1 /*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
11 #include <trace/events/timer.h>
12 #include <linux/random.h>
13 #include <linux/tick.h>
14 #include <linux/workqueue.h>
15
16 /*
17 * Called after updating RLIMIT_CPU to run cpu timer and update
18 * tsk->signal->cputime_expires expiration cache if necessary. Needs
19 * siglock protection since other code may update expiration cache as
20 * well.
21 */
update_rlimit_cpu(struct task_struct * task,unsigned long rlim_new)22 void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
23 {
24 cputime_t cputime = secs_to_cputime(rlim_new);
25
26 spin_lock_irq(&task->sighand->siglock);
27 set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
28 spin_unlock_irq(&task->sighand->siglock);
29 }
30
check_clock(const clockid_t which_clock)31 static int check_clock(const clockid_t which_clock)
32 {
33 int error = 0;
34 struct task_struct *p;
35 const pid_t pid = CPUCLOCK_PID(which_clock);
36
37 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
38 return -EINVAL;
39
40 if (pid == 0)
41 return 0;
42
43 rcu_read_lock();
44 p = find_task_by_vpid(pid);
45 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
46 same_thread_group(p, current) : has_group_leader_pid(p))) {
47 error = -EINVAL;
48 }
49 rcu_read_unlock();
50
51 return error;
52 }
53
54 static inline unsigned long long
timespec_to_sample(const clockid_t which_clock,const struct timespec * tp)55 timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
56 {
57 unsigned long long ret;
58
59 ret = 0; /* high half always zero when .cpu used */
60 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
61 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
62 } else {
63 ret = cputime_to_expires(timespec_to_cputime(tp));
64 }
65 return ret;
66 }
67
sample_to_timespec(const clockid_t which_clock,unsigned long long expires,struct timespec * tp)68 static void sample_to_timespec(const clockid_t which_clock,
69 unsigned long long expires,
70 struct timespec *tp)
71 {
72 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
73 *tp = ns_to_timespec(expires);
74 else
75 cputime_to_timespec((__force cputime_t)expires, tp);
76 }
77
78 /*
79 * Update expiry time from increment, and increase overrun count,
80 * given the current clock sample.
81 */
bump_cpu_timer(struct k_itimer * timer,unsigned long long now)82 static void bump_cpu_timer(struct k_itimer *timer,
83 unsigned long long now)
84 {
85 int i;
86 unsigned long long delta, incr;
87
88 if (timer->it.cpu.incr == 0)
89 return;
90
91 if (now < timer->it.cpu.expires)
92 return;
93
94 incr = timer->it.cpu.incr;
95 delta = now + incr - timer->it.cpu.expires;
96
97 /* Don't use (incr*2 < delta), incr*2 might overflow. */
98 for (i = 0; incr < delta - incr; i++)
99 incr = incr << 1;
100
101 for (; i >= 0; incr >>= 1, i--) {
102 if (delta < incr)
103 continue;
104
105 timer->it.cpu.expires += incr;
106 timer->it_overrun += 1 << i;
107 delta -= incr;
108 }
109 }
110
111 /**
112 * task_cputime_zero - Check a task_cputime struct for all zero fields.
113 *
114 * @cputime: The struct to compare.
115 *
116 * Checks @cputime to see if all fields are zero. Returns true if all fields
117 * are zero, false if any field is nonzero.
118 */
task_cputime_zero(const struct task_cputime * cputime)119 static inline int task_cputime_zero(const struct task_cputime *cputime)
120 {
121 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
122 return 1;
123 return 0;
124 }
125
prof_ticks(struct task_struct * p)126 static inline unsigned long long prof_ticks(struct task_struct *p)
127 {
128 cputime_t utime, stime;
129
130 task_cputime(p, &utime, &stime);
131
132 return cputime_to_expires(utime + stime);
133 }
virt_ticks(struct task_struct * p)134 static inline unsigned long long virt_ticks(struct task_struct *p)
135 {
136 cputime_t utime;
137
138 task_cputime(p, &utime, NULL);
139
140 return cputime_to_expires(utime);
141 }
142
143 static int
posix_cpu_clock_getres(const clockid_t which_clock,struct timespec * tp)144 posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
145 {
146 int error = check_clock(which_clock);
147 if (!error) {
148 tp->tv_sec = 0;
149 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
150 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
151 /*
152 * If sched_clock is using a cycle counter, we
153 * don't have any idea of its true resolution
154 * exported, but it is much more than 1s/HZ.
155 */
156 tp->tv_nsec = 1;
157 }
158 }
159 return error;
160 }
161
162 static int
posix_cpu_clock_set(const clockid_t which_clock,const struct timespec * tp)163 posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
164 {
165 /*
166 * You can never reset a CPU clock, but we check for other errors
167 * in the call before failing with EPERM.
168 */
169 int error = check_clock(which_clock);
170 if (error == 0) {
171 error = -EPERM;
172 }
173 return error;
174 }
175
176
177 /*
178 * Sample a per-thread clock for the given task.
179 */
cpu_clock_sample(const clockid_t which_clock,struct task_struct * p,unsigned long long * sample)180 static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
181 unsigned long long *sample)
182 {
183 switch (CPUCLOCK_WHICH(which_clock)) {
184 default:
185 return -EINVAL;
186 case CPUCLOCK_PROF:
187 *sample = prof_ticks(p);
188 break;
189 case CPUCLOCK_VIRT:
190 *sample = virt_ticks(p);
191 break;
192 case CPUCLOCK_SCHED:
193 *sample = task_sched_runtime(p);
194 break;
195 }
196 return 0;
197 }
198
update_gt_cputime(struct task_cputime * a,struct task_cputime * b)199 static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
200 {
201 if (b->utime > a->utime)
202 a->utime = b->utime;
203
204 if (b->stime > a->stime)
205 a->stime = b->stime;
206
207 if (b->sum_exec_runtime > a->sum_exec_runtime)
208 a->sum_exec_runtime = b->sum_exec_runtime;
209 }
210
thread_group_cputimer(struct task_struct * tsk,struct task_cputime * times)211 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
212 {
213 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
214 struct task_cputime sum;
215 unsigned long flags;
216
217 if (!cputimer->running) {
218 /*
219 * The POSIX timer interface allows for absolute time expiry
220 * values through the TIMER_ABSTIME flag, therefore we have
221 * to synchronize the timer to the clock every time we start
222 * it.
223 */
224 thread_group_cputime(tsk, &sum);
225 raw_spin_lock_irqsave(&cputimer->lock, flags);
226 cputimer->running = 1;
227 update_gt_cputime(&cputimer->cputime, &sum);
228 } else
229 raw_spin_lock_irqsave(&cputimer->lock, flags);
230 *times = cputimer->cputime;
231 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
232 }
233
234 /*
235 * Sample a process (thread group) clock for the given group_leader task.
236 * Must be called with task sighand lock held for safe while_each_thread()
237 * traversal.
238 */
cpu_clock_sample_group(const clockid_t which_clock,struct task_struct * p,unsigned long long * sample)239 static int cpu_clock_sample_group(const clockid_t which_clock,
240 struct task_struct *p,
241 unsigned long long *sample)
242 {
243 struct task_cputime cputime;
244
245 switch (CPUCLOCK_WHICH(which_clock)) {
246 default:
247 return -EINVAL;
248 case CPUCLOCK_PROF:
249 thread_group_cputime(p, &cputime);
250 *sample = cputime_to_expires(cputime.utime + cputime.stime);
251 break;
252 case CPUCLOCK_VIRT:
253 thread_group_cputime(p, &cputime);
254 *sample = cputime_to_expires(cputime.utime);
255 break;
256 case CPUCLOCK_SCHED:
257 thread_group_cputime(p, &cputime);
258 *sample = cputime.sum_exec_runtime;
259 break;
260 }
261 return 0;
262 }
263
posix_cpu_clock_get_task(struct task_struct * tsk,const clockid_t which_clock,struct timespec * tp)264 static int posix_cpu_clock_get_task(struct task_struct *tsk,
265 const clockid_t which_clock,
266 struct timespec *tp)
267 {
268 int err = -EINVAL;
269 unsigned long long rtn;
270
271 if (CPUCLOCK_PERTHREAD(which_clock)) {
272 if (same_thread_group(tsk, current))
273 err = cpu_clock_sample(which_clock, tsk, &rtn);
274 } else {
275 if (tsk == current || thread_group_leader(tsk))
276 err = cpu_clock_sample_group(which_clock, tsk, &rtn);
277 }
278
279 if (!err)
280 sample_to_timespec(which_clock, rtn, tp);
281
282 return err;
283 }
284
285
posix_cpu_clock_get(const clockid_t which_clock,struct timespec * tp)286 static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
287 {
288 const pid_t pid = CPUCLOCK_PID(which_clock);
289 int err = -EINVAL;
290
291 if (pid == 0) {
292 /*
293 * Special case constant value for our own clocks.
294 * We don't have to do any lookup to find ourselves.
295 */
296 err = posix_cpu_clock_get_task(current, which_clock, tp);
297 } else {
298 /*
299 * Find the given PID, and validate that the caller
300 * should be able to see it.
301 */
302 struct task_struct *p;
303 rcu_read_lock();
304 p = find_task_by_vpid(pid);
305 if (p)
306 err = posix_cpu_clock_get_task(p, which_clock, tp);
307 rcu_read_unlock();
308 }
309
310 return err;
311 }
312
313
314 /*
315 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
316 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
317 * new timer already all-zeros initialized.
318 */
posix_cpu_timer_create(struct k_itimer * new_timer)319 static int posix_cpu_timer_create(struct k_itimer *new_timer)
320 {
321 int ret = 0;
322 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
323 struct task_struct *p;
324
325 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
326 return -EINVAL;
327
328 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
329
330 rcu_read_lock();
331 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
332 if (pid == 0) {
333 p = current;
334 } else {
335 p = find_task_by_vpid(pid);
336 if (p && !same_thread_group(p, current))
337 p = NULL;
338 }
339 } else {
340 if (pid == 0) {
341 p = current->group_leader;
342 } else {
343 p = find_task_by_vpid(pid);
344 if (p && !has_group_leader_pid(p))
345 p = NULL;
346 }
347 }
348 new_timer->it.cpu.task = p;
349 if (p) {
350 get_task_struct(p);
351 } else {
352 ret = -EINVAL;
353 }
354 rcu_read_unlock();
355
356 return ret;
357 }
358
359 /*
360 * Clean up a CPU-clock timer that is about to be destroyed.
361 * This is called from timer deletion with the timer already locked.
362 * If we return TIMER_RETRY, it's necessary to release the timer's lock
363 * and try again. (This happens when the timer is in the middle of firing.)
364 */
posix_cpu_timer_del(struct k_itimer * timer)365 static int posix_cpu_timer_del(struct k_itimer *timer)
366 {
367 int ret = 0;
368 unsigned long flags;
369 struct sighand_struct *sighand;
370 struct task_struct *p = timer->it.cpu.task;
371
372 WARN_ON_ONCE(p == NULL);
373
374 /*
375 * Protect against sighand release/switch in exit/exec and process/
376 * thread timer list entry concurrent read/writes.
377 */
378 sighand = lock_task_sighand(p, &flags);
379 if (unlikely(sighand == NULL)) {
380 /*
381 * We raced with the reaping of the task.
382 * The deletion should have cleared us off the list.
383 */
384 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
385 } else {
386 if (timer->it.cpu.firing)
387 ret = TIMER_RETRY;
388 else
389 list_del(&timer->it.cpu.entry);
390
391 unlock_task_sighand(p, &flags);
392 }
393
394 if (!ret)
395 put_task_struct(p);
396
397 return ret;
398 }
399
cleanup_timers_list(struct list_head * head)400 static void cleanup_timers_list(struct list_head *head)
401 {
402 struct cpu_timer_list *timer, *next;
403
404 list_for_each_entry_safe(timer, next, head, entry)
405 list_del_init(&timer->entry);
406 }
407
408 /*
409 * Clean out CPU timers still ticking when a thread exited. The task
410 * pointer is cleared, and the expiry time is replaced with the residual
411 * time for later timer_gettime calls to return.
412 * This must be called with the siglock held.
413 */
cleanup_timers(struct list_head * head)414 static void cleanup_timers(struct list_head *head)
415 {
416 cleanup_timers_list(head);
417 cleanup_timers_list(++head);
418 cleanup_timers_list(++head);
419 }
420
421 /*
422 * These are both called with the siglock held, when the current thread
423 * is being reaped. When the final (leader) thread in the group is reaped,
424 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
425 */
posix_cpu_timers_exit(struct task_struct * tsk)426 void posix_cpu_timers_exit(struct task_struct *tsk)
427 {
428 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
429 sizeof(unsigned long long));
430 cleanup_timers(tsk->cpu_timers);
431
432 }
posix_cpu_timers_exit_group(struct task_struct * tsk)433 void posix_cpu_timers_exit_group(struct task_struct *tsk)
434 {
435 cleanup_timers(tsk->signal->cpu_timers);
436 }
437
expires_gt(cputime_t expires,cputime_t new_exp)438 static inline int expires_gt(cputime_t expires, cputime_t new_exp)
439 {
440 return expires == 0 || expires > new_exp;
441 }
442
443 /*
444 * Insert the timer on the appropriate list before any timers that
445 * expire later. This must be called with the sighand lock held.
446 */
arm_timer(struct k_itimer * timer)447 static void arm_timer(struct k_itimer *timer)
448 {
449 struct task_struct *p = timer->it.cpu.task;
450 struct list_head *head, *listpos;
451 struct task_cputime *cputime_expires;
452 struct cpu_timer_list *const nt = &timer->it.cpu;
453 struct cpu_timer_list *next;
454
455 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
456 head = p->cpu_timers;
457 cputime_expires = &p->cputime_expires;
458 } else {
459 head = p->signal->cpu_timers;
460 cputime_expires = &p->signal->cputime_expires;
461 }
462 head += CPUCLOCK_WHICH(timer->it_clock);
463
464 listpos = head;
465 list_for_each_entry(next, head, entry) {
466 if (nt->expires < next->expires)
467 break;
468 listpos = &next->entry;
469 }
470 list_add(&nt->entry, listpos);
471
472 if (listpos == head) {
473 unsigned long long exp = nt->expires;
474
475 /*
476 * We are the new earliest-expiring POSIX 1.b timer, hence
477 * need to update expiration cache. Take into account that
478 * for process timers we share expiration cache with itimers
479 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
480 */
481
482 switch (CPUCLOCK_WHICH(timer->it_clock)) {
483 case CPUCLOCK_PROF:
484 if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
485 cputime_expires->prof_exp = expires_to_cputime(exp);
486 break;
487 case CPUCLOCK_VIRT:
488 if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
489 cputime_expires->virt_exp = expires_to_cputime(exp);
490 break;
491 case CPUCLOCK_SCHED:
492 if (cputime_expires->sched_exp == 0 ||
493 cputime_expires->sched_exp > exp)
494 cputime_expires->sched_exp = exp;
495 break;
496 }
497 }
498 }
499
500 /*
501 * The timer is locked, fire it and arrange for its reload.
502 */
cpu_timer_fire(struct k_itimer * timer)503 static void cpu_timer_fire(struct k_itimer *timer)
504 {
505 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
506 /*
507 * User don't want any signal.
508 */
509 timer->it.cpu.expires = 0;
510 } else if (unlikely(timer->sigq == NULL)) {
511 /*
512 * This a special case for clock_nanosleep,
513 * not a normal timer from sys_timer_create.
514 */
515 wake_up_process(timer->it_process);
516 timer->it.cpu.expires = 0;
517 } else if (timer->it.cpu.incr == 0) {
518 /*
519 * One-shot timer. Clear it as soon as it's fired.
520 */
521 posix_timer_event(timer, 0);
522 timer->it.cpu.expires = 0;
523 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
524 /*
525 * The signal did not get queued because the signal
526 * was ignored, so we won't get any callback to
527 * reload the timer. But we need to keep it
528 * ticking in case the signal is deliverable next time.
529 */
530 posix_cpu_timer_schedule(timer);
531 }
532 }
533
534 /*
535 * Sample a process (thread group) timer for the given group_leader task.
536 * Must be called with task sighand lock held for safe while_each_thread()
537 * traversal.
538 */
cpu_timer_sample_group(const clockid_t which_clock,struct task_struct * p,unsigned long long * sample)539 static int cpu_timer_sample_group(const clockid_t which_clock,
540 struct task_struct *p,
541 unsigned long long *sample)
542 {
543 struct task_cputime cputime;
544
545 thread_group_cputimer(p, &cputime);
546 switch (CPUCLOCK_WHICH(which_clock)) {
547 default:
548 return -EINVAL;
549 case CPUCLOCK_PROF:
550 *sample = cputime_to_expires(cputime.utime + cputime.stime);
551 break;
552 case CPUCLOCK_VIRT:
553 *sample = cputime_to_expires(cputime.utime);
554 break;
555 case CPUCLOCK_SCHED:
556 *sample = cputime.sum_exec_runtime;
557 break;
558 }
559 return 0;
560 }
561
562 #ifdef CONFIG_NO_HZ_FULL
nohz_kick_work_fn(struct work_struct * work)563 static void nohz_kick_work_fn(struct work_struct *work)
564 {
565 tick_nohz_full_kick_all();
566 }
567
568 static DECLARE_WORK(nohz_kick_work, nohz_kick_work_fn);
569
570 /*
571 * We need the IPIs to be sent from sane process context.
572 * The posix cpu timers are always set with irqs disabled.
573 */
posix_cpu_timer_kick_nohz(void)574 static void posix_cpu_timer_kick_nohz(void)
575 {
576 if (context_tracking_is_enabled())
577 schedule_work(&nohz_kick_work);
578 }
579
posix_cpu_timers_can_stop_tick(struct task_struct * tsk)580 bool posix_cpu_timers_can_stop_tick(struct task_struct *tsk)
581 {
582 if (!task_cputime_zero(&tsk->cputime_expires))
583 return false;
584
585 if (tsk->signal->cputimer.running)
586 return false;
587
588 return true;
589 }
590 #else
posix_cpu_timer_kick_nohz(void)591 static inline void posix_cpu_timer_kick_nohz(void) { }
592 #endif
593
594 /*
595 * Guts of sys_timer_settime for CPU timers.
596 * This is called with the timer locked and interrupts disabled.
597 * If we return TIMER_RETRY, it's necessary to release the timer's lock
598 * and try again. (This happens when the timer is in the middle of firing.)
599 */
posix_cpu_timer_set(struct k_itimer * timer,int timer_flags,struct itimerspec * new,struct itimerspec * old)600 static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
601 struct itimerspec *new, struct itimerspec *old)
602 {
603 unsigned long flags;
604 struct sighand_struct *sighand;
605 struct task_struct *p = timer->it.cpu.task;
606 unsigned long long old_expires, new_expires, old_incr, val;
607 int ret;
608
609 WARN_ON_ONCE(p == NULL);
610
611 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
612
613 /*
614 * Protect against sighand release/switch in exit/exec and p->cpu_timers
615 * and p->signal->cpu_timers read/write in arm_timer()
616 */
617 sighand = lock_task_sighand(p, &flags);
618 /*
619 * If p has just been reaped, we can no
620 * longer get any information about it at all.
621 */
622 if (unlikely(sighand == NULL)) {
623 return -ESRCH;
624 }
625
626 /*
627 * Disarm any old timer after extracting its expiry time.
628 */
629 WARN_ON_ONCE(!irqs_disabled());
630
631 ret = 0;
632 old_incr = timer->it.cpu.incr;
633 old_expires = timer->it.cpu.expires;
634 if (unlikely(timer->it.cpu.firing)) {
635 timer->it.cpu.firing = -1;
636 ret = TIMER_RETRY;
637 } else
638 list_del_init(&timer->it.cpu.entry);
639
640 /*
641 * We need to sample the current value to convert the new
642 * value from to relative and absolute, and to convert the
643 * old value from absolute to relative. To set a process
644 * timer, we need a sample to balance the thread expiry
645 * times (in arm_timer). With an absolute time, we must
646 * check if it's already passed. In short, we need a sample.
647 */
648 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
649 cpu_clock_sample(timer->it_clock, p, &val);
650 } else {
651 cpu_timer_sample_group(timer->it_clock, p, &val);
652 }
653
654 if (old) {
655 if (old_expires == 0) {
656 old->it_value.tv_sec = 0;
657 old->it_value.tv_nsec = 0;
658 } else {
659 /*
660 * Update the timer in case it has
661 * overrun already. If it has,
662 * we'll report it as having overrun
663 * and with the next reloaded timer
664 * already ticking, though we are
665 * swallowing that pending
666 * notification here to install the
667 * new setting.
668 */
669 bump_cpu_timer(timer, val);
670 if (val < timer->it.cpu.expires) {
671 old_expires = timer->it.cpu.expires - val;
672 sample_to_timespec(timer->it_clock,
673 old_expires,
674 &old->it_value);
675 } else {
676 old->it_value.tv_nsec = 1;
677 old->it_value.tv_sec = 0;
678 }
679 }
680 }
681
682 if (unlikely(ret)) {
683 /*
684 * We are colliding with the timer actually firing.
685 * Punt after filling in the timer's old value, and
686 * disable this firing since we are already reporting
687 * it as an overrun (thanks to bump_cpu_timer above).
688 */
689 unlock_task_sighand(p, &flags);
690 goto out;
691 }
692
693 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
694 new_expires += val;
695 }
696
697 /*
698 * Install the new expiry time (or zero).
699 * For a timer with no notification action, we don't actually
700 * arm the timer (we'll just fake it for timer_gettime).
701 */
702 timer->it.cpu.expires = new_expires;
703 if (new_expires != 0 && val < new_expires) {
704 arm_timer(timer);
705 }
706
707 unlock_task_sighand(p, &flags);
708 /*
709 * Install the new reload setting, and
710 * set up the signal and overrun bookkeeping.
711 */
712 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
713 &new->it_interval);
714
715 /*
716 * This acts as a modification timestamp for the timer,
717 * so any automatic reload attempt will punt on seeing
718 * that we have reset the timer manually.
719 */
720 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
721 ~REQUEUE_PENDING;
722 timer->it_overrun_last = 0;
723 timer->it_overrun = -1;
724
725 if (new_expires != 0 && !(val < new_expires)) {
726 /*
727 * The designated time already passed, so we notify
728 * immediately, even if the thread never runs to
729 * accumulate more time on this clock.
730 */
731 cpu_timer_fire(timer);
732 }
733
734 ret = 0;
735 out:
736 if (old) {
737 sample_to_timespec(timer->it_clock,
738 old_incr, &old->it_interval);
739 }
740 if (!ret)
741 posix_cpu_timer_kick_nohz();
742 return ret;
743 }
744
posix_cpu_timer_get(struct k_itimer * timer,struct itimerspec * itp)745 static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
746 {
747 unsigned long long now;
748 struct task_struct *p = timer->it.cpu.task;
749
750 WARN_ON_ONCE(p == NULL);
751
752 /*
753 * Easy part: convert the reload time.
754 */
755 sample_to_timespec(timer->it_clock,
756 timer->it.cpu.incr, &itp->it_interval);
757
758 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */
759 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
760 return;
761 }
762
763 /*
764 * Sample the clock to take the difference with the expiry time.
765 */
766 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
767 cpu_clock_sample(timer->it_clock, p, &now);
768 } else {
769 struct sighand_struct *sighand;
770 unsigned long flags;
771
772 /*
773 * Protect against sighand release/switch in exit/exec and
774 * also make timer sampling safe if it ends up calling
775 * thread_group_cputime().
776 */
777 sighand = lock_task_sighand(p, &flags);
778 if (unlikely(sighand == NULL)) {
779 /*
780 * The process has been reaped.
781 * We can't even collect a sample any more.
782 * Call the timer disarmed, nothing else to do.
783 */
784 timer->it.cpu.expires = 0;
785 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
786 &itp->it_value);
787 return;
788 } else {
789 cpu_timer_sample_group(timer->it_clock, p, &now);
790 unlock_task_sighand(p, &flags);
791 }
792 }
793
794 if (now < timer->it.cpu.expires) {
795 sample_to_timespec(timer->it_clock,
796 timer->it.cpu.expires - now,
797 &itp->it_value);
798 } else {
799 /*
800 * The timer should have expired already, but the firing
801 * hasn't taken place yet. Say it's just about to expire.
802 */
803 itp->it_value.tv_nsec = 1;
804 itp->it_value.tv_sec = 0;
805 }
806 }
807
808 static unsigned long long
check_timers_list(struct list_head * timers,struct list_head * firing,unsigned long long curr)809 check_timers_list(struct list_head *timers,
810 struct list_head *firing,
811 unsigned long long curr)
812 {
813 int maxfire = 20;
814
815 while (!list_empty(timers)) {
816 struct cpu_timer_list *t;
817
818 t = list_first_entry(timers, struct cpu_timer_list, entry);
819
820 if (!--maxfire || curr < t->expires)
821 return t->expires;
822
823 t->firing = 1;
824 list_move_tail(&t->entry, firing);
825 }
826
827 return 0;
828 }
829
830 /*
831 * Check for any per-thread CPU timers that have fired and move them off
832 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
833 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
834 */
check_thread_timers(struct task_struct * tsk,struct list_head * firing)835 static void check_thread_timers(struct task_struct *tsk,
836 struct list_head *firing)
837 {
838 struct list_head *timers = tsk->cpu_timers;
839 struct signal_struct *const sig = tsk->signal;
840 struct task_cputime *tsk_expires = &tsk->cputime_expires;
841 unsigned long long expires;
842 unsigned long soft;
843
844 expires = check_timers_list(timers, firing, prof_ticks(tsk));
845 tsk_expires->prof_exp = expires_to_cputime(expires);
846
847 expires = check_timers_list(++timers, firing, virt_ticks(tsk));
848 tsk_expires->virt_exp = expires_to_cputime(expires);
849
850 tsk_expires->sched_exp = check_timers_list(++timers, firing,
851 tsk->se.sum_exec_runtime);
852
853 /*
854 * Check for the special case thread timers.
855 */
856 soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
857 if (soft != RLIM_INFINITY) {
858 unsigned long hard =
859 READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
860
861 if (hard != RLIM_INFINITY &&
862 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
863 /*
864 * At the hard limit, we just die.
865 * No need to calculate anything else now.
866 */
867 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
868 return;
869 }
870 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
871 /*
872 * At the soft limit, send a SIGXCPU every second.
873 */
874 if (soft < hard) {
875 soft += USEC_PER_SEC;
876 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
877 }
878 printk(KERN_INFO
879 "RT Watchdog Timeout: %s[%d]\n",
880 tsk->comm, task_pid_nr(tsk));
881 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
882 }
883 }
884 }
885
stop_process_timers(struct signal_struct * sig)886 static void stop_process_timers(struct signal_struct *sig)
887 {
888 struct thread_group_cputimer *cputimer = &sig->cputimer;
889 unsigned long flags;
890
891 raw_spin_lock_irqsave(&cputimer->lock, flags);
892 cputimer->running = 0;
893 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
894 }
895
896 static u32 onecputick;
897
check_cpu_itimer(struct task_struct * tsk,struct cpu_itimer * it,unsigned long long * expires,unsigned long long cur_time,int signo)898 static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
899 unsigned long long *expires,
900 unsigned long long cur_time, int signo)
901 {
902 if (!it->expires)
903 return;
904
905 if (cur_time >= it->expires) {
906 if (it->incr) {
907 it->expires += it->incr;
908 it->error += it->incr_error;
909 if (it->error >= onecputick) {
910 it->expires -= cputime_one_jiffy;
911 it->error -= onecputick;
912 }
913 } else {
914 it->expires = 0;
915 }
916
917 trace_itimer_expire(signo == SIGPROF ?
918 ITIMER_PROF : ITIMER_VIRTUAL,
919 tsk->signal->leader_pid, cur_time);
920 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
921 }
922
923 if (it->expires && (!*expires || it->expires < *expires)) {
924 *expires = it->expires;
925 }
926 }
927
928 /*
929 * Check for any per-thread CPU timers that have fired and move them
930 * off the tsk->*_timers list onto the firing list. Per-thread timers
931 * have already been taken off.
932 */
check_process_timers(struct task_struct * tsk,struct list_head * firing)933 static void check_process_timers(struct task_struct *tsk,
934 struct list_head *firing)
935 {
936 struct signal_struct *const sig = tsk->signal;
937 unsigned long long utime, ptime, virt_expires, prof_expires;
938 unsigned long long sum_sched_runtime, sched_expires;
939 struct list_head *timers = sig->cpu_timers;
940 struct task_cputime cputime;
941 unsigned long soft;
942
943 /*
944 * Collect the current process totals.
945 */
946 thread_group_cputimer(tsk, &cputime);
947 utime = cputime_to_expires(cputime.utime);
948 ptime = utime + cputime_to_expires(cputime.stime);
949 sum_sched_runtime = cputime.sum_exec_runtime;
950
951 prof_expires = check_timers_list(timers, firing, ptime);
952 virt_expires = check_timers_list(++timers, firing, utime);
953 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
954
955 /*
956 * Check for the special case process timers.
957 */
958 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
959 SIGPROF);
960 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
961 SIGVTALRM);
962 soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
963 if (soft != RLIM_INFINITY) {
964 unsigned long psecs = cputime_to_secs(ptime);
965 unsigned long hard =
966 READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
967 cputime_t x;
968 if (psecs >= hard) {
969 /*
970 * At the hard limit, we just die.
971 * No need to calculate anything else now.
972 */
973 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
974 return;
975 }
976 if (psecs >= soft) {
977 /*
978 * At the soft limit, send a SIGXCPU every second.
979 */
980 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
981 if (soft < hard) {
982 soft++;
983 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
984 }
985 }
986 x = secs_to_cputime(soft);
987 if (!prof_expires || x < prof_expires) {
988 prof_expires = x;
989 }
990 }
991
992 sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
993 sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
994 sig->cputime_expires.sched_exp = sched_expires;
995 if (task_cputime_zero(&sig->cputime_expires))
996 stop_process_timers(sig);
997 }
998
999 /*
1000 * This is called from the signal code (via do_schedule_next_timer)
1001 * when the last timer signal was delivered and we have to reload the timer.
1002 */
posix_cpu_timer_schedule(struct k_itimer * timer)1003 void posix_cpu_timer_schedule(struct k_itimer *timer)
1004 {
1005 struct sighand_struct *sighand;
1006 unsigned long flags;
1007 struct task_struct *p = timer->it.cpu.task;
1008 unsigned long long now;
1009
1010 WARN_ON_ONCE(p == NULL);
1011
1012 /*
1013 * Fetch the current sample and update the timer's expiry time.
1014 */
1015 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1016 cpu_clock_sample(timer->it_clock, p, &now);
1017 bump_cpu_timer(timer, now);
1018 if (unlikely(p->exit_state))
1019 goto out;
1020
1021 /* Protect timer list r/w in arm_timer() */
1022 sighand = lock_task_sighand(p, &flags);
1023 if (!sighand)
1024 goto out;
1025 } else {
1026 /*
1027 * Protect arm_timer() and timer sampling in case of call to
1028 * thread_group_cputime().
1029 */
1030 sighand = lock_task_sighand(p, &flags);
1031 if (unlikely(sighand == NULL)) {
1032 /*
1033 * The process has been reaped.
1034 * We can't even collect a sample any more.
1035 */
1036 timer->it.cpu.expires = 0;
1037 goto out;
1038 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1039 unlock_task_sighand(p, &flags);
1040 /* Optimizations: if the process is dying, no need to rearm */
1041 goto out;
1042 }
1043 cpu_timer_sample_group(timer->it_clock, p, &now);
1044 bump_cpu_timer(timer, now);
1045 /* Leave the sighand locked for the call below. */
1046 }
1047
1048 /*
1049 * Now re-arm for the new expiry time.
1050 */
1051 WARN_ON_ONCE(!irqs_disabled());
1052 arm_timer(timer);
1053 unlock_task_sighand(p, &flags);
1054
1055 /* Kick full dynticks CPUs in case they need to tick on the new timer */
1056 posix_cpu_timer_kick_nohz();
1057 out:
1058 timer->it_overrun_last = timer->it_overrun;
1059 timer->it_overrun = -1;
1060 ++timer->it_requeue_pending;
1061 }
1062
1063 /**
1064 * task_cputime_expired - Compare two task_cputime entities.
1065 *
1066 * @sample: The task_cputime structure to be checked for expiration.
1067 * @expires: Expiration times, against which @sample will be checked.
1068 *
1069 * Checks @sample against @expires to see if any field of @sample has expired.
1070 * Returns true if any field of the former is greater than the corresponding
1071 * field of the latter if the latter field is set. Otherwise returns false.
1072 */
task_cputime_expired(const struct task_cputime * sample,const struct task_cputime * expires)1073 static inline int task_cputime_expired(const struct task_cputime *sample,
1074 const struct task_cputime *expires)
1075 {
1076 if (expires->utime && sample->utime >= expires->utime)
1077 return 1;
1078 if (expires->stime && sample->utime + sample->stime >= expires->stime)
1079 return 1;
1080 if (expires->sum_exec_runtime != 0 &&
1081 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1082 return 1;
1083 return 0;
1084 }
1085
1086 /**
1087 * fastpath_timer_check - POSIX CPU timers fast path.
1088 *
1089 * @tsk: The task (thread) being checked.
1090 *
1091 * Check the task and thread group timers. If both are zero (there are no
1092 * timers set) return false. Otherwise snapshot the task and thread group
1093 * timers and compare them with the corresponding expiration times. Return
1094 * true if a timer has expired, else return false.
1095 */
fastpath_timer_check(struct task_struct * tsk)1096 static inline int fastpath_timer_check(struct task_struct *tsk)
1097 {
1098 struct signal_struct *sig;
1099 cputime_t utime, stime;
1100
1101 task_cputime(tsk, &utime, &stime);
1102
1103 if (!task_cputime_zero(&tsk->cputime_expires)) {
1104 struct task_cputime task_sample = {
1105 .utime = utime,
1106 .stime = stime,
1107 .sum_exec_runtime = tsk->se.sum_exec_runtime
1108 };
1109
1110 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1111 return 1;
1112 }
1113
1114 sig = tsk->signal;
1115 if (sig->cputimer.running) {
1116 struct task_cputime group_sample;
1117
1118 raw_spin_lock(&sig->cputimer.lock);
1119 group_sample = sig->cputimer.cputime;
1120 raw_spin_unlock(&sig->cputimer.lock);
1121
1122 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1123 return 1;
1124 }
1125
1126 return 0;
1127 }
1128
1129 /*
1130 * This is called from the timer interrupt handler. The irq handler has
1131 * already updated our counts. We need to check if any timers fire now.
1132 * Interrupts are disabled.
1133 */
run_posix_cpu_timers(struct task_struct * tsk)1134 void run_posix_cpu_timers(struct task_struct *tsk)
1135 {
1136 LIST_HEAD(firing);
1137 struct k_itimer *timer, *next;
1138 unsigned long flags;
1139
1140 WARN_ON_ONCE(!irqs_disabled());
1141
1142 /*
1143 * The fast path checks that there are no expired thread or thread
1144 * group timers. If that's so, just return.
1145 */
1146 if (!fastpath_timer_check(tsk))
1147 return;
1148
1149 if (!lock_task_sighand(tsk, &flags))
1150 return;
1151 /*
1152 * Here we take off tsk->signal->cpu_timers[N] and
1153 * tsk->cpu_timers[N] all the timers that are firing, and
1154 * put them on the firing list.
1155 */
1156 check_thread_timers(tsk, &firing);
1157 /*
1158 * If there are any active process wide timers (POSIX 1.b, itimers,
1159 * RLIMIT_CPU) cputimer must be running.
1160 */
1161 if (tsk->signal->cputimer.running)
1162 check_process_timers(tsk, &firing);
1163
1164 /*
1165 * We must release these locks before taking any timer's lock.
1166 * There is a potential race with timer deletion here, as the
1167 * siglock now protects our private firing list. We have set
1168 * the firing flag in each timer, so that a deletion attempt
1169 * that gets the timer lock before we do will give it up and
1170 * spin until we've taken care of that timer below.
1171 */
1172 unlock_task_sighand(tsk, &flags);
1173
1174 /*
1175 * Now that all the timers on our list have the firing flag,
1176 * no one will touch their list entries but us. We'll take
1177 * each timer's lock before clearing its firing flag, so no
1178 * timer call will interfere.
1179 */
1180 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1181 int cpu_firing;
1182
1183 spin_lock(&timer->it_lock);
1184 list_del_init(&timer->it.cpu.entry);
1185 cpu_firing = timer->it.cpu.firing;
1186 timer->it.cpu.firing = 0;
1187 /*
1188 * The firing flag is -1 if we collided with a reset
1189 * of the timer, which already reported this
1190 * almost-firing as an overrun. So don't generate an event.
1191 */
1192 if (likely(cpu_firing >= 0))
1193 cpu_timer_fire(timer);
1194 spin_unlock(&timer->it_lock);
1195 }
1196 }
1197
1198 /*
1199 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1200 * The tsk->sighand->siglock must be held by the caller.
1201 */
set_process_cpu_timer(struct task_struct * tsk,unsigned int clock_idx,cputime_t * newval,cputime_t * oldval)1202 void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1203 cputime_t *newval, cputime_t *oldval)
1204 {
1205 unsigned long long now;
1206
1207 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1208 cpu_timer_sample_group(clock_idx, tsk, &now);
1209
1210 if (oldval) {
1211 /*
1212 * We are setting itimer. The *oldval is absolute and we update
1213 * it to be relative, *newval argument is relative and we update
1214 * it to be absolute.
1215 */
1216 if (*oldval) {
1217 if (*oldval <= now) {
1218 /* Just about to fire. */
1219 *oldval = cputime_one_jiffy;
1220 } else {
1221 *oldval -= now;
1222 }
1223 }
1224
1225 if (!*newval)
1226 goto out;
1227 *newval += now;
1228 }
1229
1230 /*
1231 * Update expiration cache if we are the earliest timer, or eventually
1232 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1233 */
1234 switch (clock_idx) {
1235 case CPUCLOCK_PROF:
1236 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1237 tsk->signal->cputime_expires.prof_exp = *newval;
1238 break;
1239 case CPUCLOCK_VIRT:
1240 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1241 tsk->signal->cputime_expires.virt_exp = *newval;
1242 break;
1243 }
1244 out:
1245 posix_cpu_timer_kick_nohz();
1246 }
1247
do_cpu_nanosleep(const clockid_t which_clock,int flags,struct timespec * rqtp,struct itimerspec * it)1248 static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1249 struct timespec *rqtp, struct itimerspec *it)
1250 {
1251 struct k_itimer timer;
1252 int error;
1253
1254 /*
1255 * Set up a temporary timer and then wait for it to go off.
1256 */
1257 memset(&timer, 0, sizeof timer);
1258 spin_lock_init(&timer.it_lock);
1259 timer.it_clock = which_clock;
1260 timer.it_overrun = -1;
1261 error = posix_cpu_timer_create(&timer);
1262 timer.it_process = current;
1263 if (!error) {
1264 static struct itimerspec zero_it;
1265
1266 memset(it, 0, sizeof *it);
1267 it->it_value = *rqtp;
1268
1269 spin_lock_irq(&timer.it_lock);
1270 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1271 if (error) {
1272 spin_unlock_irq(&timer.it_lock);
1273 return error;
1274 }
1275
1276 while (!signal_pending(current)) {
1277 if (timer.it.cpu.expires == 0) {
1278 /*
1279 * Our timer fired and was reset, below
1280 * deletion can not fail.
1281 */
1282 posix_cpu_timer_del(&timer);
1283 spin_unlock_irq(&timer.it_lock);
1284 return 0;
1285 }
1286
1287 /*
1288 * Block until cpu_timer_fire (or a signal) wakes us.
1289 */
1290 __set_current_state(TASK_INTERRUPTIBLE);
1291 spin_unlock_irq(&timer.it_lock);
1292 schedule();
1293 spin_lock_irq(&timer.it_lock);
1294 }
1295
1296 /*
1297 * We were interrupted by a signal.
1298 */
1299 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1300 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1301 if (!error) {
1302 /*
1303 * Timer is now unarmed, deletion can not fail.
1304 */
1305 posix_cpu_timer_del(&timer);
1306 }
1307 spin_unlock_irq(&timer.it_lock);
1308
1309 while (error == TIMER_RETRY) {
1310 /*
1311 * We need to handle case when timer was or is in the
1312 * middle of firing. In other cases we already freed
1313 * resources.
1314 */
1315 spin_lock_irq(&timer.it_lock);
1316 error = posix_cpu_timer_del(&timer);
1317 spin_unlock_irq(&timer.it_lock);
1318 }
1319
1320 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1321 /*
1322 * It actually did fire already.
1323 */
1324 return 0;
1325 }
1326
1327 error = -ERESTART_RESTARTBLOCK;
1328 }
1329
1330 return error;
1331 }
1332
1333 static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1334
posix_cpu_nsleep(const clockid_t which_clock,int flags,struct timespec * rqtp,struct timespec __user * rmtp)1335 static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1336 struct timespec *rqtp, struct timespec __user *rmtp)
1337 {
1338 struct restart_block *restart_block = ¤t->restart_block;
1339 struct itimerspec it;
1340 int error;
1341
1342 /*
1343 * Diagnose required errors first.
1344 */
1345 if (CPUCLOCK_PERTHREAD(which_clock) &&
1346 (CPUCLOCK_PID(which_clock) == 0 ||
1347 CPUCLOCK_PID(which_clock) == current->pid))
1348 return -EINVAL;
1349
1350 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1351
1352 if (error == -ERESTART_RESTARTBLOCK) {
1353
1354 if (flags & TIMER_ABSTIME)
1355 return -ERESTARTNOHAND;
1356 /*
1357 * Report back to the user the time still remaining.
1358 */
1359 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1360 return -EFAULT;
1361
1362 restart_block->fn = posix_cpu_nsleep_restart;
1363 restart_block->nanosleep.clockid = which_clock;
1364 restart_block->nanosleep.rmtp = rmtp;
1365 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1366 }
1367 return error;
1368 }
1369
posix_cpu_nsleep_restart(struct restart_block * restart_block)1370 static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1371 {
1372 clockid_t which_clock = restart_block->nanosleep.clockid;
1373 struct timespec t;
1374 struct itimerspec it;
1375 int error;
1376
1377 t = ns_to_timespec(restart_block->nanosleep.expires);
1378
1379 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1380
1381 if (error == -ERESTART_RESTARTBLOCK) {
1382 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1383 /*
1384 * Report back to the user the time still remaining.
1385 */
1386 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1387 return -EFAULT;
1388
1389 restart_block->nanosleep.expires = timespec_to_ns(&t);
1390 }
1391 return error;
1392
1393 }
1394
1395 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1396 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1397
process_cpu_clock_getres(const clockid_t which_clock,struct timespec * tp)1398 static int process_cpu_clock_getres(const clockid_t which_clock,
1399 struct timespec *tp)
1400 {
1401 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1402 }
process_cpu_clock_get(const clockid_t which_clock,struct timespec * tp)1403 static int process_cpu_clock_get(const clockid_t which_clock,
1404 struct timespec *tp)
1405 {
1406 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1407 }
process_cpu_timer_create(struct k_itimer * timer)1408 static int process_cpu_timer_create(struct k_itimer *timer)
1409 {
1410 timer->it_clock = PROCESS_CLOCK;
1411 return posix_cpu_timer_create(timer);
1412 }
process_cpu_nsleep(const clockid_t which_clock,int flags,struct timespec * rqtp,struct timespec __user * rmtp)1413 static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1414 struct timespec *rqtp,
1415 struct timespec __user *rmtp)
1416 {
1417 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1418 }
process_cpu_nsleep_restart(struct restart_block * restart_block)1419 static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1420 {
1421 return -EINVAL;
1422 }
thread_cpu_clock_getres(const clockid_t which_clock,struct timespec * tp)1423 static int thread_cpu_clock_getres(const clockid_t which_clock,
1424 struct timespec *tp)
1425 {
1426 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1427 }
thread_cpu_clock_get(const clockid_t which_clock,struct timespec * tp)1428 static int thread_cpu_clock_get(const clockid_t which_clock,
1429 struct timespec *tp)
1430 {
1431 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1432 }
thread_cpu_timer_create(struct k_itimer * timer)1433 static int thread_cpu_timer_create(struct k_itimer *timer)
1434 {
1435 timer->it_clock = THREAD_CLOCK;
1436 return posix_cpu_timer_create(timer);
1437 }
1438
1439 struct k_clock clock_posix_cpu = {
1440 .clock_getres = posix_cpu_clock_getres,
1441 .clock_set = posix_cpu_clock_set,
1442 .clock_get = posix_cpu_clock_get,
1443 .timer_create = posix_cpu_timer_create,
1444 .nsleep = posix_cpu_nsleep,
1445 .nsleep_restart = posix_cpu_nsleep_restart,
1446 .timer_set = posix_cpu_timer_set,
1447 .timer_del = posix_cpu_timer_del,
1448 .timer_get = posix_cpu_timer_get,
1449 };
1450
init_posix_cpu_timers(void)1451 static __init int init_posix_cpu_timers(void)
1452 {
1453 struct k_clock process = {
1454 .clock_getres = process_cpu_clock_getres,
1455 .clock_get = process_cpu_clock_get,
1456 .timer_create = process_cpu_timer_create,
1457 .nsleep = process_cpu_nsleep,
1458 .nsleep_restart = process_cpu_nsleep_restart,
1459 };
1460 struct k_clock thread = {
1461 .clock_getres = thread_cpu_clock_getres,
1462 .clock_get = thread_cpu_clock_get,
1463 .timer_create = thread_cpu_timer_create,
1464 };
1465 struct timespec ts;
1466
1467 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1468 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1469
1470 cputime_to_timespec(cputime_one_jiffy, &ts);
1471 onecputick = ts.tv_nsec;
1472 WARN_ON(ts.tv_sec != 0);
1473
1474 return 0;
1475 }
1476 __initcall(init_posix_cpu_timers);
1477