance the thread expiry
645 	 * times (in arm_timer).  With an absolute time, we must
646 	 * check if it's already passed.  In short, we need a sample.
647 	 */
648 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
649 		cpu_clock_sample(timer->it_clock, p, &val);
650 	} else {
651 		cpu_timer_sample_group(timer->it_clock, p, &val);
652 	}
653 
654 	if (old) {
655 		if (old_expires == 0) {
656 			old->it_value.tv_sec = 0;
657 			old->it_value.tv_nsec = 0;
658 		} else {
659 			/*
660 			 * Update the timer in case it has
661 			 * overrun already.  If it has,
662 			 * we'll report it as having overrun
663 			 * and with the next reloaded timer
664 			 * already ticking, though we are
665 			 * swallowing that pending
666 			 * notification here to install the
667 			 * new setting.
668 			 */
669 			bump_cpu_timer(timer, val);
670 			if (val < timer->it.cpu.expires) {
671 				old_expires = timer->it.cpu.expires - val;
672 				sample_to_timespec(timer->it_clock,
673 						   old_expires,
674 						   &old->it_value);
675 			} else {
676 				old->it_value.tv_nsec = 1;
677 				old->it_value.tv_sec = 0;
678 			}
679 		}
680 	}
681 
682 	if (unlikely(ret)) {
683 		/*
684 		 * We are colliding with the timer actually firing.
685 		 * Punt after filling in the timer's old value, and
686 		 * disable this firing since we are already reporting
687 		 * it as an overrun (thanks to bump_cpu_timer above).
688 		 */
689 		unlock_task_sighand(p, &flags);
690 		goto out;
691 	}
692 
693 	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
694 		new_expires += val;
695 	}
696 
697 	/*
698 	 * Install the new expiry time (or zero).
699 	 * For a timer with no notification action, we don't actually
700 	 * arm the timer (we'll just fake it for timer_gettime).
701 	 */
702 	timer->it.cpu.expires = new_expires;
703 	if (new_expires != 0 && val < new_expires) {
704 		arm_timer(timer);
705 	}
706 
707 	unlock_task_sighand(p, &flags);
708 	/*
709 	 * Install the new reload setting, and
710 	 * set up the signal and overrun bookkeeping.
711 	 */
712 	timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
713 						&new->it_interval);
714 
715 	/*
716 	 * This acts as a modification timestamp for the timer,
717 	 * so any automatic reload attempt will punt on seeing
718 	 * that we have reset the timer manually.
719 	 */
720 	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
721 		~REQUEUE_PENDING;
722 	timer->it_overrun_last = 0;
723 	timer->it_overrun = -1;
724 
725 	if (new_expires != 0 && !(val < new_expires)) {
726 		/*
727 		 * The designated time already passed, so we notify
728 		 * immediately, even if the thread never runs to
729 		 * accumulate more time on this clock.
730 		 */
731 		cpu_timer_fire(timer);
732 	}
733 
734 	ret = 0;
735  out:
736 	if (old) {
737 		sample_to_timespec(timer->it_clock,
738 				   old_incr, &old->it_interval);
739 	}
740 	if (!ret)
741 		posix_cpu_timer_kick_nohz();
742 	return ret;
743 }
744 
posix_cpu_timer_get(struct k_itimer * timer,struct itimerspec * itp)745 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
746 {
747 	unsigned long long now;
748 	struct task_struct *p = timer->it.cpu.task;
749 
750 	WARN_ON_ONCE(p == NULL);
751 
752 	/*
753 	 * Easy part: convert the reload time.
754 	 */
755 	sample_to_timespec(timer->it_clock,
756 			   timer->it.cpu.incr, &itp->it_interval);
757 
758 	if (timer->it.cpu.expires == 0) {	/* Timer not armed at all.  */
759 		itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
760 		return;
761 	}
762 
763 	/*
764 	 * Sample the clock to take the difference with the expiry time.
765 	 */
766 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
767 		cpu_clock_sample(timer->it_clock, p, &now);
768 	} else {
769 		struct sighand_struct *sighand;
770 		unsigned long flags;
771 
772 		/*
773 		 * Protect against sighand release/switch in exit/exec and
774 		 * also make timer sampling safe if it ends up calling
775 		 * thread_group_cputime().
776 		 */
777 		sighand = lock_task_sighand(p, &flags);
778 		if (unlikely(sighand == NULL)) {
779 			/*
780 			 * The process has been reaped.
781 			 * We can't even collect a sample any more.
782 			 * Call the timer disarmed, nothing else to do.
783 			 */
784 			timer->it.cpu.expires = 0;
785 			sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
786 					   &itp->it_value);
787 			return;
788 		} else {
789 			cpu_timer_sample_group(timer->it_clock, p, &now);
790 			unlock_task_sighand(p, &flags);
791 		}
792 	}
793 
794 	if (now < timer->it.cpu.expires) {
795 		sample_to_timespec(timer->it_clock,
796 				   timer->it.cpu.expires - now,
797 				   &itp->it_value);
798 	} else {
799 		/*
800 		 * The timer should have expired already, but the firing
801 		 * hasn't taken place yet.  Say it's just about to expire.
802 		 */
803 		itp->it_value.tv_nsec = 1;
804 		itp->it_value.tv_sec = 0;
805 	}
806 }
807 
808 static unsigned long long
check_timers_list(struct list_head * timers,struct list_head * firing,unsigned long long curr)809 check_timers_list(struct list_head *timers,
810 		  struct list_head *firing,
811 		  unsigned long long curr)
812 {
813 	int maxfire = 20;
814 
815 	while (!list_empty(timers)) {
816 		struct cpu_timer_list *t;
817 
818 		t = list_first_entry(timers, struct cpu_timer_list, entry);
819 
820 		if (!--maxfire || curr < t->expires)
821 			return t->expires;
822 
823 		t->firing = 1;
824 		list_move_tail(&t->entry, firing);
825 	}
826 
827 	return 0;
828 }
829 
830 /*
831  * Check for any per-thread CPU timers that have fired and move them off
832  * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
833  * tsk->it_*_expires values to reflect the remaining thread CPU timers.
834  */
check_thread_timers(struct task_struct * tsk,struct list_head * firing)835 static void check_thread_timers(struct task_struct *tsk,
836 				struct list_head *firing)
837 {
838 	struct list_head *timers = tsk->cpu_timers;
839 	struct signal_struct *const sig = tsk->signal;
840 	struct task_cputime *tsk_expires = &tsk->cputime_expires;
841 	unsigned long long expires;
842 	unsigned long soft;
843 
844 	expires = check_timers_list(timers, firing, prof_ticks(tsk));
845 	tsk_expires->prof_exp = expires_to_cputime(expires);
846 
847 	expires = check_timers_list(++timers, firing, virt_ticks(tsk));
848 	tsk_expires->virt_exp = expires_to_cputime(expires);
849 
850 	tsk_expires->sched_exp = check_timers_list(++timers, firing,
851 						   tsk->se.sum_exec_runtime);
852 
853 	/*
854 	 * Check for the special case thread timers.
855 	 */
856 	soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
857 	if (soft != RLIM_INFINITY) {
858 		unsigned long hard =
859 			READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
860 
861 		if (hard != RLIM_INFINITY &&
862 		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
863 			/*
864 			 * At the hard limit, we just die.
865 			 * No need to calculate anything else now.
866 			 */
867 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
868 			return;
869 		}
870 		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
871 			/*
872 			 * At the soft limit, send a SIGXCPU every second.
873 			 */
874 			if (soft < hard) {
875 				soft += USEC_PER_SEC;
876 				sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
877 			}
878 			printk(KERN_INFO
879 				"RT Watchdog Timeout: %s[%d]\n",
880 				tsk->comm, task_pid_nr(tsk));
881 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
882 		}
883 	}
884 }
885 
stop_process_timers(struct signal_struct * sig)886 static void stop_process_timers(struct signal_struct *sig)
887 {
888 	struct thread_group_cputimer *cputimer = &sig->cputimer;
889 	unsigned long flags;
890 
891 	raw_spin_lock_irqsave(&cputimer->lock, flags);
892 	cputimer->running = 0;
893 	raw_spin_unlock_irqrestore(&cputimer->lock, flags);
894 }
895 
896 static u32 onecputick;
897 
check_cpu_itimer(struct task_struct * tsk,struct cpu_itimer * it,unsigned long long * expires,unsigned long long cur_time,int signo)898 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
899 			     unsigned long long *expires,
900 			     unsigned long long cur_time, int signo)
901 {
902 	if (!it->expires)
903 		return;
904 
905 	if (cur_time >= it->expires) {
906 		if (it->incr) {
907 			it->expires += it->incr;
908 			it->error += it->incr_error;
909 			if (it->error >= onecputick) {
910 				it->expires -= cputime_one_jiffy;
911 				it->error -= onecputick;
912 			}
913 		} else {
914 			it->expires = 0;
915 		}
916 
917 		trace_itimer_expire(signo == SIGPROF ?
918 				    ITIMER_PROF : ITIMER_VIRTUAL,
919 				    tsk->signal->leader_pid, cur_time);
920 		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
921 	}
922 
923 	if (it->expires && (!*expires || it->expires < *expires)) {
924 		*expires = it->expires;
925 	}
926 }
927 
928 /*
929  * Check for any per-thread CPU timers that have fired and move them
930  * off the tsk->*_timers list onto the firing list.  Per-thread timers
931  * have already been taken off.
932  */
check_process_timers(struct task_struct * tsk,struct list_head * firing)933 static void check_process_timers(struct task_struct *tsk,
934 				 struct list_head *firing)
935 {
936 	struct signal_struct *const sig = tsk->signal;
937 	unsigned long long utime, ptime, virt_expires, prof_expires;
938 	unsigned long long sum_sched_runtime, sched_expires;
939 	struct list_head *timers = sig->cpu_timers;
940 	struct task_cputime cputime;
941 	unsigned long soft;
942 
943 	/*
944 	 * Collect the current process totals.
945 	 */
946 	thread_group_cputimer(tsk, &cputime);
947 	utime = cputime_to_expires(cputime.utime);
948 	ptime = utime + cputime_to_expires(cputime.stime);
949 	sum_sched_runtime = cputime.sum_exec_runtime;
950 
951 	prof_expires = check_timers_list(timers, firing, ptime);
952 	virt_expires = check_timers_list(++timers, firing, utime);
953 	sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
954 
955 	/*
956 	 * Check for the special case process timers.
957 	 */
958 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
959 			 SIGPROF);
960 	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
961 			 SIGVTALRM);
962 	soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
963 	if (soft != RLIM_INFINITY) {
964 		unsigned long psecs = cputime_to_secs(ptime);
965 		unsigned long hard =
966 			READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
967 		cputime_t x;
968 		if (psecs >= hard) {
969 			/*
970 			 * At the hard limit, we just die.
971 			 * No need to calculate anything else now.
972 			 */
973 			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
974 			return;
975 		}
976 		if (psecs >= soft) {
977 			/*
978 			 * At the soft limit, send a SIGXCPU every second.
979 			 */
980 			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
981 			if (soft < hard) {
982 				soft++;
983 				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
984 			}
985 		}
986 		x = secs_to_cputime(soft);
987 		if (!prof_expires || x < prof_expires) {
988 			prof_expires = x;
989 		}
990 	}
991 
992 	sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
993 	sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
994 	sig->cputime_expires.sched_exp = sched_expires;
995 	if (task_cputime_zero(&sig->cputime_expires))
996 		stop_process_timers(sig);
997 }
998 
999 /*
1000  * This is called from the signal code (via do_schedule_next_timer)
1001  * when the last timer signal was delivered and we have to reload the timer.
1002  */
posix_cpu_timer_schedule(struct k_itimer * timer)1003 void posix_cpu_timer_schedule(struct k_itimer *timer)
1004 {
1005 	struct sighand_struct *sighand;
1006 	unsigned long flags;
1007 	struct task_struct *p = timer->it.cpu.task;
1008 	unsigned long long now;
1009 
1010 	WARN_ON_ONCE(p == NULL);
1011 
1012 	/*
1013 	 * Fetch the current sample and update the timer's expiry time.
1014 	 */
1015 	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1016 		cpu_clock_sample(timer->it_clock, p, &now);
1017 		bump_cpu_timer(timer, now);
1018 		if (unlikely(p->exit_state))
1019 			goto out;
1020 
1021 		/* Protect timer list r/w in arm_timer() */
1022 		sighand = lock_task_sighand(p, &flags);
1023 		if (!sighand)
1024 			goto out;
1025 	} else {
1026 		/*
1027 		 * Protect arm_timer() and timer sampling in case of call to
1028 		 * thread_group_cputime().
1029 		 */
1030 		sighand = lock_task_sighand(p, &flags);
1031 		if (unlikely(sighand == NULL)) {
1032 			/*
1033 			 * The process has been reaped.
1034 			 * We can't even collect a sample any more.
1035 			 */
1036 			timer->it.cpu.expires = 0;
1037 			goto out;
1038 		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1039 			unlock_task_sighand(p, &flags);
1040 			/* Optimizations: if the process is dying, no need to rearm */
1041 			goto out;
1042 		}
1043 		cpu_timer_sample_group(timer->it_clock, p, &now);
1044 		bump_cpu_timer(timer, now);
1045 		/* Leave the sighand locked for the call below.  */
1046 	}
1047 
1048 	/*
1049 	 * Now re-arm for the new expiry time.
1050 	 */
1051 	WARN_ON_ONCE(!irqs_disabled());
1052 	arm_timer(timer);
1053 	unlock_task_sighand(p, &flags);
1054 
1055 	/* Kick full dynticks CPUs in case they need to tick on the new timer */
1056 	posix_cpu_timer_kick_nohz();
1057 out:
1058 	timer->it_overrun_last = timer->it_overrun;
1059 	timer->it_overrun = -1;
1060 	++timer->it_requeue_pending;
1061 }
1062 
1063 /**
1064  * task_cputime_expired - Compare two task_cputime entities.
1065  *
1066  * @sample:	The task_cputime structure to be checked for expiration.
1067  * @expires:	Expiration times, against which @sample will be checked.
1068  *
1069  * Checks @sample against @expires to see if any field of @sample has expired.
1070  * Returns true if any field of the former is greater than the corresponding
1071  * field of the latter if the latter field is set.  Otherwise returns false.
1072  */
task_cputime_expired(const struct task_cputime * sample,const struct task_cputime * expires)1073 static inline int task_cputime_expired(const struct task_cputime *sample,
1074 					const struct task_cputime *expires)
1075 {
1076 	if (expires->utime && sample->utime >= expires->utime)
1077 		return 1;
1078 	if (expires->stime && sample->utime + sample->stime >= expires->stime)
1079 		return 1;
1080 	if (expires->sum_exec_runtime != 0 &&
1081 	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1082 		return 1;
1083 	return 0;
1084 }
1085 
1086 /**
1087  * fastpath_timer_check - POSIX CPU timers fast path.
1088  *
1089  * @tsk:	The task (thread) being checked.
1090  *
1091  * Check the task and thread group timers.  If both are zero (there are no
1092  * timers set) return false.  Otherwise snapshot the task and thread group
1093  * timers and compare them with the corresponding expiration times.  Return
1094  * true if a timer has expired, else return false.
1095  */
fastpath_timer_check(struct task_struct * tsk)1096 static inline int fastpath_timer_check(struct task_struct *tsk)
1097 {
1098 	struct signal_struct *sig;
1099 	cputime_t utime, stime;
1100 
1101 	task_cputime(tsk, &utime, &stime);
1102 
1103 	if (!task_cputime_zero(&tsk->cputime_expires)) {
1104 		struct task_cputime task_sample = {
1105 			.utime = utime,
1106 			.stime = stime,
1107 			.sum_exec_runtime = tsk->se.sum_exec_runtime
1108 		};
1109 
1110 		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1111 			return 1;
1112 	}
1113 
1114 	sig = tsk->signal;
1115 	if (sig->cputimer.running) {
1116 		struct task_cputime group_sample;
1117 
1118 		raw_spin_lock(&sig->cputimer.lock);
1119 		group_sample = sig->cputimer.cputime;
1120 		raw_spin_unlock(&sig->cputimer.lock);
1121 
1122 		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1123 			return 1;
1124 	}
1125 
1126 	return 0;
1127 }
1128 
1129 /*
1130  * This is called from the timer interrupt handler.  The irq handler has
1131  * already updated our counts.  We need to check if any timers fire now.
1132  * Interrupts are disabled.
1133  */
run_posix_cpu_timers(struct task_struct * tsk)1134 void run_posix_cpu_timers(struct task_struct *tsk)
1135 {
1136 	LIST_HEAD(firing);
1137 	struct k_itimer *timer, *next;
1138 	unsigned long flags;
1139 
1140 	WARN_ON_ONCE(!irqs_disabled());
1141 
1142 	/*
1143 	 * The fast path checks that there are no expired thread or thread
1144 	 * group timers.  If that's so, just return.
1145 	 */
1146 	if (!fastpath_timer_check(tsk))
1147 		return;
1148 
1149 	if (!lock_task_sighand(tsk, &flags))
1150 		return;
1151 	/*
1152 	 * Here we take off tsk->signal->cpu_timers[N] and
1153 	 * tsk->cpu_timers[N] all the timers that are firing, and
1154 	 * put them on the firing list.
1155 	 */
1156 	check_thread_timers(tsk, &firing);
1157 	/*
1158 	 * If there are any active process wide timers (POSIX 1.b, itimers,
1159 	 * RLIMIT_CPU) cputimer must be running.
1160 	 */
1161 	if (tsk->signal->cputimer.running)
1162 		check_process_timers(tsk, &firing);
1163 
1164 	/*
1165 	 * We must release these locks before taking any timer's lock.
1166 	 * There is a potential race with timer deletion here, as the
1167 	 * siglock now protects our private firing list.  We have set
1168 	 * the firing flag in each timer, so that a deletion attempt
1169 	 * that gets the timer lock before we do will give it up and
1170 	 * spin until we've taken care of that timer below.
1171 	 */
1172 	unlock_task_sighand(tsk, &flags);
1173 
1174 	/*
1175 	 * Now that all the timers on our list have the firing flag,
1176 	 * no one will touch their list entries but us.  We'll take
1177 	 * each timer's lock before clearing its firing flag, so no
1178 	 * timer call will interfere.
1179 	 */
1180 	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1181 		int cpu_firing;
1182 
1183 		spin_lock(&timer->it_lock);
1184 		list_del_init(&timer->it.cpu.entry);
1185 		cpu_firing = timer->it.cpu.firing;
1186 		timer->it.cpu.firing = 0;
1187 		/*
1188 		 * The firing flag is -1 if we collided with a reset
1189 		 * of the timer, which already reported this
1190 		 * almost-firing as an overrun.  So don't generate an event.
1191 		 */
1192 		if (likely(cpu_firing >= 0))
1193 			cpu_timer_fire(timer);
1194 		spin_unlock(&timer->it_lock);
1195 	}
1196 }
1197 
1198 /*
1199  * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1200  * The tsk->sighand->siglock must be held by the caller.
1201  */
set_process_cpu_timer(struct task_struct * tsk,unsigned int clock_idx,cputime_t * newval,cputime_t * oldval)1202 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1203 			   cputime_t *newval, cputime_t *oldval)
1204 {
1205 	unsigned long long now;
1206 
1207 	WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1208 	cpu_timer_sample_group(clock_idx, tsk, &now);
1209 
1210 	if (oldval) {
1211 		/*
1212 		 * We are setting itimer. The *oldval is absolute and we update
1213 		 * it to be relative, *newval argument is relative and we update
1214 		 * it to be absolute.
1215 		 */
1216 		if (*oldval) {
1217 			if (*oldval <= now) {
1218 				/* Just about to fire. */
1219 				*oldval = cputime_one_jiffy;
1220 			} else {
1221 				*oldval -= now;
1222 			}
1223 		}
1224 
1225 		if (!*newval)
1226 			goto out;
1227 		*newval += now;
1228 	}
1229 
1230 	/*
1231 	 * Update expiration cache if we are the earliest timer, or eventually
1232 	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1233 	 */
1234 	switch (clock_idx) {
1235 	case CPUCLOCK_PROF:
1236 		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1237 			tsk->signal->cputime_expires.prof_exp = *newval;
1238 		break;
1239 	case CPUCLOCK_VIRT:
1240 		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1241 			tsk->signal->cputime_expires.virt_exp = *newval;
1242 		break;
1243 	}
1244 out:
1245 	posix_cpu_timer_kick_nohz();
1246 }
1247 
do_cpu_nanosleep(const clockid_t which_clock,int flags,struct timespec * rqtp,struct itimerspec * it)1248 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1249 			    struct timespec *rqtp, struct itimerspec *it)
1250 {
1251 	struct k_itimer timer;
1252 	int error;
1253 
1254 	/*
1255 	 * Set up a temporary timer and then wait for it to go off.
1256 	 */
1257 	memset(&timer, 0, sizeof timer);
1258 	spin_lock_init(&timer.it_lock);
1259 	timer.it_clock = which_clock;
1260 	timer.it_overrun = -1;
1261 	error = posix_cpu_timer_create(&timer);
1262 	timer.it_process = current;
1263 	if (!error) {
1264 		static struct itimerspec zero_it;
1265 
1266 		memset(it, 0, sizeof *it);
1267 		it->it_value = *rqtp;
1268 
1269 		spin_lock_irq(&timer.it_lock);
1270 		error = posix_cpu_timer_set(&timer, flags, it, NULL);
1271 		if (error) {
1272 			spin_unlock_irq(&timer.it_lock);
1273 			return error;
1274 		}
1275 
1276 		while (!signal_pending(current)) {
1277 			if (timer.it.cpu.expires == 0) {
1278 				/*
1279 				 * Our timer fired and was reset, below
1280 				 * deletion can not fail.
1281 				 */
1282 				posix_cpu_timer_del(&timer);
1283 				spin_unlock_irq(&timer.it_lock);
1284 				return 0;
1285 			}
1286 
1287 			/*
1288 			 * Block until cpu_timer_fire (or a signal) wakes us.
1289 			 */
1290 			__set_current_state(TASK_INTERRUPTIBLE);
1291 			spin_unlock_irq(&timer.it_lock);
1292 			schedule();
1293 			spin_lock_irq(&timer.it_lock);
1294 		}
1295 
1296 		/*
1297 		 * We were interrupted by a signal.
1298 		 */
1299 		sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1300 		error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1301 		if (!error) {
1302 			/*
1303 			 * Timer is now unarmed, deletion can not fail.
1304 			 */
1305 			posix_cpu_timer_del(&timer);
1306 		}
1307 		spin_unlock_irq(&timer.it_lock);
1308 
1309 		while (error == TIMER_RETRY) {
1310 			/*
1311 			 * We need to handle case when timer was or is in the
1312 			 * middle of firing. In other cases we already freed
1313 			 * resources.
1314 			 */
1315 			spin_lock_irq(&timer.it_lock);
1316 			error = posix_cpu_timer_del(&timer);
1317 			spin_unlock_irq(&timer.it_lock);
1318 		}
1319 
1320 		if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1321 			/*
1322 			 * It actually did fire already.
1323 			 */
1324 			return 0;
1325 		}
1326 
1327 		error = -ERESTART_RESTARTBLOCK;
1328 	}
1329 
1330 	return error;
1331 }
1332 
1333 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1334 
posix_cpu_nsleep(const clockid_t which_clock,int flags,struct timespec * rqtp,struct timespec __user * rmtp)1335 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1336 			    struct timespec *rqtp, struct timespec __user *rmtp)
1337 {
1338 	struct restart_block *restart_block = &current->restart_block;
1339 	struct itimerspec it;
1340 	int error;
1341 
1342 	/*
1343 	 * Diagnose required errors first.
1344 	 */
1345 	if (CPUCLOCK_PERTHREAD(which_clock) &&
1346 	    (CPUCLOCK_PID(which_clock) == 0 ||
1347 	     CPUCLOCK_PID(which_clock) == current->pid))
1348 		return -EINVAL;
1349 
1350 	error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1351 
1352 	if (error == -ERESTART_RESTARTBLOCK) {
1353 
1354 		if (flags & TIMER_ABSTIME)
1355 			return -ERESTARTNOHAND;
1356 		/*
1357 		 * Report back to the user the time still remaining.
1358 		 */
1359 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1360 			return -EFAULT;
1361 
1362 		restart_block->fn = posix_cpu_nsleep_restart;
1363 		restart_block->nanosleep.clockid = which_clock;
1364 		restart_block->nanosleep.rmtp = rmtp;
1365 		restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1366 	}
1367 	return error;
1368 }
1369 
posix_cpu_nsleep_restart(struct restart_block * restart_block)1370 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1371 {
1372 	clockid_t which_clock = restart_block->nanosleep.clockid;
1373 	struct timespec t;
1374 	struct itimerspec it;
1375 	int error;
1376 
1377 	t = ns_to_timespec(restart_block->nanosleep.expires);
1378 
1379 	error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1380 
1381 	if (error == -ERESTART_RESTARTBLOCK) {
1382 		struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1383 		/*
1384 		 * Report back to the user the time still remaining.
1385 		 */
1386 		if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1387 			return -EFAULT;
1388 
1389 		restart_block->nanosleep.expires = timespec_to_ns(&t);
1390 	}
1391 	return error;
1392 
1393 }
1394 
1395 #define PROCESS_CLOCK	MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1396 #define THREAD_CLOCK	MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1397 
process_cpu_clock_getres(const clockid_t which_clock,struct timespec * tp)1398 static int process_cpu_clock_getres(const clockid_t which_clock,
1399 				    struct timespec *tp)
1400 {
1401 	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1402 }
process_cpu_clock_get(const clockid_t which_clock,struct timespec * tp)1403 static int process_cpu_clock_get(const clockid_t which_clock,
1404 				 struct timespec *tp)
1405 {
1406 	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1407 }
process_cpu_timer_create(struct k_itimer * timer)1408 static int process_cpu_timer_create(struct k_itimer *timer)
1409 {
1410 	timer->it_clock = PROCESS_CLOCK;
1411 	return posix_cpu_timer_create(timer);
1412 }
process_cpu_nsleep(const clockid_t which_clock,int flags,struct timespec * rqtp,struct timespec __user * rmtp)1413 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1414 			      struct timespec *rqtp,
1415 			      struct timespec __user *rmtp)
1416 {
1417 	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1418 }
process_cpu_nsleep_restart(struct restart_block * restart_block)1419 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1420 {
1421 	return -EINVAL;
1422 }
thread_cpu_clock_getres(const clockid_t which_clock,struct timespec * tp)1423 static int thread_cpu_clock_getres(const clockid_t which_clock,
1424 				   struct timespec *tp)
1425 {
1426 	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1427 }
thread_cpu_clock_get(const clockid_t which_clock,struct timespec * tp)1428 static int thread_cpu_clock_get(const clockid_t which_clock,
1429 				struct timespec *tp)
1430 {
1431 	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1432 }
thread_cpu_timer_create(struct k_itimer * timer)1433 static int thread_cpu_timer_create(struct k_itimer *timer)
1434 {
1435 	timer->it_clock = THREAD_CLOCK;
1436 	return posix_cpu_timer_create(timer);
1437 }
1438 
1439 struct k_clock clock_posix_cpu = {
1440 	.clock_getres	= posix_cpu_clock_getres,
1441 	.clock_set	= posix_cpu_clock_set,
1442 	.clock_get	= posix_cpu_clock_get,
1443 	.timer_create	= posix_cpu_timer_create,
1444 	.nsleep		= posix_cpu_nsleep,
1445 	.nsleep_restart	= posix_cpu_nsleep_restart,
1446 	.timer_set	= posix_cpu_timer_set,
1447 	.timer_del	= posix_cpu_timer_del,
1448 	.timer_get	= posix_cpu_timer_get,
1449 };
1450 
init_posix_cpu_timers(void)1451 static __init int init_posix_cpu_timers(void)
1452 {
1453 	struct k_clock process = {
1454 		.clock_getres	= process_cpu_clock_getres,
1455 		.clock_get	= process_cpu_clock_get,
1456 		.timer_create	= process_cpu_timer_create,
1457 		.nsleep		= process_cpu_nsleep,
1458 		.nsleep_restart	= process_cpu_nsleep_restart,
1459 	};
1460 	struct k_clock thread = {
1461 		.clock_getres	= thread_cpu_clock_getres,
1462 		.clock_get	= thread_cpu_clock_get,
1463 		.timer_create	= thread_cpu_timer_create,
1464 	};
1465 	struct timespec ts;
1466 
1467 	posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1468 	posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1469 
1470 	cputime_to_timespec(cputime_one_jiffy, &ts);
1471 	onecputick = ts.tv_nsec;
1472 	WARN_ON(ts.tv_sec != 0);
1473 
1474 	return 0;
1475 }
1476 __initcall(init_posix_cpu_timers);
1477