• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/kernel/power/snapshot.c
3  *
4  * This file provides system snapshot/restore functionality for swsusp.
5  *
6  * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8  *
9  * This file is released under the GPLv2.
10  *
11  */
12 
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30 #include <linux/compiler.h>
31 
32 #include <asm/uaccess.h>
33 #include <asm/mmu_context.h>
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <asm/io.h>
37 
38 #include "power.h"
39 
40 static int swsusp_page_is_free(struct page *);
41 static void swsusp_set_page_forbidden(struct page *);
42 static void swsusp_unset_page_forbidden(struct page *);
43 
44 /*
45  * Number of bytes to reserve for memory allocations made by device drivers
46  * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
47  * cause image creation to fail (tunable via /sys/power/reserved_size).
48  */
49 unsigned long reserved_size;
50 
hibernate_reserved_size_init(void)51 void __init hibernate_reserved_size_init(void)
52 {
53 	reserved_size = SPARE_PAGES * PAGE_SIZE;
54 }
55 
56 /*
57  * Preferred image size in bytes (tunable via /sys/power/image_size).
58  * When it is set to N, swsusp will do its best to ensure the image
59  * size will not exceed N bytes, but if that is impossible, it will
60  * try to create the smallest image possible.
61  */
62 unsigned long image_size;
63 
hibernate_image_size_init(void)64 void __init hibernate_image_size_init(void)
65 {
66 	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
67 }
68 
69 /* List of PBEs needed for restoring the pages that were allocated before
70  * the suspend and included in the suspend image, but have also been
71  * allocated by the "resume" kernel, so their contents cannot be written
72  * directly to their "original" page frames.
73  */
74 struct pbe *restore_pblist;
75 
76 /* Pointer to an auxiliary buffer (1 page) */
77 static void *buffer;
78 
79 /**
80  *	@safe_needed - on resume, for storing the PBE list and the image,
81  *	we can only use memory pages that do not conflict with the pages
82  *	used before suspend.  The unsafe pages have PageNosaveFree set
83  *	and we count them using unsafe_pages.
84  *
85  *	Each allocated image page is marked as PageNosave and PageNosaveFree
86  *	so that swsusp_free() can release it.
87  */
88 
89 #define PG_ANY		0
90 #define PG_SAFE		1
91 #define PG_UNSAFE_CLEAR	1
92 #define PG_UNSAFE_KEEP	0
93 
94 static unsigned int allocated_unsafe_pages;
95 
get_image_page(gfp_t gfp_mask,int safe_needed)96 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
97 {
98 	void *res;
99 
100 	res = (void *)get_zeroed_page(gfp_mask);
101 	if (safe_needed)
102 		while (res && swsusp_page_is_free(virt_to_page(res))) {
103 			/* The page is unsafe, mark it for swsusp_free() */
104 			swsusp_set_page_forbidden(virt_to_page(res));
105 			allocated_unsafe_pages++;
106 			res = (void *)get_zeroed_page(gfp_mask);
107 		}
108 	if (res) {
109 		swsusp_set_page_forbidden(virt_to_page(res));
110 		swsusp_set_page_free(virt_to_page(res));
111 	}
112 	return res;
113 }
114 
get_safe_page(gfp_t gfp_mask)115 unsigned long get_safe_page(gfp_t gfp_mask)
116 {
117 	return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
118 }
119 
alloc_image_page(gfp_t gfp_mask)120 static struct page *alloc_image_page(gfp_t gfp_mask)
121 {
122 	struct page *page;
123 
124 	page = alloc_page(gfp_mask);
125 	if (page) {
126 		swsusp_set_page_forbidden(page);
127 		swsusp_set_page_free(page);
128 	}
129 	return page;
130 }
131 
132 /**
133  *	free_image_page - free page represented by @addr, allocated with
134  *	get_image_page (page flags set by it must be cleared)
135  */
136 
free_image_page(void * addr,int clear_nosave_free)137 static inline void free_image_page(void *addr, int clear_nosave_free)
138 {
139 	struct page *page;
140 
141 	BUG_ON(!virt_addr_valid(addr));
142 
143 	page = virt_to_page(addr);
144 
145 	swsusp_unset_page_forbidden(page);
146 	if (clear_nosave_free)
147 		swsusp_unset_page_free(page);
148 
149 	__free_page(page);
150 }
151 
152 /* struct linked_page is used to build chains of pages */
153 
154 #define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
155 
156 struct linked_page {
157 	struct linked_page *next;
158 	char data[LINKED_PAGE_DATA_SIZE];
159 } __packed;
160 
161 static inline void
free_list_of_pages(struct linked_page * list,int clear_page_nosave)162 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
163 {
164 	while (list) {
165 		struct linked_page *lp = list->next;
166 
167 		free_image_page(list, clear_page_nosave);
168 		list = lp;
169 	}
170 }
171 
172 /**
173   *	struct chain_allocator is used for allocating small objects out of
174   *	a linked list of pages called 'the chain'.
175   *
176   *	The chain grows each time when there is no room for a new object in
177   *	the current page.  The allocated objects cannot be freed individually.
178   *	It is only possible to free them all at once, by freeing the entire
179   *	chain.
180   *
181   *	NOTE: The chain allocator may be inefficient if the allocated objects
182   *	are not much smaller than PAGE_SIZE.
183   */
184 
185 struct chain_allocator {
186 	struct linked_page *chain;	/* the chain */
187 	unsigned int used_space;	/* total size of objects allocated out
188 					 * of the current page
189 					 */
190 	gfp_t gfp_mask;		/* mask for allocating pages */
191 	int safe_needed;	/* if set, only "safe" pages are allocated */
192 };
193 
194 static void
chain_init(struct chain_allocator * ca,gfp_t gfp_mask,int safe_needed)195 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
196 {
197 	ca->chain = NULL;
198 	ca->used_space = LINKED_PAGE_DATA_SIZE;
199 	ca->gfp_mask = gfp_mask;
200 	ca->safe_needed = safe_needed;
201 }
202 
chain_alloc(struct chain_allocator * ca,unsigned int size)203 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
204 {
205 	void *ret;
206 
207 	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
208 		struct linked_page *lp;
209 
210 		lp = get_image_page(ca->gfp_mask, ca->safe_needed);
211 		if (!lp)
212 			return NULL;
213 
214 		lp->next = ca->chain;
215 		ca->chain = lp;
216 		ca->used_space = 0;
217 	}
218 	ret = ca->chain->data + ca->used_space;
219 	ca->used_space += size;
220 	return ret;
221 }
222 
223 /**
224  *	Data types related to memory bitmaps.
225  *
226  *	Memory bitmap is a structure consiting of many linked lists of
227  *	objects.  The main list's elements are of type struct zone_bitmap
228  *	and each of them corresonds to one zone.  For each zone bitmap
229  *	object there is a list of objects of type struct bm_block that
230  *	represent each blocks of bitmap in which information is stored.
231  *
232  *	struct memory_bitmap contains a pointer to the main list of zone
233  *	bitmap objects, a struct bm_position used for browsing the bitmap,
234  *	and a pointer to the list of pages used for allocating all of the
235  *	zone bitmap objects and bitmap block objects.
236  *
237  *	NOTE: It has to be possible to lay out the bitmap in memory
238  *	using only allocations of order 0.  Additionally, the bitmap is
239  *	designed to work with arbitrary number of zones (this is over the
240  *	top for now, but let's avoid making unnecessary assumptions ;-).
241  *
242  *	struct zone_bitmap contains a pointer to a list of bitmap block
243  *	objects and a pointer to the bitmap block object that has been
244  *	most recently used for setting bits.  Additionally, it contains the
245  *	pfns that correspond to the start and end of the represented zone.
246  *
247  *	struct bm_block contains a pointer to the memory page in which
248  *	information is stored (in the form of a block of bitmap)
249  *	It also contains the pfns that correspond to the start and end of
250  *	the represented memory area.
251  *
252  *	The memory bitmap is organized as a radix tree to guarantee fast random
253  *	access to the bits. There is one radix tree for each zone (as returned
254  *	from create_mem_extents).
255  *
256  *	One radix tree is represented by one struct mem_zone_bm_rtree. There are
257  *	two linked lists for the nodes of the tree, one for the inner nodes and
258  *	one for the leave nodes. The linked leave nodes are used for fast linear
259  *	access of the memory bitmap.
260  *
261  *	The struct rtree_node represents one node of the radix tree.
262  */
263 
264 #define BM_END_OF_MAP	(~0UL)
265 
266 #define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
267 #define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
268 #define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
269 
270 /*
271  * struct rtree_node is a wrapper struct to link the nodes
272  * of the rtree together for easy linear iteration over
273  * bits and easy freeing
274  */
275 struct rtree_node {
276 	struct list_head list;
277 	unsigned long *data;
278 };
279 
280 /*
281  * struct mem_zone_bm_rtree represents a bitmap used for one
282  * populated memory zone.
283  */
284 struct mem_zone_bm_rtree {
285 	struct list_head list;		/* Link Zones together         */
286 	struct list_head nodes;		/* Radix Tree inner nodes      */
287 	struct list_head leaves;	/* Radix Tree leaves           */
288 	unsigned long start_pfn;	/* Zone start page frame       */
289 	unsigned long end_pfn;		/* Zone end page frame + 1     */
290 	struct rtree_node *rtree;	/* Radix Tree Root             */
291 	int levels;			/* Number of Radix Tree Levels */
292 	unsigned int blocks;		/* Number of Bitmap Blocks     */
293 };
294 
295 /* strcut bm_position is used for browsing memory bitmaps */
296 
297 struct bm_position {
298 	struct mem_zone_bm_rtree *zone;
299 	struct rtree_node *node;
300 	unsigned long node_pfn;
301 	int node_bit;
302 };
303 
304 struct memory_bitmap {
305 	struct list_head zones;
306 	struct linked_page *p_list;	/* list of pages used to store zone
307 					 * bitmap objects and bitmap block
308 					 * objects
309 					 */
310 	struct bm_position cur;	/* most recently used bit position */
311 };
312 
313 /* Functions that operate on memory bitmaps */
314 
315 #define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
316 #if BITS_PER_LONG == 32
317 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
318 #else
319 #define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
320 #endif
321 #define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
322 
323 /*
324  *	alloc_rtree_node - Allocate a new node and add it to the radix tree.
325  *
326  *	This function is used to allocate inner nodes as well as the
327  *	leave nodes of the radix tree. It also adds the node to the
328  *	corresponding linked list passed in by the *list parameter.
329  */
alloc_rtree_node(gfp_t gfp_mask,int safe_needed,struct chain_allocator * ca,struct list_head * list)330 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
331 					   struct chain_allocator *ca,
332 					   struct list_head *list)
333 {
334 	struct rtree_node *node;
335 
336 	node = chain_alloc(ca, sizeof(struct rtree_node));
337 	if (!node)
338 		return NULL;
339 
340 	node->data = get_image_page(gfp_mask, safe_needed);
341 	if (!node->data)
342 		return NULL;
343 
344 	list_add_tail(&node->list, list);
345 
346 	return node;
347 }
348 
349 /*
350  *	add_rtree_block - Add a new leave node to the radix tree
351  *
352  *	The leave nodes need to be allocated in order to keep the leaves
353  *	linked list in order. This is guaranteed by the zone->blocks
354  *	counter.
355  */
add_rtree_block(struct mem_zone_bm_rtree * zone,gfp_t gfp_mask,int safe_needed,struct chain_allocator * ca)356 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
357 			   int safe_needed, struct chain_allocator *ca)
358 {
359 	struct rtree_node *node, *block, **dst;
360 	unsigned int levels_needed, block_nr;
361 	int i;
362 
363 	block_nr = zone->blocks;
364 	levels_needed = 0;
365 
366 	/* How many levels do we need for this block nr? */
367 	while (block_nr) {
368 		levels_needed += 1;
369 		block_nr >>= BM_RTREE_LEVEL_SHIFT;
370 	}
371 
372 	/* Make sure the rtree has enough levels */
373 	for (i = zone->levels; i < levels_needed; i++) {
374 		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
375 					&zone->nodes);
376 		if (!node)
377 			return -ENOMEM;
378 
379 		node->data[0] = (unsigned long)zone->rtree;
380 		zone->rtree = node;
381 		zone->levels += 1;
382 	}
383 
384 	/* Allocate new block */
385 	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
386 	if (!block)
387 		return -ENOMEM;
388 
389 	/* Now walk the rtree to insert the block */
390 	node = zone->rtree;
391 	dst = &zone->rtree;
392 	block_nr = zone->blocks;
393 	for (i = zone->levels; i > 0; i--) {
394 		int index;
395 
396 		if (!node) {
397 			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
398 						&zone->nodes);
399 			if (!node)
400 				return -ENOMEM;
401 			*dst = node;
402 		}
403 
404 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
405 		index &= BM_RTREE_LEVEL_MASK;
406 		dst = (struct rtree_node **)&((*dst)->data[index]);
407 		node = *dst;
408 	}
409 
410 	zone->blocks += 1;
411 	*dst = block;
412 
413 	return 0;
414 }
415 
416 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
417 			       int clear_nosave_free);
418 
419 /*
420  *	create_zone_bm_rtree - create a radix tree for one zone
421  *
422  *	Allocated the mem_zone_bm_rtree structure and initializes it.
423  *	This function also allocated and builds the radix tree for the
424  *	zone.
425  */
426 static struct mem_zone_bm_rtree *
create_zone_bm_rtree(gfp_t gfp_mask,int safe_needed,struct chain_allocator * ca,unsigned long start,unsigned long end)427 create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed,
428 		     struct chain_allocator *ca,
429 		     unsigned long start, unsigned long end)
430 {
431 	struct mem_zone_bm_rtree *zone;
432 	unsigned int i, nr_blocks;
433 	unsigned long pages;
434 
435 	pages = end - start;
436 	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
437 	if (!zone)
438 		return NULL;
439 
440 	INIT_LIST_HEAD(&zone->nodes);
441 	INIT_LIST_HEAD(&zone->leaves);
442 	zone->start_pfn = start;
443 	zone->end_pfn = end;
444 	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
445 
446 	for (i = 0; i < nr_blocks; i++) {
447 		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
448 			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
449 			return NULL;
450 		}
451 	}
452 
453 	return zone;
454 }
455 
456 /*
457  *	free_zone_bm_rtree - Free the memory of the radix tree
458  *
459  *	Free all node pages of the radix tree. The mem_zone_bm_rtree
460  *	structure itself is not freed here nor are the rtree_node
461  *	structs.
462  */
free_zone_bm_rtree(struct mem_zone_bm_rtree * zone,int clear_nosave_free)463 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
464 			       int clear_nosave_free)
465 {
466 	struct rtree_node *node;
467 
468 	list_for_each_entry(node, &zone->nodes, list)
469 		free_image_page(node->data, clear_nosave_free);
470 
471 	list_for_each_entry(node, &zone->leaves, list)
472 		free_image_page(node->data, clear_nosave_free);
473 }
474 
memory_bm_position_reset(struct memory_bitmap * bm)475 static void memory_bm_position_reset(struct memory_bitmap *bm)
476 {
477 	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
478 				  list);
479 	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
480 				  struct rtree_node, list);
481 	bm->cur.node_pfn = 0;
482 	bm->cur.node_bit = 0;
483 }
484 
485 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
486 
487 struct mem_extent {
488 	struct list_head hook;
489 	unsigned long start;
490 	unsigned long end;
491 };
492 
493 /**
494  *	free_mem_extents - free a list of memory extents
495  *	@list - list of extents to empty
496  */
free_mem_extents(struct list_head * list)497 static void free_mem_extents(struct list_head *list)
498 {
499 	struct mem_extent *ext, *aux;
500 
501 	list_for_each_entry_safe(ext, aux, list, hook) {
502 		list_del(&ext->hook);
503 		kfree(ext);
504 	}
505 }
506 
507 /**
508  *	create_mem_extents - create a list of memory extents representing
509  *	                     contiguous ranges of PFNs
510  *	@list - list to put the extents into
511  *	@gfp_mask - mask to use for memory allocations
512  */
create_mem_extents(struct list_head * list,gfp_t gfp_mask)513 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
514 {
515 	struct zone *zone;
516 
517 	INIT_LIST_HEAD(list);
518 
519 	for_each_populated_zone(zone) {
520 		unsigned long zone_start, zone_end;
521 		struct mem_extent *ext, *cur, *aux;
522 
523 		zone_start = zone->zone_start_pfn;
524 		zone_end = zone_end_pfn(zone);
525 
526 		list_for_each_entry(ext, list, hook)
527 			if (zone_start <= ext->end)
528 				break;
529 
530 		if (&ext->hook == list || zone_end < ext->start) {
531 			/* New extent is necessary */
532 			struct mem_extent *new_ext;
533 
534 			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
535 			if (!new_ext) {
536 				free_mem_extents(list);
537 				return -ENOMEM;
538 			}
539 			new_ext->start = zone_start;
540 			new_ext->end = zone_end;
541 			list_add_tail(&new_ext->hook, &ext->hook);
542 			continue;
543 		}
544 
545 		/* Merge this zone's range of PFNs with the existing one */
546 		if (zone_start < ext->start)
547 			ext->start = zone_start;
548 		if (zone_end > ext->end)
549 			ext->end = zone_end;
550 
551 		/* More merging may be possible */
552 		cur = ext;
553 		list_for_each_entry_safe_continue(cur, aux, list, hook) {
554 			if (zone_end < cur->start)
555 				break;
556 			if (zone_end < cur->end)
557 				ext->end = cur->end;
558 			list_del(&cur->hook);
559 			kfree(cur);
560 		}
561 	}
562 
563 	return 0;
564 }
565 
566 /**
567   *	memory_bm_create - allocate memory for a memory bitmap
568   */
569 static int
memory_bm_create(struct memory_bitmap * bm,gfp_t gfp_mask,int safe_needed)570 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
571 {
572 	struct chain_allocator ca;
573 	struct list_head mem_extents;
574 	struct mem_extent *ext;
575 	int error;
576 
577 	chain_init(&ca, gfp_mask, safe_needed);
578 	INIT_LIST_HEAD(&bm->zones);
579 
580 	error = create_mem_extents(&mem_extents, gfp_mask);
581 	if (error)
582 		return error;
583 
584 	list_for_each_entry(ext, &mem_extents, hook) {
585 		struct mem_zone_bm_rtree *zone;
586 
587 		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
588 					    ext->start, ext->end);
589 		if (!zone) {
590 			error = -ENOMEM;
591 			goto Error;
592 		}
593 		list_add_tail(&zone->list, &bm->zones);
594 	}
595 
596 	bm->p_list = ca.chain;
597 	memory_bm_position_reset(bm);
598  Exit:
599 	free_mem_extents(&mem_extents);
600 	return error;
601 
602  Error:
603 	bm->p_list = ca.chain;
604 	memory_bm_free(bm, PG_UNSAFE_CLEAR);
605 	goto Exit;
606 }
607 
608 /**
609   *	memory_bm_free - free memory occupied by the memory bitmap @bm
610   */
memory_bm_free(struct memory_bitmap * bm,int clear_nosave_free)611 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
612 {
613 	struct mem_zone_bm_rtree *zone;
614 
615 	list_for_each_entry(zone, &bm->zones, list)
616 		free_zone_bm_rtree(zone, clear_nosave_free);
617 
618 	free_list_of_pages(bm->p_list, clear_nosave_free);
619 
620 	INIT_LIST_HEAD(&bm->zones);
621 }
622 
623 /**
624  *	memory_bm_find_bit - Find the bit for pfn in the memory
625  *			     bitmap
626  *
627  *	Find the bit in the bitmap @bm that corresponds to given pfn.
628  *	The cur.zone, cur.block and cur.node_pfn member of @bm are
629  *	updated.
630  *	It walks the radix tree to find the page which contains the bit for
631  *	pfn and returns the bit position in **addr and *bit_nr.
632  */
memory_bm_find_bit(struct memory_bitmap * bm,unsigned long pfn,void ** addr,unsigned int * bit_nr)633 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
634 			      void **addr, unsigned int *bit_nr)
635 {
636 	struct mem_zone_bm_rtree *curr, *zone;
637 	struct rtree_node *node;
638 	int i, block_nr;
639 
640 	zone = bm->cur.zone;
641 
642 	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
643 		goto zone_found;
644 
645 	zone = NULL;
646 
647 	/* Find the right zone */
648 	list_for_each_entry(curr, &bm->zones, list) {
649 		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
650 			zone = curr;
651 			break;
652 		}
653 	}
654 
655 	if (!zone)
656 		return -EFAULT;
657 
658 zone_found:
659 	/*
660 	 * We have a zone. Now walk the radix tree to find the leave
661 	 * node for our pfn.
662 	 */
663 
664 	node = bm->cur.node;
665 	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
666 		goto node_found;
667 
668 	node      = zone->rtree;
669 	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
670 
671 	for (i = zone->levels; i > 0; i--) {
672 		int index;
673 
674 		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
675 		index &= BM_RTREE_LEVEL_MASK;
676 		BUG_ON(node->data[index] == 0);
677 		node = (struct rtree_node *)node->data[index];
678 	}
679 
680 node_found:
681 	/* Update last position */
682 	bm->cur.zone = zone;
683 	bm->cur.node = node;
684 	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
685 
686 	/* Set return values */
687 	*addr = node->data;
688 	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
689 
690 	return 0;
691 }
692 
memory_bm_set_bit(struct memory_bitmap * bm,unsigned long pfn)693 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
694 {
695 	void *addr;
696 	unsigned int bit;
697 	int error;
698 
699 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
700 	BUG_ON(error);
701 	set_bit(bit, addr);
702 }
703 
mem_bm_set_bit_check(struct memory_bitmap * bm,unsigned long pfn)704 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
705 {
706 	void *addr;
707 	unsigned int bit;
708 	int error;
709 
710 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
711 	if (!error)
712 		set_bit(bit, addr);
713 
714 	return error;
715 }
716 
memory_bm_clear_bit(struct memory_bitmap * bm,unsigned long pfn)717 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
718 {
719 	void *addr;
720 	unsigned int bit;
721 	int error;
722 
723 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
724 	BUG_ON(error);
725 	clear_bit(bit, addr);
726 }
727 
memory_bm_clear_current(struct memory_bitmap * bm)728 static void memory_bm_clear_current(struct memory_bitmap *bm)
729 {
730 	int bit;
731 
732 	bit = max(bm->cur.node_bit - 1, 0);
733 	clear_bit(bit, bm->cur.node->data);
734 }
735 
memory_bm_test_bit(struct memory_bitmap * bm,unsigned long pfn)736 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
737 {
738 	void *addr;
739 	unsigned int bit;
740 	int error;
741 
742 	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
743 	BUG_ON(error);
744 	return test_bit(bit, addr);
745 }
746 
memory_bm_pfn_present(struct memory_bitmap * bm,unsigned long pfn)747 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
748 {
749 	void *addr;
750 	unsigned int bit;
751 
752 	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
753 }
754 
755 /*
756  *	rtree_next_node - Jumps to the next leave node
757  *
758  *	Sets the position to the beginning of the next node in the
759  *	memory bitmap. This is either the next node in the current
760  *	zone's radix tree or the first node in the radix tree of the
761  *	next zone.
762  *
763  *	Returns true if there is a next node, false otherwise.
764  */
rtree_next_node(struct memory_bitmap * bm)765 static bool rtree_next_node(struct memory_bitmap *bm)
766 {
767 	bm->cur.node = list_entry(bm->cur.node->list.next,
768 				  struct rtree_node, list);
769 	if (&bm->cur.node->list != &bm->cur.zone->leaves) {
770 		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
771 		bm->cur.node_bit  = 0;
772 		touch_softlockup_watchdog();
773 		return true;
774 	}
775 
776 	/* No more nodes, goto next zone */
777 	bm->cur.zone = list_entry(bm->cur.zone->list.next,
778 				  struct mem_zone_bm_rtree, list);
779 	if (&bm->cur.zone->list != &bm->zones) {
780 		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
781 					  struct rtree_node, list);
782 		bm->cur.node_pfn = 0;
783 		bm->cur.node_bit = 0;
784 		return true;
785 	}
786 
787 	/* No more zones */
788 	return false;
789 }
790 
791 /**
792  *	memory_bm_rtree_next_pfn - Find the next set bit in the bitmap @bm
793  *
794  *	Starting from the last returned position this function searches
795  *	for the next set bit in the memory bitmap and returns its
796  *	number. If no more bit is set BM_END_OF_MAP is returned.
797  *
798  *	It is required to run memory_bm_position_reset() before the
799  *	first call to this function.
800  */
memory_bm_next_pfn(struct memory_bitmap * bm)801 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
802 {
803 	unsigned long bits, pfn, pages;
804 	int bit;
805 
806 	do {
807 		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
808 		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
809 		bit	  = find_next_bit(bm->cur.node->data, bits,
810 					  bm->cur.node_bit);
811 		if (bit < bits) {
812 			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
813 			bm->cur.node_bit = bit + 1;
814 			return pfn;
815 		}
816 	} while (rtree_next_node(bm));
817 
818 	return BM_END_OF_MAP;
819 }
820 
821 /**
822  *	This structure represents a range of page frames the contents of which
823  *	should not be saved during the suspend.
824  */
825 
826 struct nosave_region {
827 	struct list_head list;
828 	unsigned long start_pfn;
829 	unsigned long end_pfn;
830 };
831 
832 static LIST_HEAD(nosave_regions);
833 
834 /**
835  *	register_nosave_region - register a range of page frames the contents
836  *	of which should not be saved during the suspend (to be used in the early
837  *	initialization code)
838  */
839 
840 void __init
__register_nosave_region(unsigned long start_pfn,unsigned long end_pfn,int use_kmalloc)841 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
842 			 int use_kmalloc)
843 {
844 	struct nosave_region *region;
845 
846 	if (start_pfn >= end_pfn)
847 		return;
848 
849 	if (!list_empty(&nosave_regions)) {
850 		/* Try to extend the previous region (they should be sorted) */
851 		region = list_entry(nosave_regions.prev,
852 					struct nosave_region, list);
853 		if (region->end_pfn == start_pfn) {
854 			region->end_pfn = end_pfn;
855 			goto Report;
856 		}
857 	}
858 	if (use_kmalloc) {
859 		/* during init, this shouldn't fail */
860 		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
861 		BUG_ON(!region);
862 	} else
863 		/* This allocation cannot fail */
864 		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
865 	region->start_pfn = start_pfn;
866 	region->end_pfn = end_pfn;
867 	list_add_tail(&region->list, &nosave_regions);
868  Report:
869 	printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
870 		(unsigned long long) start_pfn << PAGE_SHIFT,
871 		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
872 }
873 
874 /*
875  * Set bits in this map correspond to the page frames the contents of which
876  * should not be saved during the suspend.
877  */
878 static struct memory_bitmap *forbidden_pages_map;
879 
880 /* Set bits in this map correspond to free page frames. */
881 static struct memory_bitmap *free_pages_map;
882 
883 /*
884  * Each page frame allocated for creating the image is marked by setting the
885  * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
886  */
887 
swsusp_set_page_free(struct page * page)888 void swsusp_set_page_free(struct page *page)
889 {
890 	if (free_pages_map)
891 		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
892 }
893 
swsusp_page_is_free(struct page * page)894 static int swsusp_page_is_free(struct page *page)
895 {
896 	return free_pages_map ?
897 		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
898 }
899 
swsusp_unset_page_free(struct page * page)900 void swsusp_unset_page_free(struct page *page)
901 {
902 	if (free_pages_map)
903 		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
904 }
905 
swsusp_set_page_forbidden(struct page * page)906 static void swsusp_set_page_forbidden(struct page *page)
907 {
908 	if (forbidden_pages_map)
909 		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
910 }
911 
swsusp_page_is_forbidden(struct page * page)912 int swsusp_page_is_forbidden(struct page *page)
913 {
914 	return forbidden_pages_map ?
915 		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
916 }
917 
swsusp_unset_page_forbidden(struct page * page)918 static void swsusp_unset_page_forbidden(struct page *page)
919 {
920 	if (forbidden_pages_map)
921 		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
922 }
923 
924 /**
925  *	mark_nosave_pages - set bits corresponding to the page frames the
926  *	contents of which should not be saved in a given bitmap.
927  */
928 
mark_nosave_pages(struct memory_bitmap * bm)929 static void mark_nosave_pages(struct memory_bitmap *bm)
930 {
931 	struct nosave_region *region;
932 
933 	if (list_empty(&nosave_regions))
934 		return;
935 
936 	list_for_each_entry(region, &nosave_regions, list) {
937 		unsigned long pfn;
938 
939 		pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
940 			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
941 			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
942 				- 1);
943 
944 		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
945 			if (pfn_valid(pfn)) {
946 				/*
947 				 * It is safe to ignore the result of
948 				 * mem_bm_set_bit_check() here, since we won't
949 				 * touch the PFNs for which the error is
950 				 * returned anyway.
951 				 */
952 				mem_bm_set_bit_check(bm, pfn);
953 			}
954 	}
955 }
956 
957 /**
958  *	create_basic_memory_bitmaps - create bitmaps needed for marking page
959  *	frames that should not be saved and free page frames.  The pointers
960  *	forbidden_pages_map and free_pages_map are only modified if everything
961  *	goes well, because we don't want the bits to be used before both bitmaps
962  *	are set up.
963  */
964 
create_basic_memory_bitmaps(void)965 int create_basic_memory_bitmaps(void)
966 {
967 	struct memory_bitmap *bm1, *bm2;
968 	int error = 0;
969 
970 	if (forbidden_pages_map && free_pages_map)
971 		return 0;
972 	else
973 		BUG_ON(forbidden_pages_map || free_pages_map);
974 
975 	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
976 	if (!bm1)
977 		return -ENOMEM;
978 
979 	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
980 	if (error)
981 		goto Free_first_object;
982 
983 	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
984 	if (!bm2)
985 		goto Free_first_bitmap;
986 
987 	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
988 	if (error)
989 		goto Free_second_object;
990 
991 	forbidden_pages_map = bm1;
992 	free_pages_map = bm2;
993 	mark_nosave_pages(forbidden_pages_map);
994 
995 	pr_debug("PM: Basic memory bitmaps created\n");
996 
997 	return 0;
998 
999  Free_second_object:
1000 	kfree(bm2);
1001  Free_first_bitmap:
1002  	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1003  Free_first_object:
1004 	kfree(bm1);
1005 	return -ENOMEM;
1006 }
1007 
1008 /**
1009  *	free_basic_memory_bitmaps - free memory bitmaps allocated by
1010  *	create_basic_memory_bitmaps().  The auxiliary pointers are necessary
1011  *	so that the bitmaps themselves are not referred to while they are being
1012  *	freed.
1013  */
1014 
free_basic_memory_bitmaps(void)1015 void free_basic_memory_bitmaps(void)
1016 {
1017 	struct memory_bitmap *bm1, *bm2;
1018 
1019 	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1020 		return;
1021 
1022 	bm1 = forbidden_pages_map;
1023 	bm2 = free_pages_map;
1024 	forbidden_pages_map = NULL;
1025 	free_pages_map = NULL;
1026 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1027 	kfree(bm1);
1028 	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1029 	kfree(bm2);
1030 
1031 	pr_debug("PM: Basic memory bitmaps freed\n");
1032 }
1033 
1034 /**
1035  *	snapshot_additional_pages - estimate the number of additional pages
1036  *	be needed for setting up the suspend image data structures for given
1037  *	zone (usually the returned value is greater than the exact number)
1038  */
1039 
snapshot_additional_pages(struct zone * zone)1040 unsigned int snapshot_additional_pages(struct zone *zone)
1041 {
1042 	unsigned int rtree, nodes;
1043 
1044 	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1045 	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1046 			      LINKED_PAGE_DATA_SIZE);
1047 	while (nodes > 1) {
1048 		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1049 		rtree += nodes;
1050 	}
1051 
1052 	return 2 * rtree;
1053 }
1054 
1055 #ifdef CONFIG_HIGHMEM
1056 /**
1057  *	count_free_highmem_pages - compute the total number of free highmem
1058  *	pages, system-wide.
1059  */
1060 
count_free_highmem_pages(void)1061 static unsigned int count_free_highmem_pages(void)
1062 {
1063 	struct zone *zone;
1064 	unsigned int cnt = 0;
1065 
1066 	for_each_populated_zone(zone)
1067 		if (is_highmem(zone))
1068 			cnt += zone_page_state(zone, NR_FREE_PAGES);
1069 
1070 	return cnt;
1071 }
1072 
1073 /**
1074  *	saveable_highmem_page - Determine whether a highmem page should be
1075  *	included in the suspend image.
1076  *
1077  *	We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1078  *	and it isn't a part of a free chunk of pages.
1079  */
saveable_highmem_page(struct zone * zone,unsigned long pfn)1080 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1081 {
1082 	struct page *page;
1083 
1084 	if (!pfn_valid(pfn))
1085 		return NULL;
1086 
1087 	page = pfn_to_page(pfn);
1088 	if (page_zone(page) != zone)
1089 		return NULL;
1090 
1091 	BUG_ON(!PageHighMem(page));
1092 
1093 	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
1094 	    PageReserved(page))
1095 		return NULL;
1096 
1097 	if (page_is_guard(page))
1098 		return NULL;
1099 
1100 	return page;
1101 }
1102 
1103 /**
1104  *	count_highmem_pages - compute the total number of saveable highmem
1105  *	pages.
1106  */
1107 
count_highmem_pages(void)1108 static unsigned int count_highmem_pages(void)
1109 {
1110 	struct zone *zone;
1111 	unsigned int n = 0;
1112 
1113 	for_each_populated_zone(zone) {
1114 		unsigned long pfn, max_zone_pfn;
1115 
1116 		if (!is_highmem(zone))
1117 			continue;
1118 
1119 		mark_free_pages(zone);
1120 		max_zone_pfn = zone_end_pfn(zone);
1121 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1122 			if (saveable_highmem_page(zone, pfn))
1123 				n++;
1124 	}
1125 	return n;
1126 }
1127 #else
saveable_highmem_page(struct zone * z,unsigned long p)1128 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1129 {
1130 	return NULL;
1131 }
1132 #endif /* CONFIG_HIGHMEM */
1133 
1134 /**
1135  *	saveable_page - Determine whether a non-highmem page should be included
1136  *	in the suspend image.
1137  *
1138  *	We should save the page if it isn't Nosave, and is not in the range
1139  *	of pages statically defined as 'unsaveable', and it isn't a part of
1140  *	a free chunk of pages.
1141  */
saveable_page(struct zone * zone,unsigned long pfn)1142 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1143 {
1144 	struct page *page;
1145 
1146 	if (!pfn_valid(pfn))
1147 		return NULL;
1148 
1149 	page = pfn_to_page(pfn);
1150 	if (page_zone(page) != zone)
1151 		return NULL;
1152 
1153 	BUG_ON(PageHighMem(page));
1154 
1155 	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1156 		return NULL;
1157 
1158 	if (PageReserved(page)
1159 	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1160 		return NULL;
1161 
1162 	if (page_is_guard(page))
1163 		return NULL;
1164 
1165 	return page;
1166 }
1167 
1168 /**
1169  *	count_data_pages - compute the total number of saveable non-highmem
1170  *	pages.
1171  */
1172 
count_data_pages(void)1173 static unsigned int count_data_pages(void)
1174 {
1175 	struct zone *zone;
1176 	unsigned long pfn, max_zone_pfn;
1177 	unsigned int n = 0;
1178 
1179 	for_each_populated_zone(zone) {
1180 		if (is_highmem(zone))
1181 			continue;
1182 
1183 		mark_free_pages(zone);
1184 		max_zone_pfn = zone_end_pfn(zone);
1185 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1186 			if (saveable_page(zone, pfn))
1187 				n++;
1188 	}
1189 	return n;
1190 }
1191 
1192 /* This is needed, because copy_page and memcpy are not usable for copying
1193  * task structs.
1194  */
do_copy_page(long * dst,long * src)1195 static inline void do_copy_page(long *dst, long *src)
1196 {
1197 	int n;
1198 
1199 	for (n = PAGE_SIZE / sizeof(long); n; n--)
1200 		*dst++ = *src++;
1201 }
1202 
1203 
1204 /**
1205  *	safe_copy_page - check if the page we are going to copy is marked as
1206  *		present in the kernel page tables (this always is the case if
1207  *		CONFIG_DEBUG_PAGEALLOC is not set and in that case
1208  *		kernel_page_present() always returns 'true').
1209  */
safe_copy_page(void * dst,struct page * s_page)1210 static void safe_copy_page(void *dst, struct page *s_page)
1211 {
1212 	if (kernel_page_present(s_page)) {
1213 		do_copy_page(dst, page_address(s_page));
1214 	} else {
1215 		kernel_map_pages(s_page, 1, 1);
1216 		do_copy_page(dst, page_address(s_page));
1217 		kernel_map_pages(s_page, 1, 0);
1218 	}
1219 }
1220 
1221 
1222 #ifdef CONFIG_HIGHMEM
1223 static inline struct page *
page_is_saveable(struct zone * zone,unsigned long pfn)1224 page_is_saveable(struct zone *zone, unsigned long pfn)
1225 {
1226 	return is_highmem(zone) ?
1227 		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1228 }
1229 
copy_data_page(unsigned long dst_pfn,unsigned long src_pfn)1230 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1231 {
1232 	struct page *s_page, *d_page;
1233 	void *src, *dst;
1234 
1235 	s_page = pfn_to_page(src_pfn);
1236 	d_page = pfn_to_page(dst_pfn);
1237 	if (PageHighMem(s_page)) {
1238 		src = kmap_atomic(s_page);
1239 		dst = kmap_atomic(d_page);
1240 		do_copy_page(dst, src);
1241 		kunmap_atomic(dst);
1242 		kunmap_atomic(src);
1243 	} else {
1244 		if (PageHighMem(d_page)) {
1245 			/* Page pointed to by src may contain some kernel
1246 			 * data modified by kmap_atomic()
1247 			 */
1248 			safe_copy_page(buffer, s_page);
1249 			dst = kmap_atomic(d_page);
1250 			copy_page(dst, buffer);
1251 			kunmap_atomic(dst);
1252 		} else {
1253 			safe_copy_page(page_address(d_page), s_page);
1254 		}
1255 	}
1256 }
1257 #else
1258 #define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1259 
copy_data_page(unsigned long dst_pfn,unsigned long src_pfn)1260 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1261 {
1262 	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1263 				pfn_to_page(src_pfn));
1264 }
1265 #endif /* CONFIG_HIGHMEM */
1266 
1267 static void
copy_data_pages(struct memory_bitmap * copy_bm,struct memory_bitmap * orig_bm)1268 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1269 {
1270 	struct zone *zone;
1271 	unsigned long pfn;
1272 
1273 	for_each_populated_zone(zone) {
1274 		unsigned long max_zone_pfn;
1275 
1276 		mark_free_pages(zone);
1277 		max_zone_pfn = zone_end_pfn(zone);
1278 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1279 			if (page_is_saveable(zone, pfn))
1280 				memory_bm_set_bit(orig_bm, pfn);
1281 	}
1282 	memory_bm_position_reset(orig_bm);
1283 	memory_bm_position_reset(copy_bm);
1284 	for(;;) {
1285 		pfn = memory_bm_next_pfn(orig_bm);
1286 		if (unlikely(pfn == BM_END_OF_MAP))
1287 			break;
1288 		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1289 	}
1290 }
1291 
1292 /* Total number of image pages */
1293 static unsigned int nr_copy_pages;
1294 /* Number of pages needed for saving the original pfns of the image pages */
1295 static unsigned int nr_meta_pages;
1296 /*
1297  * Numbers of normal and highmem page frames allocated for hibernation image
1298  * before suspending devices.
1299  */
1300 unsigned int alloc_normal, alloc_highmem;
1301 /*
1302  * Memory bitmap used for marking saveable pages (during hibernation) or
1303  * hibernation image pages (during restore)
1304  */
1305 static struct memory_bitmap orig_bm;
1306 /*
1307  * Memory bitmap used during hibernation for marking allocated page frames that
1308  * will contain copies of saveable pages.  During restore it is initially used
1309  * for marking hibernation image pages, but then the set bits from it are
1310  * duplicated in @orig_bm and it is released.  On highmem systems it is next
1311  * used for marking "safe" highmem pages, but it has to be reinitialized for
1312  * this purpose.
1313  */
1314 static struct memory_bitmap copy_bm;
1315 
1316 /**
1317  *	swsusp_free - free pages allocated for the suspend.
1318  *
1319  *	Suspend pages are alocated before the atomic copy is made, so we
1320  *	need to release them after the resume.
1321  */
1322 
swsusp_free(void)1323 void swsusp_free(void)
1324 {
1325 	unsigned long fb_pfn, fr_pfn;
1326 
1327 	if (!forbidden_pages_map || !free_pages_map)
1328 		goto out;
1329 
1330 	memory_bm_position_reset(forbidden_pages_map);
1331 	memory_bm_position_reset(free_pages_map);
1332 
1333 loop:
1334 	fr_pfn = memory_bm_next_pfn(free_pages_map);
1335 	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1336 
1337 	/*
1338 	 * Find the next bit set in both bitmaps. This is guaranteed to
1339 	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1340 	 */
1341 	do {
1342 		if (fb_pfn < fr_pfn)
1343 			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1344 		if (fr_pfn < fb_pfn)
1345 			fr_pfn = memory_bm_next_pfn(free_pages_map);
1346 	} while (fb_pfn != fr_pfn);
1347 
1348 	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1349 		struct page *page = pfn_to_page(fr_pfn);
1350 
1351 		memory_bm_clear_current(forbidden_pages_map);
1352 		memory_bm_clear_current(free_pages_map);
1353 		__free_page(page);
1354 		goto loop;
1355 	}
1356 
1357 out:
1358 	nr_copy_pages = 0;
1359 	nr_meta_pages = 0;
1360 	restore_pblist = NULL;
1361 	buffer = NULL;
1362 	alloc_normal = 0;
1363 	alloc_highmem = 0;
1364 }
1365 
1366 /* Helper functions used for the shrinking of memory. */
1367 
1368 #define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1369 
1370 /**
1371  * preallocate_image_pages - Allocate a number of pages for hibernation image
1372  * @nr_pages: Number of page frames to allocate.
1373  * @mask: GFP flags to use for the allocation.
1374  *
1375  * Return value: Number of page frames actually allocated
1376  */
preallocate_image_pages(unsigned long nr_pages,gfp_t mask)1377 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1378 {
1379 	unsigned long nr_alloc = 0;
1380 
1381 	while (nr_pages > 0) {
1382 		struct page *page;
1383 
1384 		page = alloc_image_page(mask);
1385 		if (!page)
1386 			break;
1387 		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1388 		if (PageHighMem(page))
1389 			alloc_highmem++;
1390 		else
1391 			alloc_normal++;
1392 		nr_pages--;
1393 		nr_alloc++;
1394 	}
1395 
1396 	return nr_alloc;
1397 }
1398 
preallocate_image_memory(unsigned long nr_pages,unsigned long avail_normal)1399 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1400 					      unsigned long avail_normal)
1401 {
1402 	unsigned long alloc;
1403 
1404 	if (avail_normal <= alloc_normal)
1405 		return 0;
1406 
1407 	alloc = avail_normal - alloc_normal;
1408 	if (nr_pages < alloc)
1409 		alloc = nr_pages;
1410 
1411 	return preallocate_image_pages(alloc, GFP_IMAGE);
1412 }
1413 
1414 #ifdef CONFIG_HIGHMEM
preallocate_image_highmem(unsigned long nr_pages)1415 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1416 {
1417 	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1418 }
1419 
1420 /**
1421  *  __fraction - Compute (an approximation of) x * (multiplier / base)
1422  */
__fraction(u64 x,u64 multiplier,u64 base)1423 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1424 {
1425 	x *= multiplier;
1426 	do_div(x, base);
1427 	return (unsigned long)x;
1428 }
1429 
preallocate_highmem_fraction(unsigned long nr_pages,unsigned long highmem,unsigned long total)1430 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1431 						unsigned long highmem,
1432 						unsigned long total)
1433 {
1434 	unsigned long alloc = __fraction(nr_pages, highmem, total);
1435 
1436 	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1437 }
1438 #else /* CONFIG_HIGHMEM */
preallocate_image_highmem(unsigned long nr_pages)1439 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1440 {
1441 	return 0;
1442 }
1443 
preallocate_highmem_fraction(unsigned long nr_pages,unsigned long highmem,unsigned long total)1444 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1445 						unsigned long highmem,
1446 						unsigned long total)
1447 {
1448 	return 0;
1449 }
1450 #endif /* CONFIG_HIGHMEM */
1451 
1452 /**
1453  * free_unnecessary_pages - Release preallocated pages not needed for the image
1454  */
free_unnecessary_pages(void)1455 static void free_unnecessary_pages(void)
1456 {
1457 	unsigned long save, to_free_normal, to_free_highmem;
1458 
1459 	save = count_data_pages();
1460 	if (alloc_normal >= save) {
1461 		to_free_normal = alloc_normal - save;
1462 		save = 0;
1463 	} else {
1464 		to_free_normal = 0;
1465 		save -= alloc_normal;
1466 	}
1467 	save += count_highmem_pages();
1468 	if (alloc_highmem >= save) {
1469 		to_free_highmem = alloc_highmem - save;
1470 	} else {
1471 		to_free_highmem = 0;
1472 		save -= alloc_highmem;
1473 		if (to_free_normal > save)
1474 			to_free_normal -= save;
1475 		else
1476 			to_free_normal = 0;
1477 	}
1478 
1479 	memory_bm_position_reset(&copy_bm);
1480 
1481 	while (to_free_normal > 0 || to_free_highmem > 0) {
1482 		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1483 		struct page *page = pfn_to_page(pfn);
1484 
1485 		if (PageHighMem(page)) {
1486 			if (!to_free_highmem)
1487 				continue;
1488 			to_free_highmem--;
1489 			alloc_highmem--;
1490 		} else {
1491 			if (!to_free_normal)
1492 				continue;
1493 			to_free_normal--;
1494 			alloc_normal--;
1495 		}
1496 		memory_bm_clear_bit(&copy_bm, pfn);
1497 		swsusp_unset_page_forbidden(page);
1498 		swsusp_unset_page_free(page);
1499 		__free_page(page);
1500 	}
1501 }
1502 
1503 /**
1504  * minimum_image_size - Estimate the minimum acceptable size of an image
1505  * @saveable: Number of saveable pages in the system.
1506  *
1507  * We want to avoid attempting to free too much memory too hard, so estimate the
1508  * minimum acceptable size of a hibernation image to use as the lower limit for
1509  * preallocating memory.
1510  *
1511  * We assume that the minimum image size should be proportional to
1512  *
1513  * [number of saveable pages] - [number of pages that can be freed in theory]
1514  *
1515  * where the second term is the sum of (1) reclaimable slab pages, (2) active
1516  * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1517  * minus mapped file pages.
1518  */
minimum_image_size(unsigned long saveable)1519 static unsigned long minimum_image_size(unsigned long saveable)
1520 {
1521 	unsigned long size;
1522 
1523 	size = global_page_state(NR_SLAB_RECLAIMABLE)
1524 		+ global_page_state(NR_ACTIVE_ANON)
1525 		+ global_page_state(NR_INACTIVE_ANON)
1526 		+ global_page_state(NR_ACTIVE_FILE)
1527 		+ global_page_state(NR_INACTIVE_FILE)
1528 		- global_page_state(NR_FILE_MAPPED);
1529 
1530 	return saveable <= size ? 0 : saveable - size;
1531 }
1532 
1533 /**
1534  * hibernate_preallocate_memory - Preallocate memory for hibernation image
1535  *
1536  * To create a hibernation image it is necessary to make a copy of every page
1537  * frame in use.  We also need a number of page frames to be free during
1538  * hibernation for allocations made while saving the image and for device
1539  * drivers, in case they need to allocate memory from their hibernation
1540  * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1541  * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1542  * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1543  * total number of available page frames and allocate at least
1544  *
1545  * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1546  *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1547  *
1548  * of them, which corresponds to the maximum size of a hibernation image.
1549  *
1550  * If image_size is set below the number following from the above formula,
1551  * the preallocation of memory is continued until the total number of saveable
1552  * pages in the system is below the requested image size or the minimum
1553  * acceptable image size returned by minimum_image_size(), whichever is greater.
1554  */
hibernate_preallocate_memory(void)1555 int hibernate_preallocate_memory(void)
1556 {
1557 	struct zone *zone;
1558 	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1559 	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1560 	struct timeval start, stop;
1561 	int error;
1562 
1563 	printk(KERN_INFO "PM: Preallocating image memory... ");
1564 	do_gettimeofday(&start);
1565 
1566 	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1567 	if (error)
1568 		goto err_out;
1569 
1570 	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1571 	if (error)
1572 		goto err_out;
1573 
1574 	alloc_normal = 0;
1575 	alloc_highmem = 0;
1576 
1577 	/* Count the number of saveable data pages. */
1578 	save_highmem = count_highmem_pages();
1579 	saveable = count_data_pages();
1580 
1581 	/*
1582 	 * Compute the total number of page frames we can use (count) and the
1583 	 * number of pages needed for image metadata (size).
1584 	 */
1585 	count = saveable;
1586 	saveable += save_highmem;
1587 	highmem = save_highmem;
1588 	size = 0;
1589 	for_each_populated_zone(zone) {
1590 		size += snapshot_additional_pages(zone);
1591 		if (is_highmem(zone))
1592 			highmem += zone_page_state(zone, NR_FREE_PAGES);
1593 		else
1594 			count += zone_page_state(zone, NR_FREE_PAGES);
1595 	}
1596 	avail_normal = count;
1597 	count += highmem;
1598 	count -= totalreserve_pages;
1599 
1600 	/* Add number of pages required for page keys (s390 only). */
1601 	size += page_key_additional_pages(saveable);
1602 
1603 	/* Compute the maximum number of saveable pages to leave in memory. */
1604 	max_size = (count - (size + PAGES_FOR_IO)) / 2
1605 			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1606 	/* Compute the desired number of image pages specified by image_size. */
1607 	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1608 	if (size > max_size)
1609 		size = max_size;
1610 	/*
1611 	 * If the desired number of image pages is at least as large as the
1612 	 * current number of saveable pages in memory, allocate page frames for
1613 	 * the image and we're done.
1614 	 */
1615 	if (size >= saveable) {
1616 		pages = preallocate_image_highmem(save_highmem);
1617 		pages += preallocate_image_memory(saveable - pages, avail_normal);
1618 		goto out;
1619 	}
1620 
1621 	/* Estimate the minimum size of the image. */
1622 	pages = minimum_image_size(saveable);
1623 	/*
1624 	 * To avoid excessive pressure on the normal zone, leave room in it to
1625 	 * accommodate an image of the minimum size (unless it's already too
1626 	 * small, in which case don't preallocate pages from it at all).
1627 	 */
1628 	if (avail_normal > pages)
1629 		avail_normal -= pages;
1630 	else
1631 		avail_normal = 0;
1632 	if (size < pages)
1633 		size = min_t(unsigned long, pages, max_size);
1634 
1635 	/*
1636 	 * Let the memory management subsystem know that we're going to need a
1637 	 * large number of page frames to allocate and make it free some memory.
1638 	 * NOTE: If this is not done, performance will be hurt badly in some
1639 	 * test cases.
1640 	 */
1641 	shrink_all_memory(saveable - size);
1642 
1643 	/*
1644 	 * The number of saveable pages in memory was too high, so apply some
1645 	 * pressure to decrease it.  First, make room for the largest possible
1646 	 * image and fail if that doesn't work.  Next, try to decrease the size
1647 	 * of the image as much as indicated by 'size' using allocations from
1648 	 * highmem and non-highmem zones separately.
1649 	 */
1650 	pages_highmem = preallocate_image_highmem(highmem / 2);
1651 	alloc = count - max_size;
1652 	if (alloc > pages_highmem)
1653 		alloc -= pages_highmem;
1654 	else
1655 		alloc = 0;
1656 	pages = preallocate_image_memory(alloc, avail_normal);
1657 	if (pages < alloc) {
1658 		/* We have exhausted non-highmem pages, try highmem. */
1659 		alloc -= pages;
1660 		pages += pages_highmem;
1661 		pages_highmem = preallocate_image_highmem(alloc);
1662 		if (pages_highmem < alloc)
1663 			goto err_out;
1664 		pages += pages_highmem;
1665 		/*
1666 		 * size is the desired number of saveable pages to leave in
1667 		 * memory, so try to preallocate (all memory - size) pages.
1668 		 */
1669 		alloc = (count - pages) - size;
1670 		pages += preallocate_image_highmem(alloc);
1671 	} else {
1672 		/*
1673 		 * There are approximately max_size saveable pages at this point
1674 		 * and we want to reduce this number down to size.
1675 		 */
1676 		alloc = max_size - size;
1677 		size = preallocate_highmem_fraction(alloc, highmem, count);
1678 		pages_highmem += size;
1679 		alloc -= size;
1680 		size = preallocate_image_memory(alloc, avail_normal);
1681 		pages_highmem += preallocate_image_highmem(alloc - size);
1682 		pages += pages_highmem + size;
1683 	}
1684 
1685 	/*
1686 	 * We only need as many page frames for the image as there are saveable
1687 	 * pages in memory, but we have allocated more.  Release the excessive
1688 	 * ones now.
1689 	 */
1690 	free_unnecessary_pages();
1691 
1692  out:
1693 	do_gettimeofday(&stop);
1694 	printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1695 	swsusp_show_speed(&start, &stop, pages, "Allocated");
1696 
1697 	return 0;
1698 
1699  err_out:
1700 	printk(KERN_CONT "\n");
1701 	swsusp_free();
1702 	return -ENOMEM;
1703 }
1704 
1705 #ifdef CONFIG_HIGHMEM
1706 /**
1707   *	count_pages_for_highmem - compute the number of non-highmem pages
1708   *	that will be necessary for creating copies of highmem pages.
1709   */
1710 
count_pages_for_highmem(unsigned int nr_highmem)1711 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1712 {
1713 	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1714 
1715 	if (free_highmem >= nr_highmem)
1716 		nr_highmem = 0;
1717 	else
1718 		nr_highmem -= free_highmem;
1719 
1720 	return nr_highmem;
1721 }
1722 #else
1723 static unsigned int
count_pages_for_highmem(unsigned int nr_highmem)1724 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1725 #endif /* CONFIG_HIGHMEM */
1726 
1727 /**
1728  *	enough_free_mem - Make sure we have enough free memory for the
1729  *	snapshot image.
1730  */
1731 
enough_free_mem(unsigned int nr_pages,unsigned int nr_highmem)1732 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1733 {
1734 	struct zone *zone;
1735 	unsigned int free = alloc_normal;
1736 
1737 	for_each_populated_zone(zone)
1738 		if (!is_highmem(zone))
1739 			free += zone_page_state(zone, NR_FREE_PAGES);
1740 
1741 	nr_pages += count_pages_for_highmem(nr_highmem);
1742 	pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1743 		nr_pages, PAGES_FOR_IO, free);
1744 
1745 	return free > nr_pages + PAGES_FOR_IO;
1746 }
1747 
1748 #ifdef CONFIG_HIGHMEM
1749 /**
1750  *	get_highmem_buffer - if there are some highmem pages in the suspend
1751  *	image, we may need the buffer to copy them and/or load their data.
1752  */
1753 
get_highmem_buffer(int safe_needed)1754 static inline int get_highmem_buffer(int safe_needed)
1755 {
1756 	buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1757 	return buffer ? 0 : -ENOMEM;
1758 }
1759 
1760 /**
1761  *	alloc_highmem_image_pages - allocate some highmem pages for the image.
1762  *	Try to allocate as many pages as needed, but if the number of free
1763  *	highmem pages is lesser than that, allocate them all.
1764  */
1765 
1766 static inline unsigned int
alloc_highmem_pages(struct memory_bitmap * bm,unsigned int nr_highmem)1767 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1768 {
1769 	unsigned int to_alloc = count_free_highmem_pages();
1770 
1771 	if (to_alloc > nr_highmem)
1772 		to_alloc = nr_highmem;
1773 
1774 	nr_highmem -= to_alloc;
1775 	while (to_alloc-- > 0) {
1776 		struct page *page;
1777 
1778 		page = alloc_image_page(__GFP_HIGHMEM);
1779 		memory_bm_set_bit(bm, page_to_pfn(page));
1780 	}
1781 	return nr_highmem;
1782 }
1783 #else
get_highmem_buffer(int safe_needed)1784 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1785 
1786 static inline unsigned int
alloc_highmem_pages(struct memory_bitmap * bm,unsigned int n)1787 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1788 #endif /* CONFIG_HIGHMEM */
1789 
1790 /**
1791  *	swsusp_alloc - allocate memory for the suspend image
1792  *
1793  *	We first try to allocate as many highmem pages as there are
1794  *	saveable highmem pages in the system.  If that fails, we allocate
1795  *	non-highmem pages for the copies of the remaining highmem ones.
1796  *
1797  *	In this approach it is likely that the copies of highmem pages will
1798  *	also be located in the high memory, because of the way in which
1799  *	copy_data_pages() works.
1800  */
1801 
1802 static int
swsusp_alloc(struct memory_bitmap * orig_bm,struct memory_bitmap * copy_bm,unsigned int nr_pages,unsigned int nr_highmem)1803 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1804 		unsigned int nr_pages, unsigned int nr_highmem)
1805 {
1806 	if (nr_highmem > 0) {
1807 		if (get_highmem_buffer(PG_ANY))
1808 			goto err_out;
1809 		if (nr_highmem > alloc_highmem) {
1810 			nr_highmem -= alloc_highmem;
1811 			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1812 		}
1813 	}
1814 	if (nr_pages > alloc_normal) {
1815 		nr_pages -= alloc_normal;
1816 		while (nr_pages-- > 0) {
1817 			struct page *page;
1818 
1819 			page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1820 			if (!page)
1821 				goto err_out;
1822 			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1823 		}
1824 	}
1825 
1826 	return 0;
1827 
1828  err_out:
1829 	swsusp_free();
1830 	return -ENOMEM;
1831 }
1832 
swsusp_save(void)1833 asmlinkage __visible int swsusp_save(void)
1834 {
1835 	unsigned int nr_pages, nr_highmem;
1836 
1837 	printk(KERN_INFO "PM: Creating hibernation image:\n");
1838 
1839 	drain_local_pages(NULL);
1840 	nr_pages = count_data_pages();
1841 	nr_highmem = count_highmem_pages();
1842 	printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1843 
1844 	if (!enough_free_mem(nr_pages, nr_highmem)) {
1845 		printk(KERN_ERR "PM: Not enough free memory\n");
1846 		return -ENOMEM;
1847 	}
1848 
1849 	if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1850 		printk(KERN_ERR "PM: Memory allocation failed\n");
1851 		return -ENOMEM;
1852 	}
1853 
1854 	/* During allocating of suspend pagedir, new cold pages may appear.
1855 	 * Kill them.
1856 	 */
1857 	drain_local_pages(NULL);
1858 	copy_data_pages(&copy_bm, &orig_bm);
1859 
1860 	/*
1861 	 * End of critical section. From now on, we can write to memory,
1862 	 * but we should not touch disk. This specially means we must _not_
1863 	 * touch swap space! Except we must write out our image of course.
1864 	 */
1865 
1866 	nr_pages += nr_highmem;
1867 	nr_copy_pages = nr_pages;
1868 	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1869 
1870 	printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1871 		nr_pages);
1872 
1873 	return 0;
1874 }
1875 
1876 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
init_header_complete(struct swsusp_info * info)1877 static int init_header_complete(struct swsusp_info *info)
1878 {
1879 	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1880 	info->version_code = LINUX_VERSION_CODE;
1881 	return 0;
1882 }
1883 
check_image_kernel(struct swsusp_info * info)1884 static char *check_image_kernel(struct swsusp_info *info)
1885 {
1886 	if (info->version_code != LINUX_VERSION_CODE)
1887 		return "kernel version";
1888 	if (strcmp(info->uts.sysname,init_utsname()->sysname))
1889 		return "system type";
1890 	if (strcmp(info->uts.release,init_utsname()->release))
1891 		return "kernel release";
1892 	if (strcmp(info->uts.version,init_utsname()->version))
1893 		return "version";
1894 	if (strcmp(info->uts.machine,init_utsname()->machine))
1895 		return "machine";
1896 	return NULL;
1897 }
1898 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1899 
snapshot_get_image_size(void)1900 unsigned long snapshot_get_image_size(void)
1901 {
1902 	return nr_copy_pages + nr_meta_pages + 1;
1903 }
1904 
init_header(struct swsusp_info * info)1905 static int init_header(struct swsusp_info *info)
1906 {
1907 	memset(info, 0, sizeof(struct swsusp_info));
1908 	info->num_physpages = get_num_physpages();
1909 	info->image_pages = nr_copy_pages;
1910 	info->pages = snapshot_get_image_size();
1911 	info->size = info->pages;
1912 	info->size <<= PAGE_SHIFT;
1913 	return init_header_complete(info);
1914 }
1915 
1916 /**
1917  *	pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1918  *	are stored in the array @buf[] (1 page at a time)
1919  */
1920 
1921 static inline void
pack_pfns(unsigned long * buf,struct memory_bitmap * bm)1922 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1923 {
1924 	int j;
1925 
1926 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1927 		buf[j] = memory_bm_next_pfn(bm);
1928 		if (unlikely(buf[j] == BM_END_OF_MAP))
1929 			break;
1930 		/* Save page key for data page (s390 only). */
1931 		page_key_read(buf + j);
1932 	}
1933 }
1934 
1935 /**
1936  *	snapshot_read_next - used for reading the system memory snapshot.
1937  *
1938  *	On the first call to it @handle should point to a zeroed
1939  *	snapshot_handle structure.  The structure gets updated and a pointer
1940  *	to it should be passed to this function every next time.
1941  *
1942  *	On success the function returns a positive number.  Then, the caller
1943  *	is allowed to read up to the returned number of bytes from the memory
1944  *	location computed by the data_of() macro.
1945  *
1946  *	The function returns 0 to indicate the end of data stream condition,
1947  *	and a negative number is returned on error.  In such cases the
1948  *	structure pointed to by @handle is not updated and should not be used
1949  *	any more.
1950  */
1951 
snapshot_read_next(struct snapshot_handle * handle)1952 int snapshot_read_next(struct snapshot_handle *handle)
1953 {
1954 	if (handle->cur > nr_meta_pages + nr_copy_pages)
1955 		return 0;
1956 
1957 	if (!buffer) {
1958 		/* This makes the buffer be freed by swsusp_free() */
1959 		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1960 		if (!buffer)
1961 			return -ENOMEM;
1962 	}
1963 	if (!handle->cur) {
1964 		int error;
1965 
1966 		error = init_header((struct swsusp_info *)buffer);
1967 		if (error)
1968 			return error;
1969 		handle->buffer = buffer;
1970 		memory_bm_position_reset(&orig_bm);
1971 		memory_bm_position_reset(&copy_bm);
1972 	} else if (handle->cur <= nr_meta_pages) {
1973 		clear_page(buffer);
1974 		pack_pfns(buffer, &orig_bm);
1975 	} else {
1976 		struct page *page;
1977 
1978 		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1979 		if (PageHighMem(page)) {
1980 			/* Highmem pages are copied to the buffer,
1981 			 * because we can't return with a kmapped
1982 			 * highmem page (we may not be called again).
1983 			 */
1984 			void *kaddr;
1985 
1986 			kaddr = kmap_atomic(page);
1987 			copy_page(buffer, kaddr);
1988 			kunmap_atomic(kaddr);
1989 			handle->buffer = buffer;
1990 		} else {
1991 			handle->buffer = page_address(page);
1992 		}
1993 	}
1994 	handle->cur++;
1995 	return PAGE_SIZE;
1996 }
1997 
1998 /**
1999  *	mark_unsafe_pages - mark the pages that cannot be used for storing
2000  *	the image during resume, because they conflict with the pages that
2001  *	had been used before suspend
2002  */
2003 
mark_unsafe_pages(struct memory_bitmap * bm)2004 static int mark_unsafe_pages(struct memory_bitmap *bm)
2005 {
2006 	struct zone *zone;
2007 	unsigned long pfn, max_zone_pfn;
2008 
2009 	/* Clear page flags */
2010 	for_each_populated_zone(zone) {
2011 		max_zone_pfn = zone_end_pfn(zone);
2012 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2013 			if (pfn_valid(pfn))
2014 				swsusp_unset_page_free(pfn_to_page(pfn));
2015 	}
2016 
2017 	/* Mark pages that correspond to the "original" pfns as "unsafe" */
2018 	memory_bm_position_reset(bm);
2019 	do {
2020 		pfn = memory_bm_next_pfn(bm);
2021 		if (likely(pfn != BM_END_OF_MAP)) {
2022 			if (likely(pfn_valid(pfn)))
2023 				swsusp_set_page_free(pfn_to_page(pfn));
2024 			else
2025 				return -EFAULT;
2026 		}
2027 	} while (pfn != BM_END_OF_MAP);
2028 
2029 	allocated_unsafe_pages = 0;
2030 
2031 	return 0;
2032 }
2033 
2034 static void
duplicate_memory_bitmap(struct memory_bitmap * dst,struct memory_bitmap * src)2035 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
2036 {
2037 	unsigned long pfn;
2038 
2039 	memory_bm_position_reset(src);
2040 	pfn = memory_bm_next_pfn(src);
2041 	while (pfn != BM_END_OF_MAP) {
2042 		memory_bm_set_bit(dst, pfn);
2043 		pfn = memory_bm_next_pfn(src);
2044 	}
2045 }
2046 
check_header(struct swsusp_info * info)2047 static int check_header(struct swsusp_info *info)
2048 {
2049 	char *reason;
2050 
2051 	reason = check_image_kernel(info);
2052 	if (!reason && info->num_physpages != get_num_physpages())
2053 		reason = "memory size";
2054 	if (reason) {
2055 		printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2056 		return -EPERM;
2057 	}
2058 	return 0;
2059 }
2060 
2061 /**
2062  *	load header - check the image header and copy data from it
2063  */
2064 
2065 static int
load_header(struct swsusp_info * info)2066 load_header(struct swsusp_info *info)
2067 {
2068 	int error;
2069 
2070 	restore_pblist = NULL;
2071 	error = check_header(info);
2072 	if (!error) {
2073 		nr_copy_pages = info->image_pages;
2074 		nr_meta_pages = info->pages - info->image_pages - 1;
2075 	}
2076 	return error;
2077 }
2078 
2079 /**
2080  *	unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
2081  *	the corresponding bit in the memory bitmap @bm
2082  */
unpack_orig_pfns(unsigned long * buf,struct memory_bitmap * bm)2083 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2084 {
2085 	int j;
2086 
2087 	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2088 		if (unlikely(buf[j] == BM_END_OF_MAP))
2089 			break;
2090 
2091 		/* Extract and buffer page key for data page (s390 only). */
2092 		page_key_memorize(buf + j);
2093 
2094 		if (memory_bm_pfn_present(bm, buf[j]))
2095 			memory_bm_set_bit(bm, buf[j]);
2096 		else
2097 			return -EFAULT;
2098 	}
2099 
2100 	return 0;
2101 }
2102 
2103 /* List of "safe" pages that may be used to store data loaded from the suspend
2104  * image
2105  */
2106 static struct linked_page *safe_pages_list;
2107 
2108 #ifdef CONFIG_HIGHMEM
2109 /* struct highmem_pbe is used for creating the list of highmem pages that
2110  * should be restored atomically during the resume from disk, because the page
2111  * frames they have occupied before the suspend are in use.
2112  */
2113 struct highmem_pbe {
2114 	struct page *copy_page;	/* data is here now */
2115 	struct page *orig_page;	/* data was here before the suspend */
2116 	struct highmem_pbe *next;
2117 };
2118 
2119 /* List of highmem PBEs needed for restoring the highmem pages that were
2120  * allocated before the suspend and included in the suspend image, but have
2121  * also been allocated by the "resume" kernel, so their contents cannot be
2122  * written directly to their "original" page frames.
2123  */
2124 static struct highmem_pbe *highmem_pblist;
2125 
2126 /**
2127  *	count_highmem_image_pages - compute the number of highmem pages in the
2128  *	suspend image.  The bits in the memory bitmap @bm that correspond to the
2129  *	image pages are assumed to be set.
2130  */
2131 
count_highmem_image_pages(struct memory_bitmap * bm)2132 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2133 {
2134 	unsigned long pfn;
2135 	unsigned int cnt = 0;
2136 
2137 	memory_bm_position_reset(bm);
2138 	pfn = memory_bm_next_pfn(bm);
2139 	while (pfn != BM_END_OF_MAP) {
2140 		if (PageHighMem(pfn_to_page(pfn)))
2141 			cnt++;
2142 
2143 		pfn = memory_bm_next_pfn(bm);
2144 	}
2145 	return cnt;
2146 }
2147 
2148 /**
2149  *	prepare_highmem_image - try to allocate as many highmem pages as
2150  *	there are highmem image pages (@nr_highmem_p points to the variable
2151  *	containing the number of highmem image pages).  The pages that are
2152  *	"safe" (ie. will not be overwritten when the suspend image is
2153  *	restored) have the corresponding bits set in @bm (it must be
2154  *	unitialized).
2155  *
2156  *	NOTE: This function should not be called if there are no highmem
2157  *	image pages.
2158  */
2159 
2160 static unsigned int safe_highmem_pages;
2161 
2162 static struct memory_bitmap *safe_highmem_bm;
2163 
2164 static int
prepare_highmem_image(struct memory_bitmap * bm,unsigned int * nr_highmem_p)2165 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2166 {
2167 	unsigned int to_alloc;
2168 
2169 	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2170 		return -ENOMEM;
2171 
2172 	if (get_highmem_buffer(PG_SAFE))
2173 		return -ENOMEM;
2174 
2175 	to_alloc = count_free_highmem_pages();
2176 	if (to_alloc > *nr_highmem_p)
2177 		to_alloc = *nr_highmem_p;
2178 	else
2179 		*nr_highmem_p = to_alloc;
2180 
2181 	safe_highmem_pages = 0;
2182 	while (to_alloc-- > 0) {
2183 		struct page *page;
2184 
2185 		page = alloc_page(__GFP_HIGHMEM);
2186 		if (!swsusp_page_is_free(page)) {
2187 			/* The page is "safe", set its bit the bitmap */
2188 			memory_bm_set_bit(bm, page_to_pfn(page));
2189 			safe_highmem_pages++;
2190 		}
2191 		/* Mark the page as allocated */
2192 		swsusp_set_page_forbidden(page);
2193 		swsusp_set_page_free(page);
2194 	}
2195 	memory_bm_position_reset(bm);
2196 	safe_highmem_bm = bm;
2197 	return 0;
2198 }
2199 
2200 /**
2201  *	get_highmem_page_buffer - for given highmem image page find the buffer
2202  *	that suspend_write_next() should set for its caller to write to.
2203  *
2204  *	If the page is to be saved to its "original" page frame or a copy of
2205  *	the page is to be made in the highmem, @buffer is returned.  Otherwise,
2206  *	the copy of the page is to be made in normal memory, so the address of
2207  *	the copy is returned.
2208  *
2209  *	If @buffer is returned, the caller of suspend_write_next() will write
2210  *	the page's contents to @buffer, so they will have to be copied to the
2211  *	right location on the next call to suspend_write_next() and it is done
2212  *	with the help of copy_last_highmem_page().  For this purpose, if
2213  *	@buffer is returned, @last_highmem page is set to the page to which
2214  *	the data will have to be copied from @buffer.
2215  */
2216 
2217 static struct page *last_highmem_page;
2218 
2219 static void *
get_highmem_page_buffer(struct page * page,struct chain_allocator * ca)2220 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2221 {
2222 	struct highmem_pbe *pbe;
2223 	void *kaddr;
2224 
2225 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2226 		/* We have allocated the "original" page frame and we can
2227 		 * use it directly to store the loaded page.
2228 		 */
2229 		last_highmem_page = page;
2230 		return buffer;
2231 	}
2232 	/* The "original" page frame has not been allocated and we have to
2233 	 * use a "safe" page frame to store the loaded page.
2234 	 */
2235 	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2236 	if (!pbe) {
2237 		swsusp_free();
2238 		return ERR_PTR(-ENOMEM);
2239 	}
2240 	pbe->orig_page = page;
2241 	if (safe_highmem_pages > 0) {
2242 		struct page *tmp;
2243 
2244 		/* Copy of the page will be stored in high memory */
2245 		kaddr = buffer;
2246 		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2247 		safe_highmem_pages--;
2248 		last_highmem_page = tmp;
2249 		pbe->copy_page = tmp;
2250 	} else {
2251 		/* Copy of the page will be stored in normal memory */
2252 		kaddr = safe_pages_list;
2253 		safe_pages_list = safe_pages_list->next;
2254 		pbe->copy_page = virt_to_page(kaddr);
2255 	}
2256 	pbe->next = highmem_pblist;
2257 	highmem_pblist = pbe;
2258 	return kaddr;
2259 }
2260 
2261 /**
2262  *	copy_last_highmem_page - copy the contents of a highmem image from
2263  *	@buffer, where the caller of snapshot_write_next() has place them,
2264  *	to the right location represented by @last_highmem_page .
2265  */
2266 
copy_last_highmem_page(void)2267 static void copy_last_highmem_page(void)
2268 {
2269 	if (last_highmem_page) {
2270 		void *dst;
2271 
2272 		dst = kmap_atomic(last_highmem_page);
2273 		copy_page(dst, buffer);
2274 		kunmap_atomic(dst);
2275 		last_highmem_page = NULL;
2276 	}
2277 }
2278 
last_highmem_page_copied(void)2279 static inline int last_highmem_page_copied(void)
2280 {
2281 	return !last_highmem_page;
2282 }
2283 
free_highmem_data(void)2284 static inline void free_highmem_data(void)
2285 {
2286 	if (safe_highmem_bm)
2287 		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2288 
2289 	if (buffer)
2290 		free_image_page(buffer, PG_UNSAFE_CLEAR);
2291 }
2292 #else
get_safe_write_buffer(void)2293 static inline int get_safe_write_buffer(void) { return 0; }
2294 
2295 static unsigned int
count_highmem_image_pages(struct memory_bitmap * bm)2296 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2297 
2298 static inline int
prepare_highmem_image(struct memory_bitmap * bm,unsigned int * nr_highmem_p)2299 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2300 {
2301 	return 0;
2302 }
2303 
2304 static inline void *
get_highmem_page_buffer(struct page * page,struct chain_allocator * ca)2305 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2306 {
2307 	return ERR_PTR(-EINVAL);
2308 }
2309 
copy_last_highmem_page(void)2310 static inline void copy_last_highmem_page(void) {}
last_highmem_page_copied(void)2311 static inline int last_highmem_page_copied(void) { return 1; }
free_highmem_data(void)2312 static inline void free_highmem_data(void) {}
2313 #endif /* CONFIG_HIGHMEM */
2314 
2315 /**
2316  *	prepare_image - use the memory bitmap @bm to mark the pages that will
2317  *	be overwritten in the process of restoring the system memory state
2318  *	from the suspend image ("unsafe" pages) and allocate memory for the
2319  *	image.
2320  *
2321  *	The idea is to allocate a new memory bitmap first and then allocate
2322  *	as many pages as needed for the image data, but not to assign these
2323  *	pages to specific tasks initially.  Instead, we just mark them as
2324  *	allocated and create a lists of "safe" pages that will be used
2325  *	later.  On systems with high memory a list of "safe" highmem pages is
2326  *	also created.
2327  */
2328 
2329 #define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2330 
2331 static int
prepare_image(struct memory_bitmap * new_bm,struct memory_bitmap * bm)2332 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2333 {
2334 	unsigned int nr_pages, nr_highmem;
2335 	struct linked_page *sp_list, *lp;
2336 	int error;
2337 
2338 	/* If there is no highmem, the buffer will not be necessary */
2339 	free_image_page(buffer, PG_UNSAFE_CLEAR);
2340 	buffer = NULL;
2341 
2342 	nr_highmem = count_highmem_image_pages(bm);
2343 	error = mark_unsafe_pages(bm);
2344 	if (error)
2345 		goto Free;
2346 
2347 	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2348 	if (error)
2349 		goto Free;
2350 
2351 	duplicate_memory_bitmap(new_bm, bm);
2352 	memory_bm_free(bm, PG_UNSAFE_KEEP);
2353 	if (nr_highmem > 0) {
2354 		error = prepare_highmem_image(bm, &nr_highmem);
2355 		if (error)
2356 			goto Free;
2357 	}
2358 	/* Reserve some safe pages for potential later use.
2359 	 *
2360 	 * NOTE: This way we make sure there will be enough safe pages for the
2361 	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2362 	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2363 	 */
2364 	sp_list = NULL;
2365 	/* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2366 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2367 	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2368 	while (nr_pages > 0) {
2369 		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2370 		if (!lp) {
2371 			error = -ENOMEM;
2372 			goto Free;
2373 		}
2374 		lp->next = sp_list;
2375 		sp_list = lp;
2376 		nr_pages--;
2377 	}
2378 	/* Preallocate memory for the image */
2379 	safe_pages_list = NULL;
2380 	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2381 	while (nr_pages > 0) {
2382 		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2383 		if (!lp) {
2384 			error = -ENOMEM;
2385 			goto Free;
2386 		}
2387 		if (!swsusp_page_is_free(virt_to_page(lp))) {
2388 			/* The page is "safe", add it to the list */
2389 			lp->next = safe_pages_list;
2390 			safe_pages_list = lp;
2391 		}
2392 		/* Mark the page as allocated */
2393 		swsusp_set_page_forbidden(virt_to_page(lp));
2394 		swsusp_set_page_free(virt_to_page(lp));
2395 		nr_pages--;
2396 	}
2397 	/* Free the reserved safe pages so that chain_alloc() can use them */
2398 	while (sp_list) {
2399 		lp = sp_list->next;
2400 		free_image_page(sp_list, PG_UNSAFE_CLEAR);
2401 		sp_list = lp;
2402 	}
2403 	return 0;
2404 
2405  Free:
2406 	swsusp_free();
2407 	return error;
2408 }
2409 
2410 /**
2411  *	get_buffer - compute the address that snapshot_write_next() should
2412  *	set for its caller to write to.
2413  */
2414 
get_buffer(struct memory_bitmap * bm,struct chain_allocator * ca)2415 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2416 {
2417 	struct pbe *pbe;
2418 	struct page *page;
2419 	unsigned long pfn = memory_bm_next_pfn(bm);
2420 
2421 	if (pfn == BM_END_OF_MAP)
2422 		return ERR_PTR(-EFAULT);
2423 
2424 	page = pfn_to_page(pfn);
2425 	if (PageHighMem(page))
2426 		return get_highmem_page_buffer(page, ca);
2427 
2428 	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2429 		/* We have allocated the "original" page frame and we can
2430 		 * use it directly to store the loaded page.
2431 		 */
2432 		return page_address(page);
2433 
2434 	/* The "original" page frame has not been allocated and we have to
2435 	 * use a "safe" page frame to store the loaded page.
2436 	 */
2437 	pbe = chain_alloc(ca, sizeof(struct pbe));
2438 	if (!pbe) {
2439 		swsusp_free();
2440 		return ERR_PTR(-ENOMEM);
2441 	}
2442 	pbe->orig_address = page_address(page);
2443 	pbe->address = safe_pages_list;
2444 	safe_pages_list = safe_pages_list->next;
2445 	pbe->next = restore_pblist;
2446 	restore_pblist = pbe;
2447 	return pbe->address;
2448 }
2449 
2450 /**
2451  *	snapshot_write_next - used for writing the system memory snapshot.
2452  *
2453  *	On the first call to it @handle should point to a zeroed
2454  *	snapshot_handle structure.  The structure gets updated and a pointer
2455  *	to it should be passed to this function every next time.
2456  *
2457  *	On success the function returns a positive number.  Then, the caller
2458  *	is allowed to write up to the returned number of bytes to the memory
2459  *	location computed by the data_of() macro.
2460  *
2461  *	The function returns 0 to indicate the "end of file" condition,
2462  *	and a negative number is returned on error.  In such cases the
2463  *	structure pointed to by @handle is not updated and should not be used
2464  *	any more.
2465  */
2466 
snapshot_write_next(struct snapshot_handle * handle)2467 int snapshot_write_next(struct snapshot_handle *handle)
2468 {
2469 	static struct chain_allocator ca;
2470 	int error = 0;
2471 
2472 	/* Check if we have already loaded the entire image */
2473 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2474 		return 0;
2475 
2476 	handle->sync_read = 1;
2477 
2478 	if (!handle->cur) {
2479 		if (!buffer)
2480 			/* This makes the buffer be freed by swsusp_free() */
2481 			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2482 
2483 		if (!buffer)
2484 			return -ENOMEM;
2485 
2486 		handle->buffer = buffer;
2487 	} else if (handle->cur == 1) {
2488 		error = load_header(buffer);
2489 		if (error)
2490 			return error;
2491 
2492 		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2493 		if (error)
2494 			return error;
2495 
2496 		/* Allocate buffer for page keys. */
2497 		error = page_key_alloc(nr_copy_pages);
2498 		if (error)
2499 			return error;
2500 
2501 	} else if (handle->cur <= nr_meta_pages + 1) {
2502 		error = unpack_orig_pfns(buffer, &copy_bm);
2503 		if (error)
2504 			return error;
2505 
2506 		if (handle->cur == nr_meta_pages + 1) {
2507 			error = prepare_image(&orig_bm, &copy_bm);
2508 			if (error)
2509 				return error;
2510 
2511 			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2512 			memory_bm_position_reset(&orig_bm);
2513 			restore_pblist = NULL;
2514 			handle->buffer = get_buffer(&orig_bm, &ca);
2515 			handle->sync_read = 0;
2516 			if (IS_ERR(handle->buffer))
2517 				return PTR_ERR(handle->buffer);
2518 		}
2519 	} else {
2520 		copy_last_highmem_page();
2521 		/* Restore page key for data page (s390 only). */
2522 		page_key_write(handle->buffer);
2523 		handle->buffer = get_buffer(&orig_bm, &ca);
2524 		if (IS_ERR(handle->buffer))
2525 			return PTR_ERR(handle->buffer);
2526 		if (handle->buffer != buffer)
2527 			handle->sync_read = 0;
2528 	}
2529 	handle->cur++;
2530 	return PAGE_SIZE;
2531 }
2532 
2533 /**
2534  *	snapshot_write_finalize - must be called after the last call to
2535  *	snapshot_write_next() in case the last page in the image happens
2536  *	to be a highmem page and its contents should be stored in the
2537  *	highmem.  Additionally, it releases the memory that will not be
2538  *	used any more.
2539  */
2540 
snapshot_write_finalize(struct snapshot_handle * handle)2541 void snapshot_write_finalize(struct snapshot_handle *handle)
2542 {
2543 	copy_last_highmem_page();
2544 	/* Restore page key for data page (s390 only). */
2545 	page_key_write(handle->buffer);
2546 	page_key_free();
2547 	/* Free only if we have loaded the image entirely */
2548 	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2549 		memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2550 		free_highmem_data();
2551 	}
2552 }
2553 
snapshot_image_loaded(struct snapshot_handle * handle)2554 int snapshot_image_loaded(struct snapshot_handle *handle)
2555 {
2556 	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2557 			handle->cur <= nr_meta_pages + nr_copy_pages);
2558 }
2559 
2560 #ifdef CONFIG_HIGHMEM
2561 /* Assumes that @buf is ready and points to a "safe" page */
2562 static inline void
swap_two_pages_data(struct page * p1,struct page * p2,void * buf)2563 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2564 {
2565 	void *kaddr1, *kaddr2;
2566 
2567 	kaddr1 = kmap_atomic(p1);
2568 	kaddr2 = kmap_atomic(p2);
2569 	copy_page(buf, kaddr1);
2570 	copy_page(kaddr1, kaddr2);
2571 	copy_page(kaddr2, buf);
2572 	kunmap_atomic(kaddr2);
2573 	kunmap_atomic(kaddr1);
2574 }
2575 
2576 /**
2577  *	restore_highmem - for each highmem page that was allocated before
2578  *	the suspend and included in the suspend image, and also has been
2579  *	allocated by the "resume" kernel swap its current (ie. "before
2580  *	resume") contents with the previous (ie. "before suspend") one.
2581  *
2582  *	If the resume eventually fails, we can call this function once
2583  *	again and restore the "before resume" highmem state.
2584  */
2585 
restore_highmem(void)2586 int restore_highmem(void)
2587 {
2588 	struct highmem_pbe *pbe = highmem_pblist;
2589 	void *buf;
2590 
2591 	if (!pbe)
2592 		return 0;
2593 
2594 	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2595 	if (!buf)
2596 		return -ENOMEM;
2597 
2598 	while (pbe) {
2599 		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2600 		pbe = pbe->next;
2601 	}
2602 	free_image_page(buf, PG_UNSAFE_CLEAR);
2603 	return 0;
2604 }
2605 #endif /* CONFIG_HIGHMEM */
2606