1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33 #include <linux/module.h>
34
35 #include <trace/events/sched.h>
36
37 #include "sched.h"
38 #include "tune.h"
39 #include "walt.h"
40
41 /*
42 * Targeted preemption latency for CPU-bound tasks:
43 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
44 *
45 * NOTE: this latency value is not the same as the concept of
46 * 'timeslice length' - timeslices in CFS are of variable length
47 * and have no persistent notion like in traditional, time-slice
48 * based scheduling concepts.
49 *
50 * (to see the precise effective timeslice length of your workload,
51 * run vmstat and monitor the context-switches (cs) field)
52 */
53 unsigned int sysctl_sched_latency = 6000000ULL;
54 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
55
56 unsigned int sysctl_sched_is_big_little = 0;
57 unsigned int sysctl_sched_sync_hint_enable = 1;
58 unsigned int sysctl_sched_initial_task_util = 0;
59 unsigned int sysctl_sched_cstate_aware = 1;
60
61 #ifdef CONFIG_SCHED_WALT
62 unsigned int sysctl_sched_use_walt_cpu_util = 1;
63 unsigned int sysctl_sched_use_walt_task_util = 1;
64 __read_mostly unsigned int sysctl_sched_walt_cpu_high_irqload =
65 (10 * NSEC_PER_MSEC);
66 #endif
67 /*
68 * The initial- and re-scaling of tunables is configurable
69 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
70 *
71 * Options are:
72 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
73 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
74 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
75 */
76 enum sched_tunable_scaling sysctl_sched_tunable_scaling
77 = SCHED_TUNABLESCALING_LOG;
78
79 /*
80 * Minimal preemption granularity for CPU-bound tasks:
81 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 */
83 unsigned int sysctl_sched_min_granularity = 750000ULL;
84 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
85
86 /*
87 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
88 */
89 static unsigned int sched_nr_latency = 8;
90
91 /*
92 * After fork, child runs first. If set to 0 (default) then
93 * parent will (try to) run first.
94 */
95 unsigned int sysctl_sched_child_runs_first __read_mostly;
96
97 /*
98 * SCHED_OTHER wake-up granularity.
99 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
100 *
101 * This option delays the preemption effects of decoupled workloads
102 * and reduces their over-scheduling. Synchronous workloads will still
103 * have immediate wakeup/sleep latencies.
104 */
105 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
106 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
107
108 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
109
110 /*
111 * The exponential sliding window over which load is averaged for shares
112 * distribution.
113 * (default: 10msec)
114 */
115 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
116
117 #ifdef CONFIG_CFS_BANDWIDTH
118 /*
119 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
120 * each time a cfs_rq requests quota.
121 *
122 * Note: in the case that the slice exceeds the runtime remaining (either due
123 * to consumption or the quota being specified to be smaller than the slice)
124 * we will always only issue the remaining available time.
125 *
126 * default: 5 msec, units: microseconds
127 */
128 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
129 #endif
130
update_load_add(struct load_weight * lw,unsigned long inc)131 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
132 {
133 lw->weight += inc;
134 lw->inv_weight = 0;
135 }
136
update_load_sub(struct load_weight * lw,unsigned long dec)137 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
138 {
139 lw->weight -= dec;
140 lw->inv_weight = 0;
141 }
142
update_load_set(struct load_weight * lw,unsigned long w)143 static inline void update_load_set(struct load_weight *lw, unsigned long w)
144 {
145 lw->weight = w;
146 lw->inv_weight = 0;
147 }
148
149 /*
150 * Increase the granularity value when there are more CPUs,
151 * because with more CPUs the 'effective latency' as visible
152 * to users decreases. But the relationship is not linear,
153 * so pick a second-best guess by going with the log2 of the
154 * number of CPUs.
155 *
156 * This idea comes from the SD scheduler of Con Kolivas:
157 */
get_update_sysctl_factor(void)158 static int get_update_sysctl_factor(void)
159 {
160 unsigned int cpus = min_t(int, num_online_cpus(), 8);
161 unsigned int factor;
162
163 switch (sysctl_sched_tunable_scaling) {
164 case SCHED_TUNABLESCALING_NONE:
165 factor = 1;
166 break;
167 case SCHED_TUNABLESCALING_LINEAR:
168 factor = cpus;
169 break;
170 case SCHED_TUNABLESCALING_LOG:
171 default:
172 factor = 1 + ilog2(cpus);
173 break;
174 }
175
176 return factor;
177 }
178
update_sysctl(void)179 static void update_sysctl(void)
180 {
181 unsigned int factor = get_update_sysctl_factor();
182
183 #define SET_SYSCTL(name) \
184 (sysctl_##name = (factor) * normalized_sysctl_##name)
185 SET_SYSCTL(sched_min_granularity);
186 SET_SYSCTL(sched_latency);
187 SET_SYSCTL(sched_wakeup_granularity);
188 #undef SET_SYSCTL
189 }
190
sched_init_granularity(void)191 void sched_init_granularity(void)
192 {
193 update_sysctl();
194 }
195
196 #define WMULT_CONST (~0U)
197 #define WMULT_SHIFT 32
198
__update_inv_weight(struct load_weight * lw)199 static void __update_inv_weight(struct load_weight *lw)
200 {
201 unsigned long w;
202
203 if (likely(lw->inv_weight))
204 return;
205
206 w = scale_load_down(lw->weight);
207
208 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
209 lw->inv_weight = 1;
210 else if (unlikely(!w))
211 lw->inv_weight = WMULT_CONST;
212 else
213 lw->inv_weight = WMULT_CONST / w;
214 }
215
216 /*
217 * delta_exec * weight / lw.weight
218 * OR
219 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
220 *
221 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
222 * we're guaranteed shift stays positive because inv_weight is guaranteed to
223 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
224 *
225 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
226 * weight/lw.weight <= 1, and therefore our shift will also be positive.
227 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)228 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
229 {
230 u64 fact = scale_load_down(weight);
231 int shift = WMULT_SHIFT;
232
233 __update_inv_weight(lw);
234
235 if (unlikely(fact >> 32)) {
236 while (fact >> 32) {
237 fact >>= 1;
238 shift--;
239 }
240 }
241
242 /* hint to use a 32x32->64 mul */
243 fact = (u64)(u32)fact * lw->inv_weight;
244
245 while (fact >> 32) {
246 fact >>= 1;
247 shift--;
248 }
249
250 return mul_u64_u32_shr(delta_exec, fact, shift);
251 }
252
253
254 const struct sched_class fair_sched_class;
255
256 /**************************************************************
257 * CFS operations on generic schedulable entities:
258 */
259
260 #ifdef CONFIG_FAIR_GROUP_SCHED
261
262 /* cpu runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)263 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
264 {
265 return cfs_rq->rq;
266 }
267
268 /* An entity is a task if it doesn't "own" a runqueue */
269 #define entity_is_task(se) (!se->my_q)
270
task_of(struct sched_entity * se)271 static inline struct task_struct *task_of(struct sched_entity *se)
272 {
273 #ifdef CONFIG_SCHED_DEBUG
274 WARN_ON_ONCE(!entity_is_task(se));
275 #endif
276 return container_of(se, struct task_struct, se);
277 }
278
279 /* Walk up scheduling entities hierarchy */
280 #define for_each_sched_entity(se) \
281 for (; se; se = se->parent)
282
task_cfs_rq(struct task_struct * p)283 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
284 {
285 return p->se.cfs_rq;
286 }
287
288 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(struct sched_entity * se)289 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
290 {
291 return se->cfs_rq;
292 }
293
294 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)295 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
296 {
297 return grp->my_q;
298 }
299
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)300 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
301 {
302 if (!cfs_rq->on_list) {
303 /*
304 * Ensure we either appear before our parent (if already
305 * enqueued) or force our parent to appear after us when it is
306 * enqueued. The fact that we always enqueue bottom-up
307 * reduces this to two cases.
308 */
309 if (cfs_rq->tg->parent &&
310 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
311 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
312 &rq_of(cfs_rq)->leaf_cfs_rq_list);
313 } else {
314 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
315 &rq_of(cfs_rq)->leaf_cfs_rq_list);
316 }
317
318 cfs_rq->on_list = 1;
319 }
320 }
321
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)322 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
323 {
324 if (cfs_rq->on_list) {
325 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
326 cfs_rq->on_list = 0;
327 }
328 }
329
330 /* Iterate thr' all leaf cfs_rq's on a runqueue */
331 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
332 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
333
334 /* Do the two (enqueued) entities belong to the same group ? */
335 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)336 is_same_group(struct sched_entity *se, struct sched_entity *pse)
337 {
338 if (se->cfs_rq == pse->cfs_rq)
339 return se->cfs_rq;
340
341 return NULL;
342 }
343
parent_entity(struct sched_entity * se)344 static inline struct sched_entity *parent_entity(struct sched_entity *se)
345 {
346 return se->parent;
347 }
348
349 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)350 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
351 {
352 int se_depth, pse_depth;
353
354 /*
355 * preemption test can be made between sibling entities who are in the
356 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
357 * both tasks until we find their ancestors who are siblings of common
358 * parent.
359 */
360
361 /* First walk up until both entities are at same depth */
362 se_depth = (*se)->depth;
363 pse_depth = (*pse)->depth;
364
365 while (se_depth > pse_depth) {
366 se_depth--;
367 *se = parent_entity(*se);
368 }
369
370 while (pse_depth > se_depth) {
371 pse_depth--;
372 *pse = parent_entity(*pse);
373 }
374
375 while (!is_same_group(*se, *pse)) {
376 *se = parent_entity(*se);
377 *pse = parent_entity(*pse);
378 }
379 }
380
381 #else /* !CONFIG_FAIR_GROUP_SCHED */
382
task_of(struct sched_entity * se)383 static inline struct task_struct *task_of(struct sched_entity *se)
384 {
385 return container_of(se, struct task_struct, se);
386 }
387
rq_of(struct cfs_rq * cfs_rq)388 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
389 {
390 return container_of(cfs_rq, struct rq, cfs);
391 }
392
393 #define entity_is_task(se) 1
394
395 #define for_each_sched_entity(se) \
396 for (; se; se = NULL)
397
task_cfs_rq(struct task_struct * p)398 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
399 {
400 return &task_rq(p)->cfs;
401 }
402
cfs_rq_of(struct sched_entity * se)403 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
404 {
405 struct task_struct *p = task_of(se);
406 struct rq *rq = task_rq(p);
407
408 return &rq->cfs;
409 }
410
411 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)412 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
413 {
414 return NULL;
415 }
416
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)417 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
418 {
419 }
420
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)421 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
422 {
423 }
424
425 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
426 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
427
parent_entity(struct sched_entity * se)428 static inline struct sched_entity *parent_entity(struct sched_entity *se)
429 {
430 return NULL;
431 }
432
433 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)434 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
435 {
436 }
437
438 #endif /* CONFIG_FAIR_GROUP_SCHED */
439
440 static __always_inline
441 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
442
443 /**************************************************************
444 * Scheduling class tree data structure manipulation methods:
445 */
446
max_vruntime(u64 max_vruntime,u64 vruntime)447 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
448 {
449 s64 delta = (s64)(vruntime - max_vruntime);
450 if (delta > 0)
451 max_vruntime = vruntime;
452
453 return max_vruntime;
454 }
455
min_vruntime(u64 min_vruntime,u64 vruntime)456 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
457 {
458 s64 delta = (s64)(vruntime - min_vruntime);
459 if (delta < 0)
460 min_vruntime = vruntime;
461
462 return min_vruntime;
463 }
464
entity_before(struct sched_entity * a,struct sched_entity * b)465 static inline int entity_before(struct sched_entity *a,
466 struct sched_entity *b)
467 {
468 return (s64)(a->vruntime - b->vruntime) < 0;
469 }
470
update_min_vruntime(struct cfs_rq * cfs_rq)471 static void update_min_vruntime(struct cfs_rq *cfs_rq)
472 {
473 u64 vruntime = cfs_rq->min_vruntime;
474
475 if (cfs_rq->curr)
476 vruntime = cfs_rq->curr->vruntime;
477
478 if (cfs_rq->rb_leftmost) {
479 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
480 struct sched_entity,
481 run_node);
482
483 if (!cfs_rq->curr)
484 vruntime = se->vruntime;
485 else
486 vruntime = min_vruntime(vruntime, se->vruntime);
487 }
488
489 /* ensure we never gain time by being placed backwards. */
490 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
491 #ifndef CONFIG_64BIT
492 smp_wmb();
493 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
494 #endif
495 }
496
497 /*
498 * Enqueue an entity into the rb-tree:
499 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)500 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
501 {
502 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
503 struct rb_node *parent = NULL;
504 struct sched_entity *entry;
505 int leftmost = 1;
506
507 /*
508 * Find the right place in the rbtree:
509 */
510 while (*link) {
511 parent = *link;
512 entry = rb_entry(parent, struct sched_entity, run_node);
513 /*
514 * We dont care about collisions. Nodes with
515 * the same key stay together.
516 */
517 if (entity_before(se, entry)) {
518 link = &parent->rb_left;
519 } else {
520 link = &parent->rb_right;
521 leftmost = 0;
522 }
523 }
524
525 /*
526 * Maintain a cache of leftmost tree entries (it is frequently
527 * used):
528 */
529 if (leftmost)
530 cfs_rq->rb_leftmost = &se->run_node;
531
532 rb_link_node(&se->run_node, parent, link);
533 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
534 }
535
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)536 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
537 {
538 if (cfs_rq->rb_leftmost == &se->run_node) {
539 struct rb_node *next_node;
540
541 next_node = rb_next(&se->run_node);
542 cfs_rq->rb_leftmost = next_node;
543 }
544
545 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
546 }
547
__pick_first_entity(struct cfs_rq * cfs_rq)548 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
549 {
550 struct rb_node *left = cfs_rq->rb_leftmost;
551
552 if (!left)
553 return NULL;
554
555 return rb_entry(left, struct sched_entity, run_node);
556 }
557
__pick_next_entity(struct sched_entity * se)558 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
559 {
560 struct rb_node *next = rb_next(&se->run_node);
561
562 if (!next)
563 return NULL;
564
565 return rb_entry(next, struct sched_entity, run_node);
566 }
567
568 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)569 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
570 {
571 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
572
573 if (!last)
574 return NULL;
575
576 return rb_entry(last, struct sched_entity, run_node);
577 }
578
579 /**************************************************************
580 * Scheduling class statistics methods:
581 */
582
sched_proc_update_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)583 int sched_proc_update_handler(struct ctl_table *table, int write,
584 void __user *buffer, size_t *lenp,
585 loff_t *ppos)
586 {
587 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
588 int factor = get_update_sysctl_factor();
589
590 if (ret || !write)
591 return ret;
592
593 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
594 sysctl_sched_min_granularity);
595
596 #define WRT_SYSCTL(name) \
597 (normalized_sysctl_##name = sysctl_##name / (factor))
598 WRT_SYSCTL(sched_min_granularity);
599 WRT_SYSCTL(sched_latency);
600 WRT_SYSCTL(sched_wakeup_granularity);
601 #undef WRT_SYSCTL
602
603 return 0;
604 }
605 #endif
606
607 /*
608 * delta /= w
609 */
calc_delta_fair(u64 delta,struct sched_entity * se)610 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
611 {
612 if (unlikely(se->load.weight != NICE_0_LOAD))
613 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
614
615 return delta;
616 }
617
618 /*
619 * The idea is to set a period in which each task runs once.
620 *
621 * When there are too many tasks (sched_nr_latency) we have to stretch
622 * this period because otherwise the slices get too small.
623 *
624 * p = (nr <= nl) ? l : l*nr/nl
625 */
__sched_period(unsigned long nr_running)626 static u64 __sched_period(unsigned long nr_running)
627 {
628 if (unlikely(nr_running > sched_nr_latency))
629 return nr_running * sysctl_sched_min_granularity;
630 else
631 return sysctl_sched_latency;
632 }
633
634 /*
635 * We calculate the wall-time slice from the period by taking a part
636 * proportional to the weight.
637 *
638 * s = p*P[w/rw]
639 */
sched_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)640 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
641 {
642 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
643
644 for_each_sched_entity(se) {
645 struct load_weight *load;
646 struct load_weight lw;
647
648 cfs_rq = cfs_rq_of(se);
649 load = &cfs_rq->load;
650
651 if (unlikely(!se->on_rq)) {
652 lw = cfs_rq->load;
653
654 update_load_add(&lw, se->load.weight);
655 load = &lw;
656 }
657 slice = __calc_delta(slice, se->load.weight, load);
658 }
659 return slice;
660 }
661
662 /*
663 * We calculate the vruntime slice of a to-be-inserted task.
664 *
665 * vs = s/w
666 */
sched_vslice(struct cfs_rq * cfs_rq,struct sched_entity * se)667 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
668 {
669 return calc_delta_fair(sched_slice(cfs_rq, se), se);
670 }
671
672 #ifdef CONFIG_SMP
673 static int select_idle_sibling(struct task_struct *p, int cpu);
674 static unsigned long task_h_load(struct task_struct *p);
675
676 /*
677 * We choose a half-life close to 1 scheduling period.
678 * Note: The tables below are dependent on this value.
679 */
680 #define LOAD_AVG_PERIOD 32
681 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
682 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
683
684 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)685 void init_entity_runnable_average(struct sched_entity *se)
686 {
687 struct sched_avg *sa = &se->avg;
688
689 sa->last_update_time = 0;
690 /*
691 * sched_avg's period_contrib should be strictly less then 1024, so
692 * we give it 1023 to make sure it is almost a period (1024us), and
693 * will definitely be update (after enqueue).
694 */
695 sa->period_contrib = 1023;
696 sa->load_avg = scale_load_down(se->load.weight);
697 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
698 sa->util_avg = sched_freq() ?
699 sysctl_sched_initial_task_util :
700 scale_load_down(SCHED_LOAD_SCALE);
701 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
702 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
703 }
704
705 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
706 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
707 #else
init_entity_runnable_average(struct sched_entity * se)708 void init_entity_runnable_average(struct sched_entity *se)
709 {
710 }
711 #endif
712
713 /*
714 * Update the current task's runtime statistics.
715 */
update_curr(struct cfs_rq * cfs_rq)716 static void update_curr(struct cfs_rq *cfs_rq)
717 {
718 struct sched_entity *curr = cfs_rq->curr;
719 u64 now = rq_clock_task(rq_of(cfs_rq));
720 u64 delta_exec;
721
722 if (unlikely(!curr))
723 return;
724
725 delta_exec = now - curr->exec_start;
726 if (unlikely((s64)delta_exec <= 0))
727 return;
728
729 curr->exec_start = now;
730
731 schedstat_set(curr->statistics.exec_max,
732 max(delta_exec, curr->statistics.exec_max));
733
734 curr->sum_exec_runtime += delta_exec;
735 schedstat_add(cfs_rq, exec_clock, delta_exec);
736
737 curr->vruntime += calc_delta_fair(delta_exec, curr);
738 update_min_vruntime(cfs_rq);
739
740 if (entity_is_task(curr)) {
741 struct task_struct *curtask = task_of(curr);
742
743 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
744 cpuacct_charge(curtask, delta_exec);
745 account_group_exec_runtime(curtask, delta_exec);
746 }
747
748 account_cfs_rq_runtime(cfs_rq, delta_exec);
749 }
750
update_curr_fair(struct rq * rq)751 static void update_curr_fair(struct rq *rq)
752 {
753 update_curr(cfs_rq_of(&rq->curr->se));
754 }
755
756 static inline void
update_stats_wait_start(struct cfs_rq * cfs_rq,struct sched_entity * se)757 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
758 {
759 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
760 }
761
762 /*
763 * Task is being enqueued - update stats:
764 */
update_stats_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)765 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
766 {
767 /*
768 * Are we enqueueing a waiting task? (for current tasks
769 * a dequeue/enqueue event is a NOP)
770 */
771 if (se != cfs_rq->curr)
772 update_stats_wait_start(cfs_rq, se);
773 }
774
775 static void
update_stats_wait_end(struct cfs_rq * cfs_rq,struct sched_entity * se)776 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
777 {
778 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
779 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
780 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
781 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
782 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
783 #ifdef CONFIG_SCHEDSTATS
784 if (entity_is_task(se)) {
785 trace_sched_stat_wait(task_of(se),
786 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
787 }
788 #endif
789 schedstat_set(se->statistics.wait_start, 0);
790 }
791
792 static inline void
update_stats_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)793 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
794 {
795 /*
796 * Mark the end of the wait period if dequeueing a
797 * waiting task:
798 */
799 if (se != cfs_rq->curr)
800 update_stats_wait_end(cfs_rq, se);
801 }
802
803 /*
804 * We are picking a new current task - update its stats:
805 */
806 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)807 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
808 {
809 /*
810 * We are starting a new run period:
811 */
812 se->exec_start = rq_clock_task(rq_of(cfs_rq));
813 }
814
815 /**************************************************
816 * Scheduling class queueing methods:
817 */
818
819 #ifdef CONFIG_NUMA_BALANCING
820 /*
821 * Approximate time to scan a full NUMA task in ms. The task scan period is
822 * calculated based on the tasks virtual memory size and
823 * numa_balancing_scan_size.
824 */
825 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
826 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
827
828 /* Portion of address space to scan in MB */
829 unsigned int sysctl_numa_balancing_scan_size = 256;
830
831 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
832 unsigned int sysctl_numa_balancing_scan_delay = 1000;
833
task_nr_scan_windows(struct task_struct * p)834 static unsigned int task_nr_scan_windows(struct task_struct *p)
835 {
836 unsigned long rss = 0;
837 unsigned long nr_scan_pages;
838
839 /*
840 * Calculations based on RSS as non-present and empty pages are skipped
841 * by the PTE scanner and NUMA hinting faults should be trapped based
842 * on resident pages
843 */
844 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
845 rss = get_mm_rss(p->mm);
846 if (!rss)
847 rss = nr_scan_pages;
848
849 rss = round_up(rss, nr_scan_pages);
850 return rss / nr_scan_pages;
851 }
852
853 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
854 #define MAX_SCAN_WINDOW 2560
855
task_scan_min(struct task_struct * p)856 static unsigned int task_scan_min(struct task_struct *p)
857 {
858 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
859 unsigned int scan, floor;
860 unsigned int windows = 1;
861
862 if (scan_size < MAX_SCAN_WINDOW)
863 windows = MAX_SCAN_WINDOW / scan_size;
864 floor = 1000 / windows;
865
866 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
867 return max_t(unsigned int, floor, scan);
868 }
869
task_scan_max(struct task_struct * p)870 static unsigned int task_scan_max(struct task_struct *p)
871 {
872 unsigned int smin = task_scan_min(p);
873 unsigned int smax;
874
875 /* Watch for min being lower than max due to floor calculations */
876 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
877 return max(smin, smax);
878 }
879
account_numa_enqueue(struct rq * rq,struct task_struct * p)880 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
881 {
882 rq->nr_numa_running += (p->numa_preferred_nid != -1);
883 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
884 }
885
account_numa_dequeue(struct rq * rq,struct task_struct * p)886 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
887 {
888 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
889 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
890 }
891
892 struct numa_group {
893 atomic_t refcount;
894
895 spinlock_t lock; /* nr_tasks, tasks */
896 int nr_tasks;
897 pid_t gid;
898 struct list_head task_list;
899
900 struct rcu_head rcu;
901 nodemask_t active_nodes;
902 unsigned long total_faults;
903 /*
904 * Faults_cpu is used to decide whether memory should move
905 * towards the CPU. As a consequence, these stats are weighted
906 * more by CPU use than by memory faults.
907 */
908 unsigned long *faults_cpu;
909 unsigned long faults[0];
910 };
911
912 /* Shared or private faults. */
913 #define NR_NUMA_HINT_FAULT_TYPES 2
914
915 /* Memory and CPU locality */
916 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
917
918 /* Averaged statistics, and temporary buffers. */
919 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
920
task_numa_group_id(struct task_struct * p)921 pid_t task_numa_group_id(struct task_struct *p)
922 {
923 return p->numa_group ? p->numa_group->gid : 0;
924 }
925
task_faults_idx(int nid,int priv)926 static inline int task_faults_idx(int nid, int priv)
927 {
928 return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
929 }
930
task_faults(struct task_struct * p,int nid)931 static inline unsigned long task_faults(struct task_struct *p, int nid)
932 {
933 if (!p->numa_faults_memory)
934 return 0;
935
936 return p->numa_faults_memory[task_faults_idx(nid, 0)] +
937 p->numa_faults_memory[task_faults_idx(nid, 1)];
938 }
939
group_faults(struct task_struct * p,int nid)940 static inline unsigned long group_faults(struct task_struct *p, int nid)
941 {
942 if (!p->numa_group)
943 return 0;
944
945 return p->numa_group->faults[task_faults_idx(nid, 0)] +
946 p->numa_group->faults[task_faults_idx(nid, 1)];
947 }
948
group_faults_cpu(struct numa_group * group,int nid)949 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
950 {
951 return group->faults_cpu[task_faults_idx(nid, 0)] +
952 group->faults_cpu[task_faults_idx(nid, 1)];
953 }
954
955 /*
956 * These return the fraction of accesses done by a particular task, or
957 * task group, on a particular numa node. The group weight is given a
958 * larger multiplier, in order to group tasks together that are almost
959 * evenly spread out between numa nodes.
960 */
task_weight(struct task_struct * p,int nid)961 static inline unsigned long task_weight(struct task_struct *p, int nid)
962 {
963 unsigned long total_faults;
964
965 if (!p->numa_faults_memory)
966 return 0;
967
968 total_faults = p->total_numa_faults;
969
970 if (!total_faults)
971 return 0;
972
973 return 1000 * task_faults(p, nid) / total_faults;
974 }
975
group_weight(struct task_struct * p,int nid)976 static inline unsigned long group_weight(struct task_struct *p, int nid)
977 {
978 if (!p->numa_group || !p->numa_group->total_faults)
979 return 0;
980
981 return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
982 }
983
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)984 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
985 int src_nid, int dst_cpu)
986 {
987 struct numa_group *ng = p->numa_group;
988 int dst_nid = cpu_to_node(dst_cpu);
989 int last_cpupid, this_cpupid;
990
991 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
992
993 /*
994 * Multi-stage node selection is used in conjunction with a periodic
995 * migration fault to build a temporal task<->page relation. By using
996 * a two-stage filter we remove short/unlikely relations.
997 *
998 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
999 * a task's usage of a particular page (n_p) per total usage of this
1000 * page (n_t) (in a given time-span) to a probability.
1001 *
1002 * Our periodic faults will sample this probability and getting the
1003 * same result twice in a row, given these samples are fully
1004 * independent, is then given by P(n)^2, provided our sample period
1005 * is sufficiently short compared to the usage pattern.
1006 *
1007 * This quadric squishes small probabilities, making it less likely we
1008 * act on an unlikely task<->page relation.
1009 */
1010 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1011 if (!cpupid_pid_unset(last_cpupid) &&
1012 cpupid_to_nid(last_cpupid) != dst_nid)
1013 return false;
1014
1015 /* Always allow migrate on private faults */
1016 if (cpupid_match_pid(p, last_cpupid))
1017 return true;
1018
1019 /* A shared fault, but p->numa_group has not been set up yet. */
1020 if (!ng)
1021 return true;
1022
1023 /*
1024 * Do not migrate if the destination is not a node that
1025 * is actively used by this numa group.
1026 */
1027 if (!node_isset(dst_nid, ng->active_nodes))
1028 return false;
1029
1030 /*
1031 * Source is a node that is not actively used by this
1032 * numa group, while the destination is. Migrate.
1033 */
1034 if (!node_isset(src_nid, ng->active_nodes))
1035 return true;
1036
1037 /*
1038 * Both source and destination are nodes in active
1039 * use by this numa group. Maximize memory bandwidth
1040 * by migrating from more heavily used groups, to less
1041 * heavily used ones, spreading the load around.
1042 * Use a 1/4 hysteresis to avoid spurious page movement.
1043 */
1044 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1045 }
1046
1047 static unsigned long weighted_cpuload(const int cpu);
1048 static unsigned long source_load(int cpu, int type);
1049 static unsigned long target_load(int cpu, int type);
1050 static unsigned long capacity_of(int cpu);
1051 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1052
1053 /* Cached statistics for all CPUs within a node */
1054 struct numa_stats {
1055 unsigned long nr_running;
1056 unsigned long load;
1057
1058 /* Total compute capacity of CPUs on a node */
1059 unsigned long compute_capacity;
1060
1061 /* Approximate capacity in terms of runnable tasks on a node */
1062 unsigned long task_capacity;
1063 int has_free_capacity;
1064 };
1065
1066 /*
1067 * XXX borrowed from update_sg_lb_stats
1068 */
update_numa_stats(struct numa_stats * ns,int nid)1069 static void update_numa_stats(struct numa_stats *ns, int nid)
1070 {
1071 int smt, cpu, cpus = 0;
1072 unsigned long capacity;
1073
1074 memset(ns, 0, sizeof(*ns));
1075 for_each_cpu(cpu, cpumask_of_node(nid)) {
1076 struct rq *rq = cpu_rq(cpu);
1077
1078 ns->nr_running += rq->nr_running;
1079 ns->load += weighted_cpuload(cpu);
1080 ns->compute_capacity += capacity_of(cpu);
1081
1082 cpus++;
1083 }
1084
1085 /*
1086 * If we raced with hotplug and there are no CPUs left in our mask
1087 * the @ns structure is NULL'ed and task_numa_compare() will
1088 * not find this node attractive.
1089 *
1090 * We'll either bail at !has_free_capacity, or we'll detect a huge
1091 * imbalance and bail there.
1092 */
1093 if (!cpus)
1094 return;
1095
1096 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1097 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1098 capacity = cpus / smt; /* cores */
1099
1100 ns->task_capacity = min_t(unsigned, capacity,
1101 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1102 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1103 }
1104
1105 struct task_numa_env {
1106 struct task_struct *p;
1107
1108 int src_cpu, src_nid;
1109 int dst_cpu, dst_nid;
1110
1111 struct numa_stats src_stats, dst_stats;
1112
1113 int imbalance_pct;
1114
1115 struct task_struct *best_task;
1116 long best_imp;
1117 int best_cpu;
1118 };
1119
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)1120 static void task_numa_assign(struct task_numa_env *env,
1121 struct task_struct *p, long imp)
1122 {
1123 if (env->best_task)
1124 put_task_struct(env->best_task);
1125 if (p)
1126 get_task_struct(p);
1127
1128 env->best_task = p;
1129 env->best_imp = imp;
1130 env->best_cpu = env->dst_cpu;
1131 }
1132
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)1133 static bool load_too_imbalanced(long src_load, long dst_load,
1134 struct task_numa_env *env)
1135 {
1136 long imb, old_imb;
1137 long orig_src_load, orig_dst_load;
1138 long src_capacity, dst_capacity;
1139
1140 /*
1141 * The load is corrected for the CPU capacity available on each node.
1142 *
1143 * src_load dst_load
1144 * ------------ vs ---------
1145 * src_capacity dst_capacity
1146 */
1147 src_capacity = env->src_stats.compute_capacity;
1148 dst_capacity = env->dst_stats.compute_capacity;
1149
1150 /* We care about the slope of the imbalance, not the direction. */
1151 if (dst_load < src_load)
1152 swap(dst_load, src_load);
1153
1154 /* Is the difference below the threshold? */
1155 imb = dst_load * src_capacity * 100 -
1156 src_load * dst_capacity * env->imbalance_pct;
1157 if (imb <= 0)
1158 return false;
1159
1160 /*
1161 * The imbalance is above the allowed threshold.
1162 * Compare it with the old imbalance.
1163 */
1164 orig_src_load = env->src_stats.load;
1165 orig_dst_load = env->dst_stats.load;
1166
1167 if (orig_dst_load < orig_src_load)
1168 swap(orig_dst_load, orig_src_load);
1169
1170 old_imb = orig_dst_load * src_capacity * 100 -
1171 orig_src_load * dst_capacity * env->imbalance_pct;
1172
1173 /* Would this change make things worse? */
1174 return (imb > old_imb);
1175 }
1176
1177 /*
1178 * This checks if the overall compute and NUMA accesses of the system would
1179 * be improved if the source tasks was migrated to the target dst_cpu taking
1180 * into account that it might be best if task running on the dst_cpu should
1181 * be exchanged with the source task
1182 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp)1183 static void task_numa_compare(struct task_numa_env *env,
1184 long taskimp, long groupimp)
1185 {
1186 struct rq *src_rq = cpu_rq(env->src_cpu);
1187 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1188 struct task_struct *cur;
1189 long src_load, dst_load;
1190 long load;
1191 long imp = env->p->numa_group ? groupimp : taskimp;
1192 long moveimp = imp;
1193
1194 rcu_read_lock();
1195
1196 raw_spin_lock_irq(&dst_rq->lock);
1197 cur = dst_rq->curr;
1198 /*
1199 * No need to move the exiting task, and this ensures that ->curr
1200 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1201 * is safe under RCU read lock.
1202 * Note that rcu_read_lock() itself can't protect from the final
1203 * put_task_struct() after the last schedule().
1204 */
1205 if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1206 cur = NULL;
1207 raw_spin_unlock_irq(&dst_rq->lock);
1208
1209 /*
1210 * Because we have preemption enabled we can get migrated around and
1211 * end try selecting ourselves (current == env->p) as a swap candidate.
1212 */
1213 if (cur == env->p)
1214 goto unlock;
1215
1216 /*
1217 * "imp" is the fault differential for the source task between the
1218 * source and destination node. Calculate the total differential for
1219 * the source task and potential destination task. The more negative
1220 * the value is, the more rmeote accesses that would be expected to
1221 * be incurred if the tasks were swapped.
1222 */
1223 if (cur) {
1224 /* Skip this swap candidate if cannot move to the source cpu */
1225 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1226 goto unlock;
1227
1228 /*
1229 * If dst and source tasks are in the same NUMA group, or not
1230 * in any group then look only at task weights.
1231 */
1232 if (cur->numa_group == env->p->numa_group) {
1233 imp = taskimp + task_weight(cur, env->src_nid) -
1234 task_weight(cur, env->dst_nid);
1235 /*
1236 * Add some hysteresis to prevent swapping the
1237 * tasks within a group over tiny differences.
1238 */
1239 if (cur->numa_group)
1240 imp -= imp/16;
1241 } else {
1242 /*
1243 * Compare the group weights. If a task is all by
1244 * itself (not part of a group), use the task weight
1245 * instead.
1246 */
1247 if (cur->numa_group)
1248 imp += group_weight(cur, env->src_nid) -
1249 group_weight(cur, env->dst_nid);
1250 else
1251 imp += task_weight(cur, env->src_nid) -
1252 task_weight(cur, env->dst_nid);
1253 }
1254 }
1255
1256 if (imp <= env->best_imp && moveimp <= env->best_imp)
1257 goto unlock;
1258
1259 if (!cur) {
1260 /* Is there capacity at our destination? */
1261 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1262 !env->dst_stats.has_free_capacity)
1263 goto unlock;
1264
1265 goto balance;
1266 }
1267
1268 /* Balance doesn't matter much if we're running a task per cpu */
1269 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1270 dst_rq->nr_running == 1)
1271 goto assign;
1272
1273 /*
1274 * In the overloaded case, try and keep the load balanced.
1275 */
1276 balance:
1277 load = task_h_load(env->p);
1278 dst_load = env->dst_stats.load + load;
1279 src_load = env->src_stats.load - load;
1280
1281 if (moveimp > imp && moveimp > env->best_imp) {
1282 /*
1283 * If the improvement from just moving env->p direction is
1284 * better than swapping tasks around, check if a move is
1285 * possible. Store a slightly smaller score than moveimp,
1286 * so an actually idle CPU will win.
1287 */
1288 if (!load_too_imbalanced(src_load, dst_load, env)) {
1289 imp = moveimp - 1;
1290 cur = NULL;
1291 goto assign;
1292 }
1293 }
1294
1295 if (imp <= env->best_imp)
1296 goto unlock;
1297
1298 if (cur) {
1299 load = task_h_load(cur);
1300 dst_load -= load;
1301 src_load += load;
1302 }
1303
1304 if (load_too_imbalanced(src_load, dst_load, env))
1305 goto unlock;
1306
1307 /*
1308 * One idle CPU per node is evaluated for a task numa move.
1309 * Call select_idle_sibling to maybe find a better one.
1310 */
1311 if (!cur)
1312 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1313
1314 assign:
1315 task_numa_assign(env, cur, imp);
1316 unlock:
1317 rcu_read_unlock();
1318 }
1319
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)1320 static void task_numa_find_cpu(struct task_numa_env *env,
1321 long taskimp, long groupimp)
1322 {
1323 int cpu;
1324
1325 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1326 /* Skip this CPU if the source task cannot migrate */
1327 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1328 continue;
1329
1330 env->dst_cpu = cpu;
1331 task_numa_compare(env, taskimp, groupimp);
1332 }
1333 }
1334
task_numa_migrate(struct task_struct * p)1335 static int task_numa_migrate(struct task_struct *p)
1336 {
1337 struct task_numa_env env = {
1338 .p = p,
1339
1340 .src_cpu = task_cpu(p),
1341 .src_nid = task_node(p),
1342
1343 .imbalance_pct = 112,
1344
1345 .best_task = NULL,
1346 .best_imp = 0,
1347 .best_cpu = -1
1348 };
1349 struct sched_domain *sd;
1350 unsigned long taskweight, groupweight;
1351 int nid, ret;
1352 long taskimp, groupimp;
1353
1354 /*
1355 * Pick the lowest SD_NUMA domain, as that would have the smallest
1356 * imbalance and would be the first to start moving tasks about.
1357 *
1358 * And we want to avoid any moving of tasks about, as that would create
1359 * random movement of tasks -- counter the numa conditions we're trying
1360 * to satisfy here.
1361 */
1362 rcu_read_lock();
1363 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1364 if (sd)
1365 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1366 rcu_read_unlock();
1367
1368 /*
1369 * Cpusets can break the scheduler domain tree into smaller
1370 * balance domains, some of which do not cross NUMA boundaries.
1371 * Tasks that are "trapped" in such domains cannot be migrated
1372 * elsewhere, so there is no point in (re)trying.
1373 */
1374 if (unlikely(!sd)) {
1375 p->numa_preferred_nid = task_node(p);
1376 return -EINVAL;
1377 }
1378
1379 taskweight = task_weight(p, env.src_nid);
1380 groupweight = group_weight(p, env.src_nid);
1381 update_numa_stats(&env.src_stats, env.src_nid);
1382 env.dst_nid = p->numa_preferred_nid;
1383 taskimp = task_weight(p, env.dst_nid) - taskweight;
1384 groupimp = group_weight(p, env.dst_nid) - groupweight;
1385 update_numa_stats(&env.dst_stats, env.dst_nid);
1386
1387 /* Try to find a spot on the preferred nid. */
1388 task_numa_find_cpu(&env, taskimp, groupimp);
1389
1390 /* No space available on the preferred nid. Look elsewhere. */
1391 if (env.best_cpu == -1) {
1392 for_each_online_node(nid) {
1393 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1394 continue;
1395
1396 /* Only consider nodes where both task and groups benefit */
1397 taskimp = task_weight(p, nid) - taskweight;
1398 groupimp = group_weight(p, nid) - groupweight;
1399 if (taskimp < 0 && groupimp < 0)
1400 continue;
1401
1402 env.dst_nid = nid;
1403 update_numa_stats(&env.dst_stats, env.dst_nid);
1404 task_numa_find_cpu(&env, taskimp, groupimp);
1405 }
1406 }
1407
1408 /*
1409 * If the task is part of a workload that spans multiple NUMA nodes,
1410 * and is migrating into one of the workload's active nodes, remember
1411 * this node as the task's preferred numa node, so the workload can
1412 * settle down.
1413 * A task that migrated to a second choice node will be better off
1414 * trying for a better one later. Do not set the preferred node here.
1415 */
1416 if (p->numa_group) {
1417 if (env.best_cpu == -1)
1418 nid = env.src_nid;
1419 else
1420 nid = env.dst_nid;
1421
1422 if (node_isset(nid, p->numa_group->active_nodes))
1423 sched_setnuma(p, env.dst_nid);
1424 }
1425
1426 /* No better CPU than the current one was found. */
1427 if (env.best_cpu == -1)
1428 return -EAGAIN;
1429
1430 /*
1431 * Reset the scan period if the task is being rescheduled on an
1432 * alternative node to recheck if the tasks is now properly placed.
1433 */
1434 p->numa_scan_period = task_scan_min(p);
1435
1436 if (env.best_task == NULL) {
1437 ret = migrate_task_to(p, env.best_cpu);
1438 if (ret != 0)
1439 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1440 return ret;
1441 }
1442
1443 ret = migrate_swap(p, env.best_task);
1444 if (ret != 0)
1445 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1446 put_task_struct(env.best_task);
1447 return ret;
1448 }
1449
1450 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)1451 static void numa_migrate_preferred(struct task_struct *p)
1452 {
1453 unsigned long interval = HZ;
1454
1455 /* This task has no NUMA fault statistics yet */
1456 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1457 return;
1458
1459 /* Periodically retry migrating the task to the preferred node */
1460 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1461 p->numa_migrate_retry = jiffies + interval;
1462
1463 /* Success if task is already running on preferred CPU */
1464 if (task_node(p) == p->numa_preferred_nid)
1465 return;
1466
1467 /* Otherwise, try migrate to a CPU on the preferred node */
1468 task_numa_migrate(p);
1469 }
1470
1471 /*
1472 * Find the nodes on which the workload is actively running. We do this by
1473 * tracking the nodes from which NUMA hinting faults are triggered. This can
1474 * be different from the set of nodes where the workload's memory is currently
1475 * located.
1476 *
1477 * The bitmask is used to make smarter decisions on when to do NUMA page
1478 * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1479 * are added when they cause over 6/16 of the maximum number of faults, but
1480 * only removed when they drop below 3/16.
1481 */
update_numa_active_node_mask(struct numa_group * numa_group)1482 static void update_numa_active_node_mask(struct numa_group *numa_group)
1483 {
1484 unsigned long faults, max_faults = 0;
1485 int nid;
1486
1487 for_each_online_node(nid) {
1488 faults = group_faults_cpu(numa_group, nid);
1489 if (faults > max_faults)
1490 max_faults = faults;
1491 }
1492
1493 for_each_online_node(nid) {
1494 faults = group_faults_cpu(numa_group, nid);
1495 if (!node_isset(nid, numa_group->active_nodes)) {
1496 if (faults > max_faults * 6 / 16)
1497 node_set(nid, numa_group->active_nodes);
1498 } else if (faults < max_faults * 3 / 16)
1499 node_clear(nid, numa_group->active_nodes);
1500 }
1501 }
1502
1503 /*
1504 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1505 * increments. The more local the fault statistics are, the higher the scan
1506 * period will be for the next scan window. If local/(local+remote) ratio is
1507 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1508 * the scan period will decrease. Aim for 70% local accesses.
1509 */
1510 #define NUMA_PERIOD_SLOTS 10
1511 #define NUMA_PERIOD_THRESHOLD 7
1512
1513 /*
1514 * Increase the scan period (slow down scanning) if the majority of
1515 * our memory is already on our local node, or if the majority of
1516 * the page accesses are shared with other processes.
1517 * Otherwise, decrease the scan period.
1518 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)1519 static void update_task_scan_period(struct task_struct *p,
1520 unsigned long shared, unsigned long private)
1521 {
1522 unsigned int period_slot;
1523 int ratio;
1524 int diff;
1525
1526 unsigned long remote = p->numa_faults_locality[0];
1527 unsigned long local = p->numa_faults_locality[1];
1528
1529 /*
1530 * If there were no record hinting faults then either the task is
1531 * completely idle or all activity is areas that are not of interest
1532 * to automatic numa balancing. Scan slower
1533 */
1534 if (local + shared == 0) {
1535 p->numa_scan_period = min(p->numa_scan_period_max,
1536 p->numa_scan_period << 1);
1537
1538 p->mm->numa_next_scan = jiffies +
1539 msecs_to_jiffies(p->numa_scan_period);
1540
1541 return;
1542 }
1543
1544 /*
1545 * Prepare to scale scan period relative to the current period.
1546 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1547 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1548 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1549 */
1550 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1551 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1552 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1553 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1554 if (!slot)
1555 slot = 1;
1556 diff = slot * period_slot;
1557 } else {
1558 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1559
1560 /*
1561 * Scale scan rate increases based on sharing. There is an
1562 * inverse relationship between the degree of sharing and
1563 * the adjustment made to the scanning period. Broadly
1564 * speaking the intent is that there is little point
1565 * scanning faster if shared accesses dominate as it may
1566 * simply bounce migrations uselessly
1567 */
1568 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1569 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1570 }
1571
1572 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1573 task_scan_min(p), task_scan_max(p));
1574 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1575 }
1576
1577 /*
1578 * Get the fraction of time the task has been running since the last
1579 * NUMA placement cycle. The scheduler keeps similar statistics, but
1580 * decays those on a 32ms period, which is orders of magnitude off
1581 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1582 * stats only if the task is so new there are no NUMA statistics yet.
1583 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)1584 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1585 {
1586 u64 runtime, delta, now;
1587 /* Use the start of this time slice to avoid calculations. */
1588 now = p->se.exec_start;
1589 runtime = p->se.sum_exec_runtime;
1590
1591 if (p->last_task_numa_placement) {
1592 delta = runtime - p->last_sum_exec_runtime;
1593 *period = now - p->last_task_numa_placement;
1594 } else {
1595 delta = p->se.avg.load_sum / p->se.load.weight;
1596 *period = LOAD_AVG_MAX;
1597 }
1598
1599 p->last_sum_exec_runtime = runtime;
1600 p->last_task_numa_placement = now;
1601
1602 return delta;
1603 }
1604
task_numa_placement(struct task_struct * p)1605 static void task_numa_placement(struct task_struct *p)
1606 {
1607 int seq, nid, max_nid = -1, max_group_nid = -1;
1608 unsigned long max_faults = 0, max_group_faults = 0;
1609 unsigned long fault_types[2] = { 0, 0 };
1610 unsigned long total_faults;
1611 u64 runtime, period;
1612 spinlock_t *group_lock = NULL;
1613
1614 seq = READ_ONCE(p->mm->numa_scan_seq);
1615 if (p->numa_scan_seq == seq)
1616 return;
1617 p->numa_scan_seq = seq;
1618 p->numa_scan_period_max = task_scan_max(p);
1619
1620 total_faults = p->numa_faults_locality[0] +
1621 p->numa_faults_locality[1];
1622 runtime = numa_get_avg_runtime(p, &period);
1623
1624 /* If the task is part of a group prevent parallel updates to group stats */
1625 if (p->numa_group) {
1626 group_lock = &p->numa_group->lock;
1627 spin_lock_irq(group_lock);
1628 }
1629
1630 /* Find the node with the highest number of faults */
1631 for_each_online_node(nid) {
1632 unsigned long faults = 0, group_faults = 0;
1633 int priv, i;
1634
1635 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1636 long diff, f_diff, f_weight;
1637
1638 i = task_faults_idx(nid, priv);
1639
1640 /* Decay existing window, copy faults since last scan */
1641 diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1642 fault_types[priv] += p->numa_faults_buffer_memory[i];
1643 p->numa_faults_buffer_memory[i] = 0;
1644
1645 /*
1646 * Normalize the faults_from, so all tasks in a group
1647 * count according to CPU use, instead of by the raw
1648 * number of faults. Tasks with little runtime have
1649 * little over-all impact on throughput, and thus their
1650 * faults are less important.
1651 */
1652 f_weight = div64_u64(runtime << 16, period + 1);
1653 f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1654 (total_faults + 1);
1655 f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1656 p->numa_faults_buffer_cpu[i] = 0;
1657
1658 p->numa_faults_memory[i] += diff;
1659 p->numa_faults_cpu[i] += f_diff;
1660 faults += p->numa_faults_memory[i];
1661 p->total_numa_faults += diff;
1662 if (p->numa_group) {
1663 /* safe because we can only change our own group */
1664 p->numa_group->faults[i] += diff;
1665 p->numa_group->faults_cpu[i] += f_diff;
1666 p->numa_group->total_faults += diff;
1667 group_faults += p->numa_group->faults[i];
1668 }
1669 }
1670
1671 if (faults > max_faults) {
1672 max_faults = faults;
1673 max_nid = nid;
1674 }
1675
1676 if (group_faults > max_group_faults) {
1677 max_group_faults = group_faults;
1678 max_group_nid = nid;
1679 }
1680 }
1681
1682 update_task_scan_period(p, fault_types[0], fault_types[1]);
1683
1684 if (p->numa_group) {
1685 update_numa_active_node_mask(p->numa_group);
1686 spin_unlock_irq(group_lock);
1687 max_nid = max_group_nid;
1688 }
1689
1690 if (max_faults) {
1691 /* Set the new preferred node */
1692 if (max_nid != p->numa_preferred_nid)
1693 sched_setnuma(p, max_nid);
1694
1695 if (task_node(p) != p->numa_preferred_nid)
1696 numa_migrate_preferred(p);
1697 }
1698 }
1699
get_numa_group(struct numa_group * grp)1700 static inline int get_numa_group(struct numa_group *grp)
1701 {
1702 return atomic_inc_not_zero(&grp->refcount);
1703 }
1704
put_numa_group(struct numa_group * grp)1705 static inline void put_numa_group(struct numa_group *grp)
1706 {
1707 if (atomic_dec_and_test(&grp->refcount))
1708 kfree_rcu(grp, rcu);
1709 }
1710
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)1711 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1712 int *priv)
1713 {
1714 struct numa_group *grp, *my_grp;
1715 struct task_struct *tsk;
1716 bool join = false;
1717 int cpu = cpupid_to_cpu(cpupid);
1718 int i;
1719
1720 if (unlikely(!p->numa_group)) {
1721 unsigned int size = sizeof(struct numa_group) +
1722 4*nr_node_ids*sizeof(unsigned long);
1723
1724 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1725 if (!grp)
1726 return;
1727
1728 atomic_set(&grp->refcount, 1);
1729 spin_lock_init(&grp->lock);
1730 INIT_LIST_HEAD(&grp->task_list);
1731 grp->gid = p->pid;
1732 /* Second half of the array tracks nids where faults happen */
1733 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1734 nr_node_ids;
1735
1736 node_set(task_node(current), grp->active_nodes);
1737
1738 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1739 grp->faults[i] = p->numa_faults_memory[i];
1740
1741 grp->total_faults = p->total_numa_faults;
1742
1743 list_add(&p->numa_entry, &grp->task_list);
1744 grp->nr_tasks++;
1745 rcu_assign_pointer(p->numa_group, grp);
1746 }
1747
1748 rcu_read_lock();
1749 tsk = READ_ONCE(cpu_rq(cpu)->curr);
1750
1751 if (!cpupid_match_pid(tsk, cpupid))
1752 goto no_join;
1753
1754 grp = rcu_dereference(tsk->numa_group);
1755 if (!grp)
1756 goto no_join;
1757
1758 my_grp = p->numa_group;
1759 if (grp == my_grp)
1760 goto no_join;
1761
1762 /*
1763 * Only join the other group if its bigger; if we're the bigger group,
1764 * the other task will join us.
1765 */
1766 if (my_grp->nr_tasks > grp->nr_tasks)
1767 goto no_join;
1768
1769 /*
1770 * Tie-break on the grp address.
1771 */
1772 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1773 goto no_join;
1774
1775 /* Always join threads in the same process. */
1776 if (tsk->mm == current->mm)
1777 join = true;
1778
1779 /* Simple filter to avoid false positives due to PID collisions */
1780 if (flags & TNF_SHARED)
1781 join = true;
1782
1783 /* Update priv based on whether false sharing was detected */
1784 *priv = !join;
1785
1786 if (join && !get_numa_group(grp))
1787 goto no_join;
1788
1789 rcu_read_unlock();
1790
1791 if (!join)
1792 return;
1793
1794 BUG_ON(irqs_disabled());
1795 double_lock_irq(&my_grp->lock, &grp->lock);
1796
1797 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1798 my_grp->faults[i] -= p->numa_faults_memory[i];
1799 grp->faults[i] += p->numa_faults_memory[i];
1800 }
1801 my_grp->total_faults -= p->total_numa_faults;
1802 grp->total_faults += p->total_numa_faults;
1803
1804 list_move(&p->numa_entry, &grp->task_list);
1805 my_grp->nr_tasks--;
1806 grp->nr_tasks++;
1807
1808 spin_unlock(&my_grp->lock);
1809 spin_unlock_irq(&grp->lock);
1810
1811 rcu_assign_pointer(p->numa_group, grp);
1812
1813 put_numa_group(my_grp);
1814 return;
1815
1816 no_join:
1817 rcu_read_unlock();
1818 return;
1819 }
1820
task_numa_free(struct task_struct * p)1821 void task_numa_free(struct task_struct *p)
1822 {
1823 struct numa_group *grp = p->numa_group;
1824 void *numa_faults = p->numa_faults_memory;
1825 unsigned long flags;
1826 int i;
1827
1828 if (grp) {
1829 spin_lock_irqsave(&grp->lock, flags);
1830 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1831 grp->faults[i] -= p->numa_faults_memory[i];
1832 grp->total_faults -= p->total_numa_faults;
1833
1834 list_del(&p->numa_entry);
1835 grp->nr_tasks--;
1836 spin_unlock_irqrestore(&grp->lock, flags);
1837 RCU_INIT_POINTER(p->numa_group, NULL);
1838 put_numa_group(grp);
1839 }
1840
1841 p->numa_faults_memory = NULL;
1842 p->numa_faults_buffer_memory = NULL;
1843 p->numa_faults_cpu= NULL;
1844 p->numa_faults_buffer_cpu = NULL;
1845 kfree(numa_faults);
1846 }
1847
1848 /*
1849 * Got a PROT_NONE fault for a page on @node.
1850 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)1851 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1852 {
1853 struct task_struct *p = current;
1854 bool migrated = flags & TNF_MIGRATED;
1855 int cpu_node = task_node(current);
1856 int local = !!(flags & TNF_FAULT_LOCAL);
1857 int priv;
1858
1859 if (!numabalancing_enabled)
1860 return;
1861
1862 /* for example, ksmd faulting in a user's mm */
1863 if (!p->mm)
1864 return;
1865
1866 /* Allocate buffer to track faults on a per-node basis */
1867 if (unlikely(!p->numa_faults_memory)) {
1868 int size = sizeof(*p->numa_faults_memory) *
1869 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1870
1871 p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1872 if (!p->numa_faults_memory)
1873 return;
1874
1875 BUG_ON(p->numa_faults_buffer_memory);
1876 /*
1877 * The averaged statistics, shared & private, memory & cpu,
1878 * occupy the first half of the array. The second half of the
1879 * array is for current counters, which are averaged into the
1880 * first set by task_numa_placement.
1881 */
1882 p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1883 p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1884 p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1885 p->total_numa_faults = 0;
1886 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1887 }
1888
1889 /*
1890 * First accesses are treated as private, otherwise consider accesses
1891 * to be private if the accessing pid has not changed
1892 */
1893 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1894 priv = 1;
1895 } else {
1896 priv = cpupid_match_pid(p, last_cpupid);
1897 if (!priv && !(flags & TNF_NO_GROUP))
1898 task_numa_group(p, last_cpupid, flags, &priv);
1899 }
1900
1901 /*
1902 * If a workload spans multiple NUMA nodes, a shared fault that
1903 * occurs wholly within the set of nodes that the workload is
1904 * actively using should be counted as local. This allows the
1905 * scan rate to slow down when a workload has settled down.
1906 */
1907 if (!priv && !local && p->numa_group &&
1908 node_isset(cpu_node, p->numa_group->active_nodes) &&
1909 node_isset(mem_node, p->numa_group->active_nodes))
1910 local = 1;
1911
1912 task_numa_placement(p);
1913
1914 /*
1915 * Retry task to preferred node migration periodically, in case it
1916 * case it previously failed, or the scheduler moved us.
1917 */
1918 if (time_after(jiffies, p->numa_migrate_retry))
1919 numa_migrate_preferred(p);
1920
1921 if (migrated)
1922 p->numa_pages_migrated += pages;
1923
1924 p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1925 p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1926 p->numa_faults_locality[local] += pages;
1927 }
1928
reset_ptenuma_scan(struct task_struct * p)1929 static void reset_ptenuma_scan(struct task_struct *p)
1930 {
1931 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
1932 p->mm->numa_scan_offset = 0;
1933 }
1934
1935 /*
1936 * The expensive part of numa migration is done from task_work context.
1937 * Triggered from task_tick_numa().
1938 */
task_numa_work(struct callback_head * work)1939 void task_numa_work(struct callback_head *work)
1940 {
1941 unsigned long migrate, next_scan, now = jiffies;
1942 struct task_struct *p = current;
1943 struct mm_struct *mm = p->mm;
1944 struct vm_area_struct *vma;
1945 unsigned long start, end;
1946 unsigned long nr_pte_updates = 0;
1947 long pages;
1948
1949 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1950
1951 work->next = work; /* protect against double add */
1952 /*
1953 * Who cares about NUMA placement when they're dying.
1954 *
1955 * NOTE: make sure not to dereference p->mm before this check,
1956 * exit_task_work() happens _after_ exit_mm() so we could be called
1957 * without p->mm even though we still had it when we enqueued this
1958 * work.
1959 */
1960 if (p->flags & PF_EXITING)
1961 return;
1962
1963 if (!mm->numa_next_scan) {
1964 mm->numa_next_scan = now +
1965 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1966 }
1967
1968 /*
1969 * Enforce maximal scan/migration frequency..
1970 */
1971 migrate = mm->numa_next_scan;
1972 if (time_before(now, migrate))
1973 return;
1974
1975 if (p->numa_scan_period == 0) {
1976 p->numa_scan_period_max = task_scan_max(p);
1977 p->numa_scan_period = task_scan_min(p);
1978 }
1979
1980 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1981 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1982 return;
1983
1984 /*
1985 * Delay this task enough that another task of this mm will likely win
1986 * the next time around.
1987 */
1988 p->node_stamp += 2 * TICK_NSEC;
1989
1990 start = mm->numa_scan_offset;
1991 pages = sysctl_numa_balancing_scan_size;
1992 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1993 if (!pages)
1994 return;
1995
1996 down_read(&mm->mmap_sem);
1997 vma = find_vma(mm, start);
1998 if (!vma) {
1999 reset_ptenuma_scan(p);
2000 start = 0;
2001 vma = mm->mmap;
2002 }
2003 for (; vma; vma = vma->vm_next) {
2004 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2005 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2006 continue;
2007 }
2008
2009 /*
2010 * Shared library pages mapped by multiple processes are not
2011 * migrated as it is expected they are cache replicated. Avoid
2012 * hinting faults in read-only file-backed mappings or the vdso
2013 * as migrating the pages will be of marginal benefit.
2014 */
2015 if (!vma->vm_mm ||
2016 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2017 continue;
2018
2019 /*
2020 * Skip inaccessible VMAs to avoid any confusion between
2021 * PROT_NONE and NUMA hinting ptes
2022 */
2023 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2024 continue;
2025
2026 do {
2027 start = max(start, vma->vm_start);
2028 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2029 end = min(end, vma->vm_end);
2030 nr_pte_updates += change_prot_numa(vma, start, end);
2031
2032 /*
2033 * Scan sysctl_numa_balancing_scan_size but ensure that
2034 * at least one PTE is updated so that unused virtual
2035 * address space is quickly skipped.
2036 */
2037 if (nr_pte_updates)
2038 pages -= (end - start) >> PAGE_SHIFT;
2039
2040 start = end;
2041 if (pages <= 0)
2042 goto out;
2043
2044 cond_resched();
2045 } while (end != vma->vm_end);
2046 }
2047
2048 out:
2049 /*
2050 * It is possible to reach the end of the VMA list but the last few
2051 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2052 * would find the !migratable VMA on the next scan but not reset the
2053 * scanner to the start so check it now.
2054 */
2055 if (vma)
2056 mm->numa_scan_offset = start;
2057 else
2058 reset_ptenuma_scan(p);
2059 up_read(&mm->mmap_sem);
2060 }
2061
2062 /*
2063 * Drive the periodic memory faults..
2064 */
task_tick_numa(struct rq * rq,struct task_struct * curr)2065 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2066 {
2067 struct callback_head *work = &curr->numa_work;
2068 u64 period, now;
2069
2070 /*
2071 * We don't care about NUMA placement if we don't have memory.
2072 */
2073 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2074 return;
2075
2076 /*
2077 * Using runtime rather than walltime has the dual advantage that
2078 * we (mostly) drive the selection from busy threads and that the
2079 * task needs to have done some actual work before we bother with
2080 * NUMA placement.
2081 */
2082 now = curr->se.sum_exec_runtime;
2083 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2084
2085 if (now - curr->node_stamp > period) {
2086 if (!curr->node_stamp)
2087 curr->numa_scan_period = task_scan_min(curr);
2088 curr->node_stamp += period;
2089
2090 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2091 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2092 task_work_add(curr, work, true);
2093 }
2094 }
2095 }
2096 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)2097 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2098 {
2099 }
2100
account_numa_enqueue(struct rq * rq,struct task_struct * p)2101 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2102 {
2103 }
2104
account_numa_dequeue(struct rq * rq,struct task_struct * p)2105 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2106 {
2107 }
2108 #endif /* CONFIG_NUMA_BALANCING */
2109
2110 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)2111 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2112 {
2113 update_load_add(&cfs_rq->load, se->load.weight);
2114 if (!parent_entity(se))
2115 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2116 #ifdef CONFIG_SMP
2117 if (entity_is_task(se)) {
2118 struct rq *rq = rq_of(cfs_rq);
2119
2120 account_numa_enqueue(rq, task_of(se));
2121 list_add(&se->group_node, &rq->cfs_tasks);
2122 }
2123 #endif
2124 cfs_rq->nr_running++;
2125 }
2126
2127 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)2128 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2129 {
2130 update_load_sub(&cfs_rq->load, se->load.weight);
2131 if (!parent_entity(se))
2132 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2133 if (entity_is_task(se)) {
2134 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2135 list_del_init(&se->group_node);
2136 }
2137 cfs_rq->nr_running--;
2138 }
2139
2140 #ifdef CONFIG_FAIR_GROUP_SCHED
2141 # ifdef CONFIG_SMP
calc_tg_weight(struct task_group * tg,struct cfs_rq * cfs_rq)2142 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2143 {
2144 long tg_weight;
2145
2146 /*
2147 * Use this CPU's real-time load instead of the last load contribution
2148 * as the updating of the contribution is delayed, and we will use the
2149 * the real-time load to calc the share. See update_tg_load_avg().
2150 */
2151 tg_weight = atomic_long_read(&tg->load_avg);
2152 tg_weight -= cfs_rq->tg_load_avg_contrib;
2153 tg_weight += cfs_rq->load.weight;
2154
2155 return tg_weight;
2156 }
2157
calc_cfs_shares(struct cfs_rq * cfs_rq,struct task_group * tg)2158 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2159 {
2160 long tg_weight, load, shares;
2161
2162 tg_weight = calc_tg_weight(tg, cfs_rq);
2163 load = cfs_rq->load.weight;
2164
2165 shares = (tg->shares * load);
2166 if (tg_weight)
2167 shares /= tg_weight;
2168
2169 if (shares < MIN_SHARES)
2170 shares = MIN_SHARES;
2171 if (shares > tg->shares)
2172 shares = tg->shares;
2173
2174 return shares;
2175 }
2176 # else /* CONFIG_SMP */
calc_cfs_shares(struct cfs_rq * cfs_rq,struct task_group * tg)2177 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2178 {
2179 return tg->shares;
2180 }
2181 # endif /* CONFIG_SMP */
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)2182 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2183 unsigned long weight)
2184 {
2185 if (se->on_rq) {
2186 /* commit outstanding execution time */
2187 if (cfs_rq->curr == se)
2188 update_curr(cfs_rq);
2189 account_entity_dequeue(cfs_rq, se);
2190 }
2191
2192 update_load_set(&se->load, weight);
2193
2194 if (se->on_rq)
2195 account_entity_enqueue(cfs_rq, se);
2196 }
2197
2198 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2199
update_cfs_shares(struct cfs_rq * cfs_rq)2200 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2201 {
2202 struct task_group *tg;
2203 struct sched_entity *se;
2204 long shares;
2205
2206 tg = cfs_rq->tg;
2207 se = tg->se[cpu_of(rq_of(cfs_rq))];
2208 if (!se || throttled_hierarchy(cfs_rq))
2209 return;
2210 #ifndef CONFIG_SMP
2211 if (likely(se->load.weight == tg->shares))
2212 return;
2213 #endif
2214 shares = calc_cfs_shares(cfs_rq, tg);
2215
2216 reweight_entity(cfs_rq_of(se), se, shares);
2217 }
2218 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_shares(struct cfs_rq * cfs_rq)2219 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2220 {
2221 }
2222 #endif /* CONFIG_FAIR_GROUP_SCHED */
2223
2224 #ifdef CONFIG_SMP
2225 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2226 static const u32 runnable_avg_yN_inv[] = {
2227 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2228 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2229 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2230 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2231 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2232 0x85aac367, 0x82cd8698,
2233 };
2234
2235 /*
2236 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2237 * over-estimates when re-combining.
2238 */
2239 static const u32 runnable_avg_yN_sum[] = {
2240 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2241 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2242 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2243 };
2244
2245 /*
2246 * Approximate:
2247 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2248 */
decay_load(u64 val,u64 n)2249 static __always_inline u64 decay_load(u64 val, u64 n)
2250 {
2251 unsigned int local_n;
2252
2253 if (!n)
2254 return val;
2255 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2256 return 0;
2257
2258 /* after bounds checking we can collapse to 32-bit */
2259 local_n = n;
2260
2261 /*
2262 * As y^PERIOD = 1/2, we can combine
2263 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2264 * With a look-up table which covers y^n (n<PERIOD)
2265 *
2266 * To achieve constant time decay_load.
2267 */
2268 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2269 val >>= local_n / LOAD_AVG_PERIOD;
2270 local_n %= LOAD_AVG_PERIOD;
2271 }
2272
2273 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2274 return val;
2275 }
2276
2277 /*
2278 * For updates fully spanning n periods, the contribution to runnable
2279 * average will be: \Sum 1024*y^n
2280 *
2281 * We can compute this reasonably efficiently by combining:
2282 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2283 */
__compute_runnable_contrib(u64 n)2284 static u32 __compute_runnable_contrib(u64 n)
2285 {
2286 u32 contrib = 0;
2287
2288 if (likely(n <= LOAD_AVG_PERIOD))
2289 return runnable_avg_yN_sum[n];
2290 else if (unlikely(n >= LOAD_AVG_MAX_N))
2291 return LOAD_AVG_MAX;
2292
2293 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2294 do {
2295 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2296 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2297
2298 n -= LOAD_AVG_PERIOD;
2299 } while (n > LOAD_AVG_PERIOD);
2300
2301 contrib = decay_load(contrib, n);
2302 return contrib + runnable_avg_yN_sum[n];
2303 }
2304
2305 #if (SCHED_LOAD_SHIFT - SCHED_LOAD_RESOLUTION) != 10 || SCHED_CAPACITY_SHIFT != 10
2306 #error "load tracking assumes 2^10 as unit"
2307 #endif
2308
2309 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2310
2311 /*
2312 * We can represent the historical contribution to runnable average as the
2313 * coefficients of a geometric series. To do this we sub-divide our runnable
2314 * history into segments of approximately 1ms (1024us); label the segment that
2315 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2316 *
2317 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2318 * p0 p1 p2
2319 * (now) (~1ms ago) (~2ms ago)
2320 *
2321 * Let u_i denote the fraction of p_i that the entity was runnable.
2322 *
2323 * We then designate the fractions u_i as our co-efficients, yielding the
2324 * following representation of historical load:
2325 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2326 *
2327 * We choose y based on the with of a reasonably scheduling period, fixing:
2328 * y^32 = 0.5
2329 *
2330 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2331 * approximately half as much as the contribution to load within the last ms
2332 * (u_0).
2333 *
2334 * When a period "rolls over" and we have new u_0`, multiplying the previous
2335 * sum again by y is sufficient to update:
2336 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2337 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2338 */
2339 static __always_inline int
__update_load_avg(u64 now,int cpu,struct sched_avg * sa,unsigned long weight,int running,struct cfs_rq * cfs_rq)2340 __update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2341 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2342 {
2343 u64 delta, scaled_delta, periods;
2344 u32 contrib;
2345 unsigned int delta_w, scaled_delta_w, decayed = 0;
2346 unsigned long scale_freq, scale_cpu;
2347
2348 delta = now - sa->last_update_time;
2349 /*
2350 * This should only happen when time goes backwards, which it
2351 * unfortunately does during sched clock init when we swap over to TSC.
2352 */
2353 if ((s64)delta < 0) {
2354 sa->last_update_time = now;
2355 return 0;
2356 }
2357
2358 /*
2359 * Use 1024ns as the unit of measurement since it's a reasonable
2360 * approximation of 1us and fast to compute.
2361 */
2362 delta >>= 10;
2363 if (!delta)
2364 return 0;
2365 sa->last_update_time = now;
2366
2367 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2368 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2369 trace_sched_contrib_scale_f(cpu, scale_freq, scale_cpu);
2370
2371 /* delta_w is the amount already accumulated against our next period */
2372 delta_w = sa->period_contrib;
2373 if (delta + delta_w >= 1024) {
2374 decayed = 1;
2375
2376 /* how much left for next period will start over, we don't know yet */
2377 sa->period_contrib = 0;
2378
2379 /*
2380 * Now that we know we're crossing a period boundary, figure
2381 * out how much from delta we need to complete the current
2382 * period and accrue it.
2383 */
2384 delta_w = 1024 - delta_w;
2385 scaled_delta_w = cap_scale(delta_w, scale_freq);
2386 if (weight) {
2387 sa->load_sum += weight * scaled_delta_w;
2388 if (cfs_rq) {
2389 cfs_rq->runnable_load_sum +=
2390 weight * scaled_delta_w;
2391 }
2392 }
2393 if (running)
2394 sa->util_sum += scaled_delta_w * scale_cpu;
2395
2396 delta -= delta_w;
2397
2398 /* Figure out how many additional periods this update spans */
2399 periods = delta / 1024;
2400 delta %= 1024;
2401
2402 sa->load_sum = decay_load(sa->load_sum, periods + 1);
2403 if (cfs_rq) {
2404 cfs_rq->runnable_load_sum =
2405 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2406 }
2407 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
2408
2409 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2410 contrib = __compute_runnable_contrib(periods);
2411 contrib = cap_scale(contrib, scale_freq);
2412 if (weight) {
2413 sa->load_sum += weight * contrib;
2414 if (cfs_rq)
2415 cfs_rq->runnable_load_sum += weight * contrib;
2416 }
2417 if (running)
2418 sa->util_sum += contrib * scale_cpu;
2419 }
2420
2421 /* Remainder of delta accrued against u_0` */
2422 scaled_delta = cap_scale(delta, scale_freq);
2423 if (weight) {
2424 sa->load_sum += weight * scaled_delta;
2425 if (cfs_rq)
2426 cfs_rq->runnable_load_sum += weight * scaled_delta;
2427 }
2428 if (running)
2429 sa->util_sum += scaled_delta * scale_cpu;
2430
2431 sa->period_contrib += delta;
2432
2433 if (decayed) {
2434 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2435 if (cfs_rq) {
2436 cfs_rq->runnable_load_avg =
2437 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2438 }
2439 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2440 }
2441
2442 return decayed;
2443 }
2444
2445 #ifdef CONFIG_FAIR_GROUP_SCHED
2446 /*
2447 * Updating tg's load_avg is necessary before update_cfs_share (which is done)
2448 * and effective_load (which is not done because it is too costly).
2449 */
update_tg_load_avg(struct cfs_rq * cfs_rq,int force)2450 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2451 {
2452 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2453
2454 /*
2455 * No need to update load_avg for root_task_group as it is not used.
2456 */
2457 if (cfs_rq->tg == &root_task_group)
2458 return;
2459
2460 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2461 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2462 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
2463 }
2464 }
2465
2466 /*
2467 * Called within set_task_rq() right before setting a task's cpu. The
2468 * caller only guarantees p->pi_lock is held; no other assumptions,
2469 * including the state of rq->lock, should be made.
2470 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)2471 void set_task_rq_fair(struct sched_entity *se,
2472 struct cfs_rq *prev, struct cfs_rq *next)
2473 {
2474 if (!sched_feat(ATTACH_AGE_LOAD))
2475 return;
2476
2477 /*
2478 * We are supposed to update the task to "current" time, then its up to
2479 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2480 * getting what current time is, so simply throw away the out-of-date
2481 * time. This will result in the wakee task is less decayed, but giving
2482 * the wakee more load sounds not bad.
2483 */
2484 if (se->avg.last_update_time && prev) {
2485 u64 p_last_update_time;
2486 u64 n_last_update_time;
2487
2488 #ifndef CONFIG_64BIT
2489 u64 p_last_update_time_copy;
2490 u64 n_last_update_time_copy;
2491
2492 do {
2493 p_last_update_time_copy = prev->load_last_update_time_copy;
2494 n_last_update_time_copy = next->load_last_update_time_copy;
2495
2496 smp_rmb();
2497
2498 p_last_update_time = prev->avg.last_update_time;
2499 n_last_update_time = next->avg.last_update_time;
2500
2501 } while (p_last_update_time != p_last_update_time_copy ||
2502 n_last_update_time != n_last_update_time_copy);
2503 #else
2504 p_last_update_time = prev->avg.last_update_time;
2505 n_last_update_time = next->avg.last_update_time;
2506 #endif
2507 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2508 &se->avg, 0, 0, NULL);
2509 se->avg.last_update_time = n_last_update_time;
2510 }
2511 }
2512 #else /* CONFIG_FAIR_GROUP_SCHED */
update_tg_load_avg(struct cfs_rq * cfs_rq,int force)2513 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
2514 #endif /* CONFIG_FAIR_GROUP_SCHED */
2515
2516 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2517
2518 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)2519 static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
2520 {
2521 struct sched_avg *sa = &cfs_rq->avg;
2522 int decayed, removed = 0;
2523
2524 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
2525 long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
2526 sa->load_avg = max_t(long, sa->load_avg - r, 0);
2527 sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
2528 removed = 1;
2529 }
2530
2531 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
2532 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
2533 sa->util_avg = max_t(long, sa->util_avg - r, 0);
2534 sa->util_sum = max_t(s32, sa->util_sum - r * LOAD_AVG_MAX, 0);
2535 }
2536
2537 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2538 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
2539
2540 #ifndef CONFIG_64BIT
2541 smp_wmb();
2542 cfs_rq->load_last_update_time_copy = sa->last_update_time;
2543 #endif
2544
2545 /* Trace CPU load, unless cfs_rq belongs to a non-root task_group */
2546 if (cfs_rq == &rq_of(cfs_rq)->cfs)
2547 trace_sched_load_avg_cpu(cpu_of(rq_of(cfs_rq)), cfs_rq);
2548
2549 return decayed || removed;
2550 }
2551
2552 /* Update task and its cfs_rq load average */
update_load_avg(struct sched_entity * se,int update_tg)2553 static inline void update_load_avg(struct sched_entity *se, int update_tg)
2554 {
2555 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2556 u64 now = cfs_rq_clock_task(cfs_rq);
2557 int cpu = cpu_of(rq_of(cfs_rq));
2558
2559 /*
2560 * Track task load average for carrying it to new CPU after migrated, and
2561 * track group sched_entity load average for task_h_load calc in migration
2562 */
2563 __update_load_avg(now, cpu, &se->avg,
2564 se->on_rq * scale_load_down(se->load.weight),
2565 cfs_rq->curr == se, NULL);
2566
2567 if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
2568 update_tg_load_avg(cfs_rq, 0);
2569
2570 if (entity_is_task(se))
2571 trace_sched_load_avg_task(task_of(se), &se->avg);
2572 }
2573
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2574 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2575 {
2576 if (!sched_feat(ATTACH_AGE_LOAD))
2577 goto skip_aging;
2578
2579 /*
2580 * If we got migrated (either between CPUs or between cgroups) we'll
2581 * have aged the average right before clearing @last_update_time.
2582 */
2583 if (se->avg.last_update_time) {
2584 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2585 &se->avg, 0, 0, NULL);
2586
2587 /*
2588 * XXX: we could have just aged the entire load away if we've been
2589 * absent from the fair class for too long.
2590 */
2591 }
2592
2593 skip_aging:
2594 se->avg.last_update_time = cfs_rq->avg.last_update_time;
2595 cfs_rq->avg.load_avg += se->avg.load_avg;
2596 cfs_rq->avg.load_sum += se->avg.load_sum;
2597 cfs_rq->avg.util_avg += se->avg.util_avg;
2598 cfs_rq->avg.util_sum += se->avg.util_sum;
2599 }
2600
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2601 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2602 {
2603 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
2604 &se->avg, se->on_rq * scale_load_down(se->load.weight),
2605 cfs_rq->curr == se, NULL);
2606
2607 cfs_rq->avg.load_avg = max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
2608 cfs_rq->avg.load_sum = max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
2609 cfs_rq->avg.util_avg = max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
2610 cfs_rq->avg.util_sum = max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
2611 }
2612
2613 /* Add the load generated by se into cfs_rq's load average */
2614 static inline void
enqueue_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2615 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2616 {
2617 struct sched_avg *sa = &se->avg;
2618 u64 now = cfs_rq_clock_task(cfs_rq);
2619 int migrated, decayed;
2620
2621 migrated = !sa->last_update_time;
2622 if (!migrated) {
2623 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
2624 se->on_rq * scale_load_down(se->load.weight),
2625 cfs_rq->curr == se, NULL);
2626 }
2627
2628 decayed = update_cfs_rq_load_avg(now, cfs_rq);
2629
2630 cfs_rq->runnable_load_avg += sa->load_avg;
2631 cfs_rq->runnable_load_sum += sa->load_sum;
2632
2633 if (migrated)
2634 attach_entity_load_avg(cfs_rq, se);
2635
2636 if (decayed || migrated)
2637 update_tg_load_avg(cfs_rq, 0);
2638 }
2639
2640 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
2641 static inline void
dequeue_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2642 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2643 {
2644 update_load_avg(se, 1);
2645
2646 cfs_rq->runnable_load_avg =
2647 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
2648 cfs_rq->runnable_load_sum =
2649 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
2650 }
2651
2652 #ifndef CONFIG_64BIT
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)2653 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2654 {
2655 u64 last_update_time_copy;
2656 u64 last_update_time;
2657
2658 do {
2659 last_update_time_copy = cfs_rq->load_last_update_time_copy;
2660 smp_rmb();
2661 last_update_time = cfs_rq->avg.last_update_time;
2662 } while (last_update_time != last_update_time_copy);
2663
2664 return last_update_time;
2665 }
2666 #else
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)2667 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
2668 {
2669 return cfs_rq->avg.last_update_time;
2670 }
2671 #endif
2672
2673 /*
2674 * Task first catches up with cfs_rq, and then subtract
2675 * itself from the cfs_rq (task must be off the queue now).
2676 */
remove_entity_load_avg(struct sched_entity * se)2677 void remove_entity_load_avg(struct sched_entity *se)
2678 {
2679 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2680 u64 last_update_time;
2681
2682 /*
2683 * Newly created task or never used group entity should not be removed
2684 * from its (source) cfs_rq
2685 */
2686 if (se->avg.last_update_time == 0)
2687 return;
2688
2689 last_update_time = cfs_rq_last_update_time(cfs_rq);
2690
2691 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
2692 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
2693 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2694 }
2695
2696 /*
2697 * Update the rq's load with the elapsed running time before entering
2698 * idle. if the last scheduled task is not a CFS task, idle_enter will
2699 * be the only way to update the runnable statistic.
2700 */
idle_enter_fair(struct rq * this_rq)2701 void idle_enter_fair(struct rq *this_rq)
2702 {
2703 }
2704
2705 /*
2706 * Update the rq's load with the elapsed idle time before a task is
2707 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2708 * be the only way to update the runnable statistic.
2709 */
idle_exit_fair(struct rq * this_rq)2710 void idle_exit_fair(struct rq *this_rq)
2711 {
2712 }
2713
cfs_rq_runnable_load_avg(struct cfs_rq * cfs_rq)2714 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
2715 {
2716 return cfs_rq->runnable_load_avg;
2717 }
2718
cfs_rq_load_avg(struct cfs_rq * cfs_rq)2719 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
2720 {
2721 return cfs_rq->avg.load_avg;
2722 }
2723
2724 static int idle_balance(struct rq *this_rq);
2725
2726 #else /* CONFIG_SMP */
2727
update_load_avg(struct sched_entity * se,int update_tg)2728 static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
2729 static inline void
enqueue_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2730 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2731 static inline void
dequeue_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2732 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
remove_entity_load_avg(struct sched_entity * se)2733 static inline void remove_entity_load_avg(struct sched_entity *se) {}
2734
2735 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2736 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2737 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)2738 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
2739
idle_balance(struct rq * rq)2740 static inline int idle_balance(struct rq *rq)
2741 {
2742 return 0;
2743 }
2744
2745 #endif /* CONFIG_SMP */
2746
enqueue_sleeper(struct cfs_rq * cfs_rq,struct sched_entity * se)2747 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2748 {
2749 #ifdef CONFIG_SCHEDSTATS
2750 struct task_struct *tsk = NULL;
2751
2752 if (entity_is_task(se))
2753 tsk = task_of(se);
2754
2755 if (se->statistics.sleep_start) {
2756 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2757
2758 if ((s64)delta < 0)
2759 delta = 0;
2760
2761 if (unlikely(delta > se->statistics.sleep_max))
2762 se->statistics.sleep_max = delta;
2763
2764 se->statistics.sleep_start = 0;
2765 se->statistics.sum_sleep_runtime += delta;
2766
2767 if (tsk) {
2768 account_scheduler_latency(tsk, delta >> 10, 1);
2769 trace_sched_stat_sleep(tsk, delta);
2770 }
2771 }
2772 if (se->statistics.block_start) {
2773 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2774
2775 if ((s64)delta < 0)
2776 delta = 0;
2777
2778 if (unlikely(delta > se->statistics.block_max))
2779 se->statistics.block_max = delta;
2780
2781 se->statistics.block_start = 0;
2782 se->statistics.sum_sleep_runtime += delta;
2783
2784 if (tsk) {
2785 if (tsk->in_iowait) {
2786 se->statistics.iowait_sum += delta;
2787 se->statistics.iowait_count++;
2788 trace_sched_stat_iowait(tsk, delta);
2789 }
2790
2791 trace_sched_stat_blocked(tsk, delta);
2792 trace_sched_blocked_reason(tsk);
2793
2794 /*
2795 * Blocking time is in units of nanosecs, so shift by
2796 * 20 to get a milliseconds-range estimation of the
2797 * amount of time that the task spent sleeping:
2798 */
2799 if (unlikely(prof_on == SLEEP_PROFILING)) {
2800 profile_hits(SLEEP_PROFILING,
2801 (void *)get_wchan(tsk),
2802 delta >> 20);
2803 }
2804 account_scheduler_latency(tsk, delta >> 10, 0);
2805 }
2806 }
2807 #endif
2808 }
2809
check_spread(struct cfs_rq * cfs_rq,struct sched_entity * se)2810 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2811 {
2812 #ifdef CONFIG_SCHED_DEBUG
2813 s64 d = se->vruntime - cfs_rq->min_vruntime;
2814
2815 if (d < 0)
2816 d = -d;
2817
2818 if (d > 3*sysctl_sched_latency)
2819 schedstat_inc(cfs_rq, nr_spread_over);
2820 #endif
2821 }
2822
2823 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int initial)2824 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2825 {
2826 u64 vruntime = cfs_rq->min_vruntime;
2827
2828 /*
2829 * The 'current' period is already promised to the current tasks,
2830 * however the extra weight of the new task will slow them down a
2831 * little, place the new task so that it fits in the slot that
2832 * stays open at the end.
2833 */
2834 if (initial && sched_feat(START_DEBIT))
2835 vruntime += sched_vslice(cfs_rq, se);
2836
2837 /* sleeps up to a single latency don't count. */
2838 if (!initial) {
2839 unsigned long thresh = sysctl_sched_latency;
2840
2841 /*
2842 * Halve their sleep time's effect, to allow
2843 * for a gentler effect of sleepers:
2844 */
2845 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2846 thresh >>= 1;
2847
2848 vruntime -= thresh;
2849 }
2850
2851 /* ensure we never gain time by being placed backwards. */
2852 se->vruntime = max_vruntime(se->vruntime, vruntime);
2853 }
2854
2855 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2856
2857 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)2858 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2859 {
2860 /*
2861 * Update the normalized vruntime before updating min_vruntime
2862 * through calling update_curr().
2863 */
2864 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2865 se->vruntime += cfs_rq->min_vruntime;
2866
2867 /*
2868 * Update run-time statistics of the 'current'.
2869 */
2870 update_curr(cfs_rq);
2871 enqueue_entity_load_avg(cfs_rq, se);
2872 account_entity_enqueue(cfs_rq, se);
2873 update_cfs_shares(cfs_rq);
2874
2875 if (flags & ENQUEUE_WAKEUP) {
2876 place_entity(cfs_rq, se, 0);
2877 enqueue_sleeper(cfs_rq, se);
2878 }
2879
2880 update_stats_enqueue(cfs_rq, se);
2881 check_spread(cfs_rq, se);
2882 if (se != cfs_rq->curr)
2883 __enqueue_entity(cfs_rq, se);
2884 se->on_rq = 1;
2885
2886 if (cfs_rq->nr_running == 1) {
2887 list_add_leaf_cfs_rq(cfs_rq);
2888 check_enqueue_throttle(cfs_rq);
2889 }
2890 }
2891
__clear_buddies_last(struct sched_entity * se)2892 static void __clear_buddies_last(struct sched_entity *se)
2893 {
2894 for_each_sched_entity(se) {
2895 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2896 if (cfs_rq->last != se)
2897 break;
2898
2899 cfs_rq->last = NULL;
2900 }
2901 }
2902
__clear_buddies_next(struct sched_entity * se)2903 static void __clear_buddies_next(struct sched_entity *se)
2904 {
2905 for_each_sched_entity(se) {
2906 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2907 if (cfs_rq->next != se)
2908 break;
2909
2910 cfs_rq->next = NULL;
2911 }
2912 }
2913
__clear_buddies_skip(struct sched_entity * se)2914 static void __clear_buddies_skip(struct sched_entity *se)
2915 {
2916 for_each_sched_entity(se) {
2917 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2918 if (cfs_rq->skip != se)
2919 break;
2920
2921 cfs_rq->skip = NULL;
2922 }
2923 }
2924
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)2925 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2926 {
2927 if (cfs_rq->last == se)
2928 __clear_buddies_last(se);
2929
2930 if (cfs_rq->next == se)
2931 __clear_buddies_next(se);
2932
2933 if (cfs_rq->skip == se)
2934 __clear_buddies_skip(se);
2935 }
2936
2937 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2938
2939 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)2940 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2941 {
2942 /*
2943 * Update run-time statistics of the 'current'.
2944 */
2945 update_curr(cfs_rq);
2946 dequeue_entity_load_avg(cfs_rq, se);
2947
2948 update_stats_dequeue(cfs_rq, se);
2949 if (flags & DEQUEUE_SLEEP) {
2950 #ifdef CONFIG_SCHEDSTATS
2951 if (entity_is_task(se)) {
2952 struct task_struct *tsk = task_of(se);
2953
2954 if (tsk->state & TASK_INTERRUPTIBLE)
2955 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2956 if (tsk->state & TASK_UNINTERRUPTIBLE)
2957 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2958 }
2959 #endif
2960 }
2961
2962 clear_buddies(cfs_rq, se);
2963
2964 if (se != cfs_rq->curr)
2965 __dequeue_entity(cfs_rq, se);
2966 se->on_rq = 0;
2967 account_entity_dequeue(cfs_rq, se);
2968
2969 /*
2970 * Normalize the entity after updating the min_vruntime because the
2971 * update can refer to the ->curr item and we need to reflect this
2972 * movement in our normalized position.
2973 */
2974 if (!(flags & DEQUEUE_SLEEP))
2975 se->vruntime -= cfs_rq->min_vruntime;
2976
2977 /* return excess runtime on last dequeue */
2978 return_cfs_rq_runtime(cfs_rq);
2979
2980 update_min_vruntime(cfs_rq);
2981 update_cfs_shares(cfs_rq);
2982 }
2983
2984 /*
2985 * Preempt the current task with a newly woken task if needed:
2986 */
2987 static void
check_preempt_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr)2988 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2989 {
2990 unsigned long ideal_runtime, delta_exec;
2991 struct sched_entity *se;
2992 s64 delta;
2993
2994 ideal_runtime = sched_slice(cfs_rq, curr);
2995 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2996 if (delta_exec > ideal_runtime) {
2997 resched_curr(rq_of(cfs_rq));
2998 /*
2999 * The current task ran long enough, ensure it doesn't get
3000 * re-elected due to buddy favours.
3001 */
3002 clear_buddies(cfs_rq, curr);
3003 return;
3004 }
3005
3006 /*
3007 * Ensure that a task that missed wakeup preemption by a
3008 * narrow margin doesn't have to wait for a full slice.
3009 * This also mitigates buddy induced latencies under load.
3010 */
3011 if (delta_exec < sysctl_sched_min_granularity)
3012 return;
3013
3014 se = __pick_first_entity(cfs_rq);
3015 delta = curr->vruntime - se->vruntime;
3016
3017 if (delta < 0)
3018 return;
3019
3020 if (delta > ideal_runtime)
3021 resched_curr(rq_of(cfs_rq));
3022 }
3023
3024 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)3025 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3026 {
3027 /* 'current' is not kept within the tree. */
3028 if (se->on_rq) {
3029 /*
3030 * Any task has to be enqueued before it get to execute on
3031 * a CPU. So account for the time it spent waiting on the
3032 * runqueue.
3033 */
3034 update_stats_wait_end(cfs_rq, se);
3035 __dequeue_entity(cfs_rq, se);
3036 update_load_avg(se, 1);
3037 }
3038
3039 update_stats_curr_start(cfs_rq, se);
3040 cfs_rq->curr = se;
3041 #ifdef CONFIG_SCHEDSTATS
3042 /*
3043 * Track our maximum slice length, if the CPU's load is at
3044 * least twice that of our own weight (i.e. dont track it
3045 * when there are only lesser-weight tasks around):
3046 */
3047 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3048 se->statistics.slice_max = max(se->statistics.slice_max,
3049 se->sum_exec_runtime - se->prev_sum_exec_runtime);
3050 }
3051 #endif
3052 se->prev_sum_exec_runtime = se->sum_exec_runtime;
3053 }
3054
3055 static int
3056 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3057
3058 /*
3059 * Pick the next process, keeping these things in mind, in this order:
3060 * 1) keep things fair between processes/task groups
3061 * 2) pick the "next" process, since someone really wants that to run
3062 * 3) pick the "last" process, for cache locality
3063 * 4) do not run the "skip" process, if something else is available
3064 */
3065 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)3066 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3067 {
3068 struct sched_entity *left = __pick_first_entity(cfs_rq);
3069 struct sched_entity *se;
3070
3071 /*
3072 * If curr is set we have to see if its left of the leftmost entity
3073 * still in the tree, provided there was anything in the tree at all.
3074 */
3075 if (!left || (curr && entity_before(curr, left)))
3076 left = curr;
3077
3078 se = left; /* ideally we run the leftmost entity */
3079
3080 /*
3081 * Avoid running the skip buddy, if running something else can
3082 * be done without getting too unfair.
3083 */
3084 if (cfs_rq->skip == se) {
3085 struct sched_entity *second;
3086
3087 if (se == curr) {
3088 second = __pick_first_entity(cfs_rq);
3089 } else {
3090 second = __pick_next_entity(se);
3091 if (!second || (curr && entity_before(curr, second)))
3092 second = curr;
3093 }
3094
3095 if (second && wakeup_preempt_entity(second, left) < 1)
3096 se = second;
3097 }
3098
3099 /*
3100 * Prefer last buddy, try to return the CPU to a preempted task.
3101 */
3102 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3103 se = cfs_rq->last;
3104
3105 /*
3106 * Someone really wants this to run. If it's not unfair, run it.
3107 */
3108 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3109 se = cfs_rq->next;
3110
3111 clear_buddies(cfs_rq, se);
3112
3113 return se;
3114 }
3115
3116 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3117
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)3118 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3119 {
3120 /*
3121 * If still on the runqueue then deactivate_task()
3122 * was not called and update_curr() has to be done:
3123 */
3124 if (prev->on_rq)
3125 update_curr(cfs_rq);
3126
3127 /* throttle cfs_rqs exceeding runtime */
3128 check_cfs_rq_runtime(cfs_rq);
3129
3130 check_spread(cfs_rq, prev);
3131 if (prev->on_rq) {
3132 update_stats_wait_start(cfs_rq, prev);
3133 /* Put 'current' back into the tree. */
3134 __enqueue_entity(cfs_rq, prev);
3135 /* in !on_rq case, update occurred at dequeue */
3136 update_load_avg(prev, 0);
3137 }
3138 cfs_rq->curr = NULL;
3139 }
3140
3141 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)3142 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3143 {
3144 /*
3145 * Update run-time statistics of the 'current'.
3146 */
3147 update_curr(cfs_rq);
3148
3149 /*
3150 * Ensure that runnable average is periodically updated.
3151 */
3152 update_load_avg(curr, 1);
3153 update_cfs_shares(cfs_rq);
3154
3155 #ifdef CONFIG_SCHED_HRTICK
3156 /*
3157 * queued ticks are scheduled to match the slice, so don't bother
3158 * validating it and just reschedule.
3159 */
3160 if (queued) {
3161 resched_curr(rq_of(cfs_rq));
3162 return;
3163 }
3164 /*
3165 * don't let the period tick interfere with the hrtick preemption
3166 */
3167 if (!sched_feat(DOUBLE_TICK) &&
3168 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3169 return;
3170 #endif
3171
3172 if (cfs_rq->nr_running > 1)
3173 check_preempt_tick(cfs_rq, curr);
3174 }
3175
3176
3177 /**************************************************
3178 * CFS bandwidth control machinery
3179 */
3180
3181 #ifdef CONFIG_CFS_BANDWIDTH
3182
3183 #ifdef HAVE_JUMP_LABEL
3184 static struct static_key __cfs_bandwidth_used;
3185
cfs_bandwidth_used(void)3186 static inline bool cfs_bandwidth_used(void)
3187 {
3188 return static_key_false(&__cfs_bandwidth_used);
3189 }
3190
cfs_bandwidth_usage_inc(void)3191 void cfs_bandwidth_usage_inc(void)
3192 {
3193 static_key_slow_inc(&__cfs_bandwidth_used);
3194 }
3195
cfs_bandwidth_usage_dec(void)3196 void cfs_bandwidth_usage_dec(void)
3197 {
3198 static_key_slow_dec(&__cfs_bandwidth_used);
3199 }
3200 #else /* HAVE_JUMP_LABEL */
cfs_bandwidth_used(void)3201 static bool cfs_bandwidth_used(void)
3202 {
3203 return true;
3204 }
3205
cfs_bandwidth_usage_inc(void)3206 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)3207 void cfs_bandwidth_usage_dec(void) {}
3208 #endif /* HAVE_JUMP_LABEL */
3209
3210 /*
3211 * default period for cfs group bandwidth.
3212 * default: 0.1s, units: nanoseconds
3213 */
default_cfs_period(void)3214 static inline u64 default_cfs_period(void)
3215 {
3216 return 100000000ULL;
3217 }
3218
sched_cfs_bandwidth_slice(void)3219 static inline u64 sched_cfs_bandwidth_slice(void)
3220 {
3221 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3222 }
3223
3224 /*
3225 * Replenish runtime according to assigned quota and update expiration time.
3226 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3227 * additional synchronization around rq->lock.
3228 *
3229 * requires cfs_b->lock
3230 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)3231 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3232 {
3233 u64 now;
3234
3235 if (cfs_b->quota == RUNTIME_INF)
3236 return;
3237
3238 now = sched_clock_cpu(smp_processor_id());
3239 cfs_b->runtime = cfs_b->quota;
3240 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3241 }
3242
tg_cfs_bandwidth(struct task_group * tg)3243 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3244 {
3245 return &tg->cfs_bandwidth;
3246 }
3247
3248 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
cfs_rq_clock_task(struct cfs_rq * cfs_rq)3249 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3250 {
3251 if (unlikely(cfs_rq->throttle_count))
3252 return cfs_rq->throttled_clock_task;
3253
3254 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3255 }
3256
3257 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)3258 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3259 {
3260 struct task_group *tg = cfs_rq->tg;
3261 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3262 u64 amount = 0, min_amount, expires;
3263
3264 /* note: this is a positive sum as runtime_remaining <= 0 */
3265 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3266
3267 raw_spin_lock(&cfs_b->lock);
3268 if (cfs_b->quota == RUNTIME_INF)
3269 amount = min_amount;
3270 else {
3271 /*
3272 * If the bandwidth pool has become inactive, then at least one
3273 * period must have elapsed since the last consumption.
3274 * Refresh the global state and ensure bandwidth timer becomes
3275 * active.
3276 */
3277 if (!cfs_b->timer_active) {
3278 __refill_cfs_bandwidth_runtime(cfs_b);
3279 __start_cfs_bandwidth(cfs_b, false);
3280 }
3281
3282 if (cfs_b->runtime > 0) {
3283 amount = min(cfs_b->runtime, min_amount);
3284 cfs_b->runtime -= amount;
3285 cfs_b->idle = 0;
3286 }
3287 }
3288 expires = cfs_b->runtime_expires;
3289 raw_spin_unlock(&cfs_b->lock);
3290
3291 cfs_rq->runtime_remaining += amount;
3292 /*
3293 * we may have advanced our local expiration to account for allowed
3294 * spread between our sched_clock and the one on which runtime was
3295 * issued.
3296 */
3297 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3298 cfs_rq->runtime_expires = expires;
3299
3300 return cfs_rq->runtime_remaining > 0;
3301 }
3302
3303 /*
3304 * Note: This depends on the synchronization provided by sched_clock and the
3305 * fact that rq->clock snapshots this value.
3306 */
expire_cfs_rq_runtime(struct cfs_rq * cfs_rq)3307 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3308 {
3309 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3310
3311 /* if the deadline is ahead of our clock, nothing to do */
3312 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3313 return;
3314
3315 if (cfs_rq->runtime_remaining < 0)
3316 return;
3317
3318 /*
3319 * If the local deadline has passed we have to consider the
3320 * possibility that our sched_clock is 'fast' and the global deadline
3321 * has not truly expired.
3322 *
3323 * Fortunately we can check determine whether this the case by checking
3324 * whether the global deadline has advanced. It is valid to compare
3325 * cfs_b->runtime_expires without any locks since we only care about
3326 * exact equality, so a partial write will still work.
3327 */
3328
3329 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3330 /* extend local deadline, drift is bounded above by 2 ticks */
3331 cfs_rq->runtime_expires += TICK_NSEC;
3332 } else {
3333 /* global deadline is ahead, expiration has passed */
3334 cfs_rq->runtime_remaining = 0;
3335 }
3336 }
3337
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)3338 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3339 {
3340 /* dock delta_exec before expiring quota (as it could span periods) */
3341 cfs_rq->runtime_remaining -= delta_exec;
3342 expire_cfs_rq_runtime(cfs_rq);
3343
3344 if (likely(cfs_rq->runtime_remaining > 0))
3345 return;
3346
3347 /*
3348 * if we're unable to extend our runtime we resched so that the active
3349 * hierarchy can be throttled
3350 */
3351 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3352 resched_curr(rq_of(cfs_rq));
3353 }
3354
3355 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)3356 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3357 {
3358 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3359 return;
3360
3361 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3362 }
3363
cfs_rq_throttled(struct cfs_rq * cfs_rq)3364 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3365 {
3366 return cfs_bandwidth_used() && cfs_rq->throttled;
3367 }
3368
3369 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)3370 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3371 {
3372 return cfs_bandwidth_used() && cfs_rq->throttle_count;
3373 }
3374
3375 /*
3376 * Ensure that neither of the group entities corresponding to src_cpu or
3377 * dest_cpu are members of a throttled hierarchy when performing group
3378 * load-balance operations.
3379 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)3380 static inline int throttled_lb_pair(struct task_group *tg,
3381 int src_cpu, int dest_cpu)
3382 {
3383 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3384
3385 src_cfs_rq = tg->cfs_rq[src_cpu];
3386 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3387
3388 return throttled_hierarchy(src_cfs_rq) ||
3389 throttled_hierarchy(dest_cfs_rq);
3390 }
3391
3392 /* updated child weight may affect parent so we have to do this bottom up */
tg_unthrottle_up(struct task_group * tg,void * data)3393 static int tg_unthrottle_up(struct task_group *tg, void *data)
3394 {
3395 struct rq *rq = data;
3396 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3397
3398 cfs_rq->throttle_count--;
3399 #ifdef CONFIG_SMP
3400 if (!cfs_rq->throttle_count) {
3401 /* adjust cfs_rq_clock_task() */
3402 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3403 cfs_rq->throttled_clock_task;
3404 }
3405 #endif
3406
3407 return 0;
3408 }
3409
tg_throttle_down(struct task_group * tg,void * data)3410 static int tg_throttle_down(struct task_group *tg, void *data)
3411 {
3412 struct rq *rq = data;
3413 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3414
3415 /* group is entering throttled state, stop time */
3416 if (!cfs_rq->throttle_count)
3417 cfs_rq->throttled_clock_task = rq_clock_task(rq);
3418 cfs_rq->throttle_count++;
3419
3420 return 0;
3421 }
3422
throttle_cfs_rq(struct cfs_rq * cfs_rq)3423 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3424 {
3425 struct rq *rq = rq_of(cfs_rq);
3426 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3427 struct sched_entity *se;
3428 long task_delta, dequeue = 1;
3429
3430 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3431
3432 /* freeze hierarchy runnable averages while throttled */
3433 rcu_read_lock();
3434 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3435 rcu_read_unlock();
3436
3437 task_delta = cfs_rq->h_nr_running;
3438 for_each_sched_entity(se) {
3439 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3440 /* throttled entity or throttle-on-deactivate */
3441 if (!se->on_rq)
3442 break;
3443
3444 if (dequeue)
3445 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3446 qcfs_rq->h_nr_running -= task_delta;
3447
3448 if (qcfs_rq->load.weight)
3449 dequeue = 0;
3450 }
3451
3452 if (!se)
3453 sub_nr_running(rq, task_delta);
3454
3455 cfs_rq->throttled = 1;
3456 cfs_rq->throttled_clock = rq_clock(rq);
3457 raw_spin_lock(&cfs_b->lock);
3458 /*
3459 * Add to the _head_ of the list, so that an already-started
3460 * distribute_cfs_runtime will not see us
3461 */
3462 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3463 if (!cfs_b->timer_active)
3464 __start_cfs_bandwidth(cfs_b, false);
3465 raw_spin_unlock(&cfs_b->lock);
3466 }
3467
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)3468 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3469 {
3470 struct rq *rq = rq_of(cfs_rq);
3471 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3472 struct sched_entity *se;
3473 int enqueue = 1;
3474 long task_delta;
3475
3476 se = cfs_rq->tg->se[cpu_of(rq)];
3477
3478 cfs_rq->throttled = 0;
3479
3480 update_rq_clock(rq);
3481
3482 raw_spin_lock(&cfs_b->lock);
3483 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3484 list_del_rcu(&cfs_rq->throttled_list);
3485 raw_spin_unlock(&cfs_b->lock);
3486
3487 /* update hierarchical throttle state */
3488 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3489
3490 if (!cfs_rq->load.weight)
3491 return;
3492
3493 task_delta = cfs_rq->h_nr_running;
3494 for_each_sched_entity(se) {
3495 if (se->on_rq)
3496 enqueue = 0;
3497
3498 cfs_rq = cfs_rq_of(se);
3499 if (enqueue)
3500 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3501 cfs_rq->h_nr_running += task_delta;
3502
3503 if (cfs_rq_throttled(cfs_rq))
3504 break;
3505 }
3506
3507 if (!se)
3508 add_nr_running(rq, task_delta);
3509
3510 /* determine whether we need to wake up potentially idle cpu */
3511 if (rq->curr == rq->idle && rq->cfs.nr_running)
3512 resched_curr(rq);
3513 }
3514
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b,u64 remaining,u64 expires)3515 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3516 u64 remaining, u64 expires)
3517 {
3518 struct cfs_rq *cfs_rq;
3519 u64 runtime;
3520 u64 starting_runtime = remaining;
3521
3522 rcu_read_lock();
3523 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3524 throttled_list) {
3525 struct rq *rq = rq_of(cfs_rq);
3526
3527 raw_spin_lock(&rq->lock);
3528 if (!cfs_rq_throttled(cfs_rq))
3529 goto next;
3530
3531 runtime = -cfs_rq->runtime_remaining + 1;
3532 if (runtime > remaining)
3533 runtime = remaining;
3534 remaining -= runtime;
3535
3536 cfs_rq->runtime_remaining += runtime;
3537 cfs_rq->runtime_expires = expires;
3538
3539 /* we check whether we're throttled above */
3540 if (cfs_rq->runtime_remaining > 0)
3541 unthrottle_cfs_rq(cfs_rq);
3542
3543 next:
3544 raw_spin_unlock(&rq->lock);
3545
3546 if (!remaining)
3547 break;
3548 }
3549 rcu_read_unlock();
3550
3551 return starting_runtime - remaining;
3552 }
3553
3554 /*
3555 * Responsible for refilling a task_group's bandwidth and unthrottling its
3556 * cfs_rqs as appropriate. If there has been no activity within the last
3557 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3558 * used to track this state.
3559 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun)3560 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3561 {
3562 u64 runtime, runtime_expires;
3563 int throttled;
3564
3565 /* no need to continue the timer with no bandwidth constraint */
3566 if (cfs_b->quota == RUNTIME_INF)
3567 goto out_deactivate;
3568
3569 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3570 cfs_b->nr_periods += overrun;
3571
3572 /*
3573 * idle depends on !throttled (for the case of a large deficit), and if
3574 * we're going inactive then everything else can be deferred
3575 */
3576 if (cfs_b->idle && !throttled)
3577 goto out_deactivate;
3578
3579 /*
3580 * if we have relooped after returning idle once, we need to update our
3581 * status as actually running, so that other cpus doing
3582 * __start_cfs_bandwidth will stop trying to cancel us.
3583 */
3584 cfs_b->timer_active = 1;
3585
3586 __refill_cfs_bandwidth_runtime(cfs_b);
3587
3588 if (!throttled) {
3589 /* mark as potentially idle for the upcoming period */
3590 cfs_b->idle = 1;
3591 return 0;
3592 }
3593
3594 /* account preceding periods in which throttling occurred */
3595 cfs_b->nr_throttled += overrun;
3596
3597 runtime_expires = cfs_b->runtime_expires;
3598
3599 /*
3600 * This check is repeated as we are holding onto the new bandwidth while
3601 * we unthrottle. This can potentially race with an unthrottled group
3602 * trying to acquire new bandwidth from the global pool. This can result
3603 * in us over-using our runtime if it is all used during this loop, but
3604 * only by limited amounts in that extreme case.
3605 */
3606 while (throttled && cfs_b->runtime > 0) {
3607 runtime = cfs_b->runtime;
3608 raw_spin_unlock(&cfs_b->lock);
3609 /* we can't nest cfs_b->lock while distributing bandwidth */
3610 runtime = distribute_cfs_runtime(cfs_b, runtime,
3611 runtime_expires);
3612 raw_spin_lock(&cfs_b->lock);
3613
3614 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3615
3616 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3617 }
3618
3619 /*
3620 * While we are ensured activity in the period following an
3621 * unthrottle, this also covers the case in which the new bandwidth is
3622 * insufficient to cover the existing bandwidth deficit. (Forcing the
3623 * timer to remain active while there are any throttled entities.)
3624 */
3625 cfs_b->idle = 0;
3626
3627 return 0;
3628
3629 out_deactivate:
3630 cfs_b->timer_active = 0;
3631 return 1;
3632 }
3633
3634 /* a cfs_rq won't donate quota below this amount */
3635 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3636 /* minimum remaining period time to redistribute slack quota */
3637 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3638 /* how long we wait to gather additional slack before distributing */
3639 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3640
3641 /*
3642 * Are we near the end of the current quota period?
3643 *
3644 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3645 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3646 * migrate_hrtimers, base is never cleared, so we are fine.
3647 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)3648 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3649 {
3650 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3651 u64 remaining;
3652
3653 /* if the call-back is running a quota refresh is already occurring */
3654 if (hrtimer_callback_running(refresh_timer))
3655 return 1;
3656
3657 /* is a quota refresh about to occur? */
3658 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3659 if (remaining < min_expire)
3660 return 1;
3661
3662 return 0;
3663 }
3664
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)3665 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3666 {
3667 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3668
3669 /* if there's a quota refresh soon don't bother with slack */
3670 if (runtime_refresh_within(cfs_b, min_left))
3671 return;
3672
3673 start_bandwidth_timer(&cfs_b->slack_timer,
3674 ns_to_ktime(cfs_bandwidth_slack_period));
3675 }
3676
3677 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)3678 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3679 {
3680 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3681 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3682
3683 if (slack_runtime <= 0)
3684 return;
3685
3686 raw_spin_lock(&cfs_b->lock);
3687 if (cfs_b->quota != RUNTIME_INF &&
3688 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3689 cfs_b->runtime += slack_runtime;
3690
3691 /* we are under rq->lock, defer unthrottling using a timer */
3692 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3693 !list_empty(&cfs_b->throttled_cfs_rq))
3694 start_cfs_slack_bandwidth(cfs_b);
3695 }
3696 raw_spin_unlock(&cfs_b->lock);
3697
3698 /* even if it's not valid for return we don't want to try again */
3699 cfs_rq->runtime_remaining -= slack_runtime;
3700 }
3701
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)3702 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3703 {
3704 if (!cfs_bandwidth_used())
3705 return;
3706
3707 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3708 return;
3709
3710 __return_cfs_rq_runtime(cfs_rq);
3711 }
3712
3713 /*
3714 * This is done with a timer (instead of inline with bandwidth return) since
3715 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3716 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)3717 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3718 {
3719 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3720 u64 expires;
3721
3722 /* confirm we're still not at a refresh boundary */
3723 raw_spin_lock(&cfs_b->lock);
3724 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3725 raw_spin_unlock(&cfs_b->lock);
3726 return;
3727 }
3728
3729 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3730 runtime = cfs_b->runtime;
3731
3732 expires = cfs_b->runtime_expires;
3733 raw_spin_unlock(&cfs_b->lock);
3734
3735 if (!runtime)
3736 return;
3737
3738 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3739
3740 raw_spin_lock(&cfs_b->lock);
3741 if (expires == cfs_b->runtime_expires)
3742 cfs_b->runtime -= min(runtime, cfs_b->runtime);
3743 raw_spin_unlock(&cfs_b->lock);
3744 }
3745
3746 /*
3747 * When a group wakes up we want to make sure that its quota is not already
3748 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3749 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3750 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)3751 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3752 {
3753 if (!cfs_bandwidth_used())
3754 return;
3755
3756 /* an active group must be handled by the update_curr()->put() path */
3757 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3758 return;
3759
3760 /* ensure the group is not already throttled */
3761 if (cfs_rq_throttled(cfs_rq))
3762 return;
3763
3764 /* update runtime allocation */
3765 account_cfs_rq_runtime(cfs_rq, 0);
3766 if (cfs_rq->runtime_remaining <= 0)
3767 throttle_cfs_rq(cfs_rq);
3768 }
3769
3770 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)3771 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3772 {
3773 if (!cfs_bandwidth_used())
3774 return false;
3775
3776 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3777 return false;
3778
3779 /*
3780 * it's possible for a throttled entity to be forced into a running
3781 * state (e.g. set_curr_task), in this case we're finished.
3782 */
3783 if (cfs_rq_throttled(cfs_rq))
3784 return true;
3785
3786 throttle_cfs_rq(cfs_rq);
3787 return true;
3788 }
3789
sched_cfs_slack_timer(struct hrtimer * timer)3790 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3791 {
3792 struct cfs_bandwidth *cfs_b =
3793 container_of(timer, struct cfs_bandwidth, slack_timer);
3794 do_sched_cfs_slack_timer(cfs_b);
3795
3796 return HRTIMER_NORESTART;
3797 }
3798
sched_cfs_period_timer(struct hrtimer * timer)3799 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3800 {
3801 struct cfs_bandwidth *cfs_b =
3802 container_of(timer, struct cfs_bandwidth, period_timer);
3803 ktime_t now;
3804 int overrun;
3805 int idle = 0;
3806
3807 raw_spin_lock(&cfs_b->lock);
3808 for (;;) {
3809 now = hrtimer_cb_get_time(timer);
3810 overrun = hrtimer_forward(timer, now, cfs_b->period);
3811
3812 if (!overrun)
3813 break;
3814
3815 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3816 }
3817 raw_spin_unlock(&cfs_b->lock);
3818
3819 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3820 }
3821
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)3822 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3823 {
3824 raw_spin_lock_init(&cfs_b->lock);
3825 cfs_b->runtime = 0;
3826 cfs_b->quota = RUNTIME_INF;
3827 cfs_b->period = ns_to_ktime(default_cfs_period());
3828
3829 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3830 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3831 cfs_b->period_timer.function = sched_cfs_period_timer;
3832 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3833 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3834 }
3835
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)3836 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3837 {
3838 cfs_rq->runtime_enabled = 0;
3839 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3840 }
3841
3842 /* requires cfs_b->lock, may release to reprogram timer */
__start_cfs_bandwidth(struct cfs_bandwidth * cfs_b,bool force)3843 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3844 {
3845 /*
3846 * The timer may be active because we're trying to set a new bandwidth
3847 * period or because we're racing with the tear-down path
3848 * (timer_active==0 becomes visible before the hrtimer call-back
3849 * terminates). In either case we ensure that it's re-programmed
3850 */
3851 while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3852 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3853 /* bounce the lock to allow do_sched_cfs_period_timer to run */
3854 raw_spin_unlock(&cfs_b->lock);
3855 cpu_relax();
3856 raw_spin_lock(&cfs_b->lock);
3857 /* if someone else restarted the timer then we're done */
3858 if (!force && cfs_b->timer_active)
3859 return;
3860 }
3861
3862 cfs_b->timer_active = 1;
3863 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3864 }
3865
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)3866 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3867 {
3868 hrtimer_cancel(&cfs_b->period_timer);
3869 hrtimer_cancel(&cfs_b->slack_timer);
3870 }
3871
update_runtime_enabled(struct rq * rq)3872 static void __maybe_unused update_runtime_enabled(struct rq *rq)
3873 {
3874 struct cfs_rq *cfs_rq;
3875
3876 for_each_leaf_cfs_rq(rq, cfs_rq) {
3877 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3878
3879 raw_spin_lock(&cfs_b->lock);
3880 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3881 raw_spin_unlock(&cfs_b->lock);
3882 }
3883 }
3884
unthrottle_offline_cfs_rqs(struct rq * rq)3885 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3886 {
3887 struct cfs_rq *cfs_rq;
3888
3889 for_each_leaf_cfs_rq(rq, cfs_rq) {
3890 if (!cfs_rq->runtime_enabled)
3891 continue;
3892
3893 /*
3894 * clock_task is not advancing so we just need to make sure
3895 * there's some valid quota amount
3896 */
3897 cfs_rq->runtime_remaining = 1;
3898 /*
3899 * Offline rq is schedulable till cpu is completely disabled
3900 * in take_cpu_down(), so we prevent new cfs throttling here.
3901 */
3902 cfs_rq->runtime_enabled = 0;
3903
3904 if (cfs_rq_throttled(cfs_rq))
3905 unthrottle_cfs_rq(cfs_rq);
3906 }
3907 }
3908
3909 #else /* CONFIG_CFS_BANDWIDTH */
cfs_rq_clock_task(struct cfs_rq * cfs_rq)3910 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3911 {
3912 return rq_clock_task(rq_of(cfs_rq));
3913 }
3914
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)3915 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)3916 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)3917 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)3918 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3919
cfs_rq_throttled(struct cfs_rq * cfs_rq)3920 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3921 {
3922 return 0;
3923 }
3924
throttled_hierarchy(struct cfs_rq * cfs_rq)3925 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3926 {
3927 return 0;
3928 }
3929
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)3930 static inline int throttled_lb_pair(struct task_group *tg,
3931 int src_cpu, int dest_cpu)
3932 {
3933 return 0;
3934 }
3935
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)3936 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3937
3938 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)3939 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3940 #endif
3941
tg_cfs_bandwidth(struct task_group * tg)3942 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3943 {
3944 return NULL;
3945 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)3946 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)3947 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)3948 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3949
3950 #endif /* CONFIG_CFS_BANDWIDTH */
3951
3952 /**************************************************
3953 * CFS operations on tasks:
3954 */
3955
3956 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)3957 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3958 {
3959 struct sched_entity *se = &p->se;
3960 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3961
3962 WARN_ON(task_rq(p) != rq);
3963
3964 if (cfs_rq->nr_running > 1) {
3965 u64 slice = sched_slice(cfs_rq, se);
3966 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3967 s64 delta = slice - ran;
3968
3969 if (delta < 0) {
3970 if (rq->curr == p)
3971 resched_curr(rq);
3972 return;
3973 }
3974 hrtick_start(rq, delta);
3975 }
3976 }
3977
3978 /*
3979 * called from enqueue/dequeue and updates the hrtick when the
3980 * current task is from our class and nr_running is low enough
3981 * to matter.
3982 */
hrtick_update(struct rq * rq)3983 static void hrtick_update(struct rq *rq)
3984 {
3985 struct task_struct *curr = rq->curr;
3986
3987 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3988 return;
3989
3990 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3991 hrtick_start_fair(rq, curr);
3992 }
3993 #else /* !CONFIG_SCHED_HRTICK */
3994 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)3995 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3996 {
3997 }
3998
hrtick_update(struct rq * rq)3999 static inline void hrtick_update(struct rq *rq)
4000 {
4001 }
4002 #endif
4003
4004 #ifdef CONFIG_SMP
4005 static bool cpu_overutilized(int cpu);
4006 static inline unsigned long boosted_cpu_util(int cpu);
4007 #else
4008 #define boosted_cpu_util(cpu) cpu_util(cpu)
4009 #endif
4010
4011 #ifdef CONFIG_SMP
update_capacity_of(int cpu)4012 static void update_capacity_of(int cpu)
4013 {
4014 unsigned long req_cap;
4015
4016 if (!sched_freq())
4017 return;
4018
4019 /* Convert scale-invariant capacity to cpu. */
4020 req_cap = boosted_cpu_util(cpu);
4021 req_cap = req_cap * SCHED_CAPACITY_SCALE / capacity_orig_of(cpu);
4022 set_cfs_cpu_capacity(cpu, true, req_cap);
4023 }
4024 #endif
4025
4026 /*
4027 * The enqueue_task method is called before nr_running is
4028 * increased. Here we update the fair scheduling stats and
4029 * then put the task into the rbtree:
4030 */
4031 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)4032 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4033 {
4034 struct cfs_rq *cfs_rq;
4035 struct sched_entity *se = &p->se;
4036 #ifdef CONFIG_SMP
4037 int task_new = flags & ENQUEUE_WAKEUP_NEW;
4038 int task_wakeup = flags & ENQUEUE_WAKEUP;
4039 #endif
4040
4041 for_each_sched_entity(se) {
4042 if (se->on_rq)
4043 break;
4044 cfs_rq = cfs_rq_of(se);
4045 enqueue_entity(cfs_rq, se, flags);
4046
4047 /*
4048 * end evaluation on encountering a throttled cfs_rq
4049 *
4050 * note: in the case of encountering a throttled cfs_rq we will
4051 * post the final h_nr_running increment below.
4052 */
4053 if (cfs_rq_throttled(cfs_rq))
4054 break;
4055 cfs_rq->h_nr_running++;
4056 walt_inc_cfs_cumulative_runnable_avg(cfs_rq, p);
4057
4058 flags = ENQUEUE_WAKEUP;
4059 }
4060
4061 for_each_sched_entity(se) {
4062 cfs_rq = cfs_rq_of(se);
4063 cfs_rq->h_nr_running++;
4064 walt_inc_cfs_cumulative_runnable_avg(cfs_rq, p);
4065
4066 if (cfs_rq_throttled(cfs_rq))
4067 break;
4068
4069 update_load_avg(se, 1);
4070 update_cfs_shares(cfs_rq);
4071 }
4072
4073 if (!se)
4074 add_nr_running(rq, 1);
4075
4076 #ifdef CONFIG_SMP
4077
4078 /*
4079 * Update SchedTune accounting.
4080 *
4081 * We do it before updating the CPU capacity to ensure the
4082 * boost value of the current task is accounted for in the
4083 * selection of the OPP.
4084 *
4085 * We do it also in the case where we enqueue a throttled task;
4086 * we could argue that a throttled task should not boost a CPU,
4087 * however:
4088 * a) properly implementing CPU boosting considering throttled
4089 * tasks will increase a lot the complexity of the solution
4090 * b) it's not easy to quantify the benefits introduced by
4091 * such a more complex solution.
4092 * Thus, for the time being we go for the simple solution and boost
4093 * also for throttled RQs.
4094 */
4095 schedtune_enqueue_task(p, cpu_of(rq));
4096
4097 if (!se) {
4098 walt_inc_cumulative_runnable_avg(rq, p);
4099 if (!task_new && !rq->rd->overutilized &&
4100 cpu_overutilized(rq->cpu)) {
4101 rq->rd->overutilized = true;
4102 trace_sched_overutilized(true);
4103 }
4104
4105 /*
4106 * We want to potentially trigger a freq switch
4107 * request only for tasks that are waking up; this is
4108 * because we get here also during load balancing, but
4109 * in these cases it seems wise to trigger as single
4110 * request after load balancing is done.
4111 */
4112 if (task_new || task_wakeup)
4113 update_capacity_of(cpu_of(rq));
4114 }
4115
4116 #endif /* CONFIG_SMP */
4117 hrtick_update(rq);
4118 }
4119
4120 static void set_next_buddy(struct sched_entity *se);
4121
4122 /*
4123 * The dequeue_task method is called before nr_running is
4124 * decreased. We remove the task from the rbtree and
4125 * update the fair scheduling stats:
4126 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)4127 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4128 {
4129 struct cfs_rq *cfs_rq;
4130 struct sched_entity *se = &p->se;
4131 int task_sleep = flags & DEQUEUE_SLEEP;
4132
4133 for_each_sched_entity(se) {
4134 cfs_rq = cfs_rq_of(se);
4135 dequeue_entity(cfs_rq, se, flags);
4136
4137 /*
4138 * end evaluation on encountering a throttled cfs_rq
4139 *
4140 * note: in the case of encountering a throttled cfs_rq we will
4141 * post the final h_nr_running decrement below.
4142 */
4143 if (cfs_rq_throttled(cfs_rq))
4144 break;
4145 cfs_rq->h_nr_running--;
4146 walt_dec_cfs_cumulative_runnable_avg(cfs_rq, p);
4147
4148 /* Don't dequeue parent if it has other entities besides us */
4149 if (cfs_rq->load.weight) {
4150 /*
4151 * Bias pick_next to pick a task from this cfs_rq, as
4152 * p is sleeping when it is within its sched_slice.
4153 */
4154 if (task_sleep && parent_entity(se))
4155 set_next_buddy(parent_entity(se));
4156
4157 /* avoid re-evaluating load for this entity */
4158 se = parent_entity(se);
4159 break;
4160 }
4161 flags |= DEQUEUE_SLEEP;
4162 }
4163
4164 for_each_sched_entity(se) {
4165 cfs_rq = cfs_rq_of(se);
4166 cfs_rq->h_nr_running--;
4167 walt_dec_cfs_cumulative_runnable_avg(cfs_rq, p);
4168
4169 if (cfs_rq_throttled(cfs_rq))
4170 break;
4171
4172 update_load_avg(se, 1);
4173 update_cfs_shares(cfs_rq);
4174 }
4175
4176 if (!se)
4177 sub_nr_running(rq, 1);
4178
4179 #ifdef CONFIG_SMP
4180
4181 /*
4182 * Update SchedTune accounting
4183 *
4184 * We do it before updating the CPU capacity to ensure the
4185 * boost value of the current task is accounted for in the
4186 * selection of the OPP.
4187 */
4188 schedtune_dequeue_task(p, cpu_of(rq));
4189
4190 if (!se) {
4191 walt_dec_cumulative_runnable_avg(rq, p);
4192
4193 /*
4194 * We want to potentially trigger a freq switch
4195 * request only for tasks that are going to sleep;
4196 * this is because we get here also during load
4197 * balancing, but in these cases it seems wise to
4198 * trigger as single request after load balancing is
4199 * done.
4200 */
4201 if (task_sleep) {
4202 if (rq->cfs.nr_running)
4203 update_capacity_of(cpu_of(rq));
4204 else if (sched_freq())
4205 set_cfs_cpu_capacity(cpu_of(rq), false, 0);
4206 }
4207 }
4208
4209 #endif /* CONFIG_SMP */
4210
4211 hrtick_update(rq);
4212 }
4213
4214 #ifdef CONFIG_SMP
4215
4216 /*
4217 * per rq 'load' arrray crap; XXX kill this.
4218 */
4219
4220 /*
4221 * The exact cpuload calculated at every tick would be:
4222 *
4223 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4224 *
4225 * If a cpu misses updates for n ticks (as it was idle) and update gets
4226 * called on the n+1-th tick when cpu may be busy, then we have:
4227 *
4228 * load_n = (1 - 1/2^i)^n * load_0
4229 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
4230 *
4231 * decay_load_missed() below does efficient calculation of
4232 *
4233 * load' = (1 - 1/2^i)^n * load
4234 *
4235 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4236 * This allows us to precompute the above in said factors, thereby allowing the
4237 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4238 * fixed_power_int())
4239 *
4240 * The calculation is approximated on a 128 point scale.
4241 */
4242 #define DEGRADE_SHIFT 7
4243
4244 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4245 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4246 { 0, 0, 0, 0, 0, 0, 0, 0 },
4247 { 64, 32, 8, 0, 0, 0, 0, 0 },
4248 { 96, 72, 40, 12, 1, 0, 0, 0 },
4249 { 112, 98, 75, 43, 15, 1, 0, 0 },
4250 { 120, 112, 98, 76, 45, 16, 2, 0 }
4251 };
4252
4253 /*
4254 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4255 * would be when CPU is idle and so we just decay the old load without
4256 * adding any new load.
4257 */
4258 static unsigned long
decay_load_missed(unsigned long load,unsigned long missed_updates,int idx)4259 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4260 {
4261 int j = 0;
4262
4263 if (!missed_updates)
4264 return load;
4265
4266 if (missed_updates >= degrade_zero_ticks[idx])
4267 return 0;
4268
4269 if (idx == 1)
4270 return load >> missed_updates;
4271
4272 while (missed_updates) {
4273 if (missed_updates % 2)
4274 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4275
4276 missed_updates >>= 1;
4277 j++;
4278 }
4279 return load;
4280 }
4281
4282 /*
4283 * Update rq->cpu_load[] statistics. This function is usually called every
4284 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
4285 * every tick. We fix it up based on jiffies.
4286 */
__update_cpu_load(struct rq * this_rq,unsigned long this_load,unsigned long pending_updates)4287 static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
4288 unsigned long pending_updates)
4289 {
4290 int i, scale;
4291
4292 this_rq->nr_load_updates++;
4293
4294 /* Update our load: */
4295 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4296 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4297 unsigned long old_load, new_load;
4298
4299 /* scale is effectively 1 << i now, and >> i divides by scale */
4300
4301 old_load = this_rq->cpu_load[i];
4302 old_load = decay_load_missed(old_load, pending_updates - 1, i);
4303 new_load = this_load;
4304 /*
4305 * Round up the averaging division if load is increasing. This
4306 * prevents us from getting stuck on 9 if the load is 10, for
4307 * example.
4308 */
4309 if (new_load > old_load)
4310 new_load += scale - 1;
4311
4312 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4313 }
4314
4315 sched_avg_update(this_rq);
4316 }
4317
4318 /* Used instead of source_load when we know the type == 0 */
weighted_cpuload(const int cpu)4319 static unsigned long weighted_cpuload(const int cpu)
4320 {
4321 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4322 }
4323
4324 #ifdef CONFIG_NO_HZ_COMMON
4325 /*
4326 * There is no sane way to deal with nohz on smp when using jiffies because the
4327 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4328 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4329 *
4330 * Therefore we cannot use the delta approach from the regular tick since that
4331 * would seriously skew the load calculation. However we'll make do for those
4332 * updates happening while idle (nohz_idle_balance) or coming out of idle
4333 * (tick_nohz_idle_exit).
4334 *
4335 * This means we might still be one tick off for nohz periods.
4336 */
4337
4338 /*
4339 * Called from nohz_idle_balance() to update the load ratings before doing the
4340 * idle balance.
4341 */
update_idle_cpu_load(struct rq * this_rq)4342 static void update_idle_cpu_load(struct rq *this_rq)
4343 {
4344 unsigned long curr_jiffies = READ_ONCE(jiffies);
4345 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4346 unsigned long pending_updates;
4347
4348 /*
4349 * bail if there's load or we're actually up-to-date.
4350 */
4351 if (load || curr_jiffies == this_rq->last_load_update_tick)
4352 return;
4353
4354 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4355 this_rq->last_load_update_tick = curr_jiffies;
4356
4357 __update_cpu_load(this_rq, load, pending_updates);
4358 }
4359
4360 /*
4361 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
4362 */
update_cpu_load_nohz(void)4363 void update_cpu_load_nohz(void)
4364 {
4365 struct rq *this_rq = this_rq();
4366 unsigned long curr_jiffies = READ_ONCE(jiffies);
4367 unsigned long pending_updates;
4368
4369 if (curr_jiffies == this_rq->last_load_update_tick)
4370 return;
4371
4372 raw_spin_lock(&this_rq->lock);
4373 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4374 if (pending_updates) {
4375 this_rq->last_load_update_tick = curr_jiffies;
4376 /*
4377 * We were idle, this means load 0, the current load might be
4378 * !0 due to remote wakeups and the sort.
4379 */
4380 __update_cpu_load(this_rq, 0, pending_updates);
4381 }
4382 raw_spin_unlock(&this_rq->lock);
4383 }
4384 #endif /* CONFIG_NO_HZ */
4385
4386 /*
4387 * Called from scheduler_tick()
4388 */
update_cpu_load_active(struct rq * this_rq)4389 void update_cpu_load_active(struct rq *this_rq)
4390 {
4391 unsigned long load = weighted_cpuload(cpu_of(this_rq));
4392 /*
4393 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
4394 */
4395 this_rq->last_load_update_tick = jiffies;
4396 __update_cpu_load(this_rq, load, 1);
4397 }
4398
4399 /*
4400 * Return a low guess at the load of a migration-source cpu weighted
4401 * according to the scheduling class and "nice" value.
4402 *
4403 * We want to under-estimate the load of migration sources, to
4404 * balance conservatively.
4405 */
source_load(int cpu,int type)4406 static unsigned long source_load(int cpu, int type)
4407 {
4408 struct rq *rq = cpu_rq(cpu);
4409 unsigned long total = weighted_cpuload(cpu);
4410
4411 if (type == 0 || !sched_feat(LB_BIAS))
4412 return total;
4413
4414 return min(rq->cpu_load[type-1], total);
4415 }
4416
4417 /*
4418 * Return a high guess at the load of a migration-target cpu weighted
4419 * according to the scheduling class and "nice" value.
4420 */
target_load(int cpu,int type)4421 static unsigned long target_load(int cpu, int type)
4422 {
4423 struct rq *rq = cpu_rq(cpu);
4424 unsigned long total = weighted_cpuload(cpu);
4425
4426 if (type == 0 || !sched_feat(LB_BIAS))
4427 return total;
4428
4429 return max(rq->cpu_load[type-1], total);
4430 }
4431
4432
cpu_avg_load_per_task(int cpu)4433 static unsigned long cpu_avg_load_per_task(int cpu)
4434 {
4435 struct rq *rq = cpu_rq(cpu);
4436 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
4437 unsigned long load_avg = weighted_cpuload(cpu);
4438
4439 if (nr_running)
4440 return load_avg / nr_running;
4441
4442 return 0;
4443 }
4444
record_wakee(struct task_struct * p)4445 static void record_wakee(struct task_struct *p)
4446 {
4447 /*
4448 * Rough decay (wiping) for cost saving, don't worry
4449 * about the boundary, really active task won't care
4450 * about the loss.
4451 */
4452 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4453 current->wakee_flips >>= 1;
4454 current->wakee_flip_decay_ts = jiffies;
4455 }
4456
4457 if (current->last_wakee != p) {
4458 current->last_wakee = p;
4459 current->wakee_flips++;
4460 }
4461 }
4462
task_waking_fair(struct task_struct * p)4463 static void task_waking_fair(struct task_struct *p)
4464 {
4465 struct sched_entity *se = &p->se;
4466 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4467 u64 min_vruntime;
4468
4469 #ifndef CONFIG_64BIT
4470 u64 min_vruntime_copy;
4471
4472 do {
4473 min_vruntime_copy = cfs_rq->min_vruntime_copy;
4474 smp_rmb();
4475 min_vruntime = cfs_rq->min_vruntime;
4476 } while (min_vruntime != min_vruntime_copy);
4477 #else
4478 min_vruntime = cfs_rq->min_vruntime;
4479 #endif
4480
4481 se->vruntime -= min_vruntime;
4482 record_wakee(p);
4483 }
4484
4485 #ifdef CONFIG_FAIR_GROUP_SCHED
4486 /*
4487 * effective_load() calculates the load change as seen from the root_task_group
4488 *
4489 * Adding load to a group doesn't make a group heavier, but can cause movement
4490 * of group shares between cpus. Assuming the shares were perfectly aligned one
4491 * can calculate the shift in shares.
4492 *
4493 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4494 * on this @cpu and results in a total addition (subtraction) of @wg to the
4495 * total group weight.
4496 *
4497 * Given a runqueue weight distribution (rw_i) we can compute a shares
4498 * distribution (s_i) using:
4499 *
4500 * s_i = rw_i / \Sum rw_j (1)
4501 *
4502 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4503 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4504 * shares distribution (s_i):
4505 *
4506 * rw_i = { 2, 4, 1, 0 }
4507 * s_i = { 2/7, 4/7, 1/7, 0 }
4508 *
4509 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4510 * task used to run on and the CPU the waker is running on), we need to
4511 * compute the effect of waking a task on either CPU and, in case of a sync
4512 * wakeup, compute the effect of the current task going to sleep.
4513 *
4514 * So for a change of @wl to the local @cpu with an overall group weight change
4515 * of @wl we can compute the new shares distribution (s'_i) using:
4516 *
4517 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4518 *
4519 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4520 * differences in waking a task to CPU 0. The additional task changes the
4521 * weight and shares distributions like:
4522 *
4523 * rw'_i = { 3, 4, 1, 0 }
4524 * s'_i = { 3/8, 4/8, 1/8, 0 }
4525 *
4526 * We can then compute the difference in effective weight by using:
4527 *
4528 * dw_i = S * (s'_i - s_i) (3)
4529 *
4530 * Where 'S' is the group weight as seen by its parent.
4531 *
4532 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4533 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4534 * 4/7) times the weight of the group.
4535 */
effective_load(struct task_group * tg,int cpu,long wl,long wg)4536 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4537 {
4538 struct sched_entity *se = tg->se[cpu];
4539
4540 if (!tg->parent) /* the trivial, non-cgroup case */
4541 return wl;
4542
4543 for_each_sched_entity(se) {
4544 long w, W;
4545
4546 tg = se->my_q->tg;
4547
4548 /*
4549 * W = @wg + \Sum rw_j
4550 */
4551 W = wg + calc_tg_weight(tg, se->my_q);
4552
4553 /*
4554 * w = rw_i + @wl
4555 */
4556 w = cfs_rq_load_avg(se->my_q) + wl;
4557
4558 /*
4559 * wl = S * s'_i; see (2)
4560 */
4561 if (W > 0 && w < W)
4562 wl = (w * tg->shares) / W;
4563 else
4564 wl = tg->shares;
4565
4566 /*
4567 * Per the above, wl is the new se->load.weight value; since
4568 * those are clipped to [MIN_SHARES, ...) do so now. See
4569 * calc_cfs_shares().
4570 */
4571 if (wl < MIN_SHARES)
4572 wl = MIN_SHARES;
4573
4574 /*
4575 * wl = dw_i = S * (s'_i - s_i); see (3)
4576 */
4577 wl -= se->avg.load_avg;
4578
4579 /*
4580 * Recursively apply this logic to all parent groups to compute
4581 * the final effective load change on the root group. Since
4582 * only the @tg group gets extra weight, all parent groups can
4583 * only redistribute existing shares. @wl is the shift in shares
4584 * resulting from this level per the above.
4585 */
4586 wg = 0;
4587 }
4588
4589 return wl;
4590 }
4591 #else
4592
effective_load(struct task_group * tg,int cpu,long wl,long wg)4593 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4594 {
4595 return wl;
4596 }
4597
4598 #endif
4599
4600 /*
4601 * Returns the current capacity of cpu after applying both
4602 * cpu and freq scaling.
4603 */
capacity_curr_of(int cpu)4604 unsigned long capacity_curr_of(int cpu)
4605 {
4606 return cpu_rq(cpu)->cpu_capacity_orig *
4607 arch_scale_freq_capacity(NULL, cpu)
4608 >> SCHED_CAPACITY_SHIFT;
4609 }
4610
energy_aware(void)4611 static inline bool energy_aware(void)
4612 {
4613 return sched_feat(ENERGY_AWARE);
4614 }
4615
4616 struct energy_env {
4617 struct sched_group *sg_top;
4618 struct sched_group *sg_cap;
4619 int cap_idx;
4620 int util_delta;
4621 int src_cpu;
4622 int dst_cpu;
4623 int energy;
4624 int payoff;
4625 struct task_struct *task;
4626 struct {
4627 int before;
4628 int after;
4629 int delta;
4630 int diff;
4631 } nrg;
4632 struct {
4633 int before;
4634 int after;
4635 int delta;
4636 } cap;
4637 };
4638
4639 /*
4640 * __cpu_norm_util() returns the cpu util relative to a specific capacity,
4641 * i.e. it's busy ratio, in the range [0..SCHED_LOAD_SCALE] which is useful for
4642 * energy calculations. Using the scale-invariant util returned by
4643 * cpu_util() and approximating scale-invariant util by:
4644 *
4645 * util ~ (curr_freq/max_freq)*1024 * capacity_orig/1024 * running_time/time
4646 *
4647 * the normalized util can be found using the specific capacity.
4648 *
4649 * capacity = capacity_orig * curr_freq/max_freq
4650 *
4651 * norm_util = running_time/time ~ util/capacity
4652 */
__cpu_norm_util(int cpu,unsigned long capacity,int delta)4653 static unsigned long __cpu_norm_util(int cpu, unsigned long capacity, int delta)
4654 {
4655 int util = __cpu_util(cpu, delta);
4656
4657 if (util >= capacity)
4658 return SCHED_CAPACITY_SCALE;
4659
4660 return (util << SCHED_CAPACITY_SHIFT)/capacity;
4661 }
4662
calc_util_delta(struct energy_env * eenv,int cpu)4663 static int calc_util_delta(struct energy_env *eenv, int cpu)
4664 {
4665 if (cpu == eenv->src_cpu)
4666 return -eenv->util_delta;
4667 if (cpu == eenv->dst_cpu)
4668 return eenv->util_delta;
4669 return 0;
4670 }
4671
4672 static
group_max_util(struct energy_env * eenv)4673 unsigned long group_max_util(struct energy_env *eenv)
4674 {
4675 int i, delta;
4676 unsigned long max_util = 0;
4677
4678 for_each_cpu(i, sched_group_cpus(eenv->sg_cap)) {
4679 delta = calc_util_delta(eenv, i);
4680 max_util = max(max_util, __cpu_util(i, delta));
4681 }
4682
4683 return max_util;
4684 }
4685
4686 /*
4687 * group_norm_util() returns the approximated group util relative to it's
4688 * current capacity (busy ratio) in the range [0..SCHED_LOAD_SCALE] for use in
4689 * energy calculations. Since task executions may or may not overlap in time in
4690 * the group the true normalized util is between max(cpu_norm_util(i)) and
4691 * sum(cpu_norm_util(i)) when iterating over all cpus in the group, i. The
4692 * latter is used as the estimate as it leads to a more pessimistic energy
4693 * estimate (more busy).
4694 */
4695 static unsigned
group_norm_util(struct energy_env * eenv,struct sched_group * sg)4696 long group_norm_util(struct energy_env *eenv, struct sched_group *sg)
4697 {
4698 int i, delta;
4699 unsigned long util_sum = 0;
4700 unsigned long capacity = sg->sge->cap_states[eenv->cap_idx].cap;
4701
4702 for_each_cpu(i, sched_group_cpus(sg)) {
4703 delta = calc_util_delta(eenv, i);
4704 util_sum += __cpu_norm_util(i, capacity, delta);
4705 }
4706
4707 if (util_sum > SCHED_CAPACITY_SCALE)
4708 return SCHED_CAPACITY_SCALE;
4709 return util_sum;
4710 }
4711
find_new_capacity(struct energy_env * eenv,const struct sched_group_energy * const sge)4712 static int find_new_capacity(struct energy_env *eenv,
4713 const struct sched_group_energy * const sge)
4714 {
4715 int idx, max_idx = sge->nr_cap_states - 1;
4716 unsigned long util = group_max_util(eenv);
4717
4718 /* default is max_cap if we don't find a match */
4719 eenv->cap_idx = max_idx;
4720
4721 for (idx = 0; idx < sge->nr_cap_states; idx++) {
4722 if (sge->cap_states[idx].cap >= util) {
4723 eenv->cap_idx = idx;
4724 break;
4725 }
4726 }
4727
4728 return eenv->cap_idx;
4729 }
4730
group_idle_state(struct sched_group * sg)4731 static int group_idle_state(struct sched_group *sg)
4732 {
4733 int i, state = INT_MAX;
4734
4735 /* Find the shallowest idle state in the sched group. */
4736 for_each_cpu(i, sched_group_cpus(sg))
4737 state = min(state, idle_get_state_idx(cpu_rq(i)));
4738
4739 /* Take non-cpuidle idling into account (active idle/arch_cpu_idle()) */
4740 state++;
4741
4742 return state;
4743 }
4744
4745 /*
4746 * sched_group_energy(): Computes the absolute energy consumption of cpus
4747 * belonging to the sched_group including shared resources shared only by
4748 * members of the group. Iterates over all cpus in the hierarchy below the
4749 * sched_group starting from the bottom working it's way up before going to
4750 * the next cpu until all cpus are covered at all levels. The current
4751 * implementation is likely to gather the same util statistics multiple times.
4752 * This can probably be done in a faster but more complex way.
4753 * Note: sched_group_energy() may fail when racing with sched_domain updates.
4754 */
sched_group_energy(struct energy_env * eenv)4755 static int sched_group_energy(struct energy_env *eenv)
4756 {
4757 struct sched_domain *sd;
4758 int cpu, total_energy = 0;
4759 struct cpumask visit_cpus;
4760 struct sched_group *sg;
4761
4762 WARN_ON(!eenv->sg_top->sge);
4763
4764 cpumask_copy(&visit_cpus, sched_group_cpus(eenv->sg_top));
4765
4766 while (!cpumask_empty(&visit_cpus)) {
4767 struct sched_group *sg_shared_cap = NULL;
4768
4769 cpu = cpumask_first(&visit_cpus);
4770
4771 /*
4772 * Is the group utilization affected by cpus outside this
4773 * sched_group?
4774 */
4775 sd = rcu_dereference(per_cpu(sd_scs, cpu));
4776
4777 if (!sd)
4778 /*
4779 * We most probably raced with hotplug; returning a
4780 * wrong energy estimation is better than entering an
4781 * infinite loop.
4782 */
4783 return -EINVAL;
4784
4785 if (sd->parent)
4786 sg_shared_cap = sd->parent->groups;
4787
4788 for_each_domain(cpu, sd) {
4789 sg = sd->groups;
4790
4791 /* Has this sched_domain already been visited? */
4792 if (sd->child && group_first_cpu(sg) != cpu)
4793 break;
4794
4795 do {
4796 unsigned long group_util;
4797 int sg_busy_energy, sg_idle_energy;
4798 int cap_idx, idle_idx;
4799
4800 if (sg_shared_cap && sg_shared_cap->group_weight >= sg->group_weight)
4801 eenv->sg_cap = sg_shared_cap;
4802 else
4803 eenv->sg_cap = sg;
4804
4805 cap_idx = find_new_capacity(eenv, sg->sge);
4806
4807 if (sg->group_weight == 1) {
4808 /* Remove capacity of src CPU (before task move) */
4809 if (eenv->util_delta == 0 &&
4810 cpumask_test_cpu(eenv->src_cpu, sched_group_cpus(sg))) {
4811 eenv->cap.before = sg->sge->cap_states[cap_idx].cap;
4812 eenv->cap.delta -= eenv->cap.before;
4813 }
4814 /* Add capacity of dst CPU (after task move) */
4815 if (eenv->util_delta != 0 &&
4816 cpumask_test_cpu(eenv->dst_cpu, sched_group_cpus(sg))) {
4817 eenv->cap.after = sg->sge->cap_states[cap_idx].cap;
4818 eenv->cap.delta += eenv->cap.after;
4819 }
4820 }
4821
4822 idle_idx = group_idle_state(sg);
4823 group_util = group_norm_util(eenv, sg);
4824 sg_busy_energy = (group_util * sg->sge->cap_states[cap_idx].power)
4825 >> SCHED_CAPACITY_SHIFT;
4826 sg_idle_energy = ((SCHED_LOAD_SCALE-group_util)
4827 * sg->sge->idle_states[idle_idx].power)
4828 >> SCHED_CAPACITY_SHIFT;
4829
4830 total_energy += sg_busy_energy + sg_idle_energy;
4831
4832 if (!sd->child)
4833 cpumask_xor(&visit_cpus, &visit_cpus, sched_group_cpus(sg));
4834
4835 if (cpumask_equal(sched_group_cpus(sg), sched_group_cpus(eenv->sg_top)))
4836 goto next_cpu;
4837
4838 } while (sg = sg->next, sg != sd->groups);
4839 }
4840 next_cpu:
4841 cpumask_clear_cpu(cpu, &visit_cpus);
4842 continue;
4843 }
4844
4845 eenv->energy = total_energy;
4846 return 0;
4847 }
4848
cpu_in_sg(struct sched_group * sg,int cpu)4849 static inline bool cpu_in_sg(struct sched_group *sg, int cpu)
4850 {
4851 return cpu != -1 && cpumask_test_cpu(cpu, sched_group_cpus(sg));
4852 }
4853
4854 /*
4855 * energy_diff(): Estimate the energy impact of changing the utilization
4856 * distribution. eenv specifies the change: utilisation amount, source, and
4857 * destination cpu. Source or destination cpu may be -1 in which case the
4858 * utilization is removed from or added to the system (e.g. task wake-up). If
4859 * both are specified, the utilization is migrated.
4860 */
__energy_diff(struct energy_env * eenv)4861 static inline int __energy_diff(struct energy_env *eenv)
4862 {
4863 struct sched_domain *sd;
4864 struct sched_group *sg;
4865 int sd_cpu = -1, energy_before = 0, energy_after = 0;
4866
4867 struct energy_env eenv_before = {
4868 .util_delta = 0,
4869 .src_cpu = eenv->src_cpu,
4870 .dst_cpu = eenv->dst_cpu,
4871 .nrg = { 0, 0, 0, 0},
4872 .cap = { 0, 0, 0 },
4873 };
4874
4875 if (eenv->src_cpu == eenv->dst_cpu)
4876 return 0;
4877
4878 sd_cpu = (eenv->src_cpu != -1) ? eenv->src_cpu : eenv->dst_cpu;
4879 sd = rcu_dereference(per_cpu(sd_ea, sd_cpu));
4880
4881 if (!sd)
4882 return 0; /* Error */
4883
4884 sg = sd->groups;
4885
4886 do {
4887 if (cpu_in_sg(sg, eenv->src_cpu) || cpu_in_sg(sg, eenv->dst_cpu)) {
4888 eenv_before.sg_top = eenv->sg_top = sg;
4889
4890 if (sched_group_energy(&eenv_before))
4891 return 0; /* Invalid result abort */
4892 energy_before += eenv_before.energy;
4893
4894 /* Keep track of SRC cpu (before) capacity */
4895 eenv->cap.before = eenv_before.cap.before;
4896 eenv->cap.delta = eenv_before.cap.delta;
4897
4898 if (sched_group_energy(eenv))
4899 return 0; /* Invalid result abort */
4900 energy_after += eenv->energy;
4901 }
4902 } while (sg = sg->next, sg != sd->groups);
4903
4904 eenv->nrg.before = energy_before;
4905 eenv->nrg.after = energy_after;
4906 eenv->nrg.diff = eenv->nrg.after - eenv->nrg.before;
4907 eenv->payoff = 0;
4908
4909 trace_sched_energy_diff(eenv->task,
4910 eenv->src_cpu, eenv->dst_cpu, eenv->util_delta,
4911 eenv->nrg.before, eenv->nrg.after, eenv->nrg.diff,
4912 eenv->cap.before, eenv->cap.after, eenv->cap.delta,
4913 eenv->nrg.delta, eenv->payoff);
4914
4915 return eenv->nrg.diff;
4916 }
4917
4918 #ifdef CONFIG_SCHED_TUNE
4919
4920 struct target_nrg schedtune_target_nrg;
4921
4922 /*
4923 * System energy normalization
4924 * Returns the normalized value, in the range [0..SCHED_LOAD_SCALE],
4925 * corresponding to the specified energy variation.
4926 */
4927 static inline int
normalize_energy(int energy_diff)4928 normalize_energy(int energy_diff)
4929 {
4930 u32 normalized_nrg;
4931 #ifdef CONFIG_SCHED_DEBUG
4932 int max_delta;
4933
4934 /* Check for boundaries */
4935 max_delta = schedtune_target_nrg.max_power;
4936 max_delta -= schedtune_target_nrg.min_power;
4937 WARN_ON(abs(energy_diff) >= max_delta);
4938 #endif
4939
4940 /* Do scaling using positive numbers to increase the range */
4941 normalized_nrg = (energy_diff < 0) ? -energy_diff : energy_diff;
4942
4943 /* Scale by energy magnitude */
4944 normalized_nrg <<= SCHED_LOAD_SHIFT;
4945
4946 /* Normalize on max energy for target platform */
4947 normalized_nrg = reciprocal_divide(
4948 normalized_nrg, schedtune_target_nrg.rdiv);
4949
4950 return (energy_diff < 0) ? -normalized_nrg : normalized_nrg;
4951 }
4952
4953 static inline int
energy_diff(struct energy_env * eenv)4954 energy_diff(struct energy_env *eenv)
4955 {
4956 int boost = schedtune_task_boost(eenv->task);
4957 int nrg_delta;
4958
4959 /* Conpute "absolute" energy diff */
4960 __energy_diff(eenv);
4961
4962 /* Return energy diff when boost margin is 0 */
4963 if (boost == 0)
4964 return eenv->nrg.diff;
4965
4966 /* Compute normalized energy diff */
4967 nrg_delta = normalize_energy(eenv->nrg.diff);
4968 eenv->nrg.delta = nrg_delta;
4969
4970 eenv->payoff = schedtune_accept_deltas(
4971 eenv->nrg.delta,
4972 eenv->cap.delta,
4973 eenv->task);
4974
4975 /*
4976 * When SchedTune is enabled, the energy_diff() function will return
4977 * the computed energy payoff value. Since the energy_diff() return
4978 * value is expected to be negative by its callers, this evaluation
4979 * function return a negative value each time the evaluation return a
4980 * positive payoff, which is the condition for the acceptance of
4981 * a scheduling decision
4982 */
4983 return -eenv->payoff;
4984 }
4985 #else /* CONFIG_SCHED_TUNE */
4986 #define energy_diff(eenv) __energy_diff(eenv)
4987 #endif
4988
4989 /*
4990 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
4991 * A waker of many should wake a different task than the one last awakened
4992 * at a frequency roughly N times higher than one of its wakees. In order
4993 * to determine whether we should let the load spread vs consolodating to
4994 * shared cache, we look for a minimum 'flip' frequency of llc_size in one
4995 * partner, and a factor of lls_size higher frequency in the other. With
4996 * both conditions met, we can be relatively sure that the relationship is
4997 * non-monogamous, with partner count exceeding socket size. Waker/wakee
4998 * being client/server, worker/dispatcher, interrupt source or whatever is
4999 * irrelevant, spread criteria is apparent partner count exceeds socket size.
5000 */
wake_wide(struct task_struct * p)5001 static int wake_wide(struct task_struct *p)
5002 {
5003 unsigned int master = current->wakee_flips;
5004 unsigned int slave = p->wakee_flips;
5005 int factor = this_cpu_read(sd_llc_size);
5006
5007 if (master < slave)
5008 swap(master, slave);
5009 if (slave < factor || master < slave * factor)
5010 return 0;
5011 return 1;
5012 }
5013
wake_affine(struct sched_domain * sd,struct task_struct * p,int sync)5014 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
5015 {
5016 s64 this_load, load;
5017 s64 this_eff_load, prev_eff_load;
5018 int idx, this_cpu, prev_cpu;
5019 struct task_group *tg;
5020 unsigned long weight;
5021 int balanced;
5022
5023 idx = sd->wake_idx;
5024 this_cpu = smp_processor_id();
5025 prev_cpu = task_cpu(p);
5026 load = source_load(prev_cpu, idx);
5027 this_load = target_load(this_cpu, idx);
5028
5029 /*
5030 * If sync wakeup then subtract the (maximum possible)
5031 * effect of the currently running task from the load
5032 * of the current CPU:
5033 */
5034 if (sync) {
5035 tg = task_group(current);
5036 weight = current->se.avg.load_avg;
5037
5038 this_load += effective_load(tg, this_cpu, -weight, -weight);
5039 load += effective_load(tg, prev_cpu, 0, -weight);
5040 }
5041
5042 tg = task_group(p);
5043 weight = p->se.avg.load_avg;
5044
5045 /*
5046 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5047 * due to the sync cause above having dropped this_load to 0, we'll
5048 * always have an imbalance, but there's really nothing you can do
5049 * about that, so that's good too.
5050 *
5051 * Otherwise check if either cpus are near enough in load to allow this
5052 * task to be woken on this_cpu.
5053 */
5054 this_eff_load = 100;
5055 this_eff_load *= capacity_of(prev_cpu);
5056
5057 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5058 prev_eff_load *= capacity_of(this_cpu);
5059
5060 if (this_load > 0) {
5061 this_eff_load *= this_load +
5062 effective_load(tg, this_cpu, weight, weight);
5063
5064 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5065 }
5066
5067 balanced = this_eff_load <= prev_eff_load;
5068
5069 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
5070
5071 if (!balanced)
5072 return 0;
5073
5074 schedstat_inc(sd, ttwu_move_affine);
5075 schedstat_inc(p, se.statistics.nr_wakeups_affine);
5076
5077 return 1;
5078 }
5079
task_util(struct task_struct * p)5080 static inline unsigned long task_util(struct task_struct *p)
5081 {
5082 #ifdef CONFIG_SCHED_WALT
5083 if (!walt_disabled && sysctl_sched_use_walt_task_util) {
5084 unsigned long demand = p->ravg.demand;
5085 return (demand << 10) / walt_ravg_window;
5086 }
5087 #endif
5088 return p->se.avg.util_avg;
5089 }
5090
5091 unsigned int capacity_margin = 1280; /* ~20% margin */
5092
5093 static inline unsigned long boosted_task_util(struct task_struct *task);
5094
__task_fits(struct task_struct * p,int cpu,int util)5095 static inline bool __task_fits(struct task_struct *p, int cpu, int util)
5096 {
5097 unsigned long capacity = capacity_of(cpu);
5098
5099 util += boosted_task_util(p);
5100
5101 return (capacity * 1024) > (util * capacity_margin);
5102 }
5103
task_fits_max(struct task_struct * p,int cpu)5104 static inline bool task_fits_max(struct task_struct *p, int cpu)
5105 {
5106 unsigned long capacity = capacity_of(cpu);
5107 unsigned long max_capacity = cpu_rq(cpu)->rd->max_cpu_capacity.val;
5108
5109 if (capacity == max_capacity)
5110 return true;
5111
5112 if (capacity * capacity_margin > max_capacity * 1024)
5113 return true;
5114
5115 return __task_fits(p, cpu, 0);
5116 }
5117
task_fits_spare(struct task_struct * p,int cpu)5118 static inline bool task_fits_spare(struct task_struct *p, int cpu)
5119 {
5120 return __task_fits(p, cpu, cpu_util(cpu));
5121 }
5122
cpu_overutilized(int cpu)5123 static bool cpu_overutilized(int cpu)
5124 {
5125 return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin);
5126 }
5127
5128 #ifdef CONFIG_SCHED_TUNE
5129
5130 static long
schedtune_margin(unsigned long signal,long boost)5131 schedtune_margin(unsigned long signal, long boost)
5132 {
5133 long long margin = 0;
5134
5135 /*
5136 * Signal proportional compensation (SPC)
5137 *
5138 * The Boost (B) value is used to compute a Margin (M) which is
5139 * proportional to the complement of the original Signal (S):
5140 * M = B * (SCHED_LOAD_SCALE - S), if B is positive
5141 * M = B * S, if B is negative
5142 * The obtained M could be used by the caller to "boost" S.
5143 */
5144 if (boost >= 0) {
5145 margin = SCHED_LOAD_SCALE - signal;
5146 margin *= boost;
5147 } else
5148 margin = -signal * boost;
5149 /*
5150 * Fast integer division by constant:
5151 * Constant : (C) = 100
5152 * Precision : 0.1% (P) = 0.1
5153 * Reference : C * 100 / P (R) = 100000
5154 *
5155 * Thus:
5156 * Shift bits : ceil(log(R,2)) (S) = 17
5157 * Mult const : round(2^S/C) (M) = 1311
5158 *
5159 *
5160 */
5161 margin *= 1311;
5162 margin >>= 17;
5163
5164 if (boost < 0)
5165 margin *= -1;
5166 return margin;
5167 }
5168
5169 static inline int
schedtune_cpu_margin(unsigned long util,int cpu)5170 schedtune_cpu_margin(unsigned long util, int cpu)
5171 {
5172 int boost = schedtune_cpu_boost(cpu);
5173
5174 if (boost == 0)
5175 return 0;
5176
5177 return schedtune_margin(util, boost);
5178 }
5179
5180 static inline long
schedtune_task_margin(struct task_struct * task)5181 schedtune_task_margin(struct task_struct *task)
5182 {
5183 int boost = schedtune_task_boost(task);
5184 unsigned long util;
5185 long margin;
5186
5187 if (boost == 0)
5188 return 0;
5189
5190 util = task_util(task);
5191 margin = schedtune_margin(util, boost);
5192
5193 return margin;
5194 }
5195
5196 #else /* CONFIG_SCHED_TUNE */
5197
5198 static inline int
schedtune_cpu_margin(unsigned long util,int cpu)5199 schedtune_cpu_margin(unsigned long util, int cpu)
5200 {
5201 return 0;
5202 }
5203
5204 static inline int
schedtune_task_margin(struct task_struct * task)5205 schedtune_task_margin(struct task_struct *task)
5206 {
5207 return 0;
5208 }
5209
5210 #endif /* CONFIG_SCHED_TUNE */
5211
5212 static inline unsigned long
boosted_cpu_util(int cpu)5213 boosted_cpu_util(int cpu)
5214 {
5215 unsigned long util = cpu_util(cpu);
5216 long margin = schedtune_cpu_margin(util, cpu);
5217
5218 trace_sched_boost_cpu(cpu, util, margin);
5219
5220 return util + margin;
5221 }
5222
5223 static inline unsigned long
boosted_task_util(struct task_struct * task)5224 boosted_task_util(struct task_struct *task)
5225 {
5226 unsigned long util = task_util(task);
5227 long margin = schedtune_task_margin(task);
5228
5229 trace_sched_boost_task(task, util, margin);
5230
5231 return util + margin;
5232 }
5233
5234 /*
5235 * find_idlest_group finds and returns the least busy CPU group within the
5236 * domain.
5237 */
5238 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu,int sd_flag)5239 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5240 int this_cpu, int sd_flag)
5241 {
5242 struct sched_group *idlest = NULL, *group = sd->groups;
5243 struct sched_group *fit_group = NULL, *spare_group = NULL;
5244 unsigned long min_load = ULONG_MAX, this_load = 0;
5245 unsigned long fit_capacity = ULONG_MAX;
5246 unsigned long max_spare_capacity = capacity_margin - SCHED_LOAD_SCALE;
5247 int load_idx = sd->forkexec_idx;
5248 int imbalance = 100 + (sd->imbalance_pct-100)/2;
5249
5250 if (sd_flag & SD_BALANCE_WAKE)
5251 load_idx = sd->wake_idx;
5252
5253 do {
5254 unsigned long load, avg_load, spare_capacity;
5255 int local_group;
5256 int i;
5257
5258 /* Skip over this group if it has no CPUs allowed */
5259 if (!cpumask_intersects(sched_group_cpus(group),
5260 tsk_cpus_allowed(p)))
5261 continue;
5262
5263 local_group = cpumask_test_cpu(this_cpu,
5264 sched_group_cpus(group));
5265
5266 /* Tally up the load of all CPUs in the group */
5267 avg_load = 0;
5268
5269 for_each_cpu(i, sched_group_cpus(group)) {
5270 /* Bias balancing toward cpus of our domain */
5271 if (local_group)
5272 load = source_load(i, load_idx);
5273 else
5274 load = target_load(i, load_idx);
5275
5276 avg_load += load;
5277
5278 /*
5279 * Look for most energy-efficient group that can fit
5280 * that can fit the task.
5281 */
5282 if (capacity_of(i) < fit_capacity && task_fits_spare(p, i)) {
5283 fit_capacity = capacity_of(i);
5284 fit_group = group;
5285 }
5286
5287 /*
5288 * Look for group which has most spare capacity on a
5289 * single cpu.
5290 */
5291 spare_capacity = capacity_of(i) - cpu_util(i);
5292 if (spare_capacity > max_spare_capacity) {
5293 max_spare_capacity = spare_capacity;
5294 spare_group = group;
5295 }
5296 }
5297
5298 /* Adjust by relative CPU capacity of the group */
5299 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
5300
5301 if (local_group) {
5302 this_load = avg_load;
5303 } else if (avg_load < min_load) {
5304 min_load = avg_load;
5305 idlest = group;
5306 }
5307 } while (group = group->next, group != sd->groups);
5308
5309 if (fit_group)
5310 return fit_group;
5311
5312 if (spare_group)
5313 return spare_group;
5314
5315 if (!idlest || 100*this_load < imbalance*min_load)
5316 return NULL;
5317 return idlest;
5318 }
5319
5320 /*
5321 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5322 */
5323 static int
find_idlest_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)5324 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5325 {
5326 unsigned long load, min_load = ULONG_MAX;
5327 unsigned int min_exit_latency = UINT_MAX;
5328 u64 latest_idle_timestamp = 0;
5329 int least_loaded_cpu = this_cpu;
5330 int shallowest_idle_cpu = -1;
5331 int i;
5332
5333 /* Traverse only the allowed CPUs */
5334 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
5335 if (task_fits_spare(p, i)) {
5336 struct rq *rq = cpu_rq(i);
5337 struct cpuidle_state *idle = idle_get_state(rq);
5338 if (idle && idle->exit_latency < min_exit_latency) {
5339 /*
5340 * We give priority to a CPU whose idle state
5341 * has the smallest exit latency irrespective
5342 * of any idle timestamp.
5343 */
5344 min_exit_latency = idle->exit_latency;
5345 latest_idle_timestamp = rq->idle_stamp;
5346 shallowest_idle_cpu = i;
5347 } else if (idle_cpu(i) &&
5348 (!idle || idle->exit_latency == min_exit_latency) &&
5349 rq->idle_stamp > latest_idle_timestamp) {
5350 /*
5351 * If equal or no active idle state, then
5352 * the most recently idled CPU might have
5353 * a warmer cache.
5354 */
5355 latest_idle_timestamp = rq->idle_stamp;
5356 shallowest_idle_cpu = i;
5357 } else if (shallowest_idle_cpu == -1) {
5358 /*
5359 * If we haven't found an idle CPU yet
5360 * pick a non-idle one that can fit the task as
5361 * fallback.
5362 */
5363 shallowest_idle_cpu = i;
5364 }
5365 } else {
5366 load = weighted_cpuload(i);
5367 if (load < min_load || (load == min_load && i == this_cpu)) {
5368 min_load = load;
5369 least_loaded_cpu = i;
5370 }
5371 }
5372 }
5373
5374 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5375 }
5376
5377 /*
5378 * Try and locate an idle CPU in the sched_domain.
5379 */
select_idle_sibling(struct task_struct * p,int target)5380 static int select_idle_sibling(struct task_struct *p, int target)
5381 {
5382 struct sched_domain *sd;
5383 struct sched_group *sg;
5384 int i = task_cpu(p);
5385 int best_idle = -1;
5386 int best_idle_cstate = -1;
5387 int best_idle_capacity = INT_MAX;
5388
5389 if (!sysctl_sched_cstate_aware) {
5390 if (idle_cpu(target))
5391 return target;
5392
5393 /*
5394 * If the prevous cpu is cache affine and idle, don't be stupid.
5395 */
5396 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
5397 return i;
5398 }
5399
5400 /*
5401 * Otherwise, iterate the domains and find an elegible idle cpu.
5402 */
5403 sd = rcu_dereference(per_cpu(sd_llc, target));
5404 for_each_lower_domain(sd) {
5405 sg = sd->groups;
5406 do {
5407 if (!cpumask_intersects(sched_group_cpus(sg),
5408 tsk_cpus_allowed(p)))
5409 goto next;
5410
5411 if (sysctl_sched_cstate_aware) {
5412 for_each_cpu_and(i, tsk_cpus_allowed(p), sched_group_cpus(sg)) {
5413 struct rq *rq = cpu_rq(i);
5414 int idle_idx = idle_get_state_idx(rq);
5415 unsigned long new_usage = boosted_task_util(p);
5416 unsigned long capacity_orig = capacity_orig_of(i);
5417 if (new_usage > capacity_orig || !idle_cpu(i))
5418 goto next;
5419
5420 if (i == target && new_usage <= capacity_curr_of(target))
5421 return target;
5422
5423 if (best_idle < 0 || (idle_idx < best_idle_cstate && capacity_orig <= best_idle_capacity)) {
5424 best_idle = i;
5425 best_idle_cstate = idle_idx;
5426 best_idle_capacity = capacity_orig;
5427 }
5428 }
5429 } else {
5430 for_each_cpu(i, sched_group_cpus(sg)) {
5431 if (i == target || !idle_cpu(i))
5432 goto next;
5433 }
5434
5435 target = cpumask_first_and(sched_group_cpus(sg),
5436 tsk_cpus_allowed(p));
5437 goto done;
5438 }
5439 next:
5440 sg = sg->next;
5441 } while (sg != sd->groups);
5442 }
5443 if (best_idle > 0)
5444 target = best_idle;
5445
5446 done:
5447 return target;
5448 }
5449
find_best_target(struct task_struct * p,bool boosted,bool prefer_idle)5450 static inline int find_best_target(struct task_struct *p, bool boosted, bool prefer_idle)
5451 {
5452 int iter_cpu;
5453 int target_cpu = -1;
5454 int target_util = 0;
5455 int backup_capacity = 0;
5456 int best_idle_cpu = -1;
5457 int best_idle_cstate = INT_MAX;
5458 int backup_cpu = -1;
5459 unsigned long task_util_boosted, new_util;
5460
5461 task_util_boosted = boosted_task_util(p);
5462 for (iter_cpu = 0; iter_cpu < NR_CPUS; iter_cpu++) {
5463 int cur_capacity;
5464 struct rq *rq;
5465 int idle_idx;
5466
5467 /*
5468 * Iterate from higher cpus for boosted tasks.
5469 */
5470 int i = boosted ? NR_CPUS-iter_cpu-1 : iter_cpu;
5471
5472 if (!cpu_online(i) || !cpumask_test_cpu(i, tsk_cpus_allowed(p)))
5473 continue;
5474
5475 /*
5476 * p's blocked utilization is still accounted for on prev_cpu
5477 * so prev_cpu will receive a negative bias due to the double
5478 * accounting. However, the blocked utilization may be zero.
5479 */
5480 new_util = cpu_util(i) + task_util_boosted;
5481
5482 /*
5483 * Ensure minimum capacity to grant the required boost.
5484 * The target CPU can be already at a capacity level higher
5485 * than the one required to boost the task.
5486 */
5487 if (new_util > capacity_orig_of(i))
5488 continue;
5489
5490 #ifdef CONFIG_SCHED_WALT
5491 if (walt_cpu_high_irqload(i))
5492 continue;
5493 #endif
5494 /*
5495 * Unconditionally favoring tasks that prefer idle cpus to
5496 * improve latency.
5497 */
5498 if (idle_cpu(i) && prefer_idle) {
5499 if (best_idle_cpu < 0)
5500 best_idle_cpu = i;
5501 continue;
5502 }
5503
5504 cur_capacity = capacity_curr_of(i);
5505 rq = cpu_rq(i);
5506 idle_idx = idle_get_state_idx(rq);
5507
5508 if (new_util < cur_capacity) {
5509 if (cpu_rq(i)->nr_running) {
5510 if (prefer_idle) {
5511 /* Find a target cpu with highest
5512 * utilization.
5513 */
5514 if (target_util == 0 ||
5515 target_util < new_util) {
5516 target_cpu = i;
5517 target_util = new_util;
5518 }
5519 } else {
5520 /* Find a target cpu with lowest
5521 * utilization.
5522 */
5523 if (target_util == 0 ||
5524 target_util > new_util) {
5525 target_cpu = i;
5526 target_util = new_util;
5527 }
5528 }
5529 } else if (!prefer_idle) {
5530 if (best_idle_cpu < 0 ||
5531 (sysctl_sched_cstate_aware &&
5532 best_idle_cstate > idle_idx)) {
5533 best_idle_cstate = idle_idx;
5534 best_idle_cpu = i;
5535 }
5536 }
5537 } else if (backup_capacity == 0 ||
5538 backup_capacity > cur_capacity) {
5539 // Find a backup cpu with least capacity.
5540 backup_capacity = cur_capacity;
5541 backup_cpu = i;
5542 }
5543 }
5544
5545 if (prefer_idle && best_idle_cpu >= 0)
5546 target_cpu = best_idle_cpu;
5547 else if (target_cpu < 0)
5548 target_cpu = best_idle_cpu >= 0 ? best_idle_cpu : backup_cpu;
5549
5550 return target_cpu;
5551 }
5552
energy_aware_wake_cpu(struct task_struct * p,int target,int sync)5553 static int energy_aware_wake_cpu(struct task_struct *p, int target, int sync)
5554 {
5555 struct sched_domain *sd;
5556 struct sched_group *sg, *sg_target;
5557 int target_max_cap = INT_MAX;
5558 int target_cpu = task_cpu(p);
5559 unsigned long task_util_boosted, new_util;
5560 int i;
5561
5562 if (sysctl_sched_sync_hint_enable && sync) {
5563 int cpu = smp_processor_id();
5564 cpumask_t search_cpus;
5565 cpumask_and(&search_cpus, tsk_cpus_allowed(p), cpu_online_mask);
5566 if (cpumask_test_cpu(cpu, &search_cpus))
5567 return cpu;
5568 }
5569
5570 sd = rcu_dereference(per_cpu(sd_ea, task_cpu(p)));
5571
5572 if (!sd)
5573 return target;
5574
5575 sg = sd->groups;
5576 sg_target = sg;
5577
5578 if (sysctl_sched_is_big_little) {
5579
5580 /*
5581 * Find group with sufficient capacity. We only get here if no cpu is
5582 * overutilized. We may end up overutilizing a cpu by adding the task,
5583 * but that should not be any worse than select_idle_sibling().
5584 * load_balance() should sort it out later as we get above the tipping
5585 * point.
5586 */
5587 do {
5588 /* Assuming all cpus are the same in group */
5589 int max_cap_cpu = group_first_cpu(sg);
5590
5591 /*
5592 * Assume smaller max capacity means more energy-efficient.
5593 * Ideally we should query the energy model for the right
5594 * answer but it easily ends up in an exhaustive search.
5595 */
5596 if (capacity_of(max_cap_cpu) < target_max_cap &&
5597 task_fits_max(p, max_cap_cpu)) {
5598 sg_target = sg;
5599 target_max_cap = capacity_of(max_cap_cpu);
5600 }
5601 } while (sg = sg->next, sg != sd->groups);
5602
5603 task_util_boosted = boosted_task_util(p);
5604 /* Find cpu with sufficient capacity */
5605 for_each_cpu_and(i, tsk_cpus_allowed(p), sched_group_cpus(sg_target)) {
5606 /*
5607 * p's blocked utilization is still accounted for on prev_cpu
5608 * so prev_cpu will receive a negative bias due to the double
5609 * accounting. However, the blocked utilization may be zero.
5610 */
5611 new_util = cpu_util(i) + task_util_boosted;
5612
5613 /*
5614 * Ensure minimum capacity to grant the required boost.
5615 * The target CPU can be already at a capacity level higher
5616 * than the one required to boost the task.
5617 */
5618 if (new_util > capacity_orig_of(i))
5619 continue;
5620
5621 if (new_util < capacity_curr_of(i)) {
5622 target_cpu = i;
5623 if (cpu_rq(i)->nr_running)
5624 break;
5625 }
5626
5627 /* cpu has capacity at higher OPP, keep it as fallback */
5628 if (target_cpu == task_cpu(p))
5629 target_cpu = i;
5630 }
5631 } else {
5632 /*
5633 * Find a cpu with sufficient capacity
5634 */
5635 #ifdef CONFIG_CGROUP_SCHEDTUNE
5636 bool boosted = schedtune_task_boost(p) > 0;
5637 bool prefer_idle = schedtune_prefer_idle(p) > 0;
5638 #else
5639 bool boosted = 0;
5640 bool prefer_idle = 0;
5641 #endif
5642 int tmp_target = find_best_target(p, boosted, prefer_idle);
5643 if (tmp_target >= 0) {
5644 target_cpu = tmp_target;
5645 if ((boosted || prefer_idle) && idle_cpu(target_cpu))
5646 return target_cpu;
5647 }
5648 }
5649
5650 if (target_cpu != task_cpu(p)) {
5651 struct energy_env eenv = {
5652 .util_delta = task_util(p),
5653 .src_cpu = task_cpu(p),
5654 .dst_cpu = target_cpu,
5655 .task = p,
5656 };
5657
5658 /* Not enough spare capacity on previous cpu */
5659 if (cpu_overutilized(task_cpu(p)))
5660 return target_cpu;
5661
5662 if (energy_diff(&eenv) >= 0)
5663 return task_cpu(p);
5664 }
5665
5666 return target_cpu;
5667 }
5668
5669 /*
5670 * select_task_rq_fair: Select target runqueue for the waking task in domains
5671 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5672 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5673 *
5674 * Balances load by selecting the idlest cpu in the idlest group, or under
5675 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5676 *
5677 * Returns the target cpu number.
5678 *
5679 * preempt must be disabled.
5680 */
5681 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int sd_flag,int wake_flags)5682 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5683 {
5684 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5685 int cpu = smp_processor_id();
5686 int new_cpu = prev_cpu;
5687 int want_affine = 0;
5688 int sync = wake_flags & WF_SYNC;
5689
5690 if (p->nr_cpus_allowed == 1)
5691 return prev_cpu;
5692
5693 if (sd_flag & SD_BALANCE_WAKE)
5694 want_affine = (!wake_wide(p) && task_fits_max(p, cpu) &&
5695 cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) ||
5696 energy_aware();
5697
5698 rcu_read_lock();
5699 for_each_domain(cpu, tmp) {
5700 if (!(tmp->flags & SD_LOAD_BALANCE))
5701 break;
5702
5703 /*
5704 * If both cpu and prev_cpu are part of this domain,
5705 * cpu is a valid SD_WAKE_AFFINE target.
5706 */
5707 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5708 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5709 affine_sd = tmp;
5710 break;
5711 }
5712
5713 if (tmp->flags & sd_flag)
5714 sd = tmp;
5715 else if (!want_affine)
5716 break;
5717 }
5718
5719 if (affine_sd) {
5720 sd = NULL; /* Prefer wake_affine over balance flags */
5721 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
5722 new_cpu = cpu;
5723 }
5724
5725 if (!sd) {
5726 if (energy_aware() && !cpu_rq(cpu)->rd->overutilized)
5727 new_cpu = energy_aware_wake_cpu(p, prev_cpu, sync);
5728 else if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
5729 new_cpu = select_idle_sibling(p, new_cpu);
5730
5731 } else while (sd) {
5732 struct sched_group *group;
5733 int weight;
5734
5735 if (!(sd->flags & sd_flag)) {
5736 sd = sd->child;
5737 continue;
5738 }
5739
5740 group = find_idlest_group(sd, p, cpu, sd_flag);
5741 if (!group) {
5742 sd = sd->child;
5743 continue;
5744 }
5745
5746 new_cpu = find_idlest_cpu(group, p, cpu);
5747 if (new_cpu == -1 || new_cpu == cpu) {
5748 /* Now try balancing at a lower domain level of cpu */
5749 sd = sd->child;
5750 continue;
5751 }
5752
5753 /* Now try balancing at a lower domain level of new_cpu */
5754 cpu = new_cpu;
5755 weight = sd->span_weight;
5756 sd = NULL;
5757 for_each_domain(cpu, tmp) {
5758 if (weight <= tmp->span_weight)
5759 break;
5760 if (tmp->flags & sd_flag)
5761 sd = tmp;
5762 }
5763 /* while loop will break here if sd == NULL */
5764 }
5765 rcu_read_unlock();
5766
5767 return new_cpu;
5768 }
5769
5770 /*
5771 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5772 * cfs_rq_of(p) references at time of call are still valid and identify the
5773 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
5774 */
migrate_task_rq_fair(struct task_struct * p,int next_cpu)5775 static void migrate_task_rq_fair(struct task_struct *p, int next_cpu)
5776 {
5777 /*
5778 * We are supposed to update the task to "current" time, then its up to date
5779 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5780 * what current time is, so simply throw away the out-of-date time. This
5781 * will result in the wakee task is less decayed, but giving the wakee more
5782 * load sounds not bad.
5783 */
5784 remove_entity_load_avg(&p->se);
5785
5786 /* Tell new CPU we are migrated */
5787 p->se.avg.last_update_time = 0;
5788
5789 /* We have migrated, no longer consider this task hot */
5790 p->se.exec_start = 0;
5791 }
5792
task_dead_fair(struct task_struct * p)5793 static void task_dead_fair(struct task_struct *p)
5794 {
5795 remove_entity_load_avg(&p->se);
5796 }
5797 #else
5798 #define task_fits_max(p, cpu) true
5799 #endif /* CONFIG_SMP */
5800
5801 static unsigned long
wakeup_gran(struct sched_entity * curr,struct sched_entity * se)5802 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
5803 {
5804 unsigned long gran = sysctl_sched_wakeup_granularity;
5805
5806 /*
5807 * Since its curr running now, convert the gran from real-time
5808 * to virtual-time in his units.
5809 *
5810 * By using 'se' instead of 'curr' we penalize light tasks, so
5811 * they get preempted easier. That is, if 'se' < 'curr' then
5812 * the resulting gran will be larger, therefore penalizing the
5813 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5814 * be smaller, again penalizing the lighter task.
5815 *
5816 * This is especially important for buddies when the leftmost
5817 * task is higher priority than the buddy.
5818 */
5819 return calc_delta_fair(gran, se);
5820 }
5821
5822 /*
5823 * Should 'se' preempt 'curr'.
5824 *
5825 * |s1
5826 * |s2
5827 * |s3
5828 * g
5829 * |<--->|c
5830 *
5831 * w(c, s1) = -1
5832 * w(c, s2) = 0
5833 * w(c, s3) = 1
5834 *
5835 */
5836 static int
wakeup_preempt_entity(struct sched_entity * curr,struct sched_entity * se)5837 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5838 {
5839 s64 gran, vdiff = curr->vruntime - se->vruntime;
5840
5841 if (vdiff <= 0)
5842 return -1;
5843
5844 gran = wakeup_gran(curr, se);
5845 if (vdiff > gran)
5846 return 1;
5847
5848 return 0;
5849 }
5850
set_last_buddy(struct sched_entity * se)5851 static void set_last_buddy(struct sched_entity *se)
5852 {
5853 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5854 return;
5855
5856 for_each_sched_entity(se)
5857 cfs_rq_of(se)->last = se;
5858 }
5859
set_next_buddy(struct sched_entity * se)5860 static void set_next_buddy(struct sched_entity *se)
5861 {
5862 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5863 return;
5864
5865 for_each_sched_entity(se)
5866 cfs_rq_of(se)->next = se;
5867 }
5868
set_skip_buddy(struct sched_entity * se)5869 static void set_skip_buddy(struct sched_entity *se)
5870 {
5871 for_each_sched_entity(se)
5872 cfs_rq_of(se)->skip = se;
5873 }
5874
5875 /*
5876 * Preempt the current task with a newly woken task if needed:
5877 */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)5878 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
5879 {
5880 struct task_struct *curr = rq->curr;
5881 struct sched_entity *se = &curr->se, *pse = &p->se;
5882 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5883 int scale = cfs_rq->nr_running >= sched_nr_latency;
5884 int next_buddy_marked = 0;
5885
5886 if (unlikely(se == pse))
5887 return;
5888
5889 /*
5890 * This is possible from callers such as attach_tasks(), in which we
5891 * unconditionally check_prempt_curr() after an enqueue (which may have
5892 * lead to a throttle). This both saves work and prevents false
5893 * next-buddy nomination below.
5894 */
5895 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5896 return;
5897
5898 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
5899 set_next_buddy(pse);
5900 next_buddy_marked = 1;
5901 }
5902
5903 /*
5904 * We can come here with TIF_NEED_RESCHED already set from new task
5905 * wake up path.
5906 *
5907 * Note: this also catches the edge-case of curr being in a throttled
5908 * group (e.g. via set_curr_task), since update_curr() (in the
5909 * enqueue of curr) will have resulted in resched being set. This
5910 * prevents us from potentially nominating it as a false LAST_BUDDY
5911 * below.
5912 */
5913 if (test_tsk_need_resched(curr))
5914 return;
5915
5916 /* Idle tasks are by definition preempted by non-idle tasks. */
5917 if (unlikely(curr->policy == SCHED_IDLE) &&
5918 likely(p->policy != SCHED_IDLE))
5919 goto preempt;
5920
5921 /*
5922 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5923 * is driven by the tick):
5924 */
5925 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
5926 return;
5927
5928 find_matching_se(&se, &pse);
5929 update_curr(cfs_rq_of(se));
5930 BUG_ON(!pse);
5931 if (wakeup_preempt_entity(se, pse) == 1) {
5932 /*
5933 * Bias pick_next to pick the sched entity that is
5934 * triggering this preemption.
5935 */
5936 if (!next_buddy_marked)
5937 set_next_buddy(pse);
5938 goto preempt;
5939 }
5940
5941 return;
5942
5943 preempt:
5944 resched_curr(rq);
5945 /*
5946 * Only set the backward buddy when the current task is still
5947 * on the rq. This can happen when a wakeup gets interleaved
5948 * with schedule on the ->pre_schedule() or idle_balance()
5949 * point, either of which can * drop the rq lock.
5950 *
5951 * Also, during early boot the idle thread is in the fair class,
5952 * for obvious reasons its a bad idea to schedule back to it.
5953 */
5954 if (unlikely(!se->on_rq || curr == rq->idle))
5955 return;
5956
5957 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5958 set_last_buddy(se);
5959 }
5960
5961 static struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev)5962 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5963 {
5964 struct cfs_rq *cfs_rq = &rq->cfs;
5965 struct sched_entity *se;
5966 struct task_struct *p;
5967 int new_tasks;
5968
5969 again:
5970 #ifdef CONFIG_FAIR_GROUP_SCHED
5971 if (!cfs_rq->nr_running)
5972 goto idle;
5973
5974 if (prev->sched_class != &fair_sched_class)
5975 goto simple;
5976
5977 /*
5978 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5979 * likely that a next task is from the same cgroup as the current.
5980 *
5981 * Therefore attempt to avoid putting and setting the entire cgroup
5982 * hierarchy, only change the part that actually changes.
5983 */
5984
5985 do {
5986 struct sched_entity *curr = cfs_rq->curr;
5987
5988 /*
5989 * Since we got here without doing put_prev_entity() we also
5990 * have to consider cfs_rq->curr. If it is still a runnable
5991 * entity, update_curr() will update its vruntime, otherwise
5992 * forget we've ever seen it.
5993 */
5994 if (curr) {
5995 if (curr->on_rq)
5996 update_curr(cfs_rq);
5997 else
5998 curr = NULL;
5999
6000 /*
6001 * This call to check_cfs_rq_runtime() will do the
6002 * throttle and dequeue its entity in the parent(s).
6003 * Therefore the 'simple' nr_running test will indeed
6004 * be correct.
6005 */
6006 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
6007 goto simple;
6008 }
6009
6010 se = pick_next_entity(cfs_rq, curr);
6011 cfs_rq = group_cfs_rq(se);
6012 } while (cfs_rq);
6013
6014 p = task_of(se);
6015
6016 /*
6017 * Since we haven't yet done put_prev_entity and if the selected task
6018 * is a different task than we started out with, try and touch the
6019 * least amount of cfs_rqs.
6020 */
6021 if (prev != p) {
6022 struct sched_entity *pse = &prev->se;
6023
6024 while (!(cfs_rq = is_same_group(se, pse))) {
6025 int se_depth = se->depth;
6026 int pse_depth = pse->depth;
6027
6028 if (se_depth <= pse_depth) {
6029 put_prev_entity(cfs_rq_of(pse), pse);
6030 pse = parent_entity(pse);
6031 }
6032 if (se_depth >= pse_depth) {
6033 set_next_entity(cfs_rq_of(se), se);
6034 se = parent_entity(se);
6035 }
6036 }
6037
6038 put_prev_entity(cfs_rq, pse);
6039 set_next_entity(cfs_rq, se);
6040 }
6041
6042 if (hrtick_enabled(rq))
6043 hrtick_start_fair(rq, p);
6044
6045 rq->misfit_task = !task_fits_max(p, rq->cpu);
6046
6047 return p;
6048 simple:
6049 cfs_rq = &rq->cfs;
6050 #endif
6051
6052 if (!cfs_rq->nr_running)
6053 goto idle;
6054
6055 put_prev_task(rq, prev);
6056
6057 do {
6058 se = pick_next_entity(cfs_rq, NULL);
6059 set_next_entity(cfs_rq, se);
6060 cfs_rq = group_cfs_rq(se);
6061 } while (cfs_rq);
6062
6063 p = task_of(se);
6064
6065 if (hrtick_enabled(rq))
6066 hrtick_start_fair(rq, p);
6067
6068 rq->misfit_task = !task_fits_max(p, rq->cpu);
6069
6070 return p;
6071
6072 idle:
6073 rq->misfit_task = 0;
6074
6075 new_tasks = idle_balance(rq);
6076 /*
6077 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6078 * possible for any higher priority task to appear. In that case we
6079 * must re-start the pick_next_entity() loop.
6080 */
6081 if (new_tasks < 0)
6082 return RETRY_TASK;
6083
6084 if (new_tasks > 0)
6085 goto again;
6086
6087 return NULL;
6088 }
6089
6090 /*
6091 * Account for a descheduled task:
6092 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)6093 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6094 {
6095 struct sched_entity *se = &prev->se;
6096 struct cfs_rq *cfs_rq;
6097
6098 for_each_sched_entity(se) {
6099 cfs_rq = cfs_rq_of(se);
6100 put_prev_entity(cfs_rq, se);
6101 }
6102 }
6103
6104 /*
6105 * sched_yield() is very simple
6106 *
6107 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6108 */
yield_task_fair(struct rq * rq)6109 static void yield_task_fair(struct rq *rq)
6110 {
6111 struct task_struct *curr = rq->curr;
6112 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6113 struct sched_entity *se = &curr->se;
6114
6115 /*
6116 * Are we the only task in the tree?
6117 */
6118 if (unlikely(rq->nr_running == 1))
6119 return;
6120
6121 clear_buddies(cfs_rq, se);
6122
6123 if (curr->policy != SCHED_BATCH) {
6124 update_rq_clock(rq);
6125 /*
6126 * Update run-time statistics of the 'current'.
6127 */
6128 update_curr(cfs_rq);
6129 /*
6130 * Tell update_rq_clock() that we've just updated,
6131 * so we don't do microscopic update in schedule()
6132 * and double the fastpath cost.
6133 */
6134 rq->skip_clock_update = 1;
6135 }
6136
6137 set_skip_buddy(se);
6138 }
6139
yield_to_task_fair(struct rq * rq,struct task_struct * p,bool preempt)6140 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6141 {
6142 struct sched_entity *se = &p->se;
6143
6144 /* throttled hierarchies are not runnable */
6145 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6146 return false;
6147
6148 /* Tell the scheduler that we'd really like pse to run next. */
6149 set_next_buddy(se);
6150
6151 yield_task_fair(rq);
6152
6153 return true;
6154 }
6155
6156 #ifdef CONFIG_SMP
6157 /**************************************************
6158 * Fair scheduling class load-balancing methods.
6159 *
6160 * BASICS
6161 *
6162 * The purpose of load-balancing is to achieve the same basic fairness the
6163 * per-cpu scheduler provides, namely provide a proportional amount of compute
6164 * time to each task. This is expressed in the following equation:
6165 *
6166 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
6167 *
6168 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6169 * W_i,0 is defined as:
6170 *
6171 * W_i,0 = \Sum_j w_i,j (2)
6172 *
6173 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6174 * is derived from the nice value as per prio_to_weight[].
6175 *
6176 * The weight average is an exponential decay average of the instantaneous
6177 * weight:
6178 *
6179 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
6180 *
6181 * C_i is the compute capacity of cpu i, typically it is the
6182 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6183 * can also include other factors [XXX].
6184 *
6185 * To achieve this balance we define a measure of imbalance which follows
6186 * directly from (1):
6187 *
6188 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
6189 *
6190 * We them move tasks around to minimize the imbalance. In the continuous
6191 * function space it is obvious this converges, in the discrete case we get
6192 * a few fun cases generally called infeasible weight scenarios.
6193 *
6194 * [XXX expand on:
6195 * - infeasible weights;
6196 * - local vs global optima in the discrete case. ]
6197 *
6198 *
6199 * SCHED DOMAINS
6200 *
6201 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6202 * for all i,j solution, we create a tree of cpus that follows the hardware
6203 * topology where each level pairs two lower groups (or better). This results
6204 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6205 * tree to only the first of the previous level and we decrease the frequency
6206 * of load-balance at each level inv. proportional to the number of cpus in
6207 * the groups.
6208 *
6209 * This yields:
6210 *
6211 * log_2 n 1 n
6212 * \Sum { --- * --- * 2^i } = O(n) (5)
6213 * i = 0 2^i 2^i
6214 * `- size of each group
6215 * | | `- number of cpus doing load-balance
6216 * | `- freq
6217 * `- sum over all levels
6218 *
6219 * Coupled with a limit on how many tasks we can migrate every balance pass,
6220 * this makes (5) the runtime complexity of the balancer.
6221 *
6222 * An important property here is that each CPU is still (indirectly) connected
6223 * to every other cpu in at most O(log n) steps:
6224 *
6225 * The adjacency matrix of the resulting graph is given by:
6226 *
6227 * log_2 n
6228 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
6229 * k = 0
6230 *
6231 * And you'll find that:
6232 *
6233 * A^(log_2 n)_i,j != 0 for all i,j (7)
6234 *
6235 * Showing there's indeed a path between every cpu in at most O(log n) steps.
6236 * The task movement gives a factor of O(m), giving a convergence complexity
6237 * of:
6238 *
6239 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
6240 *
6241 *
6242 * WORK CONSERVING
6243 *
6244 * In order to avoid CPUs going idle while there's still work to do, new idle
6245 * balancing is more aggressive and has the newly idle cpu iterate up the domain
6246 * tree itself instead of relying on other CPUs to bring it work.
6247 *
6248 * This adds some complexity to both (5) and (8) but it reduces the total idle
6249 * time.
6250 *
6251 * [XXX more?]
6252 *
6253 *
6254 * CGROUPS
6255 *
6256 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6257 *
6258 * s_k,i
6259 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6260 * S_k
6261 *
6262 * Where
6263 *
6264 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6265 *
6266 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6267 *
6268 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6269 * property.
6270 *
6271 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6272 * rewrite all of this once again.]
6273 */
6274
6275 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6276
6277 enum fbq_type { regular, remote, all };
6278
6279 enum group_type {
6280 group_other = 0,
6281 group_misfit_task,
6282 group_imbalanced,
6283 group_overloaded,
6284 };
6285
6286 #define LBF_ALL_PINNED 0x01
6287 #define LBF_NEED_BREAK 0x02
6288 #define LBF_DST_PINNED 0x04
6289 #define LBF_SOME_PINNED 0x08
6290
6291 struct lb_env {
6292 struct sched_domain *sd;
6293
6294 struct rq *src_rq;
6295 int src_cpu;
6296
6297 int dst_cpu;
6298 struct rq *dst_rq;
6299
6300 struct cpumask *dst_grpmask;
6301 int new_dst_cpu;
6302 enum cpu_idle_type idle;
6303 long imbalance;
6304 unsigned int src_grp_nr_running;
6305 /* The set of CPUs under consideration for load-balancing */
6306 struct cpumask *cpus;
6307
6308 unsigned int flags;
6309
6310 unsigned int loop;
6311 unsigned int loop_break;
6312 unsigned int loop_max;
6313
6314 enum fbq_type fbq_type;
6315 enum group_type busiest_group_type;
6316 struct list_head tasks;
6317 };
6318
6319 /*
6320 * Is this task likely cache-hot:
6321 */
task_hot(struct task_struct * p,struct lb_env * env)6322 static int task_hot(struct task_struct *p, struct lb_env *env)
6323 {
6324 s64 delta;
6325
6326 lockdep_assert_held(&env->src_rq->lock);
6327
6328 if (p->sched_class != &fair_sched_class)
6329 return 0;
6330
6331 if (unlikely(p->policy == SCHED_IDLE))
6332 return 0;
6333
6334 /*
6335 * Buddy candidates are cache hot:
6336 */
6337 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6338 (&p->se == cfs_rq_of(&p->se)->next ||
6339 &p->se == cfs_rq_of(&p->se)->last))
6340 return 1;
6341
6342 if (sysctl_sched_migration_cost == -1)
6343 return 1;
6344 if (sysctl_sched_migration_cost == 0)
6345 return 0;
6346
6347 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6348
6349 return delta < (s64)sysctl_sched_migration_cost;
6350 }
6351
6352 #ifdef CONFIG_NUMA_BALANCING
6353 /* Returns true if the destination node has incurred more faults */
migrate_improves_locality(struct task_struct * p,struct lb_env * env)6354 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
6355 {
6356 struct numa_group *numa_group = rcu_dereference(p->numa_group);
6357 int src_nid, dst_nid;
6358
6359 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
6360 !(env->sd->flags & SD_NUMA)) {
6361 return false;
6362 }
6363
6364 src_nid = cpu_to_node(env->src_cpu);
6365 dst_nid = cpu_to_node(env->dst_cpu);
6366
6367 if (src_nid == dst_nid)
6368 return false;
6369
6370 if (numa_group) {
6371 /* Task is already in the group's interleave set. */
6372 if (node_isset(src_nid, numa_group->active_nodes))
6373 return false;
6374
6375 /* Task is moving into the group's interleave set. */
6376 if (node_isset(dst_nid, numa_group->active_nodes))
6377 return true;
6378
6379 return group_faults(p, dst_nid) > group_faults(p, src_nid);
6380 }
6381
6382 /* Encourage migration to the preferred node. */
6383 if (dst_nid == p->numa_preferred_nid)
6384 return true;
6385
6386 return task_faults(p, dst_nid) > task_faults(p, src_nid);
6387 }
6388
6389
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)6390 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6391 {
6392 struct numa_group *numa_group = rcu_dereference(p->numa_group);
6393 int src_nid, dst_nid;
6394
6395 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
6396 return false;
6397
6398 if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
6399 return false;
6400
6401 src_nid = cpu_to_node(env->src_cpu);
6402 dst_nid = cpu_to_node(env->dst_cpu);
6403
6404 if (src_nid == dst_nid)
6405 return false;
6406
6407 if (numa_group) {
6408 /* Task is moving within/into the group's interleave set. */
6409 if (node_isset(dst_nid, numa_group->active_nodes))
6410 return false;
6411
6412 /* Task is moving out of the group's interleave set. */
6413 if (node_isset(src_nid, numa_group->active_nodes))
6414 return true;
6415
6416 return group_faults(p, dst_nid) < group_faults(p, src_nid);
6417 }
6418
6419 /* Migrating away from the preferred node is always bad. */
6420 if (src_nid == p->numa_preferred_nid)
6421 return true;
6422
6423 return task_faults(p, dst_nid) < task_faults(p, src_nid);
6424 }
6425
6426 #else
migrate_improves_locality(struct task_struct * p,struct lb_env * env)6427 static inline bool migrate_improves_locality(struct task_struct *p,
6428 struct lb_env *env)
6429 {
6430 return false;
6431 }
6432
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)6433 static inline bool migrate_degrades_locality(struct task_struct *p,
6434 struct lb_env *env)
6435 {
6436 return false;
6437 }
6438 #endif
6439
6440 /*
6441 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6442 */
6443 static
can_migrate_task(struct task_struct * p,struct lb_env * env)6444 int can_migrate_task(struct task_struct *p, struct lb_env *env)
6445 {
6446 int tsk_cache_hot = 0;
6447
6448 lockdep_assert_held(&env->src_rq->lock);
6449
6450 /*
6451 * We do not migrate tasks that are:
6452 * 1) throttled_lb_pair, or
6453 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6454 * 3) running (obviously), or
6455 * 4) are cache-hot on their current CPU.
6456 */
6457 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6458 return 0;
6459
6460 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
6461 int cpu;
6462
6463 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
6464
6465 env->flags |= LBF_SOME_PINNED;
6466
6467 /*
6468 * Remember if this task can be migrated to any other cpu in
6469 * our sched_group. We may want to revisit it if we couldn't
6470 * meet load balance goals by pulling other tasks on src_cpu.
6471 *
6472 * Also avoid computing new_dst_cpu if we have already computed
6473 * one in current iteration.
6474 */
6475 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6476 return 0;
6477
6478 /* Prevent to re-select dst_cpu via env's cpus */
6479 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6480 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6481 env->flags |= LBF_DST_PINNED;
6482 env->new_dst_cpu = cpu;
6483 break;
6484 }
6485 }
6486
6487 return 0;
6488 }
6489
6490 /* Record that we found atleast one task that could run on dst_cpu */
6491 env->flags &= ~LBF_ALL_PINNED;
6492
6493 if (task_running(env->src_rq, p)) {
6494 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
6495 return 0;
6496 }
6497
6498 /*
6499 * Aggressive migration if:
6500 * 1) destination numa is preferred
6501 * 2) task is cache cold, or
6502 * 3) too many balance attempts have failed.
6503 */
6504 tsk_cache_hot = task_hot(p, env);
6505 if (!tsk_cache_hot)
6506 tsk_cache_hot = migrate_degrades_locality(p, env);
6507
6508 if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
6509 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6510 if (tsk_cache_hot) {
6511 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
6512 schedstat_inc(p, se.statistics.nr_forced_migrations);
6513 }
6514 return 1;
6515 }
6516
6517 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
6518 return 0;
6519 }
6520
6521 /*
6522 * detach_task() -- detach the task for the migration specified in env
6523 */
detach_task(struct task_struct * p,struct lb_env * env)6524 static void detach_task(struct task_struct *p, struct lb_env *env)
6525 {
6526 lockdep_assert_held(&env->src_rq->lock);
6527
6528 deactivate_task(env->src_rq, p, 0);
6529 p->on_rq = TASK_ON_RQ_MIGRATING;
6530 double_lock_balance(env->src_rq, env->dst_rq);
6531 set_task_cpu(p, env->dst_cpu);
6532 double_unlock_balance(env->src_rq, env->dst_rq);
6533 }
6534
6535 /*
6536 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6537 * part of active balancing operations within "domain".
6538 *
6539 * Returns a task if successful and NULL otherwise.
6540 */
detach_one_task(struct lb_env * env)6541 static struct task_struct *detach_one_task(struct lb_env *env)
6542 {
6543 struct task_struct *p, *n;
6544
6545 lockdep_assert_held(&env->src_rq->lock);
6546
6547 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6548 if (!can_migrate_task(p, env))
6549 continue;
6550
6551 detach_task(p, env);
6552
6553 /*
6554 * Right now, this is only the second place where
6555 * lb_gained[env->idle] is updated (other is detach_tasks)
6556 * so we can safely collect stats here rather than
6557 * inside detach_tasks().
6558 */
6559 schedstat_inc(env->sd, lb_gained[env->idle]);
6560 return p;
6561 }
6562 return NULL;
6563 }
6564
6565 static const unsigned int sched_nr_migrate_break = 32;
6566
6567 /*
6568 * detach_tasks() -- tries to detach up to imbalance weighted load from
6569 * busiest_rq, as part of a balancing operation within domain "sd".
6570 *
6571 * Returns number of detached tasks if successful and 0 otherwise.
6572 */
detach_tasks(struct lb_env * env)6573 static int detach_tasks(struct lb_env *env)
6574 {
6575 struct list_head *tasks = &env->src_rq->cfs_tasks;
6576 struct task_struct *p;
6577 unsigned long load;
6578 int detached = 0;
6579
6580 lockdep_assert_held(&env->src_rq->lock);
6581
6582 if (env->imbalance <= 0)
6583 return 0;
6584
6585 while (!list_empty(tasks)) {
6586 /*
6587 * We don't want to steal all, otherwise we may be treated likewise,
6588 * which could at worst lead to a livelock crash.
6589 */
6590 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6591 break;
6592
6593 p = list_first_entry(tasks, struct task_struct, se.group_node);
6594
6595 env->loop++;
6596 /* We've more or less seen every task there is, call it quits */
6597 if (env->loop > env->loop_max)
6598 break;
6599
6600 /* take a breather every nr_migrate tasks */
6601 if (env->loop > env->loop_break) {
6602 env->loop_break += sched_nr_migrate_break;
6603 env->flags |= LBF_NEED_BREAK;
6604 break;
6605 }
6606
6607 if (!can_migrate_task(p, env))
6608 goto next;
6609
6610 load = task_h_load(p);
6611
6612 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6613 goto next;
6614
6615 if ((load / 2) > env->imbalance)
6616 goto next;
6617
6618 detach_task(p, env);
6619 list_add(&p->se.group_node, &env->tasks);
6620
6621 detached++;
6622 env->imbalance -= load;
6623
6624 #ifdef CONFIG_PREEMPT
6625 /*
6626 * NEWIDLE balancing is a source of latency, so preemptible
6627 * kernels will stop after the first task is detached to minimize
6628 * the critical section.
6629 */
6630 if (env->idle == CPU_NEWLY_IDLE)
6631 break;
6632 #endif
6633
6634 /*
6635 * We only want to steal up to the prescribed amount of
6636 * weighted load.
6637 */
6638 if (env->imbalance <= 0)
6639 break;
6640
6641 continue;
6642 next:
6643 list_move_tail(&p->se.group_node, tasks);
6644 }
6645
6646 /*
6647 * Right now, this is one of only two places we collect this stat
6648 * so we can safely collect detach_one_task() stats here rather
6649 * than inside detach_one_task().
6650 */
6651 schedstat_add(env->sd, lb_gained[env->idle], detached);
6652
6653 return detached;
6654 }
6655
6656 /*
6657 * attach_task() -- attach the task detached by detach_task() to its new rq.
6658 */
attach_task(struct rq * rq,struct task_struct * p)6659 static void attach_task(struct rq *rq, struct task_struct *p)
6660 {
6661 lockdep_assert_held(&rq->lock);
6662
6663 BUG_ON(task_rq(p) != rq);
6664 p->on_rq = TASK_ON_RQ_QUEUED;
6665 activate_task(rq, p, 0);
6666 check_preempt_curr(rq, p, 0);
6667 }
6668
6669 /*
6670 * attach_one_task() -- attaches the task returned from detach_one_task() to
6671 * its new rq.
6672 */
attach_one_task(struct rq * rq,struct task_struct * p)6673 static void attach_one_task(struct rq *rq, struct task_struct *p)
6674 {
6675 raw_spin_lock(&rq->lock);
6676 attach_task(rq, p);
6677 /*
6678 * We want to potentially raise target_cpu's OPP.
6679 */
6680 update_capacity_of(cpu_of(rq));
6681 raw_spin_unlock(&rq->lock);
6682 }
6683
6684 /*
6685 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6686 * new rq.
6687 */
attach_tasks(struct lb_env * env)6688 static void attach_tasks(struct lb_env *env)
6689 {
6690 struct list_head *tasks = &env->tasks;
6691 struct task_struct *p;
6692
6693 raw_spin_lock(&env->dst_rq->lock);
6694
6695 while (!list_empty(tasks)) {
6696 p = list_first_entry(tasks, struct task_struct, se.group_node);
6697 list_del_init(&p->se.group_node);
6698
6699 attach_task(env->dst_rq, p);
6700 }
6701
6702 /*
6703 * We want to potentially raise env.dst_cpu's OPP.
6704 */
6705 update_capacity_of(env->dst_cpu);
6706
6707 raw_spin_unlock(&env->dst_rq->lock);
6708 }
6709
6710 #ifdef CONFIG_FAIR_GROUP_SCHED
update_blocked_averages(int cpu)6711 static void update_blocked_averages(int cpu)
6712 {
6713 struct rq *rq = cpu_rq(cpu);
6714 struct cfs_rq *cfs_rq;
6715 unsigned long flags;
6716
6717 raw_spin_lock_irqsave(&rq->lock, flags);
6718 update_rq_clock(rq);
6719
6720 /*
6721 * Iterates the task_group tree in a bottom up fashion, see
6722 * list_add_leaf_cfs_rq() for details.
6723 */
6724 for_each_leaf_cfs_rq(rq, cfs_rq) {
6725 /* throttled entities do not contribute to load */
6726 if (throttled_hierarchy(cfs_rq))
6727 continue;
6728
6729 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
6730 update_tg_load_avg(cfs_rq, 0);
6731 }
6732 raw_spin_unlock_irqrestore(&rq->lock, flags);
6733 }
6734
6735 /*
6736 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
6737 * This needs to be done in a top-down fashion because the load of a child
6738 * group is a fraction of its parents load.
6739 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)6740 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
6741 {
6742 struct rq *rq = rq_of(cfs_rq);
6743 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6744 unsigned long now = jiffies;
6745 unsigned long load;
6746
6747 if (cfs_rq->last_h_load_update == now)
6748 return;
6749
6750 cfs_rq->h_load_next = NULL;
6751 for_each_sched_entity(se) {
6752 cfs_rq = cfs_rq_of(se);
6753 cfs_rq->h_load_next = se;
6754 if (cfs_rq->last_h_load_update == now)
6755 break;
6756 }
6757
6758 if (!se) {
6759 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
6760 cfs_rq->last_h_load_update = now;
6761 }
6762
6763 while ((se = cfs_rq->h_load_next) != NULL) {
6764 load = cfs_rq->h_load;
6765 load = div64_ul(load * se->avg.load_avg,
6766 cfs_rq_load_avg(cfs_rq) + 1);
6767 cfs_rq = group_cfs_rq(se);
6768 cfs_rq->h_load = load;
6769 cfs_rq->last_h_load_update = now;
6770 }
6771 }
6772
task_h_load(struct task_struct * p)6773 static unsigned long task_h_load(struct task_struct *p)
6774 {
6775 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6776
6777 update_cfs_rq_h_load(cfs_rq);
6778 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
6779 cfs_rq_load_avg(cfs_rq) + 1);
6780 }
6781 #else
update_blocked_averages(int cpu)6782 static inline void update_blocked_averages(int cpu)
6783 {
6784 struct rq *rq = cpu_rq(cpu);
6785 struct cfs_rq *cfs_rq = &rq->cfs;
6786 unsigned long flags;
6787
6788 raw_spin_lock_irqsave(&rq->lock, flags);
6789 update_rq_clock(rq);
6790 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
6791 raw_spin_unlock_irqrestore(&rq->lock, flags);
6792 }
6793
task_h_load(struct task_struct * p)6794 static unsigned long task_h_load(struct task_struct *p)
6795 {
6796 return p->se.avg.load_avg;
6797 }
6798 #endif
6799
6800 /********** Helpers for find_busiest_group ************************/
6801
6802 /*
6803 * sg_lb_stats - stats of a sched_group required for load_balancing
6804 */
6805 struct sg_lb_stats {
6806 unsigned long avg_load; /*Avg load across the CPUs of the group */
6807 unsigned long group_load; /* Total load over the CPUs of the group */
6808 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
6809 unsigned long load_per_task;
6810 unsigned long group_capacity;
6811 unsigned long group_util; /* Total utilization of the group */
6812 unsigned int sum_nr_running; /* Nr tasks running in the group */
6813 unsigned int idle_cpus;
6814 unsigned int group_weight;
6815 enum group_type group_type;
6816 int group_no_capacity;
6817 int group_misfit_task; /* A cpu has a task too big for its capacity */
6818 #ifdef CONFIG_NUMA_BALANCING
6819 unsigned int nr_numa_running;
6820 unsigned int nr_preferred_running;
6821 #endif
6822 };
6823
6824 /*
6825 * sd_lb_stats - Structure to store the statistics of a sched_domain
6826 * during load balancing.
6827 */
6828 struct sd_lb_stats {
6829 struct sched_group *busiest; /* Busiest group in this sd */
6830 struct sched_group *local; /* Local group in this sd */
6831 unsigned long total_load; /* Total load of all groups in sd */
6832 unsigned long total_capacity; /* Total capacity of all groups in sd */
6833 unsigned long avg_load; /* Average load across all groups in sd */
6834
6835 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
6836 struct sg_lb_stats local_stat; /* Statistics of the local group */
6837 };
6838
init_sd_lb_stats(struct sd_lb_stats * sds)6839 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6840 {
6841 /*
6842 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6843 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6844 * We must however clear busiest_stat::avg_load because
6845 * update_sd_pick_busiest() reads this before assignment.
6846 */
6847 *sds = (struct sd_lb_stats){
6848 .busiest = NULL,
6849 .local = NULL,
6850 .total_load = 0UL,
6851 .total_capacity = 0UL,
6852 .busiest_stat = {
6853 .avg_load = 0UL,
6854 .sum_nr_running = 0,
6855 .group_type = group_other,
6856 },
6857 };
6858 }
6859
6860 /**
6861 * get_sd_load_idx - Obtain the load index for a given sched domain.
6862 * @sd: The sched_domain whose load_idx is to be obtained.
6863 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
6864 *
6865 * Return: The load index.
6866 */
get_sd_load_idx(struct sched_domain * sd,enum cpu_idle_type idle)6867 static inline int get_sd_load_idx(struct sched_domain *sd,
6868 enum cpu_idle_type idle)
6869 {
6870 int load_idx;
6871
6872 switch (idle) {
6873 case CPU_NOT_IDLE:
6874 load_idx = sd->busy_idx;
6875 break;
6876
6877 case CPU_NEWLY_IDLE:
6878 load_idx = sd->newidle_idx;
6879 break;
6880 default:
6881 load_idx = sd->idle_idx;
6882 break;
6883 }
6884
6885 return load_idx;
6886 }
6887
scale_rt_capacity(int cpu)6888 static unsigned long scale_rt_capacity(int cpu)
6889 {
6890 struct rq *rq = cpu_rq(cpu);
6891 u64 total, used, age_stamp, avg;
6892 s64 delta;
6893
6894 /*
6895 * Since we're reading these variables without serialization make sure
6896 * we read them once before doing sanity checks on them.
6897 */
6898 age_stamp = READ_ONCE(rq->age_stamp);
6899 avg = READ_ONCE(rq->rt_avg);
6900 delta = __rq_clock_broken(rq) - age_stamp;
6901
6902 if (unlikely(delta < 0))
6903 delta = 0;
6904
6905 total = sched_avg_period() + delta;
6906
6907 used = div_u64(avg, total);
6908
6909 /*
6910 * deadline bandwidth is defined at system level so we must
6911 * weight this bandwidth with the max capacity of the system.
6912 * As a reminder, avg_bw is 20bits width and
6913 * scale_cpu_capacity is 10 bits width
6914 */
6915 used += div_u64(rq->dl.avg_bw, arch_scale_cpu_capacity(NULL, cpu));
6916
6917 if (likely(used < SCHED_CAPACITY_SCALE))
6918 return SCHED_CAPACITY_SCALE - used;
6919
6920 return 1;
6921 }
6922
init_max_cpu_capacity(struct max_cpu_capacity * mcc)6923 void init_max_cpu_capacity(struct max_cpu_capacity *mcc)
6924 {
6925 raw_spin_lock_init(&mcc->lock);
6926 mcc->val = 0;
6927 mcc->cpu = -1;
6928 }
6929
update_cpu_capacity(struct sched_domain * sd,int cpu)6930 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
6931 {
6932 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
6933 struct sched_group *sdg = sd->groups;
6934 struct max_cpu_capacity *mcc;
6935 unsigned long max_capacity;
6936 int max_cap_cpu;
6937 unsigned long flags;
6938
6939 cpu_rq(cpu)->cpu_capacity_orig = capacity;
6940
6941 mcc = &cpu_rq(cpu)->rd->max_cpu_capacity;
6942
6943 raw_spin_lock_irqsave(&mcc->lock, flags);
6944 max_capacity = mcc->val;
6945 max_cap_cpu = mcc->cpu;
6946
6947 if ((max_capacity > capacity && max_cap_cpu == cpu) ||
6948 (max_capacity < capacity)) {
6949 mcc->val = capacity;
6950 mcc->cpu = cpu;
6951 #ifdef CONFIG_SCHED_DEBUG
6952 raw_spin_unlock_irqrestore(&mcc->lock, flags);
6953 pr_info("CPU%d: update max cpu_capacity %lu\n", cpu, capacity);
6954 goto skip_unlock;
6955 #endif
6956 }
6957 raw_spin_unlock_irqrestore(&mcc->lock, flags);
6958
6959 skip_unlock: __attribute__ ((unused));
6960 capacity *= scale_rt_capacity(cpu);
6961 capacity >>= SCHED_CAPACITY_SHIFT;
6962
6963 if (!capacity)
6964 capacity = 1;
6965
6966 cpu_rq(cpu)->cpu_capacity = capacity;
6967 sdg->sgc->capacity = capacity;
6968 sdg->sgc->max_capacity = capacity;
6969 }
6970
update_group_capacity(struct sched_domain * sd,int cpu)6971 void update_group_capacity(struct sched_domain *sd, int cpu)
6972 {
6973 struct sched_domain *child = sd->child;
6974 struct sched_group *group, *sdg = sd->groups;
6975 unsigned long capacity, max_capacity;
6976 unsigned long interval;
6977
6978 interval = msecs_to_jiffies(sd->balance_interval);
6979 interval = clamp(interval, 1UL, max_load_balance_interval);
6980 sdg->sgc->next_update = jiffies + interval;
6981
6982 if (!child) {
6983 update_cpu_capacity(sd, cpu);
6984 return;
6985 }
6986
6987 capacity = 0;
6988 max_capacity = 0;
6989
6990 if (child->flags & SD_OVERLAP) {
6991 /*
6992 * SD_OVERLAP domains cannot assume that child groups
6993 * span the current group.
6994 */
6995
6996 for_each_cpu(cpu, sched_group_cpus(sdg)) {
6997 struct sched_group_capacity *sgc;
6998 struct rq *rq = cpu_rq(cpu);
6999
7000 /*
7001 * build_sched_domains() -> init_sched_groups_capacity()
7002 * gets here before we've attached the domains to the
7003 * runqueues.
7004 *
7005 * Use capacity_of(), which is set irrespective of domains
7006 * in update_cpu_capacity().
7007 *
7008 * This avoids capacity from being 0 and
7009 * causing divide-by-zero issues on boot.
7010 */
7011 if (unlikely(!rq->sd)) {
7012 capacity += capacity_of(cpu);
7013 } else {
7014 sgc = rq->sd->groups->sgc;
7015 capacity += sgc->capacity;
7016 }
7017
7018 max_capacity = max(capacity, max_capacity);
7019 }
7020 } else {
7021 /*
7022 * !SD_OVERLAP domains can assume that child groups
7023 * span the current group.
7024 */
7025
7026 group = child->groups;
7027 do {
7028 struct sched_group_capacity *sgc = group->sgc;
7029
7030 capacity += sgc->capacity;
7031 max_capacity = max(sgc->max_capacity, max_capacity);
7032 group = group->next;
7033 } while (group != child->groups);
7034 }
7035
7036 sdg->sgc->capacity = capacity;
7037 sdg->sgc->max_capacity = max_capacity;
7038 }
7039
7040 /*
7041 * Check whether the capacity of the rq has been noticeably reduced by side
7042 * activity. The imbalance_pct is used for the threshold.
7043 * Return true is the capacity is reduced
7044 */
7045 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)7046 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7047 {
7048 return ((rq->cpu_capacity * sd->imbalance_pct) <
7049 (rq->cpu_capacity_orig * 100));
7050 }
7051
7052 /*
7053 * Group imbalance indicates (and tries to solve) the problem where balancing
7054 * groups is inadequate due to tsk_cpus_allowed() constraints.
7055 *
7056 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7057 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7058 * Something like:
7059 *
7060 * { 0 1 2 3 } { 4 5 6 7 }
7061 * * * * *
7062 *
7063 * If we were to balance group-wise we'd place two tasks in the first group and
7064 * two tasks in the second group. Clearly this is undesired as it will overload
7065 * cpu 3 and leave one of the cpus in the second group unused.
7066 *
7067 * The current solution to this issue is detecting the skew in the first group
7068 * by noticing the lower domain failed to reach balance and had difficulty
7069 * moving tasks due to affinity constraints.
7070 *
7071 * When this is so detected; this group becomes a candidate for busiest; see
7072 * update_sd_pick_busiest(). And calculate_imbalance() and
7073 * find_busiest_group() avoid some of the usual balance conditions to allow it
7074 * to create an effective group imbalance.
7075 *
7076 * This is a somewhat tricky proposition since the next run might not find the
7077 * group imbalance and decide the groups need to be balanced again. A most
7078 * subtle and fragile situation.
7079 */
7080
sg_imbalanced(struct sched_group * group)7081 static inline int sg_imbalanced(struct sched_group *group)
7082 {
7083 return group->sgc->imbalance;
7084 }
7085
7086 /*
7087 * group_has_capacity returns true if the group has spare capacity that could
7088 * be used by some tasks.
7089 * We consider that a group has spare capacity if the * number of task is
7090 * smaller than the number of CPUs or if the utilization is lower than the
7091 * available capacity for CFS tasks.
7092 * For the latter, we use a threshold to stabilize the state, to take into
7093 * account the variance of the tasks' load and to return true if the available
7094 * capacity in meaningful for the load balancer.
7095 * As an example, an available capacity of 1% can appear but it doesn't make
7096 * any benefit for the load balance.
7097 */
7098 static inline bool
group_has_capacity(struct lb_env * env,struct sg_lb_stats * sgs)7099 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7100 {
7101 if (sgs->sum_nr_running < sgs->group_weight)
7102 return true;
7103
7104 if ((sgs->group_capacity * 100) >
7105 (sgs->group_util * env->sd->imbalance_pct))
7106 return true;
7107
7108 return false;
7109 }
7110
7111 /*
7112 * group_is_overloaded returns true if the group has more tasks than it can
7113 * handle.
7114 * group_is_overloaded is not equals to !group_has_capacity because a group
7115 * with the exact right number of tasks, has no more spare capacity but is not
7116 * overloaded so both group_has_capacity and group_is_overloaded return
7117 * false.
7118 */
7119 static inline bool
group_is_overloaded(struct lb_env * env,struct sg_lb_stats * sgs)7120 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7121 {
7122 if (sgs->sum_nr_running <= sgs->group_weight)
7123 return false;
7124
7125 if ((sgs->group_capacity * 100) <
7126 (sgs->group_util * env->sd->imbalance_pct))
7127 return true;
7128
7129 return false;
7130 }
7131
7132
7133 /*
7134 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7135 * per-cpu capacity than sched_group ref.
7136 */
7137 static inline bool
group_smaller_cpu_capacity(struct sched_group * sg,struct sched_group * ref)7138 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7139 {
7140 return sg->sgc->max_capacity + capacity_margin - SCHED_LOAD_SCALE <
7141 ref->sgc->max_capacity;
7142 }
7143
group_classify(struct lb_env * env,struct sched_group * group,struct sg_lb_stats * sgs)7144 static enum group_type group_classify(struct lb_env *env,
7145 struct sched_group *group,
7146 struct sg_lb_stats *sgs)
7147 {
7148 if (sgs->group_no_capacity)
7149 return group_overloaded;
7150
7151 if (sg_imbalanced(group))
7152 return group_imbalanced;
7153
7154 if (sgs->group_misfit_task)
7155 return group_misfit_task;
7156
7157 return group_other;
7158 }
7159
7160 /**
7161 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7162 * @env: The load balancing environment.
7163 * @group: sched_group whose statistics are to be updated.
7164 * @load_idx: Load index of sched_domain of this_cpu for load calc.
7165 * @local_group: Does group contain this_cpu.
7166 * @sgs: variable to hold the statistics for this group.
7167 * @overload: Indicate more than one runnable task for any CPU.
7168 * @overutilized: Indicate overutilization for any CPU.
7169 */
update_sg_lb_stats(struct lb_env * env,struct sched_group * group,int load_idx,int local_group,struct sg_lb_stats * sgs,bool * overload,bool * overutilized)7170 static inline void update_sg_lb_stats(struct lb_env *env,
7171 struct sched_group *group, int load_idx,
7172 int local_group, struct sg_lb_stats *sgs,
7173 bool *overload, bool *overutilized)
7174 {
7175 unsigned long load;
7176 int i, nr_running;
7177
7178 memset(sgs, 0, sizeof(*sgs));
7179
7180 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7181 struct rq *rq = cpu_rq(i);
7182
7183 /* Bias balancing toward cpus of our domain */
7184 if (local_group)
7185 load = target_load(i, load_idx);
7186 else
7187 load = source_load(i, load_idx);
7188
7189 sgs->group_load += load;
7190 sgs->group_util += cpu_util(i);
7191 sgs->sum_nr_running += rq->cfs.h_nr_running;
7192
7193 nr_running = rq->nr_running;
7194 if (nr_running > 1)
7195 *overload = true;
7196
7197 #ifdef CONFIG_NUMA_BALANCING
7198 sgs->nr_numa_running += rq->nr_numa_running;
7199 sgs->nr_preferred_running += rq->nr_preferred_running;
7200 #endif
7201 sgs->sum_weighted_load += weighted_cpuload(i);
7202 /*
7203 * No need to call idle_cpu() if nr_running is not 0
7204 */
7205 if (!nr_running && idle_cpu(i))
7206 sgs->idle_cpus++;
7207
7208 if (cpu_overutilized(i)) {
7209 *overutilized = true;
7210 if (!sgs->group_misfit_task && rq->misfit_task)
7211 sgs->group_misfit_task = capacity_of(i);
7212 }
7213 }
7214
7215 /* Adjust by relative CPU capacity of the group */
7216 sgs->group_capacity = group->sgc->capacity;
7217 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7218
7219 if (sgs->sum_nr_running)
7220 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7221
7222 sgs->group_weight = group->group_weight;
7223
7224 sgs->group_no_capacity = group_is_overloaded(env, sgs);
7225 sgs->group_type = group_classify(env, group, sgs);
7226 }
7227
7228 /**
7229 * update_sd_pick_busiest - return 1 on busiest group
7230 * @env: The load balancing environment.
7231 * @sds: sched_domain statistics
7232 * @sg: sched_group candidate to be checked for being the busiest
7233 * @sgs: sched_group statistics
7234 *
7235 * Determine if @sg is a busier group than the previously selected
7236 * busiest group.
7237 *
7238 * Return: %true if @sg is a busier group than the previously selected
7239 * busiest group. %false otherwise.
7240 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)7241 static bool update_sd_pick_busiest(struct lb_env *env,
7242 struct sd_lb_stats *sds,
7243 struct sched_group *sg,
7244 struct sg_lb_stats *sgs)
7245 {
7246 struct sg_lb_stats *busiest = &sds->busiest_stat;
7247
7248 if (sgs->group_type > busiest->group_type)
7249 return true;
7250
7251 if (sgs->group_type < busiest->group_type)
7252 return false;
7253
7254 /*
7255 * Candidate sg doesn't face any serious load-balance problems
7256 * so don't pick it if the local sg is already filled up.
7257 */
7258 if (sgs->group_type == group_other &&
7259 !group_has_capacity(env, &sds->local_stat))
7260 return false;
7261
7262 if (sgs->avg_load <= busiest->avg_load)
7263 return false;
7264
7265 /*
7266 * Candiate sg has no more than one task per cpu and has higher
7267 * per-cpu capacity. No reason to pull tasks to less capable cpus.
7268 */
7269 if (sgs->sum_nr_running <= sgs->group_weight &&
7270 group_smaller_cpu_capacity(sds->local, sg))
7271 return false;
7272
7273 /* This is the busiest node in its class. */
7274 if (!(env->sd->flags & SD_ASYM_PACKING))
7275 return true;
7276
7277 /*
7278 * ASYM_PACKING needs to move all the work to the lowest
7279 * numbered CPUs in the group, therefore mark all groups
7280 * higher than ourself as busy.
7281 */
7282 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
7283 if (!sds->busiest)
7284 return true;
7285
7286 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
7287 return true;
7288 }
7289
7290 return false;
7291 }
7292
7293 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)7294 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7295 {
7296 if (sgs->sum_nr_running > sgs->nr_numa_running)
7297 return regular;
7298 if (sgs->sum_nr_running > sgs->nr_preferred_running)
7299 return remote;
7300 return all;
7301 }
7302
fbq_classify_rq(struct rq * rq)7303 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7304 {
7305 if (rq->nr_running > rq->nr_numa_running)
7306 return regular;
7307 if (rq->nr_running > rq->nr_preferred_running)
7308 return remote;
7309 return all;
7310 }
7311 #else
fbq_classify_group(struct sg_lb_stats * sgs)7312 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7313 {
7314 return all;
7315 }
7316
fbq_classify_rq(struct rq * rq)7317 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7318 {
7319 return regular;
7320 }
7321 #endif /* CONFIG_NUMA_BALANCING */
7322
7323 /**
7324 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7325 * @env: The load balancing environment.
7326 * @sds: variable to hold the statistics for this sched_domain.
7327 */
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)7328 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7329 {
7330 struct sched_domain *child = env->sd->child;
7331 struct sched_group *sg = env->sd->groups;
7332 struct sg_lb_stats tmp_sgs;
7333 int load_idx, prefer_sibling = 0;
7334 bool overload = false, overutilized = false;
7335
7336 if (child && child->flags & SD_PREFER_SIBLING)
7337 prefer_sibling = 1;
7338
7339 load_idx = get_sd_load_idx(env->sd, env->idle);
7340
7341 do {
7342 struct sg_lb_stats *sgs = &tmp_sgs;
7343 int local_group;
7344
7345 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
7346 if (local_group) {
7347 sds->local = sg;
7348 sgs = &sds->local_stat;
7349
7350 if (env->idle != CPU_NEWLY_IDLE ||
7351 time_after_eq(jiffies, sg->sgc->next_update))
7352 update_group_capacity(env->sd, env->dst_cpu);
7353 }
7354
7355 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7356 &overload, &overutilized);
7357
7358 if (local_group)
7359 goto next_group;
7360
7361 /*
7362 * In case the child domain prefers tasks go to siblings
7363 * first, lower the sg capacity so that we'll try
7364 * and move all the excess tasks away. We lower the capacity
7365 * of a group only if the local group has the capacity to fit
7366 * these excess tasks. The extra check prevents the case where
7367 * you always pull from the heaviest group when it is already
7368 * under-utilized (possible with a large weight task outweighs
7369 * the tasks on the system).
7370 */
7371 if (prefer_sibling && sds->local &&
7372 group_has_capacity(env, &sds->local_stat) &&
7373 (sgs->sum_nr_running > 1)) {
7374 sgs->group_no_capacity = 1;
7375 sgs->group_type = group_overloaded;
7376 }
7377
7378 /*
7379 * Ignore task groups with misfit tasks if local group has no
7380 * capacity or if per-cpu capacity isn't higher.
7381 */
7382 if (sgs->group_type == group_misfit_task &&
7383 (!group_has_capacity(env, &sds->local_stat) ||
7384 !group_smaller_cpu_capacity(sg, sds->local)))
7385 sgs->group_type = group_other;
7386
7387 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7388 sds->busiest = sg;
7389 sds->busiest_stat = *sgs;
7390 }
7391
7392 next_group:
7393 /* Now, start updating sd_lb_stats */
7394 sds->total_load += sgs->group_load;
7395 sds->total_capacity += sgs->group_capacity;
7396
7397 sg = sg->next;
7398 } while (sg != env->sd->groups);
7399
7400 if (env->sd->flags & SD_NUMA)
7401 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7402
7403 env->src_grp_nr_running = sds->busiest_stat.sum_nr_running;
7404
7405 if (!env->sd->parent) {
7406 /* update overload indicator if we are at root domain */
7407 if (env->dst_rq->rd->overload != overload)
7408 env->dst_rq->rd->overload = overload;
7409
7410 /* Update over-utilization (tipping point, U >= 0) indicator */
7411 if (env->dst_rq->rd->overutilized != overutilized) {
7412 env->dst_rq->rd->overutilized = overutilized;
7413 trace_sched_overutilized(overutilized);
7414 }
7415 } else {
7416 if (!env->dst_rq->rd->overutilized && overutilized) {
7417 env->dst_rq->rd->overutilized = true;
7418 trace_sched_overutilized(true);
7419 }
7420 }
7421
7422 }
7423
7424 /**
7425 * check_asym_packing - Check to see if the group is packed into the
7426 * sched doman.
7427 *
7428 * This is primarily intended to used at the sibling level. Some
7429 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7430 * case of POWER7, it can move to lower SMT modes only when higher
7431 * threads are idle. When in lower SMT modes, the threads will
7432 * perform better since they share less core resources. Hence when we
7433 * have idle threads, we want them to be the higher ones.
7434 *
7435 * This packing function is run on idle threads. It checks to see if
7436 * the busiest CPU in this domain (core in the P7 case) has a higher
7437 * CPU number than the packing function is being run on. Here we are
7438 * assuming lower CPU number will be equivalent to lower a SMT thread
7439 * number.
7440 *
7441 * Return: 1 when packing is required and a task should be moved to
7442 * this CPU. The amount of the imbalance is returned in *imbalance.
7443 *
7444 * @env: The load balancing environment.
7445 * @sds: Statistics of the sched_domain which is to be packed
7446 */
check_asym_packing(struct lb_env * env,struct sd_lb_stats * sds)7447 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7448 {
7449 int busiest_cpu;
7450
7451 if (!(env->sd->flags & SD_ASYM_PACKING))
7452 return 0;
7453
7454 if (!sds->busiest)
7455 return 0;
7456
7457 busiest_cpu = group_first_cpu(sds->busiest);
7458 if (env->dst_cpu > busiest_cpu)
7459 return 0;
7460
7461 env->imbalance = DIV_ROUND_CLOSEST(
7462 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7463 SCHED_CAPACITY_SCALE);
7464
7465 return 1;
7466 }
7467
7468 /**
7469 * fix_small_imbalance - Calculate the minor imbalance that exists
7470 * amongst the groups of a sched_domain, during
7471 * load balancing.
7472 * @env: The load balancing environment.
7473 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7474 */
7475 static inline
fix_small_imbalance(struct lb_env * env,struct sd_lb_stats * sds)7476 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7477 {
7478 unsigned long tmp, capa_now = 0, capa_move = 0;
7479 unsigned int imbn = 2;
7480 unsigned long scaled_busy_load_per_task;
7481 struct sg_lb_stats *local, *busiest;
7482
7483 local = &sds->local_stat;
7484 busiest = &sds->busiest_stat;
7485
7486 if (!local->sum_nr_running)
7487 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7488 else if (busiest->load_per_task > local->load_per_task)
7489 imbn = 1;
7490
7491 scaled_busy_load_per_task =
7492 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7493 busiest->group_capacity;
7494
7495 if (busiest->avg_load + scaled_busy_load_per_task >=
7496 local->avg_load + (scaled_busy_load_per_task * imbn)) {
7497 env->imbalance = busiest->load_per_task;
7498 return;
7499 }
7500
7501 /*
7502 * OK, we don't have enough imbalance to justify moving tasks,
7503 * however we may be able to increase total CPU capacity used by
7504 * moving them.
7505 */
7506
7507 capa_now += busiest->group_capacity *
7508 min(busiest->load_per_task, busiest->avg_load);
7509 capa_now += local->group_capacity *
7510 min(local->load_per_task, local->avg_load);
7511 capa_now /= SCHED_CAPACITY_SCALE;
7512
7513 /* Amount of load we'd subtract */
7514 if (busiest->avg_load > scaled_busy_load_per_task) {
7515 capa_move += busiest->group_capacity *
7516 min(busiest->load_per_task,
7517 busiest->avg_load - scaled_busy_load_per_task);
7518 }
7519
7520 /* Amount of load we'd add */
7521 if (busiest->avg_load * busiest->group_capacity <
7522 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7523 tmp = (busiest->avg_load * busiest->group_capacity) /
7524 local->group_capacity;
7525 } else {
7526 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7527 local->group_capacity;
7528 }
7529 capa_move += local->group_capacity *
7530 min(local->load_per_task, local->avg_load + tmp);
7531 capa_move /= SCHED_CAPACITY_SCALE;
7532
7533 /* Move if we gain throughput */
7534 if (capa_move > capa_now)
7535 env->imbalance = busiest->load_per_task;
7536 }
7537
7538 /**
7539 * calculate_imbalance - Calculate the amount of imbalance present within the
7540 * groups of a given sched_domain during load balance.
7541 * @env: load balance environment
7542 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7543 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)7544 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7545 {
7546 unsigned long max_pull, load_above_capacity = ~0UL;
7547 struct sg_lb_stats *local, *busiest;
7548
7549 local = &sds->local_stat;
7550 busiest = &sds->busiest_stat;
7551
7552 if (busiest->group_type == group_imbalanced) {
7553 /*
7554 * In the group_imb case we cannot rely on group-wide averages
7555 * to ensure cpu-load equilibrium, look at wider averages. XXX
7556 */
7557 busiest->load_per_task =
7558 min(busiest->load_per_task, sds->avg_load);
7559 }
7560
7561 /*
7562 * In the presence of smp nice balancing, certain scenarios can have
7563 * max load less than avg load(as we skip the groups at or below
7564 * its cpu_capacity, while calculating max_load..)
7565 */
7566 if (busiest->avg_load <= sds->avg_load ||
7567 local->avg_load >= sds->avg_load) {
7568 /* Misfitting tasks should be migrated in any case */
7569 if (busiest->group_type == group_misfit_task) {
7570 env->imbalance = busiest->group_misfit_task;
7571 return;
7572 }
7573
7574 /*
7575 * Busiest group is overloaded, local is not, use the spare
7576 * cycles to maximize throughput
7577 */
7578 if (busiest->group_type == group_overloaded &&
7579 local->group_type <= group_misfit_task) {
7580 env->imbalance = busiest->load_per_task;
7581 return;
7582 }
7583
7584 env->imbalance = 0;
7585 return fix_small_imbalance(env, sds);
7586 }
7587
7588 /*
7589 * If there aren't any idle cpus, avoid creating some.
7590 */
7591 if (busiest->group_type == group_overloaded &&
7592 local->group_type == group_overloaded) {
7593 load_above_capacity = busiest->sum_nr_running *
7594 SCHED_LOAD_SCALE;
7595 if (load_above_capacity > busiest->group_capacity)
7596 load_above_capacity -= busiest->group_capacity;
7597 else
7598 load_above_capacity = ~0UL;
7599 }
7600
7601 /*
7602 * We're trying to get all the cpus to the average_load, so we don't
7603 * want to push ourselves above the average load, nor do we wish to
7604 * reduce the max loaded cpu below the average load. At the same time,
7605 * we also don't want to reduce the group load below the group capacity
7606 * (so that we can implement power-savings policies etc). Thus we look
7607 * for the minimum possible imbalance.
7608 */
7609 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7610
7611 /* How much load to actually move to equalise the imbalance */
7612 env->imbalance = min(
7613 max_pull * busiest->group_capacity,
7614 (sds->avg_load - local->avg_load) * local->group_capacity
7615 ) / SCHED_CAPACITY_SCALE;
7616
7617 /* Boost imbalance to allow misfit task to be balanced. */
7618 if (busiest->group_type == group_misfit_task)
7619 env->imbalance = max_t(long, env->imbalance,
7620 busiest->group_misfit_task);
7621
7622 /*
7623 * if *imbalance is less than the average load per runnable task
7624 * there is no guarantee that any tasks will be moved so we'll have
7625 * a think about bumping its value to force at least one task to be
7626 * moved
7627 */
7628 if (env->imbalance < busiest->load_per_task)
7629 return fix_small_imbalance(env, sds);
7630 }
7631
7632 /******* find_busiest_group() helpers end here *********************/
7633
7634 /**
7635 * find_busiest_group - Returns the busiest group within the sched_domain
7636 * if there is an imbalance. If there isn't an imbalance, and
7637 * the user has opted for power-savings, it returns a group whose
7638 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
7639 * such a group exists.
7640 *
7641 * Also calculates the amount of weighted load which should be moved
7642 * to restore balance.
7643 *
7644 * @env: The load balancing environment.
7645 *
7646 * Return: - The busiest group if imbalance exists.
7647 * - If no imbalance and user has opted for power-savings balance,
7648 * return the least loaded group whose CPUs can be
7649 * put to idle by rebalancing its tasks onto our group.
7650 */
find_busiest_group(struct lb_env * env)7651 static struct sched_group *find_busiest_group(struct lb_env *env)
7652 {
7653 struct sg_lb_stats *local, *busiest;
7654 struct sd_lb_stats sds;
7655
7656 init_sd_lb_stats(&sds);
7657
7658 /*
7659 * Compute the various statistics relavent for load balancing at
7660 * this level.
7661 */
7662 update_sd_lb_stats(env, &sds);
7663
7664 if (energy_aware() && !env->dst_rq->rd->overutilized)
7665 goto out_balanced;
7666
7667 local = &sds.local_stat;
7668 busiest = &sds.busiest_stat;
7669
7670 /* ASYM feature bypasses nice load balance check */
7671 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
7672 check_asym_packing(env, &sds))
7673 return sds.busiest;
7674
7675 /* There is no busy sibling group to pull tasks from */
7676 if (!sds.busiest || busiest->sum_nr_running == 0)
7677 goto out_balanced;
7678
7679 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7680 / sds.total_capacity;
7681
7682 /*
7683 * If the busiest group is imbalanced the below checks don't
7684 * work because they assume all things are equal, which typically
7685 * isn't true due to cpus_allowed constraints and the like.
7686 */
7687 if (busiest->group_type == group_imbalanced)
7688 goto force_balance;
7689
7690 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7691 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7692 busiest->group_no_capacity)
7693 goto force_balance;
7694
7695 /* Misfitting tasks should be dealt with regardless of the avg load */
7696 if (busiest->group_type == group_misfit_task) {
7697 goto force_balance;
7698 }
7699
7700 /*
7701 * If the local group is busier than the selected busiest group
7702 * don't try and pull any tasks.
7703 */
7704 if (local->avg_load >= busiest->avg_load)
7705 goto out_balanced;
7706
7707 /*
7708 * Don't pull any tasks if this group is already above the domain
7709 * average load.
7710 */
7711 if (local->avg_load >= sds.avg_load)
7712 goto out_balanced;
7713
7714 if (env->idle == CPU_IDLE) {
7715 /*
7716 * This cpu is idle. If the busiest group is not overloaded
7717 * and there is no imbalance between this and busiest group
7718 * wrt idle cpus, it is balanced. The imbalance becomes
7719 * significant if the diff is greater than 1 otherwise we
7720 * might end up to just move the imbalance on another group
7721 */
7722 if ((busiest->group_type != group_overloaded) &&
7723 (local->idle_cpus <= (busiest->idle_cpus + 1)) &&
7724 !group_smaller_cpu_capacity(sds.busiest, sds.local))
7725 goto out_balanced;
7726 } else {
7727 /*
7728 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7729 * imbalance_pct to be conservative.
7730 */
7731 if (100 * busiest->avg_load <=
7732 env->sd->imbalance_pct * local->avg_load)
7733 goto out_balanced;
7734 }
7735
7736 force_balance:
7737 env->busiest_group_type = busiest->group_type;
7738 /* Looks like there is an imbalance. Compute it */
7739 calculate_imbalance(env, &sds);
7740 return sds.busiest;
7741
7742 out_balanced:
7743 env->imbalance = 0;
7744 return NULL;
7745 }
7746
7747 /*
7748 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7749 */
find_busiest_queue(struct lb_env * env,struct sched_group * group)7750 static struct rq *find_busiest_queue(struct lb_env *env,
7751 struct sched_group *group)
7752 {
7753 struct rq *busiest = NULL, *rq;
7754 unsigned long busiest_load = 0, busiest_capacity = 1;
7755 int i;
7756
7757 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7758 unsigned long capacity, wl;
7759 enum fbq_type rt;
7760
7761 rq = cpu_rq(i);
7762 rt = fbq_classify_rq(rq);
7763
7764 /*
7765 * We classify groups/runqueues into three groups:
7766 * - regular: there are !numa tasks
7767 * - remote: there are numa tasks that run on the 'wrong' node
7768 * - all: there is no distinction
7769 *
7770 * In order to avoid migrating ideally placed numa tasks,
7771 * ignore those when there's better options.
7772 *
7773 * If we ignore the actual busiest queue to migrate another
7774 * task, the next balance pass can still reduce the busiest
7775 * queue by moving tasks around inside the node.
7776 *
7777 * If we cannot move enough load due to this classification
7778 * the next pass will adjust the group classification and
7779 * allow migration of more tasks.
7780 *
7781 * Both cases only affect the total convergence complexity.
7782 */
7783 if (rt > env->fbq_type)
7784 continue;
7785
7786 capacity = capacity_of(i);
7787
7788 wl = weighted_cpuload(i);
7789
7790 /*
7791 * When comparing with imbalance, use weighted_cpuload()
7792 * which is not scaled with the cpu capacity.
7793 */
7794
7795 if (rq->nr_running == 1 && wl > env->imbalance &&
7796 !check_cpu_capacity(rq, env->sd) &&
7797 env->busiest_group_type != group_misfit_task)
7798 continue;
7799
7800 /*
7801 * For the load comparisons with the other cpu's, consider
7802 * the weighted_cpuload() scaled with the cpu capacity, so
7803 * that the load can be moved away from the cpu that is
7804 * potentially running at a lower capacity.
7805 *
7806 * Thus we're looking for max(wl_i / capacity_i), crosswise
7807 * multiplication to rid ourselves of the division works out
7808 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7809 * our previous maximum.
7810 */
7811 if (wl * busiest_capacity > busiest_load * capacity) {
7812 busiest_load = wl;
7813 busiest_capacity = capacity;
7814 busiest = rq;
7815 }
7816 }
7817
7818 return busiest;
7819 }
7820
7821 /*
7822 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7823 * so long as it is large enough.
7824 */
7825 #define MAX_PINNED_INTERVAL 512
7826
7827 /* Working cpumask for load_balance and load_balance_newidle. */
7828 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7829
need_active_balance(struct lb_env * env)7830 static int need_active_balance(struct lb_env *env)
7831 {
7832 struct sched_domain *sd = env->sd;
7833
7834 if (env->idle == CPU_NEWLY_IDLE) {
7835
7836 /*
7837 * ASYM_PACKING needs to force migrate tasks from busy but
7838 * higher numbered CPUs in order to pack all tasks in the
7839 * lowest numbered CPUs.
7840 */
7841 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
7842 return 1;
7843 }
7844
7845 /*
7846 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7847 * It's worth migrating the task if the src_cpu's capacity is reduced
7848 * because of other sched_class or IRQs if more capacity stays
7849 * available on dst_cpu.
7850 */
7851 if ((env->idle != CPU_NOT_IDLE) &&
7852 (env->src_rq->cfs.h_nr_running == 1)) {
7853 if ((check_cpu_capacity(env->src_rq, sd)) &&
7854 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7855 return 1;
7856 }
7857
7858 if ((capacity_of(env->src_cpu) < capacity_of(env->dst_cpu)) &&
7859 env->src_rq->cfs.h_nr_running == 1 &&
7860 cpu_overutilized(env->src_cpu) &&
7861 !cpu_overutilized(env->dst_cpu)) {
7862 return 1;
7863 }
7864
7865 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7866 }
7867
7868 static int active_load_balance_cpu_stop(void *data);
7869
should_we_balance(struct lb_env * env)7870 static int should_we_balance(struct lb_env *env)
7871 {
7872 struct sched_group *sg = env->sd->groups;
7873 struct cpumask *sg_cpus, *sg_mask;
7874 int cpu, balance_cpu = -1;
7875
7876 /*
7877 * In the newly idle case, we will allow all the cpu's
7878 * to do the newly idle load balance.
7879 */
7880 if (env->idle == CPU_NEWLY_IDLE)
7881 return 1;
7882
7883 sg_cpus = sched_group_cpus(sg);
7884 sg_mask = sched_group_mask(sg);
7885 /* Try to find first idle cpu */
7886 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7887 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7888 continue;
7889
7890 balance_cpu = cpu;
7891 break;
7892 }
7893
7894 if (balance_cpu == -1)
7895 balance_cpu = group_balance_cpu(sg);
7896
7897 /*
7898 * First idle cpu or the first cpu(busiest) in this sched group
7899 * is eligible for doing load balancing at this and above domains.
7900 */
7901 return balance_cpu == env->dst_cpu;
7902 }
7903
7904 /*
7905 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7906 * tasks if there is an imbalance.
7907 */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)7908 static int load_balance(int this_cpu, struct rq *this_rq,
7909 struct sched_domain *sd, enum cpu_idle_type idle,
7910 int *continue_balancing)
7911 {
7912 int ld_moved, cur_ld_moved, active_balance = 0;
7913 struct sched_domain *sd_parent = sd->parent;
7914 struct sched_group *group;
7915 struct rq *busiest;
7916 unsigned long flags;
7917 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
7918
7919 struct lb_env env = {
7920 .sd = sd,
7921 .dst_cpu = this_cpu,
7922 .dst_rq = this_rq,
7923 .dst_grpmask = sched_group_cpus(sd->groups),
7924 .idle = idle,
7925 .loop_break = sched_nr_migrate_break,
7926 .cpus = cpus,
7927 .fbq_type = all,
7928 .tasks = LIST_HEAD_INIT(env.tasks),
7929 };
7930
7931 /*
7932 * For NEWLY_IDLE load_balancing, we don't need to consider
7933 * other cpus in our group
7934 */
7935 if (idle == CPU_NEWLY_IDLE)
7936 env.dst_grpmask = NULL;
7937
7938 cpumask_copy(cpus, cpu_active_mask);
7939
7940 schedstat_inc(sd, lb_count[idle]);
7941
7942 redo:
7943 if (!should_we_balance(&env)) {
7944 *continue_balancing = 0;
7945 goto out_balanced;
7946 }
7947
7948 group = find_busiest_group(&env);
7949 if (!group) {
7950 schedstat_inc(sd, lb_nobusyg[idle]);
7951 goto out_balanced;
7952 }
7953
7954 busiest = find_busiest_queue(&env, group);
7955 if (!busiest) {
7956 schedstat_inc(sd, lb_nobusyq[idle]);
7957 goto out_balanced;
7958 }
7959
7960 BUG_ON(busiest == env.dst_rq);
7961
7962 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
7963
7964 env.src_cpu = busiest->cpu;
7965 env.src_rq = busiest;
7966
7967 ld_moved = 0;
7968 if (busiest->nr_running > 1) {
7969 /*
7970 * Attempt to move tasks. If find_busiest_group has found
7971 * an imbalance but busiest->nr_running <= 1, the group is
7972 * still unbalanced. ld_moved simply stays zero, so it is
7973 * correctly treated as an imbalance.
7974 */
7975 env.flags |= LBF_ALL_PINNED;
7976 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
7977
7978 more_balance:
7979 raw_spin_lock_irqsave(&busiest->lock, flags);
7980
7981 /*
7982 * cur_ld_moved - load moved in current iteration
7983 * ld_moved - cumulative load moved across iterations
7984 */
7985 cur_ld_moved = detach_tasks(&env);
7986 /*
7987 * We want to potentially lower env.src_cpu's OPP.
7988 */
7989 if (cur_ld_moved)
7990 update_capacity_of(env.src_cpu);
7991
7992 /*
7993 * We've detached some tasks from busiest_rq. Every
7994 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7995 * unlock busiest->lock, and we are able to be sure
7996 * that nobody can manipulate the tasks in parallel.
7997 * See task_rq_lock() family for the details.
7998 */
7999
8000 raw_spin_unlock(&busiest->lock);
8001
8002 if (cur_ld_moved) {
8003 attach_tasks(&env);
8004 ld_moved += cur_ld_moved;
8005 }
8006
8007 local_irq_restore(flags);
8008
8009 if (env.flags & LBF_NEED_BREAK) {
8010 env.flags &= ~LBF_NEED_BREAK;
8011 goto more_balance;
8012 }
8013
8014 /*
8015 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8016 * us and move them to an alternate dst_cpu in our sched_group
8017 * where they can run. The upper limit on how many times we
8018 * iterate on same src_cpu is dependent on number of cpus in our
8019 * sched_group.
8020 *
8021 * This changes load balance semantics a bit on who can move
8022 * load to a given_cpu. In addition to the given_cpu itself
8023 * (or a ilb_cpu acting on its behalf where given_cpu is
8024 * nohz-idle), we now have balance_cpu in a position to move
8025 * load to given_cpu. In rare situations, this may cause
8026 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8027 * _independently_ and at _same_ time to move some load to
8028 * given_cpu) causing exceess load to be moved to given_cpu.
8029 * This however should not happen so much in practice and
8030 * moreover subsequent load balance cycles should correct the
8031 * excess load moved.
8032 */
8033 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8034
8035 /* Prevent to re-select dst_cpu via env's cpus */
8036 cpumask_clear_cpu(env.dst_cpu, env.cpus);
8037
8038 env.dst_rq = cpu_rq(env.new_dst_cpu);
8039 env.dst_cpu = env.new_dst_cpu;
8040 env.flags &= ~LBF_DST_PINNED;
8041 env.loop = 0;
8042 env.loop_break = sched_nr_migrate_break;
8043
8044 /*
8045 * Go back to "more_balance" rather than "redo" since we
8046 * need to continue with same src_cpu.
8047 */
8048 goto more_balance;
8049 }
8050
8051 /*
8052 * We failed to reach balance because of affinity.
8053 */
8054 if (sd_parent) {
8055 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8056
8057 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8058 *group_imbalance = 1;
8059 }
8060
8061 /* All tasks on this runqueue were pinned by CPU affinity */
8062 if (unlikely(env.flags & LBF_ALL_PINNED)) {
8063 cpumask_clear_cpu(cpu_of(busiest), cpus);
8064 if (!cpumask_empty(cpus)) {
8065 env.loop = 0;
8066 env.loop_break = sched_nr_migrate_break;
8067 goto redo;
8068 }
8069 goto out_all_pinned;
8070 }
8071 }
8072
8073 if (!ld_moved) {
8074 schedstat_inc(sd, lb_failed[idle]);
8075 /*
8076 * Increment the failure counter only on periodic balance.
8077 * We do not want newidle balance, which can be very
8078 * frequent, pollute the failure counter causing
8079 * excessive cache_hot migrations and active balances.
8080 */
8081 if (idle != CPU_NEWLY_IDLE)
8082 if (env.src_grp_nr_running > 1)
8083 sd->nr_balance_failed++;
8084
8085 if (need_active_balance(&env)) {
8086 raw_spin_lock_irqsave(&busiest->lock, flags);
8087
8088 /* don't kick the active_load_balance_cpu_stop,
8089 * if the curr task on busiest cpu can't be
8090 * moved to this_cpu
8091 */
8092 if (!cpumask_test_cpu(this_cpu,
8093 tsk_cpus_allowed(busiest->curr))) {
8094 raw_spin_unlock_irqrestore(&busiest->lock,
8095 flags);
8096 env.flags |= LBF_ALL_PINNED;
8097 goto out_one_pinned;
8098 }
8099
8100 /*
8101 * ->active_balance synchronizes accesses to
8102 * ->active_balance_work. Once set, it's cleared
8103 * only after active load balance is finished.
8104 */
8105 if (!busiest->active_balance) {
8106 busiest->active_balance = 1;
8107 busiest->push_cpu = this_cpu;
8108 active_balance = 1;
8109 }
8110 raw_spin_unlock_irqrestore(&busiest->lock, flags);
8111
8112 if (active_balance) {
8113 stop_one_cpu_nowait(cpu_of(busiest),
8114 active_load_balance_cpu_stop, busiest,
8115 &busiest->active_balance_work);
8116 }
8117
8118 /*
8119 * We've kicked active balancing, reset the failure
8120 * counter.
8121 */
8122 sd->nr_balance_failed = sd->cache_nice_tries+1;
8123 }
8124 } else
8125 sd->nr_balance_failed = 0;
8126
8127 if (likely(!active_balance)) {
8128 /* We were unbalanced, so reset the balancing interval */
8129 sd->balance_interval = sd->min_interval;
8130 } else {
8131 /*
8132 * If we've begun active balancing, start to back off. This
8133 * case may not be covered by the all_pinned logic if there
8134 * is only 1 task on the busy runqueue (because we don't call
8135 * detach_tasks).
8136 */
8137 if (sd->balance_interval < sd->max_interval)
8138 sd->balance_interval *= 2;
8139 }
8140
8141 goto out;
8142
8143 out_balanced:
8144 /*
8145 * We reach balance although we may have faced some affinity
8146 * constraints. Clear the imbalance flag if it was set.
8147 */
8148 if (sd_parent) {
8149 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8150
8151 if (*group_imbalance)
8152 *group_imbalance = 0;
8153 }
8154
8155 out_all_pinned:
8156 /*
8157 * We reach balance because all tasks are pinned at this level so
8158 * we can't migrate them. Let the imbalance flag set so parent level
8159 * can try to migrate them.
8160 */
8161 schedstat_inc(sd, lb_balanced[idle]);
8162
8163 sd->nr_balance_failed = 0;
8164
8165 out_one_pinned:
8166 /* tune up the balancing interval */
8167 if (((env.flags & LBF_ALL_PINNED) &&
8168 sd->balance_interval < MAX_PINNED_INTERVAL) ||
8169 (sd->balance_interval < sd->max_interval))
8170 sd->balance_interval *= 2;
8171
8172 ld_moved = 0;
8173 out:
8174 return ld_moved;
8175 }
8176
8177 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)8178 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8179 {
8180 unsigned long interval = sd->balance_interval;
8181
8182 if (cpu_busy)
8183 interval *= sd->busy_factor;
8184
8185 /* scale ms to jiffies */
8186 interval = msecs_to_jiffies(interval);
8187 interval = clamp(interval, 1UL, max_load_balance_interval);
8188
8189 return interval;
8190 }
8191
8192 static inline void
update_next_balance(struct sched_domain * sd,int cpu_busy,unsigned long * next_balance)8193 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
8194 {
8195 unsigned long interval, next;
8196
8197 interval = get_sd_balance_interval(sd, cpu_busy);
8198 next = sd->last_balance + interval;
8199
8200 if (time_after(*next_balance, next))
8201 *next_balance = next;
8202 }
8203
8204 /*
8205 * idle_balance is called by schedule() if this_cpu is about to become
8206 * idle. Attempts to pull tasks from other CPUs.
8207 */
idle_balance(struct rq * this_rq)8208 static int idle_balance(struct rq *this_rq)
8209 {
8210 unsigned long next_balance = jiffies + HZ;
8211 int this_cpu = this_rq->cpu;
8212 struct sched_domain *sd;
8213 int pulled_task = 0;
8214 u64 curr_cost = 0;
8215 long removed_util=0;
8216
8217 idle_enter_fair(this_rq);
8218
8219 /*
8220 * We must set idle_stamp _before_ calling idle_balance(), such that we
8221 * measure the duration of idle_balance() as idle time.
8222 */
8223 this_rq->idle_stamp = rq_clock(this_rq);
8224
8225 if (!energy_aware() &&
8226 (this_rq->avg_idle < sysctl_sched_migration_cost ||
8227 !this_rq->rd->overload)) {
8228 rcu_read_lock();
8229 sd = rcu_dereference_check_sched_domain(this_rq->sd);
8230 if (sd)
8231 update_next_balance(sd, 0, &next_balance);
8232 rcu_read_unlock();
8233
8234 goto out;
8235 }
8236
8237 /*
8238 * Drop the rq->lock, but keep IRQ/preempt disabled.
8239 */
8240 raw_spin_unlock(&this_rq->lock);
8241
8242 /*
8243 * If removed_util_avg is !0 we most probably migrated some task away
8244 * from this_cpu. In this case we might be willing to trigger an OPP
8245 * update, but we want to do so if we don't find anybody else to pull
8246 * here (we will trigger an OPP update with the pulled task's enqueue
8247 * anyway).
8248 *
8249 * Record removed_util before calling update_blocked_averages, and use
8250 * it below (before returning) to see if an OPP update is required.
8251 */
8252 removed_util = atomic_long_read(&(this_rq->cfs).removed_util_avg);
8253 update_blocked_averages(this_cpu);
8254 rcu_read_lock();
8255 for_each_domain(this_cpu, sd) {
8256 int continue_balancing = 1;
8257 u64 t0, domain_cost;
8258
8259 if (!(sd->flags & SD_LOAD_BALANCE))
8260 continue;
8261
8262 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8263 update_next_balance(sd, 0, &next_balance);
8264 break;
8265 }
8266
8267 if (sd->flags & SD_BALANCE_NEWIDLE) {
8268 t0 = sched_clock_cpu(this_cpu);
8269
8270 pulled_task = load_balance(this_cpu, this_rq,
8271 sd, CPU_NEWLY_IDLE,
8272 &continue_balancing);
8273
8274 domain_cost = sched_clock_cpu(this_cpu) - t0;
8275 if (domain_cost > sd->max_newidle_lb_cost)
8276 sd->max_newidle_lb_cost = domain_cost;
8277
8278 curr_cost += domain_cost;
8279 }
8280
8281 update_next_balance(sd, 0, &next_balance);
8282
8283 /*
8284 * Stop searching for tasks to pull if there are
8285 * now runnable tasks on this rq.
8286 */
8287 if (pulled_task || this_rq->nr_running > 0)
8288 break;
8289 }
8290 rcu_read_unlock();
8291
8292 raw_spin_lock(&this_rq->lock);
8293
8294 if (curr_cost > this_rq->max_idle_balance_cost)
8295 this_rq->max_idle_balance_cost = curr_cost;
8296
8297 /*
8298 * While browsing the domains, we released the rq lock, a task could
8299 * have been enqueued in the meantime. Since we're not going idle,
8300 * pretend we pulled a task.
8301 */
8302 if (this_rq->cfs.h_nr_running && !pulled_task)
8303 pulled_task = 1;
8304
8305 out:
8306 /* Move the next balance forward */
8307 if (time_after(this_rq->next_balance, next_balance))
8308 this_rq->next_balance = next_balance;
8309
8310 /* Is there a task of a high priority class? */
8311 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8312 pulled_task = -1;
8313
8314 if (pulled_task) {
8315 idle_exit_fair(this_rq);
8316 this_rq->idle_stamp = 0;
8317 } else if (removed_util) {
8318 /*
8319 * No task pulled and someone has been migrated away.
8320 * Good case to trigger an OPP update.
8321 */
8322 update_capacity_of(this_cpu);
8323 }
8324
8325 return pulled_task;
8326 }
8327
8328 /*
8329 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8330 * running tasks off the busiest CPU onto idle CPUs. It requires at
8331 * least 1 task to be running on each physical CPU where possible, and
8332 * avoids physical / logical imbalances.
8333 */
active_load_balance_cpu_stop(void * data)8334 static int active_load_balance_cpu_stop(void *data)
8335 {
8336 struct rq *busiest_rq = data;
8337 int busiest_cpu = cpu_of(busiest_rq);
8338 int target_cpu = busiest_rq->push_cpu;
8339 struct rq *target_rq = cpu_rq(target_cpu);
8340 struct sched_domain *sd;
8341 struct task_struct *p = NULL;
8342
8343 raw_spin_lock_irq(&busiest_rq->lock);
8344
8345 /* make sure the requested cpu hasn't gone down in the meantime */
8346 if (unlikely(busiest_cpu != smp_processor_id() ||
8347 !busiest_rq->active_balance))
8348 goto out_unlock;
8349
8350 /* Is there any task to move? */
8351 if (busiest_rq->nr_running <= 1)
8352 goto out_unlock;
8353
8354 /*
8355 * This condition is "impossible", if it occurs
8356 * we need to fix it. Originally reported by
8357 * Bjorn Helgaas on a 128-cpu setup.
8358 */
8359 BUG_ON(busiest_rq == target_rq);
8360
8361 /* Search for an sd spanning us and the target CPU. */
8362 rcu_read_lock();
8363 for_each_domain(target_cpu, sd) {
8364 if ((sd->flags & SD_LOAD_BALANCE) &&
8365 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8366 break;
8367 }
8368
8369 if (likely(sd)) {
8370 struct lb_env env = {
8371 .sd = sd,
8372 .dst_cpu = target_cpu,
8373 .dst_rq = target_rq,
8374 .src_cpu = busiest_rq->cpu,
8375 .src_rq = busiest_rq,
8376 .idle = CPU_IDLE,
8377 };
8378
8379 schedstat_inc(sd, alb_count);
8380
8381 p = detach_one_task(&env);
8382 if (p) {
8383 schedstat_inc(sd, alb_pushed);
8384 /*
8385 * We want to potentially lower env.src_cpu's OPP.
8386 */
8387 update_capacity_of(env.src_cpu);
8388 }
8389 else
8390 schedstat_inc(sd, alb_failed);
8391 }
8392 rcu_read_unlock();
8393 out_unlock:
8394 busiest_rq->active_balance = 0;
8395 raw_spin_unlock(&busiest_rq->lock);
8396
8397 if (p)
8398 attach_one_task(target_rq, p);
8399
8400 local_irq_enable();
8401
8402 return 0;
8403 }
8404
on_null_domain(struct rq * rq)8405 static inline int on_null_domain(struct rq *rq)
8406 {
8407 return unlikely(!rcu_dereference_sched(rq->sd));
8408 }
8409
8410 #ifdef CONFIG_NO_HZ_COMMON
8411 /*
8412 * idle load balancing details
8413 * - When one of the busy CPUs notice that there may be an idle rebalancing
8414 * needed, they will kick the idle load balancer, which then does idle
8415 * load balancing for all the idle CPUs.
8416 */
8417 static struct {
8418 cpumask_var_t idle_cpus_mask;
8419 atomic_t nr_cpus;
8420 unsigned long next_balance; /* in jiffy units */
8421 } nohz ____cacheline_aligned;
8422
find_new_ilb(void)8423 static inline int find_new_ilb(void)
8424 {
8425 int ilb = cpumask_first(nohz.idle_cpus_mask);
8426
8427 if (ilb < nr_cpu_ids && idle_cpu(ilb))
8428 return ilb;
8429
8430 return nr_cpu_ids;
8431 }
8432
8433 /*
8434 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8435 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8436 * CPU (if there is one).
8437 */
nohz_balancer_kick(void)8438 static void nohz_balancer_kick(void)
8439 {
8440 int ilb_cpu;
8441
8442 nohz.next_balance++;
8443
8444 ilb_cpu = find_new_ilb();
8445
8446 if (ilb_cpu >= nr_cpu_ids)
8447 return;
8448
8449 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8450 return;
8451 /*
8452 * Use smp_send_reschedule() instead of resched_cpu().
8453 * This way we generate a sched IPI on the target cpu which
8454 * is idle. And the softirq performing nohz idle load balance
8455 * will be run before returning from the IPI.
8456 */
8457 smp_send_reschedule(ilb_cpu);
8458 return;
8459 }
8460
nohz_balance_exit_idle(int cpu)8461 static inline void nohz_balance_exit_idle(int cpu)
8462 {
8463 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8464 /*
8465 * Completely isolated CPUs don't ever set, so we must test.
8466 */
8467 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8468 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8469 atomic_dec(&nohz.nr_cpus);
8470 }
8471 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8472 }
8473 }
8474
set_cpu_sd_state_busy(void)8475 static inline void set_cpu_sd_state_busy(void)
8476 {
8477 struct sched_domain *sd;
8478 int cpu = smp_processor_id();
8479
8480 rcu_read_lock();
8481 sd = rcu_dereference(per_cpu(sd_busy, cpu));
8482
8483 if (!sd || !sd->nohz_idle)
8484 goto unlock;
8485 sd->nohz_idle = 0;
8486
8487 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
8488 unlock:
8489 rcu_read_unlock();
8490 }
8491
set_cpu_sd_state_idle(void)8492 void set_cpu_sd_state_idle(void)
8493 {
8494 struct sched_domain *sd;
8495 int cpu = smp_processor_id();
8496
8497 rcu_read_lock();
8498 sd = rcu_dereference(per_cpu(sd_busy, cpu));
8499
8500 if (!sd || sd->nohz_idle)
8501 goto unlock;
8502 sd->nohz_idle = 1;
8503
8504 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
8505 unlock:
8506 rcu_read_unlock();
8507 }
8508
8509 /*
8510 * This routine will record that the cpu is going idle with tick stopped.
8511 * This info will be used in performing idle load balancing in the future.
8512 */
nohz_balance_enter_idle(int cpu)8513 void nohz_balance_enter_idle(int cpu)
8514 {
8515 /*
8516 * If this cpu is going down, then nothing needs to be done.
8517 */
8518 if (!cpu_active(cpu))
8519 return;
8520
8521 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8522 return;
8523
8524 /*
8525 * If we're a completely isolated CPU, we don't play.
8526 */
8527 if (on_null_domain(cpu_rq(cpu)))
8528 return;
8529
8530 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8531 atomic_inc(&nohz.nr_cpus);
8532 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8533 }
8534
sched_ilb_notifier(struct notifier_block * nfb,unsigned long action,void * hcpu)8535 static int sched_ilb_notifier(struct notifier_block *nfb,
8536 unsigned long action, void *hcpu)
8537 {
8538 switch (action & ~CPU_TASKS_FROZEN) {
8539 case CPU_DYING:
8540 nohz_balance_exit_idle(smp_processor_id());
8541 return NOTIFY_OK;
8542 default:
8543 return NOTIFY_DONE;
8544 }
8545 }
8546 #endif
8547
8548 static DEFINE_SPINLOCK(balancing);
8549
8550 /*
8551 * Scale the max load_balance interval with the number of CPUs in the system.
8552 * This trades load-balance latency on larger machines for less cross talk.
8553 */
update_max_interval(void)8554 void update_max_interval(void)
8555 {
8556 max_load_balance_interval = HZ*num_online_cpus()/10;
8557 }
8558
8559 /*
8560 * It checks each scheduling domain to see if it is due to be balanced,
8561 * and initiates a balancing operation if so.
8562 *
8563 * Balancing parameters are set up in init_sched_domains.
8564 */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)8565 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8566 {
8567 int continue_balancing = 1;
8568 int cpu = rq->cpu;
8569 unsigned long interval;
8570 struct sched_domain *sd;
8571 /* Earliest time when we have to do rebalance again */
8572 unsigned long next_balance = jiffies + 60*HZ;
8573 int update_next_balance = 0;
8574 int need_serialize, need_decay = 0;
8575 u64 max_cost = 0;
8576
8577 update_blocked_averages(cpu);
8578
8579 rcu_read_lock();
8580 for_each_domain(cpu, sd) {
8581 /*
8582 * Decay the newidle max times here because this is a regular
8583 * visit to all the domains. Decay ~1% per second.
8584 */
8585 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8586 sd->max_newidle_lb_cost =
8587 (sd->max_newidle_lb_cost * 253) / 256;
8588 sd->next_decay_max_lb_cost = jiffies + HZ;
8589 need_decay = 1;
8590 }
8591 max_cost += sd->max_newidle_lb_cost;
8592
8593 if (!(sd->flags & SD_LOAD_BALANCE))
8594 continue;
8595
8596 /*
8597 * Stop the load balance at this level. There is another
8598 * CPU in our sched group which is doing load balancing more
8599 * actively.
8600 */
8601 if (!continue_balancing) {
8602 if (need_decay)
8603 continue;
8604 break;
8605 }
8606
8607 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8608
8609 need_serialize = sd->flags & SD_SERIALIZE;
8610 if (need_serialize) {
8611 if (!spin_trylock(&balancing))
8612 goto out;
8613 }
8614
8615 if (time_after_eq(jiffies, sd->last_balance + interval)) {
8616 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8617 /*
8618 * The LBF_DST_PINNED logic could have changed
8619 * env->dst_cpu, so we can't know our idle
8620 * state even if we migrated tasks. Update it.
8621 */
8622 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8623 }
8624 sd->last_balance = jiffies;
8625 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8626 }
8627 if (need_serialize)
8628 spin_unlock(&balancing);
8629 out:
8630 if (time_after(next_balance, sd->last_balance + interval)) {
8631 next_balance = sd->last_balance + interval;
8632 update_next_balance = 1;
8633 }
8634 }
8635 if (need_decay) {
8636 /*
8637 * Ensure the rq-wide value also decays but keep it at a
8638 * reasonable floor to avoid funnies with rq->avg_idle.
8639 */
8640 rq->max_idle_balance_cost =
8641 max((u64)sysctl_sched_migration_cost, max_cost);
8642 }
8643 rcu_read_unlock();
8644
8645 /*
8646 * next_balance will be updated only when there is a need.
8647 * When the cpu is attached to null domain for ex, it will not be
8648 * updated.
8649 */
8650 if (likely(update_next_balance)) {
8651 rq->next_balance = next_balance;
8652
8653 #ifdef CONFIG_NO_HZ_COMMON
8654 /*
8655 * If this CPU has been elected to perform the nohz idle
8656 * balance. Other idle CPUs have already rebalanced with
8657 * nohz_idle_balance() and nohz.next_balance has been
8658 * updated accordingly. This CPU is now running the idle load
8659 * balance for itself and we need to update the
8660 * nohz.next_balance accordingly.
8661 */
8662 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8663 nohz.next_balance = rq->next_balance;
8664 #endif
8665 }
8666 }
8667
8668 #ifdef CONFIG_NO_HZ_COMMON
8669 /*
8670 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8671 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8672 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)8673 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8674 {
8675 int this_cpu = this_rq->cpu;
8676 struct rq *rq;
8677 int balance_cpu;
8678 /* Earliest time when we have to do rebalance again */
8679 unsigned long next_balance = jiffies + 60*HZ;
8680 int update_next_balance = 0;
8681
8682 if (idle != CPU_IDLE ||
8683 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8684 goto end;
8685
8686 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8687 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8688 continue;
8689
8690 /*
8691 * If this cpu gets work to do, stop the load balancing
8692 * work being done for other cpus. Next load
8693 * balancing owner will pick it up.
8694 */
8695 if (need_resched())
8696 break;
8697
8698 rq = cpu_rq(balance_cpu);
8699
8700 /*
8701 * If time for next balance is due,
8702 * do the balance.
8703 */
8704 if (time_after_eq(jiffies, rq->next_balance)) {
8705 raw_spin_lock_irq(&rq->lock);
8706 update_rq_clock(rq);
8707 update_idle_cpu_load(rq);
8708 raw_spin_unlock_irq(&rq->lock);
8709 rebalance_domains(rq, CPU_IDLE);
8710 }
8711
8712 if (time_after(next_balance, rq->next_balance)) {
8713 next_balance = rq->next_balance;
8714 update_next_balance = 1;
8715 }
8716 }
8717
8718 /*
8719 * next_balance will be updated only when there is a need.
8720 * When the CPU is attached to null domain for ex, it will not be
8721 * updated.
8722 */
8723 if (likely(update_next_balance))
8724 nohz.next_balance = next_balance;
8725 end:
8726 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8727 }
8728
8729 /*
8730 * Current heuristic for kicking the idle load balancer in the presence
8731 * of an idle cpu in the system.
8732 * - This rq has more than one task.
8733 * - This rq has at least one CFS task and the capacity of the CPU is
8734 * significantly reduced because of RT tasks or IRQs.
8735 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8736 * multiple busy cpu.
8737 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8738 * domain span are idle.
8739 */
nohz_kick_needed(struct rq * rq)8740 static inline bool nohz_kick_needed(struct rq *rq)
8741 {
8742 unsigned long now = jiffies;
8743 struct sched_domain *sd;
8744 struct sched_group_capacity *sgc;
8745 int nr_busy, cpu = rq->cpu;
8746 bool kick = false;
8747
8748 if (unlikely(rq->idle_balance))
8749 return false;
8750
8751 /*
8752 * We may be recently in ticked or tickless idle mode. At the first
8753 * busy tick after returning from idle, we will update the busy stats.
8754 */
8755 set_cpu_sd_state_busy();
8756 nohz_balance_exit_idle(cpu);
8757
8758 /*
8759 * None are in tickless mode and hence no need for NOHZ idle load
8760 * balancing.
8761 */
8762 if (likely(!atomic_read(&nohz.nr_cpus)))
8763 return false;
8764
8765 if (time_before(now, nohz.next_balance))
8766 return false;
8767
8768 if (rq->nr_running >= 2 &&
8769 (!energy_aware() || cpu_overutilized(cpu)))
8770 return true;
8771
8772 rcu_read_lock();
8773 sd = rcu_dereference(per_cpu(sd_busy, cpu));
8774 if (sd && !energy_aware()) {
8775 sgc = sd->groups->sgc;
8776 nr_busy = atomic_read(&sgc->nr_busy_cpus);
8777
8778 if (nr_busy > 1) {
8779 kick = true;
8780 goto unlock;
8781 }
8782
8783 }
8784
8785 sd = rcu_dereference(rq->sd);
8786 if (sd) {
8787 if ((rq->cfs.h_nr_running >= 1) &&
8788 check_cpu_capacity(rq, sd)) {
8789 kick = true;
8790 goto unlock;
8791 }
8792 }
8793
8794 sd = rcu_dereference(per_cpu(sd_asym, cpu));
8795 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
8796 sched_domain_span(sd)) < cpu)) {
8797 kick = true;
8798 goto unlock;
8799 }
8800
8801 unlock:
8802 rcu_read_unlock();
8803 return kick;
8804 }
8805 #else
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)8806 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8807 #endif
8808
8809 /*
8810 * run_rebalance_domains is triggered when needed from the scheduler tick.
8811 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8812 */
run_rebalance_domains(struct softirq_action * h)8813 static void run_rebalance_domains(struct softirq_action *h)
8814 {
8815 struct rq *this_rq = this_rq();
8816 enum cpu_idle_type idle = this_rq->idle_balance ?
8817 CPU_IDLE : CPU_NOT_IDLE;
8818
8819 /*
8820 * If this cpu has a pending nohz_balance_kick, then do the
8821 * balancing on behalf of the other idle cpus whose ticks are
8822 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8823 * give the idle cpus a chance to load balance. Else we may
8824 * load balance only within the local sched_domain hierarchy
8825 * and abort nohz_idle_balance altogether if we pull some load.
8826 */
8827 nohz_idle_balance(this_rq, idle);
8828 rebalance_domains(this_rq, idle);
8829 }
8830
8831 /*
8832 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8833 */
trigger_load_balance(struct rq * rq)8834 void trigger_load_balance(struct rq *rq)
8835 {
8836 /* Don't need to rebalance while attached to NULL domain */
8837 if (unlikely(on_null_domain(rq)))
8838 return;
8839
8840 if (time_after_eq(jiffies, rq->next_balance))
8841 raise_softirq(SCHED_SOFTIRQ);
8842 #ifdef CONFIG_NO_HZ_COMMON
8843 if (nohz_kick_needed(rq))
8844 nohz_balancer_kick();
8845 #endif
8846 }
8847
rq_online_fair(struct rq * rq)8848 static void rq_online_fair(struct rq *rq)
8849 {
8850 update_sysctl();
8851
8852 update_runtime_enabled(rq);
8853 }
8854
rq_offline_fair(struct rq * rq)8855 static void rq_offline_fair(struct rq *rq)
8856 {
8857 update_sysctl();
8858
8859 /* Ensure any throttled groups are reachable by pick_next_task */
8860 unthrottle_offline_cfs_rqs(rq);
8861 }
8862
8863 #endif /* CONFIG_SMP */
8864
8865 /*
8866 * scheduler tick hitting a task of our scheduling class:
8867 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)8868 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
8869 {
8870 struct cfs_rq *cfs_rq;
8871 struct sched_entity *se = &curr->se;
8872
8873 for_each_sched_entity(se) {
8874 cfs_rq = cfs_rq_of(se);
8875 entity_tick(cfs_rq, se, queued);
8876 }
8877
8878 if (numabalancing_enabled)
8879 task_tick_numa(rq, curr);
8880
8881 #ifdef CONFIG_SMP
8882 if (!rq->rd->overutilized && cpu_overutilized(task_cpu(curr))) {
8883 rq->rd->overutilized = true;
8884 trace_sched_overutilized(true);
8885 }
8886
8887 rq->misfit_task = !task_fits_max(curr, rq->cpu);
8888 #endif
8889
8890 }
8891
8892 /*
8893 * called on fork with the child task as argument from the parent's context
8894 * - child not yet on the tasklist
8895 * - preemption disabled
8896 */
task_fork_fair(struct task_struct * p)8897 static void task_fork_fair(struct task_struct *p)
8898 {
8899 struct cfs_rq *cfs_rq;
8900 struct sched_entity *se = &p->se, *curr;
8901 int this_cpu = smp_processor_id();
8902 struct rq *rq = this_rq();
8903 unsigned long flags;
8904
8905 raw_spin_lock_irqsave(&rq->lock, flags);
8906
8907 update_rq_clock(rq);
8908
8909 cfs_rq = task_cfs_rq(current);
8910 curr = cfs_rq->curr;
8911
8912 /*
8913 * Not only the cpu but also the task_group of the parent might have
8914 * been changed after parent->se.parent,cfs_rq were copied to
8915 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
8916 * of child point to valid ones.
8917 */
8918 rcu_read_lock();
8919 __set_task_cpu(p, this_cpu);
8920 rcu_read_unlock();
8921
8922 update_curr(cfs_rq);
8923
8924 if (curr)
8925 se->vruntime = curr->vruntime;
8926 place_entity(cfs_rq, se, 1);
8927
8928 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
8929 /*
8930 * Upon rescheduling, sched_class::put_prev_task() will place
8931 * 'current' within the tree based on its new key value.
8932 */
8933 swap(curr->vruntime, se->vruntime);
8934 resched_curr(rq);
8935 }
8936
8937 se->vruntime -= cfs_rq->min_vruntime;
8938
8939 raw_spin_unlock_irqrestore(&rq->lock, flags);
8940 }
8941
8942 /*
8943 * Priority of the task has changed. Check to see if we preempt
8944 * the current task.
8945 */
8946 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)8947 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
8948 {
8949 if (!task_on_rq_queued(p))
8950 return;
8951
8952 /*
8953 * Reschedule if we are currently running on this runqueue and
8954 * our priority decreased, or if we are not currently running on
8955 * this runqueue and our priority is higher than the current's
8956 */
8957 if (rq->curr == p) {
8958 if (p->prio > oldprio)
8959 resched_curr(rq);
8960 } else
8961 check_preempt_curr(rq, p, 0);
8962 }
8963
vruntime_normalized(struct task_struct * p)8964 static inline bool vruntime_normalized(struct task_struct *p)
8965 {
8966 struct sched_entity *se = &p->se;
8967
8968 /*
8969 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8970 * the dequeue_entity(.flags=0) will already have normalized the
8971 * vruntime.
8972 */
8973 if (p->on_rq)
8974 return true;
8975
8976 /*
8977 * When !on_rq, vruntime of the task has usually NOT been normalized.
8978 * But there are some cases where it has already been normalized:
8979 *
8980 * - A forked child which is waiting for being woken up by
8981 * wake_up_new_task().
8982 * - A task which has been woken up by try_to_wake_up() and
8983 * waiting for actually being woken up by sched_ttwu_pending().
8984 */
8985 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8986 return true;
8987
8988 return false;
8989 }
8990
detach_task_cfs_rq(struct task_struct * p)8991 static void detach_task_cfs_rq(struct task_struct *p)
8992 {
8993 struct sched_entity *se = &p->se;
8994 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8995
8996 if (!vruntime_normalized(p)) {
8997 /*
8998 * Fix up our vruntime so that the current sleep doesn't
8999 * cause 'unlimited' sleep bonus.
9000 */
9001 place_entity(cfs_rq, se, 0);
9002 se->vruntime -= cfs_rq->min_vruntime;
9003 }
9004
9005 /* Catch up with the cfs_rq and remove our load when we leave */
9006 detach_entity_load_avg(cfs_rq, se);
9007 }
9008
attach_task_cfs_rq(struct task_struct * p)9009 static void attach_task_cfs_rq(struct task_struct *p)
9010 {
9011 struct sched_entity *se = &p->se;
9012 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9013
9014 #ifdef CONFIG_FAIR_GROUP_SCHED
9015 /*
9016 * Since the real-depth could have been changed (only FAIR
9017 * class maintain depth value), reset depth properly.
9018 */
9019 se->depth = se->parent ? se->parent->depth + 1 : 0;
9020 #endif
9021
9022 /* Synchronize task with its cfs_rq */
9023 attach_entity_load_avg(cfs_rq, se);
9024
9025 if (!vruntime_normalized(p))
9026 se->vruntime += cfs_rq->min_vruntime;
9027 }
9028
switched_from_fair(struct rq * rq,struct task_struct * p)9029 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9030 {
9031 detach_task_cfs_rq(p);
9032 }
9033
switched_to_fair(struct rq * rq,struct task_struct * p)9034 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9035 {
9036 attach_task_cfs_rq(p);
9037
9038 if (task_on_rq_queued(p)) {
9039 /*
9040 * We were most likely switched from sched_rt, so
9041 * kick off the schedule if running, otherwise just see
9042 * if we can still preempt the current task.
9043 */
9044 if (rq->curr == p)
9045 resched_curr(rq);
9046 else
9047 check_preempt_curr(rq, p, 0);
9048 }
9049 }
9050
9051 /* Account for a task changing its policy or group.
9052 *
9053 * This routine is mostly called to set cfs_rq->curr field when a task
9054 * migrates between groups/classes.
9055 */
set_curr_task_fair(struct rq * rq)9056 static void set_curr_task_fair(struct rq *rq)
9057 {
9058 struct sched_entity *se = &rq->curr->se;
9059
9060 for_each_sched_entity(se) {
9061 struct cfs_rq *cfs_rq = cfs_rq_of(se);
9062
9063 set_next_entity(cfs_rq, se);
9064 /* ensure bandwidth has been allocated on our new cfs_rq */
9065 account_cfs_rq_runtime(cfs_rq, 0);
9066 }
9067 }
9068
init_cfs_rq(struct cfs_rq * cfs_rq)9069 void init_cfs_rq(struct cfs_rq *cfs_rq)
9070 {
9071 cfs_rq->tasks_timeline = RB_ROOT;
9072 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9073 #ifndef CONFIG_64BIT
9074 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9075 #endif
9076 #ifdef CONFIG_SMP
9077 atomic_long_set(&cfs_rq->removed_load_avg, 0);
9078 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9079 #endif
9080 }
9081
9082 #ifdef CONFIG_FAIR_GROUP_SCHED
task_move_group_fair(struct task_struct * p)9083 static void task_move_group_fair(struct task_struct *p)
9084 {
9085 detach_task_cfs_rq(p);
9086 set_task_rq(p, task_cpu(p));
9087
9088 #ifdef CONFIG_SMP
9089 /* Tell se's cfs_rq has been changed -- migrated */
9090 p->se.avg.last_update_time = 0;
9091 #endif
9092 attach_task_cfs_rq(p);
9093 }
9094
free_fair_sched_group(struct task_group * tg)9095 void free_fair_sched_group(struct task_group *tg)
9096 {
9097 int i;
9098
9099 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9100
9101 for_each_possible_cpu(i) {
9102 if (tg->cfs_rq)
9103 kfree(tg->cfs_rq[i]);
9104 if (tg->se) {
9105 if (tg->se[i])
9106 remove_entity_load_avg(tg->se[i]);
9107 kfree(tg->se[i]);
9108 }
9109 }
9110
9111 kfree(tg->cfs_rq);
9112 kfree(tg->se);
9113 }
9114
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)9115 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9116 {
9117 struct cfs_rq *cfs_rq;
9118 struct sched_entity *se;
9119 int i;
9120
9121 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9122 if (!tg->cfs_rq)
9123 goto err;
9124 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9125 if (!tg->se)
9126 goto err;
9127
9128 tg->shares = NICE_0_LOAD;
9129
9130 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9131
9132 for_each_possible_cpu(i) {
9133 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9134 GFP_KERNEL, cpu_to_node(i));
9135 if (!cfs_rq)
9136 goto err;
9137
9138 se = kzalloc_node(sizeof(struct sched_entity),
9139 GFP_KERNEL, cpu_to_node(i));
9140 if (!se)
9141 goto err_free_rq;
9142
9143 init_cfs_rq(cfs_rq);
9144 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9145 init_entity_runnable_average(se);
9146 }
9147
9148 return 1;
9149
9150 err_free_rq:
9151 kfree(cfs_rq);
9152 err:
9153 return 0;
9154 }
9155
unregister_fair_sched_group(struct task_group * tg,int cpu)9156 void unregister_fair_sched_group(struct task_group *tg, int cpu)
9157 {
9158 struct rq *rq = cpu_rq(cpu);
9159 unsigned long flags;
9160
9161 /*
9162 * Only empty task groups can be destroyed; so we can speculatively
9163 * check on_list without danger of it being re-added.
9164 */
9165 if (!tg->cfs_rq[cpu]->on_list)
9166 return;
9167
9168 raw_spin_lock_irqsave(&rq->lock, flags);
9169 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9170 raw_spin_unlock_irqrestore(&rq->lock, flags);
9171 }
9172
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)9173 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9174 struct sched_entity *se, int cpu,
9175 struct sched_entity *parent)
9176 {
9177 struct rq *rq = cpu_rq(cpu);
9178
9179 cfs_rq->tg = tg;
9180 cfs_rq->rq = rq;
9181 init_cfs_rq_runtime(cfs_rq);
9182
9183 tg->cfs_rq[cpu] = cfs_rq;
9184 tg->se[cpu] = se;
9185
9186 /* se could be NULL for root_task_group */
9187 if (!se)
9188 return;
9189
9190 if (!parent) {
9191 se->cfs_rq = &rq->cfs;
9192 se->depth = 0;
9193 } else {
9194 se->cfs_rq = parent->my_q;
9195 se->depth = parent->depth + 1;
9196 }
9197
9198 se->my_q = cfs_rq;
9199 /* guarantee group entities always have weight */
9200 update_load_set(&se->load, NICE_0_LOAD);
9201 se->parent = parent;
9202 }
9203
9204 static DEFINE_MUTEX(shares_mutex);
9205
sched_group_set_shares(struct task_group * tg,unsigned long shares)9206 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9207 {
9208 int i;
9209 unsigned long flags;
9210
9211 /*
9212 * We can't change the weight of the root cgroup.
9213 */
9214 if (!tg->se[0])
9215 return -EINVAL;
9216
9217 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9218
9219 mutex_lock(&shares_mutex);
9220 if (tg->shares == shares)
9221 goto done;
9222
9223 tg->shares = shares;
9224 for_each_possible_cpu(i) {
9225 struct rq *rq = cpu_rq(i);
9226 struct sched_entity *se;
9227
9228 se = tg->se[i];
9229 /* Propagate contribution to hierarchy */
9230 raw_spin_lock_irqsave(&rq->lock, flags);
9231
9232 /* Possible calls to update_curr() need rq clock */
9233 update_rq_clock(rq);
9234 for_each_sched_entity(se)
9235 update_cfs_shares(group_cfs_rq(se));
9236 raw_spin_unlock_irqrestore(&rq->lock, flags);
9237 }
9238
9239 done:
9240 mutex_unlock(&shares_mutex);
9241 return 0;
9242 }
9243 #else /* CONFIG_FAIR_GROUP_SCHED */
9244
free_fair_sched_group(struct task_group * tg)9245 void free_fair_sched_group(struct task_group *tg) { }
9246
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)9247 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9248 {
9249 return 1;
9250 }
9251
unregister_fair_sched_group(struct task_group * tg,int cpu)9252 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
9253
9254 #endif /* CONFIG_FAIR_GROUP_SCHED */
9255
9256
get_rr_interval_fair(struct rq * rq,struct task_struct * task)9257 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9258 {
9259 struct sched_entity *se = &task->se;
9260 unsigned int rr_interval = 0;
9261
9262 /*
9263 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9264 * idle runqueue:
9265 */
9266 if (rq->cfs.load.weight)
9267 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9268
9269 return rr_interval;
9270 }
9271
9272 /*
9273 * All the scheduling class methods:
9274 */
9275 const struct sched_class fair_sched_class = {
9276 .next = &idle_sched_class,
9277 .enqueue_task = enqueue_task_fair,
9278 .dequeue_task = dequeue_task_fair,
9279 .yield_task = yield_task_fair,
9280 .yield_to_task = yield_to_task_fair,
9281
9282 .check_preempt_curr = check_preempt_wakeup,
9283
9284 .pick_next_task = pick_next_task_fair,
9285 .put_prev_task = put_prev_task_fair,
9286
9287 #ifdef CONFIG_SMP
9288 .select_task_rq = select_task_rq_fair,
9289 .migrate_task_rq = migrate_task_rq_fair,
9290
9291 .rq_online = rq_online_fair,
9292 .rq_offline = rq_offline_fair,
9293
9294 .task_waking = task_waking_fair,
9295 .task_dead = task_dead_fair,
9296 #endif
9297
9298 .set_curr_task = set_curr_task_fair,
9299 .task_tick = task_tick_fair,
9300 .task_fork = task_fork_fair,
9301
9302 .prio_changed = prio_changed_fair,
9303 .switched_from = switched_from_fair,
9304 .switched_to = switched_to_fair,
9305
9306 .get_rr_interval = get_rr_interval_fair,
9307
9308 .update_curr = update_curr_fair,
9309
9310 #ifdef CONFIG_FAIR_GROUP_SCHED
9311 .task_move_group = task_move_group_fair,
9312 #endif
9313 };
9314
9315 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)9316 void print_cfs_stats(struct seq_file *m, int cpu)
9317 {
9318 struct cfs_rq *cfs_rq;
9319
9320 rcu_read_lock();
9321 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
9322 print_cfs_rq(m, cpu, cfs_rq);
9323 rcu_read_unlock();
9324 }
9325 #endif
9326
init_sched_fair_class(void)9327 __init void init_sched_fair_class(void)
9328 {
9329 #ifdef CONFIG_SMP
9330 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9331
9332 #ifdef CONFIG_NO_HZ_COMMON
9333 nohz.next_balance = jiffies;
9334 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
9335 cpu_notifier(sched_ilb_notifier, 0);
9336 #endif
9337 #endif /* SMP */
9338
9339 }
9340