• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 #ifndef __T4_H__
32 #define __T4_H__
33 
34 #include "t4_hw.h"
35 #include "t4_regs.h"
36 #include "t4_msg.h"
37 #include "t4fw_ri_api.h"
38 
39 #define T4_MAX_NUM_PD 65536
40 #define T4_MAX_MR_SIZE (~0ULL)
41 #define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
42 #define T4_STAG_UNSET 0xffffffff
43 #define T4_FW_MAJ 0
44 #define A_PCIE_MA_SYNC 0x30b4
45 
46 struct t4_status_page {
47 	__be32 rsvd1;	/* flit 0 - hw owns */
48 	__be16 rsvd2;
49 	__be16 qid;
50 	__be16 cidx;
51 	__be16 pidx;
52 	u8 qp_err;	/* flit 1 - sw owns */
53 	u8 db_off;
54 	u8 pad;
55 	u16 host_wq_pidx;
56 	u16 host_cidx;
57 	u16 host_pidx;
58 };
59 
60 #define T4_EQ_ENTRY_SIZE 64
61 
62 #define T4_SQ_NUM_SLOTS 5
63 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
64 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
65 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
66 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
67 			sizeof(struct fw_ri_immd)))
68 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
69 			sizeof(struct fw_ri_rdma_write_wr) - \
70 			sizeof(struct fw_ri_immd)))
71 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
72 			sizeof(struct fw_ri_rdma_write_wr) - \
73 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
74 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
75 			sizeof(struct fw_ri_immd)) & ~31UL)
76 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
77 #define T4_MAX_FR_DSGL 1024
78 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
79 
t4_max_fr_depth(int use_dsgl)80 static inline int t4_max_fr_depth(int use_dsgl)
81 {
82 	return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
83 }
84 
85 #define T4_RQ_NUM_SLOTS 2
86 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
87 #define T4_MAX_RECV_SGE 4
88 
89 union t4_wr {
90 	struct fw_ri_res_wr res;
91 	struct fw_ri_wr ri;
92 	struct fw_ri_rdma_write_wr write;
93 	struct fw_ri_send_wr send;
94 	struct fw_ri_rdma_read_wr read;
95 	struct fw_ri_bind_mw_wr bind;
96 	struct fw_ri_fr_nsmr_wr fr;
97 	struct fw_ri_inv_lstag_wr inv;
98 	struct t4_status_page status;
99 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
100 };
101 
102 union t4_recv_wr {
103 	struct fw_ri_recv_wr recv;
104 	struct t4_status_page status;
105 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
106 };
107 
init_wr_hdr(union t4_wr * wqe,u16 wrid,enum fw_wr_opcodes opcode,u8 flags,u8 len16)108 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
109 			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
110 {
111 	wqe->send.opcode = (u8)opcode;
112 	wqe->send.flags = flags;
113 	wqe->send.wrid = wrid;
114 	wqe->send.r1[0] = 0;
115 	wqe->send.r1[1] = 0;
116 	wqe->send.r1[2] = 0;
117 	wqe->send.len16 = len16;
118 }
119 
120 /* CQE/AE status codes */
121 #define T4_ERR_SUCCESS                     0x0
122 #define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
123 						/* STAG is offlimt, being 0, */
124 						/* or STAG_key mismatch */
125 #define T4_ERR_PDID                        0x2	/* PDID mismatch */
126 #define T4_ERR_QPID                        0x3	/* QPID mismatch */
127 #define T4_ERR_ACCESS                      0x4	/* Invalid access right */
128 #define T4_ERR_WRAP                        0x5	/* Wrap error */
129 #define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
130 #define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
131 						/* shared memory region */
132 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
133 						/* shared memory region */
134 #define T4_ERR_ECC                         0x9	/* ECC error detected */
135 #define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
136 						/* reading PSTAG for a MW  */
137 						/* Invalidate */
138 #define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
139 						/* software error */
140 #define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
141 #define T4_ERR_CRC                         0x10 /* CRC error */
142 #define T4_ERR_MARKER                      0x11 /* Marker error */
143 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
144 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
145 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
146 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
147 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
148 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
149 #define T4_ERR_MSN                         0x18 /* MSN error */
150 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
151 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
152 						/* or READ_REQ */
153 #define T4_ERR_MSN_GAP                     0x1B
154 #define T4_ERR_MSN_RANGE                   0x1C
155 #define T4_ERR_IRD_OVERFLOW                0x1D
156 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
157 						/* software error */
158 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
159 						/* mismatch) */
160 /*
161  * CQE defs
162  */
163 struct t4_cqe {
164 	__be32 header;
165 	__be32 len;
166 	union {
167 		struct {
168 			__be32 stag;
169 			__be32 msn;
170 		} rcqe;
171 		struct {
172 			u32 nada1;
173 			u16 nada2;
174 			u16 cidx;
175 		} scqe;
176 		struct {
177 			__be32 wrid_hi;
178 			__be32 wrid_low;
179 		} gen;
180 	} u;
181 	__be64 reserved;
182 	__be64 bits_type_ts;
183 };
184 
185 /* macros for flit 0 of the cqe */
186 
187 #define S_CQE_QPID        12
188 #define M_CQE_QPID        0xFFFFF
189 #define G_CQE_QPID(x)     ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
190 #define V_CQE_QPID(x)	  ((x)<<S_CQE_QPID)
191 
192 #define S_CQE_SWCQE       11
193 #define M_CQE_SWCQE       0x1
194 #define G_CQE_SWCQE(x)    ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
195 #define V_CQE_SWCQE(x)	  ((x)<<S_CQE_SWCQE)
196 
197 #define S_CQE_STATUS      5
198 #define M_CQE_STATUS      0x1F
199 #define G_CQE_STATUS(x)   ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
200 #define V_CQE_STATUS(x)   ((x)<<S_CQE_STATUS)
201 
202 #define S_CQE_TYPE        4
203 #define M_CQE_TYPE        0x1
204 #define G_CQE_TYPE(x)     ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
205 #define V_CQE_TYPE(x)     ((x)<<S_CQE_TYPE)
206 
207 #define S_CQE_OPCODE      0
208 #define M_CQE_OPCODE      0xF
209 #define G_CQE_OPCODE(x)   ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
210 #define V_CQE_OPCODE(x)   ((x)<<S_CQE_OPCODE)
211 
212 #define SW_CQE(x)         (G_CQE_SWCQE(be32_to_cpu((x)->header)))
213 #define CQE_QPID(x)       (G_CQE_QPID(be32_to_cpu((x)->header)))
214 #define CQE_TYPE(x)       (G_CQE_TYPE(be32_to_cpu((x)->header)))
215 #define SQ_TYPE(x)	  (CQE_TYPE((x)))
216 #define RQ_TYPE(x)	  (!CQE_TYPE((x)))
217 #define CQE_STATUS(x)     (G_CQE_STATUS(be32_to_cpu((x)->header)))
218 #define CQE_OPCODE(x)     (G_CQE_OPCODE(be32_to_cpu((x)->header)))
219 
220 #define CQE_SEND_OPCODE(x)( \
221 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
222 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
223 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
224 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
225 
226 #define CQE_LEN(x)        (be32_to_cpu((x)->len))
227 
228 /* used for RQ completion processing */
229 #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
230 #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
231 
232 /* used for SQ completion processing */
233 #define CQE_WRID_SQ_IDX(x)	((x)->u.scqe.cidx)
234 
235 /* generic accessor macros */
236 #define CQE_WRID_HI(x)		(be32_to_cpu((x)->u.gen.wrid_hi))
237 #define CQE_WRID_LOW(x)		(be32_to_cpu((x)->u.gen.wrid_low))
238 
239 /* macros for flit 3 of the cqe */
240 #define S_CQE_GENBIT	63
241 #define M_CQE_GENBIT	0x1
242 #define G_CQE_GENBIT(x)	(((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
243 #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
244 
245 #define S_CQE_OVFBIT	62
246 #define M_CQE_OVFBIT	0x1
247 #define G_CQE_OVFBIT(x)	((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
248 
249 #define S_CQE_IQTYPE	60
250 #define M_CQE_IQTYPE	0x3
251 #define G_CQE_IQTYPE(x)	((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
252 
253 #define M_CQE_TS	0x0fffffffffffffffULL
254 #define G_CQE_TS(x)	((x) & M_CQE_TS)
255 
256 #define CQE_OVFBIT(x)	((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
257 #define CQE_GENBIT(x)	((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
258 #define CQE_TS(x)	(G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
259 
260 struct t4_swsqe {
261 	u64			wr_id;
262 	struct t4_cqe		cqe;
263 	int			read_len;
264 	int			opcode;
265 	int			complete;
266 	int			signaled;
267 	u16			idx;
268 	int                     flushed;
269 	struct timespec         host_ts;
270 	u64                     sge_ts;
271 };
272 
t4_pgprot_wc(pgprot_t prot)273 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
274 {
275 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
276 	return pgprot_writecombine(prot);
277 #else
278 	return pgprot_noncached(prot);
279 #endif
280 }
281 
282 enum {
283 	T4_SQ_ONCHIP = (1<<0),
284 };
285 
286 struct t4_sq {
287 	union t4_wr *queue;
288 	dma_addr_t dma_addr;
289 	DEFINE_DMA_UNMAP_ADDR(mapping);
290 	unsigned long phys_addr;
291 	struct t4_swsqe *sw_sq;
292 	struct t4_swsqe *oldest_read;
293 	u64 __iomem *udb;
294 	size_t memsize;
295 	u32 qid;
296 	u16 in_use;
297 	u16 size;
298 	u16 cidx;
299 	u16 pidx;
300 	u16 wq_pidx;
301 	u16 wq_pidx_inc;
302 	u16 flags;
303 	short flush_cidx;
304 };
305 
306 struct t4_swrqe {
307 	u64 wr_id;
308 	struct timespec host_ts;
309 	u64 sge_ts;
310 };
311 
312 struct t4_rq {
313 	union  t4_recv_wr *queue;
314 	dma_addr_t dma_addr;
315 	DEFINE_DMA_UNMAP_ADDR(mapping);
316 	struct t4_swrqe *sw_rq;
317 	u64 __iomem *udb;
318 	size_t memsize;
319 	u32 qid;
320 	u32 msn;
321 	u32 rqt_hwaddr;
322 	u16 rqt_size;
323 	u16 in_use;
324 	u16 size;
325 	u16 cidx;
326 	u16 pidx;
327 	u16 wq_pidx;
328 	u16 wq_pidx_inc;
329 };
330 
331 struct t4_wq {
332 	struct t4_sq sq;
333 	struct t4_rq rq;
334 	void __iomem *db;
335 	void __iomem *gts;
336 	struct c4iw_rdev *rdev;
337 	int flushed;
338 };
339 
t4_rqes_posted(struct t4_wq * wq)340 static inline int t4_rqes_posted(struct t4_wq *wq)
341 {
342 	return wq->rq.in_use;
343 }
344 
t4_rq_empty(struct t4_wq * wq)345 static inline int t4_rq_empty(struct t4_wq *wq)
346 {
347 	return wq->rq.in_use == 0;
348 }
349 
t4_rq_full(struct t4_wq * wq)350 static inline int t4_rq_full(struct t4_wq *wq)
351 {
352 	return wq->rq.in_use == (wq->rq.size - 1);
353 }
354 
t4_rq_avail(struct t4_wq * wq)355 static inline u32 t4_rq_avail(struct t4_wq *wq)
356 {
357 	return wq->rq.size - 1 - wq->rq.in_use;
358 }
359 
t4_rq_produce(struct t4_wq * wq,u8 len16)360 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
361 {
362 	wq->rq.in_use++;
363 	if (++wq->rq.pidx == wq->rq.size)
364 		wq->rq.pidx = 0;
365 	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
366 	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
367 		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
368 }
369 
t4_rq_consume(struct t4_wq * wq)370 static inline void t4_rq_consume(struct t4_wq *wq)
371 {
372 	wq->rq.in_use--;
373 	wq->rq.msn++;
374 	if (++wq->rq.cidx == wq->rq.size)
375 		wq->rq.cidx = 0;
376 }
377 
t4_rq_host_wq_pidx(struct t4_wq * wq)378 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
379 {
380 	return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
381 }
382 
t4_rq_wq_size(struct t4_wq * wq)383 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
384 {
385 		return wq->rq.size * T4_RQ_NUM_SLOTS;
386 }
387 
t4_sq_onchip(struct t4_sq * sq)388 static inline int t4_sq_onchip(struct t4_sq *sq)
389 {
390 	return sq->flags & T4_SQ_ONCHIP;
391 }
392 
t4_sq_empty(struct t4_wq * wq)393 static inline int t4_sq_empty(struct t4_wq *wq)
394 {
395 	return wq->sq.in_use == 0;
396 }
397 
t4_sq_full(struct t4_wq * wq)398 static inline int t4_sq_full(struct t4_wq *wq)
399 {
400 	return wq->sq.in_use == (wq->sq.size - 1);
401 }
402 
t4_sq_avail(struct t4_wq * wq)403 static inline u32 t4_sq_avail(struct t4_wq *wq)
404 {
405 	return wq->sq.size - 1 - wq->sq.in_use;
406 }
407 
t4_sq_produce(struct t4_wq * wq,u8 len16)408 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
409 {
410 	wq->sq.in_use++;
411 	if (++wq->sq.pidx == wq->sq.size)
412 		wq->sq.pidx = 0;
413 	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
414 	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
415 		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
416 }
417 
t4_sq_consume(struct t4_wq * wq)418 static inline void t4_sq_consume(struct t4_wq *wq)
419 {
420 	BUG_ON(wq->sq.in_use < 1);
421 	if (wq->sq.cidx == wq->sq.flush_cidx)
422 		wq->sq.flush_cidx = -1;
423 	wq->sq.in_use--;
424 	if (++wq->sq.cidx == wq->sq.size)
425 		wq->sq.cidx = 0;
426 }
427 
t4_sq_host_wq_pidx(struct t4_wq * wq)428 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
429 {
430 	return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
431 }
432 
t4_sq_wq_size(struct t4_wq * wq)433 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
434 {
435 		return wq->sq.size * T4_SQ_NUM_SLOTS;
436 }
437 
438 /* This function copies 64 byte coalesced work request to memory
439  * mapped BAR2 space. For coalesced WRs, the SGE fetches data
440  * from the FIFO instead of from Host.
441  */
pio_copy(u64 __iomem * dst,u64 * src)442 static inline void pio_copy(u64 __iomem *dst, u64 *src)
443 {
444 	int count = 8;
445 
446 	while (count) {
447 		writeq(*src, dst);
448 		src++;
449 		dst++;
450 		count--;
451 	}
452 }
453 
t4_ring_sq_db(struct t4_wq * wq,u16 inc,u8 t5,union t4_wr * wqe)454 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, u8 t5,
455 				 union t4_wr *wqe)
456 {
457 
458 	/* Flush host queue memory writes. */
459 	wmb();
460 	if (t5) {
461 		if (inc == 1 && wqe) {
462 			PDBG("%s: WC wq->sq.pidx = %d\n",
463 			     __func__, wq->sq.pidx);
464 			pio_copy(wq->sq.udb + 7, (void *)wqe);
465 		} else {
466 			PDBG("%s: DB wq->sq.pidx = %d\n",
467 			     __func__, wq->sq.pidx);
468 			writel(PIDX_T5(inc), wq->sq.udb);
469 		}
470 
471 		/* Flush user doorbell area writes. */
472 		wmb();
473 		return;
474 	}
475 	writel(QID(wq->sq.qid) | PIDX(inc), wq->db);
476 }
477 
t4_ring_rq_db(struct t4_wq * wq,u16 inc,u8 t5,union t4_recv_wr * wqe)478 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc, u8 t5,
479 				 union t4_recv_wr *wqe)
480 {
481 
482 	/* Flush host queue memory writes. */
483 	wmb();
484 	if (t5) {
485 		if (inc == 1 && wqe) {
486 			PDBG("%s: WC wq->rq.pidx = %d\n",
487 			     __func__, wq->rq.pidx);
488 			pio_copy(wq->rq.udb + 7, (void *)wqe);
489 		} else {
490 			PDBG("%s: DB wq->rq.pidx = %d\n",
491 			     __func__, wq->rq.pidx);
492 			writel(PIDX_T5(inc), wq->rq.udb);
493 		}
494 
495 		/* Flush user doorbell area writes. */
496 		wmb();
497 		return;
498 	}
499 	writel(QID(wq->rq.qid) | PIDX(inc), wq->db);
500 }
501 
t4_wq_in_error(struct t4_wq * wq)502 static inline int t4_wq_in_error(struct t4_wq *wq)
503 {
504 	return wq->rq.queue[wq->rq.size].status.qp_err;
505 }
506 
t4_set_wq_in_error(struct t4_wq * wq)507 static inline void t4_set_wq_in_error(struct t4_wq *wq)
508 {
509 	wq->rq.queue[wq->rq.size].status.qp_err = 1;
510 }
511 
t4_disable_wq_db(struct t4_wq * wq)512 static inline void t4_disable_wq_db(struct t4_wq *wq)
513 {
514 	wq->rq.queue[wq->rq.size].status.db_off = 1;
515 }
516 
t4_enable_wq_db(struct t4_wq * wq)517 static inline void t4_enable_wq_db(struct t4_wq *wq)
518 {
519 	wq->rq.queue[wq->rq.size].status.db_off = 0;
520 }
521 
t4_wq_db_enabled(struct t4_wq * wq)522 static inline int t4_wq_db_enabled(struct t4_wq *wq)
523 {
524 	return !wq->rq.queue[wq->rq.size].status.db_off;
525 }
526 
527 enum t4_cq_flags {
528 	CQ_ARMED	= 1,
529 };
530 
531 struct t4_cq {
532 	struct t4_cqe *queue;
533 	dma_addr_t dma_addr;
534 	DEFINE_DMA_UNMAP_ADDR(mapping);
535 	struct t4_cqe *sw_queue;
536 	void __iomem *gts;
537 	struct c4iw_rdev *rdev;
538 	u64 ugts;
539 	size_t memsize;
540 	__be64 bits_type_ts;
541 	u32 cqid;
542 	int vector;
543 	u16 size; /* including status page */
544 	u16 cidx;
545 	u16 sw_pidx;
546 	u16 sw_cidx;
547 	u16 sw_in_use;
548 	u16 cidx_inc;
549 	u8 gen;
550 	u8 error;
551 	unsigned long flags;
552 };
553 
t4_clear_cq_armed(struct t4_cq * cq)554 static inline int t4_clear_cq_armed(struct t4_cq *cq)
555 {
556 	return test_and_clear_bit(CQ_ARMED, &cq->flags);
557 }
558 
t4_arm_cq(struct t4_cq * cq,int se)559 static inline int t4_arm_cq(struct t4_cq *cq, int se)
560 {
561 	u32 val;
562 
563 	set_bit(CQ_ARMED, &cq->flags);
564 	while (cq->cidx_inc > CIDXINC_MASK) {
565 		val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7) |
566 		      INGRESSQID(cq->cqid);
567 		writel(val, cq->gts);
568 		cq->cidx_inc -= CIDXINC_MASK;
569 	}
570 	val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6) |
571 	      INGRESSQID(cq->cqid);
572 	writel(val, cq->gts);
573 	cq->cidx_inc = 0;
574 	return 0;
575 }
576 
t4_swcq_produce(struct t4_cq * cq)577 static inline void t4_swcq_produce(struct t4_cq *cq)
578 {
579 	cq->sw_in_use++;
580 	if (cq->sw_in_use == cq->size) {
581 		PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
582 		cq->error = 1;
583 		BUG_ON(1);
584 	}
585 	if (++cq->sw_pidx == cq->size)
586 		cq->sw_pidx = 0;
587 }
588 
t4_swcq_consume(struct t4_cq * cq)589 static inline void t4_swcq_consume(struct t4_cq *cq)
590 {
591 	BUG_ON(cq->sw_in_use < 1);
592 	cq->sw_in_use--;
593 	if (++cq->sw_cidx == cq->size)
594 		cq->sw_cidx = 0;
595 }
596 
t4_hwcq_consume(struct t4_cq * cq)597 static inline void t4_hwcq_consume(struct t4_cq *cq)
598 {
599 	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
600 	if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_MASK) {
601 		u32 val;
602 
603 		val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7) |
604 		      INGRESSQID(cq->cqid);
605 		writel(val, cq->gts);
606 		cq->cidx_inc = 0;
607 	}
608 	if (++cq->cidx == cq->size) {
609 		cq->cidx = 0;
610 		cq->gen ^= 1;
611 	}
612 }
613 
t4_valid_cqe(struct t4_cq * cq,struct t4_cqe * cqe)614 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
615 {
616 	return (CQE_GENBIT(cqe) == cq->gen);
617 }
618 
t4_next_hw_cqe(struct t4_cq * cq,struct t4_cqe ** cqe)619 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
620 {
621 	int ret;
622 	u16 prev_cidx;
623 
624 	if (cq->cidx == 0)
625 		prev_cidx = cq->size - 1;
626 	else
627 		prev_cidx = cq->cidx - 1;
628 
629 	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
630 		ret = -EOVERFLOW;
631 		cq->error = 1;
632 		printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
633 		BUG_ON(1);
634 	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
635 
636 		/* Ensure CQE is flushed to memory */
637 		rmb();
638 		*cqe = &cq->queue[cq->cidx];
639 		ret = 0;
640 	} else
641 		ret = -ENODATA;
642 	return ret;
643 }
644 
t4_next_sw_cqe(struct t4_cq * cq)645 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
646 {
647 	if (cq->sw_in_use == cq->size) {
648 		PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
649 		cq->error = 1;
650 		BUG_ON(1);
651 		return NULL;
652 	}
653 	if (cq->sw_in_use)
654 		return &cq->sw_queue[cq->sw_cidx];
655 	return NULL;
656 }
657 
t4_next_cqe(struct t4_cq * cq,struct t4_cqe ** cqe)658 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
659 {
660 	int ret = 0;
661 
662 	if (cq->error)
663 		ret = -ENODATA;
664 	else if (cq->sw_in_use)
665 		*cqe = &cq->sw_queue[cq->sw_cidx];
666 	else
667 		ret = t4_next_hw_cqe(cq, cqe);
668 	return ret;
669 }
670 
t4_cq_in_error(struct t4_cq * cq)671 static inline int t4_cq_in_error(struct t4_cq *cq)
672 {
673 	return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
674 }
675 
t4_set_cq_in_error(struct t4_cq * cq)676 static inline void t4_set_cq_in_error(struct t4_cq *cq)
677 {
678 	((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
679 }
680 #endif
681 
682 struct t4_dev_status_page {
683 	u8 db_off;
684 };
685