• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  This file contains the interface functions for the various
7  *  time related system calls: time, stime, gettimeofday, settimeofday,
8  *			       adjtime
9  */
10 /*
11  * Modification history kernel/time.c
12  *
13  * 1993-09-02    Philip Gladstone
14  *      Created file with time related functions from sched/core.c and adjtimex()
15  * 1993-10-08    Torsten Duwe
16  *      adjtime interface update and CMOS clock write code
17  * 1995-08-13    Torsten Duwe
18  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19  * 1999-01-16    Ulrich Windl
20  *	Introduced error checking for many cases in adjtimex().
21  *	Updated NTP code according to technical memorandum Jan '96
22  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
23  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24  *	(Even though the technical memorandum forbids it)
25  * 2004-07-14	 Christoph Lameter
26  *	Added getnstimeofday to allow the posix timer functions to return
27  *	with nanosecond accuracy
28  */
29 
30 #include <linux/export.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/timekeeper_internal.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40 
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43 
44 #include "timeconst.h"
45 #include "timekeeping.h"
46 
47 /*
48  * The timezone where the local system is located.  Used as a default by some
49  * programs who obtain this value by using gettimeofday.
50  */
51 struct timezone sys_tz;
52 
53 EXPORT_SYMBOL(sys_tz);
54 
55 #ifdef __ARCH_WANT_SYS_TIME
56 
57 /*
58  * sys_time() can be implemented in user-level using
59  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
60  * why not move it into the appropriate arch directory (for those
61  * architectures that need it).
62  */
SYSCALL_DEFINE1(time,time_t __user *,tloc)63 SYSCALL_DEFINE1(time, time_t __user *, tloc)
64 {
65 	time_t i = get_seconds();
66 
67 	if (tloc) {
68 		if (put_user(i,tloc))
69 			return -EFAULT;
70 	}
71 	force_successful_syscall_return();
72 	return i;
73 }
74 
75 /*
76  * sys_stime() can be implemented in user-level using
77  * sys_settimeofday().  Is this for backwards compatibility?  If so,
78  * why not move it into the appropriate arch directory (for those
79  * architectures that need it).
80  */
81 
SYSCALL_DEFINE1(stime,time_t __user *,tptr)82 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83 {
84 	struct timespec tv;
85 	int err;
86 
87 	if (get_user(tv.tv_sec, tptr))
88 		return -EFAULT;
89 
90 	tv.tv_nsec = 0;
91 
92 	err = security_settime(&tv, NULL);
93 	if (err)
94 		return err;
95 
96 	do_settimeofday(&tv);
97 	return 0;
98 }
99 
100 #endif /* __ARCH_WANT_SYS_TIME */
101 
SYSCALL_DEFINE2(gettimeofday,struct timeval __user *,tv,struct timezone __user *,tz)102 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 		struct timezone __user *, tz)
104 {
105 	if (likely(tv != NULL)) {
106 		struct timeval ktv;
107 		do_gettimeofday(&ktv);
108 		if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 			return -EFAULT;
110 	}
111 	if (unlikely(tz != NULL)) {
112 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 			return -EFAULT;
114 	}
115 	return 0;
116 }
117 
118 /*
119  * Indicates if there is an offset between the system clock and the hardware
120  * clock/persistent clock/rtc.
121  */
122 int persistent_clock_is_local;
123 
124 /*
125  * Adjust the time obtained from the CMOS to be UTC time instead of
126  * local time.
127  *
128  * This is ugly, but preferable to the alternatives.  Otherwise we
129  * would either need to write a program to do it in /etc/rc (and risk
130  * confusion if the program gets run more than once; it would also be
131  * hard to make the program warp the clock precisely n hours)  or
132  * compile in the timezone information into the kernel.  Bad, bad....
133  *
134  *						- TYT, 1992-01-01
135  *
136  * The best thing to do is to keep the CMOS clock in universal time (UTC)
137  * as real UNIX machines always do it. This avoids all headaches about
138  * daylight saving times and warping kernel clocks.
139  */
warp_clock(void)140 static inline void warp_clock(void)
141 {
142 	if (sys_tz.tz_minuteswest != 0) {
143 		struct timespec adjust;
144 
145 		persistent_clock_is_local = 1;
146 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 		adjust.tv_nsec = 0;
148 		timekeeping_inject_offset(&adjust);
149 	}
150 }
151 
152 /*
153  * In case for some reason the CMOS clock has not already been running
154  * in UTC, but in some local time: The first time we set the timezone,
155  * we will warp the clock so that it is ticking UTC time instead of
156  * local time. Presumably, if someone is setting the timezone then we
157  * are running in an environment where the programs understand about
158  * timezones. This should be done at boot time in the /etc/rc script,
159  * as soon as possible, so that the clock can be set right. Otherwise,
160  * various programs will get confused when the clock gets warped.
161  */
162 
do_sys_settimeofday(const struct timespec * tv,const struct timezone * tz)163 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
164 {
165 	static int firsttime = 1;
166 	int error = 0;
167 
168 	if (tv && !timespec_valid(tv))
169 		return -EINVAL;
170 
171 	error = security_settime(tv, tz);
172 	if (error)
173 		return error;
174 
175 	if (tz) {
176 		sys_tz = *tz;
177 		update_vsyscall_tz();
178 		if (firsttime) {
179 			firsttime = 0;
180 			if (!tv)
181 				warp_clock();
182 		}
183 	}
184 	if (tv)
185 		return do_settimeofday(tv);
186 	return 0;
187 }
188 
SYSCALL_DEFINE2(settimeofday,struct timeval __user *,tv,struct timezone __user *,tz)189 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
190 		struct timezone __user *, tz)
191 {
192 	struct timeval user_tv;
193 	struct timespec	new_ts;
194 	struct timezone new_tz;
195 
196 	if (tv) {
197 		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
198 			return -EFAULT;
199 
200 		if (!timeval_valid(&user_tv))
201 			return -EINVAL;
202 
203 		new_ts.tv_sec = user_tv.tv_sec;
204 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
205 	}
206 	if (tz) {
207 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
208 			return -EFAULT;
209 	}
210 
211 	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
212 }
213 
SYSCALL_DEFINE1(adjtimex,struct timex __user *,txc_p)214 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
215 {
216 	struct timex txc;		/* Local copy of parameter */
217 	int ret;
218 
219 	/* Copy the user data space into the kernel copy
220 	 * structure. But bear in mind that the structures
221 	 * may change
222 	 */
223 	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
224 		return -EFAULT;
225 	ret = do_adjtimex(&txc);
226 	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
227 }
228 
229 /**
230  * current_fs_time - Return FS time
231  * @sb: Superblock.
232  *
233  * Return the current time truncated to the time granularity supported by
234  * the fs.
235  */
current_fs_time(struct super_block * sb)236 struct timespec current_fs_time(struct super_block *sb)
237 {
238 	struct timespec now = current_kernel_time();
239 	return timespec_trunc(now, sb->s_time_gran);
240 }
241 EXPORT_SYMBOL(current_fs_time);
242 
243 /*
244  * Convert jiffies to milliseconds and back.
245  *
246  * Avoid unnecessary multiplications/divisions in the
247  * two most common HZ cases:
248  */
jiffies_to_msecs(const unsigned long j)249 unsigned int jiffies_to_msecs(const unsigned long j)
250 {
251 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
252 	return (MSEC_PER_SEC / HZ) * j;
253 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
254 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
255 #else
256 # if BITS_PER_LONG == 32
257 	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
258 # else
259 	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
260 # endif
261 #endif
262 }
263 EXPORT_SYMBOL(jiffies_to_msecs);
264 
jiffies_to_usecs(const unsigned long j)265 unsigned int jiffies_to_usecs(const unsigned long j)
266 {
267 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
268 	return (USEC_PER_SEC / HZ) * j;
269 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
270 	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
271 #else
272 # if BITS_PER_LONG == 32
273 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
274 # else
275 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
276 # endif
277 #endif
278 }
279 EXPORT_SYMBOL(jiffies_to_usecs);
280 
281 /**
282  * timespec_trunc - Truncate timespec to a granularity
283  * @t: Timespec
284  * @gran: Granularity in ns.
285  *
286  * Truncate a timespec to a granularity. gran must be smaller than a second.
287  * Always rounds down.
288  *
289  * This function should be only used for timestamps returned by
290  * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
291  * it doesn't handle the better resolution of the latter.
292  */
timespec_trunc(struct timespec t,unsigned gran)293 struct timespec timespec_trunc(struct timespec t, unsigned gran)
294 {
295 	/*
296 	 * Division is pretty slow so avoid it for common cases.
297 	 * Currently current_kernel_time() never returns better than
298 	 * jiffies resolution. Exploit that.
299 	 */
300 	if (gran <= jiffies_to_usecs(1) * 1000) {
301 		/* nothing */
302 	} else if (gran == 1000000000) {
303 		t.tv_nsec = 0;
304 	} else {
305 		t.tv_nsec -= t.tv_nsec % gran;
306 	}
307 	return t;
308 }
309 EXPORT_SYMBOL(timespec_trunc);
310 
311 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
312  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
313  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
314  *
315  * [For the Julian calendar (which was used in Russia before 1917,
316  * Britain & colonies before 1752, anywhere else before 1582,
317  * and is still in use by some communities) leave out the
318  * -year/100+year/400 terms, and add 10.]
319  *
320  * This algorithm was first published by Gauss (I think).
321  *
322  * WARNING: this function will overflow on 2106-02-07 06:28:16 on
323  * machines where long is 32-bit! (However, as time_t is signed, we
324  * will already get problems at other places on 2038-01-19 03:14:08)
325  */
326 unsigned long
mktime(const unsigned int year0,const unsigned int mon0,const unsigned int day,const unsigned int hour,const unsigned int min,const unsigned int sec)327 mktime(const unsigned int year0, const unsigned int mon0,
328        const unsigned int day, const unsigned int hour,
329        const unsigned int min, const unsigned int sec)
330 {
331 	unsigned int mon = mon0, year = year0;
332 
333 	/* 1..12 -> 11,12,1..10 */
334 	if (0 >= (int) (mon -= 2)) {
335 		mon += 12;	/* Puts Feb last since it has leap day */
336 		year -= 1;
337 	}
338 
339 	return ((((unsigned long)
340 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
341 		  year*365 - 719499
342 	    )*24 + hour /* now have hours */
343 	  )*60 + min /* now have minutes */
344 	)*60 + sec; /* finally seconds */
345 }
346 
347 EXPORT_SYMBOL(mktime);
348 
349 /**
350  * set_normalized_timespec - set timespec sec and nsec parts and normalize
351  *
352  * @ts:		pointer to timespec variable to be set
353  * @sec:	seconds to set
354  * @nsec:	nanoseconds to set
355  *
356  * Set seconds and nanoseconds field of a timespec variable and
357  * normalize to the timespec storage format
358  *
359  * Note: The tv_nsec part is always in the range of
360  *	0 <= tv_nsec < NSEC_PER_SEC
361  * For negative values only the tv_sec field is negative !
362  */
set_normalized_timespec(struct timespec * ts,time_t sec,s64 nsec)363 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
364 {
365 	while (nsec >= NSEC_PER_SEC) {
366 		/*
367 		 * The following asm() prevents the compiler from
368 		 * optimising this loop into a modulo operation. See
369 		 * also __iter_div_u64_rem() in include/linux/time.h
370 		 */
371 		asm("" : "+rm"(nsec));
372 		nsec -= NSEC_PER_SEC;
373 		++sec;
374 	}
375 	while (nsec < 0) {
376 		asm("" : "+rm"(nsec));
377 		nsec += NSEC_PER_SEC;
378 		--sec;
379 	}
380 	ts->tv_sec = sec;
381 	ts->tv_nsec = nsec;
382 }
383 EXPORT_SYMBOL(set_normalized_timespec);
384 
385 /**
386  * ns_to_timespec - Convert nanoseconds to timespec
387  * @nsec:       the nanoseconds value to be converted
388  *
389  * Returns the timespec representation of the nsec parameter.
390  */
ns_to_timespec(const s64 nsec)391 struct timespec ns_to_timespec(const s64 nsec)
392 {
393 	struct timespec ts;
394 	s32 rem;
395 
396 	if (!nsec)
397 		return (struct timespec) {0, 0};
398 
399 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
400 	if (unlikely(rem < 0)) {
401 		ts.tv_sec--;
402 		rem += NSEC_PER_SEC;
403 	}
404 	ts.tv_nsec = rem;
405 
406 	return ts;
407 }
408 EXPORT_SYMBOL(ns_to_timespec);
409 
410 /**
411  * ns_to_timeval - Convert nanoseconds to timeval
412  * @nsec:       the nanoseconds value to be converted
413  *
414  * Returns the timeval representation of the nsec parameter.
415  */
ns_to_timeval(const s64 nsec)416 struct timeval ns_to_timeval(const s64 nsec)
417 {
418 	struct timespec ts = ns_to_timespec(nsec);
419 	struct timeval tv;
420 
421 	tv.tv_sec = ts.tv_sec;
422 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
423 
424 	return tv;
425 }
426 EXPORT_SYMBOL(ns_to_timeval);
427 
428 #if BITS_PER_LONG == 32
429 /**
430  * set_normalized_timespec - set timespec sec and nsec parts and normalize
431  *
432  * @ts:		pointer to timespec variable to be set
433  * @sec:	seconds to set
434  * @nsec:	nanoseconds to set
435  *
436  * Set seconds and nanoseconds field of a timespec variable and
437  * normalize to the timespec storage format
438  *
439  * Note: The tv_nsec part is always in the range of
440  *	0 <= tv_nsec < NSEC_PER_SEC
441  * For negative values only the tv_sec field is negative !
442  */
set_normalized_timespec64(struct timespec64 * ts,time64_t sec,s64 nsec)443 void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
444 {
445 	while (nsec >= NSEC_PER_SEC) {
446 		/*
447 		 * The following asm() prevents the compiler from
448 		 * optimising this loop into a modulo operation. See
449 		 * also __iter_div_u64_rem() in include/linux/time.h
450 		 */
451 		asm("" : "+rm"(nsec));
452 		nsec -= NSEC_PER_SEC;
453 		++sec;
454 	}
455 	while (nsec < 0) {
456 		asm("" : "+rm"(nsec));
457 		nsec += NSEC_PER_SEC;
458 		--sec;
459 	}
460 	ts->tv_sec = sec;
461 	ts->tv_nsec = nsec;
462 }
463 EXPORT_SYMBOL(set_normalized_timespec64);
464 
465 /**
466  * ns_to_timespec64 - Convert nanoseconds to timespec64
467  * @nsec:       the nanoseconds value to be converted
468  *
469  * Returns the timespec64 representation of the nsec parameter.
470  */
ns_to_timespec64(const s64 nsec)471 struct timespec64 ns_to_timespec64(const s64 nsec)
472 {
473 	struct timespec64 ts;
474 	s32 rem;
475 
476 	if (!nsec)
477 		return (struct timespec64) {0, 0};
478 
479 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
480 	if (unlikely(rem < 0)) {
481 		ts.tv_sec--;
482 		rem += NSEC_PER_SEC;
483 	}
484 	ts.tv_nsec = rem;
485 
486 	return ts;
487 }
488 EXPORT_SYMBOL(ns_to_timespec64);
489 #endif
490 /*
491  * When we convert to jiffies then we interpret incoming values
492  * the following way:
493  *
494  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
495  *
496  * - 'too large' values [that would result in larger than
497  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
498  *
499  * - all other values are converted to jiffies by either multiplying
500  *   the input value by a factor or dividing it with a factor
501  *
502  * We must also be careful about 32-bit overflows.
503  */
msecs_to_jiffies(const unsigned int m)504 unsigned long msecs_to_jiffies(const unsigned int m)
505 {
506 	/*
507 	 * Negative value, means infinite timeout:
508 	 */
509 	if ((int)m < 0)
510 		return MAX_JIFFY_OFFSET;
511 
512 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
513 	/*
514 	 * HZ is equal to or smaller than 1000, and 1000 is a nice
515 	 * round multiple of HZ, divide with the factor between them,
516 	 * but round upwards:
517 	 */
518 	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
519 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
520 	/*
521 	 * HZ is larger than 1000, and HZ is a nice round multiple of
522 	 * 1000 - simply multiply with the factor between them.
523 	 *
524 	 * But first make sure the multiplication result cannot
525 	 * overflow:
526 	 */
527 	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
528 		return MAX_JIFFY_OFFSET;
529 
530 	return m * (HZ / MSEC_PER_SEC);
531 #else
532 	/*
533 	 * Generic case - multiply, round and divide. But first
534 	 * check that if we are doing a net multiplication, that
535 	 * we wouldn't overflow:
536 	 */
537 	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
538 		return MAX_JIFFY_OFFSET;
539 
540 	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
541 		>> MSEC_TO_HZ_SHR32;
542 #endif
543 }
544 EXPORT_SYMBOL(msecs_to_jiffies);
545 
usecs_to_jiffies(const unsigned int u)546 unsigned long usecs_to_jiffies(const unsigned int u)
547 {
548 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
549 		return MAX_JIFFY_OFFSET;
550 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
551 	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
552 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
553 	return u * (HZ / USEC_PER_SEC);
554 #else
555 	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
556 		>> USEC_TO_HZ_SHR32;
557 #endif
558 }
559 EXPORT_SYMBOL(usecs_to_jiffies);
560 
561 /*
562  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
563  * that a remainder subtract here would not do the right thing as the
564  * resolution values don't fall on second boundries.  I.e. the line:
565  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
566  * Note that due to the small error in the multiplier here, this
567  * rounding is incorrect for sufficiently large values of tv_nsec, but
568  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
569  * OK.
570  *
571  * Rather, we just shift the bits off the right.
572  *
573  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
574  * value to a scaled second value.
575  */
576 static unsigned long
__timespec_to_jiffies(unsigned long sec,long nsec)577 __timespec_to_jiffies(unsigned long sec, long nsec)
578 {
579 	nsec = nsec + TICK_NSEC - 1;
580 
581 	if (sec >= MAX_SEC_IN_JIFFIES){
582 		sec = MAX_SEC_IN_JIFFIES;
583 		nsec = 0;
584 	}
585 	return (((u64)sec * SEC_CONVERSION) +
586 		(((u64)nsec * NSEC_CONVERSION) >>
587 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
588 
589 }
590 
591 unsigned long
timespec_to_jiffies(const struct timespec * value)592 timespec_to_jiffies(const struct timespec *value)
593 {
594 	return __timespec_to_jiffies(value->tv_sec, value->tv_nsec);
595 }
596 
597 EXPORT_SYMBOL(timespec_to_jiffies);
598 
599 void
jiffies_to_timespec(const unsigned long jiffies,struct timespec * value)600 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
601 {
602 	/*
603 	 * Convert jiffies to nanoseconds and separate with
604 	 * one divide.
605 	 */
606 	u32 rem;
607 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
608 				    NSEC_PER_SEC, &rem);
609 	value->tv_nsec = rem;
610 }
611 EXPORT_SYMBOL(jiffies_to_timespec);
612 
613 /*
614  * We could use a similar algorithm to timespec_to_jiffies (with a
615  * different multiplier for usec instead of nsec). But this has a
616  * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
617  * usec value, since it's not necessarily integral.
618  *
619  * We could instead round in the intermediate scaled representation
620  * (i.e. in units of 1/2^(large scale) jiffies) but that's also
621  * perilous: the scaling introduces a small positive error, which
622  * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
623  * units to the intermediate before shifting) leads to accidental
624  * overflow and overestimates.
625  *
626  * At the cost of one additional multiplication by a constant, just
627  * use the timespec implementation.
628  */
629 unsigned long
timeval_to_jiffies(const struct timeval * value)630 timeval_to_jiffies(const struct timeval *value)
631 {
632 	return __timespec_to_jiffies(value->tv_sec,
633 				     value->tv_usec * NSEC_PER_USEC);
634 }
635 EXPORT_SYMBOL(timeval_to_jiffies);
636 
jiffies_to_timeval(const unsigned long jiffies,struct timeval * value)637 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
638 {
639 	/*
640 	 * Convert jiffies to nanoseconds and separate with
641 	 * one divide.
642 	 */
643 	u32 rem;
644 
645 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
646 				    NSEC_PER_SEC, &rem);
647 	value->tv_usec = rem / NSEC_PER_USEC;
648 }
649 EXPORT_SYMBOL(jiffies_to_timeval);
650 
651 /*
652  * Convert jiffies/jiffies_64 to clock_t and back.
653  */
jiffies_to_clock_t(unsigned long x)654 clock_t jiffies_to_clock_t(unsigned long x)
655 {
656 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
657 # if HZ < USER_HZ
658 	return x * (USER_HZ / HZ);
659 # else
660 	return x / (HZ / USER_HZ);
661 # endif
662 #else
663 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
664 #endif
665 }
666 EXPORT_SYMBOL(jiffies_to_clock_t);
667 
clock_t_to_jiffies(unsigned long x)668 unsigned long clock_t_to_jiffies(unsigned long x)
669 {
670 #if (HZ % USER_HZ)==0
671 	if (x >= ~0UL / (HZ / USER_HZ))
672 		return ~0UL;
673 	return x * (HZ / USER_HZ);
674 #else
675 	/* Don't worry about loss of precision here .. */
676 	if (x >= ~0UL / HZ * USER_HZ)
677 		return ~0UL;
678 
679 	/* .. but do try to contain it here */
680 	return div_u64((u64)x * HZ, USER_HZ);
681 #endif
682 }
683 EXPORT_SYMBOL(clock_t_to_jiffies);
684 
jiffies_64_to_clock_t(u64 x)685 u64 jiffies_64_to_clock_t(u64 x)
686 {
687 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
688 # if HZ < USER_HZ
689 	x = div_u64(x * USER_HZ, HZ);
690 # elif HZ > USER_HZ
691 	x = div_u64(x, HZ / USER_HZ);
692 # else
693 	/* Nothing to do */
694 # endif
695 #else
696 	/*
697 	 * There are better ways that don't overflow early,
698 	 * but even this doesn't overflow in hundreds of years
699 	 * in 64 bits, so..
700 	 */
701 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
702 #endif
703 	return x;
704 }
705 EXPORT_SYMBOL(jiffies_64_to_clock_t);
706 
nsec_to_clock_t(u64 x)707 u64 nsec_to_clock_t(u64 x)
708 {
709 #if (NSEC_PER_SEC % USER_HZ) == 0
710 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
711 #elif (USER_HZ % 512) == 0
712 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
713 #else
714 	/*
715          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
716          * overflow after 64.99 years.
717          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
718          */
719 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
720 #endif
721 }
722 
723 /**
724  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
725  *
726  * @n:	nsecs in u64
727  *
728  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
729  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
730  * for scheduler, not for use in device drivers to calculate timeout value.
731  *
732  * note:
733  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
734  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
735  */
nsecs_to_jiffies64(u64 n)736 u64 nsecs_to_jiffies64(u64 n)
737 {
738 #if (NSEC_PER_SEC % HZ) == 0
739 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
740 	return div_u64(n, NSEC_PER_SEC / HZ);
741 #elif (HZ % 512) == 0
742 	/* overflow after 292 years if HZ = 1024 */
743 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
744 #else
745 	/*
746 	 * Generic case - optimized for cases where HZ is a multiple of 3.
747 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
748 	 */
749 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
750 #endif
751 }
752 
753 /**
754  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
755  *
756  * @n:	nsecs in u64
757  *
758  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
759  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
760  * for scheduler, not for use in device drivers to calculate timeout value.
761  *
762  * note:
763  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
764  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
765  */
nsecs_to_jiffies(u64 n)766 unsigned long nsecs_to_jiffies(u64 n)
767 {
768 	return (unsigned long)nsecs_to_jiffies64(n);
769 }
770 EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
771 
772 /*
773  * Add two timespec values and do a safety check for overflow.
774  * It's assumed that both values are valid (>= 0)
775  */
timespec_add_safe(const struct timespec lhs,const struct timespec rhs)776 struct timespec timespec_add_safe(const struct timespec lhs,
777 				  const struct timespec rhs)
778 {
779 	struct timespec res;
780 
781 	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
782 				lhs.tv_nsec + rhs.tv_nsec);
783 
784 	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
785 		res.tv_sec = TIME_T_MAX;
786 
787 	return res;
788 }
789