1 /*
2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 */
31 #ifndef __T4_H__
32 #define __T4_H__
33
34 #include "t4_hw.h"
35 #include "t4_regs.h"
36 #include "t4_msg.h"
37 #include "t4fw_ri_api.h"
38
39 #define T4_MAX_NUM_PD 65536
40 #define T4_MAX_MR_SIZE (~0ULL)
41 #define T4_PAGESIZE_MASK 0xffff000 /* 4KB-128MB */
42 #define T4_STAG_UNSET 0xffffffff
43 #define T4_FW_MAJ 0
44 #define A_PCIE_MA_SYNC 0x30b4
45
46 struct t4_status_page {
47 __be32 rsvd1; /* flit 0 - hw owns */
48 __be16 rsvd2;
49 __be16 qid;
50 __be16 cidx;
51 __be16 pidx;
52 u8 qp_err; /* flit 1 - sw owns */
53 u8 db_off;
54 u8 pad;
55 u16 host_wq_pidx;
56 u16 host_cidx;
57 u16 host_pidx;
58 };
59
60 #define T4_EQ_ENTRY_SIZE 64
61
62 #define T4_SQ_NUM_SLOTS 5
63 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
64 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
65 sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
66 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
67 sizeof(struct fw_ri_immd)))
68 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
69 sizeof(struct fw_ri_rdma_write_wr) - \
70 sizeof(struct fw_ri_immd)))
71 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
72 sizeof(struct fw_ri_rdma_write_wr) - \
73 sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
74 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
75 sizeof(struct fw_ri_immd)) & ~31UL)
76 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
77 #define T4_MAX_FR_DSGL 1024
78 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
79
t4_max_fr_depth(int use_dsgl)80 static inline int t4_max_fr_depth(int use_dsgl)
81 {
82 return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
83 }
84
85 #define T4_RQ_NUM_SLOTS 2
86 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
87 #define T4_MAX_RECV_SGE 4
88
89 union t4_wr {
90 struct fw_ri_res_wr res;
91 struct fw_ri_wr ri;
92 struct fw_ri_rdma_write_wr write;
93 struct fw_ri_send_wr send;
94 struct fw_ri_rdma_read_wr read;
95 struct fw_ri_bind_mw_wr bind;
96 struct fw_ri_fr_nsmr_wr fr;
97 struct fw_ri_inv_lstag_wr inv;
98 struct t4_status_page status;
99 __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
100 };
101
102 union t4_recv_wr {
103 struct fw_ri_recv_wr recv;
104 struct t4_status_page status;
105 __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
106 };
107
init_wr_hdr(union t4_wr * wqe,u16 wrid,enum fw_wr_opcodes opcode,u8 flags,u8 len16)108 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
109 enum fw_wr_opcodes opcode, u8 flags, u8 len16)
110 {
111 wqe->send.opcode = (u8)opcode;
112 wqe->send.flags = flags;
113 wqe->send.wrid = wrid;
114 wqe->send.r1[0] = 0;
115 wqe->send.r1[1] = 0;
116 wqe->send.r1[2] = 0;
117 wqe->send.len16 = len16;
118 }
119
120 /* CQE/AE status codes */
121 #define T4_ERR_SUCCESS 0x0
122 #define T4_ERR_STAG 0x1 /* STAG invalid: either the */
123 /* STAG is offlimt, being 0, */
124 /* or STAG_key mismatch */
125 #define T4_ERR_PDID 0x2 /* PDID mismatch */
126 #define T4_ERR_QPID 0x3 /* QPID mismatch */
127 #define T4_ERR_ACCESS 0x4 /* Invalid access right */
128 #define T4_ERR_WRAP 0x5 /* Wrap error */
129 #define T4_ERR_BOUND 0x6 /* base and bounds voilation */
130 #define T4_ERR_INVALIDATE_SHARED_MR 0x7 /* attempt to invalidate a */
131 /* shared memory region */
132 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8 /* attempt to invalidate a */
133 /* shared memory region */
134 #define T4_ERR_ECC 0x9 /* ECC error detected */
135 #define T4_ERR_ECC_PSTAG 0xA /* ECC error detected when */
136 /* reading PSTAG for a MW */
137 /* Invalidate */
138 #define T4_ERR_PBL_ADDR_BOUND 0xB /* pbl addr out of bounds: */
139 /* software error */
140 #define T4_ERR_SWFLUSH 0xC /* SW FLUSHED */
141 #define T4_ERR_CRC 0x10 /* CRC error */
142 #define T4_ERR_MARKER 0x11 /* Marker error */
143 #define T4_ERR_PDU_LEN_ERR 0x12 /* invalid PDU length */
144 #define T4_ERR_OUT_OF_RQE 0x13 /* out of RQE */
145 #define T4_ERR_DDP_VERSION 0x14 /* wrong DDP version */
146 #define T4_ERR_RDMA_VERSION 0x15 /* wrong RDMA version */
147 #define T4_ERR_OPCODE 0x16 /* invalid rdma opcode */
148 #define T4_ERR_DDP_QUEUE_NUM 0x17 /* invalid ddp queue number */
149 #define T4_ERR_MSN 0x18 /* MSN error */
150 #define T4_ERR_TBIT 0x19 /* tag bit not set correctly */
151 #define T4_ERR_MO 0x1A /* MO not 0 for TERMINATE */
152 /* or READ_REQ */
153 #define T4_ERR_MSN_GAP 0x1B
154 #define T4_ERR_MSN_RANGE 0x1C
155 #define T4_ERR_IRD_OVERFLOW 0x1D
156 #define T4_ERR_RQE_ADDR_BOUND 0x1E /* RQE addr out of bounds: */
157 /* software error */
158 #define T4_ERR_INTERNAL_ERR 0x1F /* internal error (opcode */
159 /* mismatch) */
160 /*
161 * CQE defs
162 */
163 struct t4_cqe {
164 __be32 header;
165 __be32 len;
166 union {
167 struct {
168 __be32 stag;
169 __be32 msn;
170 } rcqe;
171 struct {
172 u32 nada1;
173 u16 nada2;
174 u16 cidx;
175 } scqe;
176 struct {
177 __be32 wrid_hi;
178 __be32 wrid_low;
179 } gen;
180 } u;
181 __be64 reserved;
182 __be64 bits_type_ts;
183 };
184
185 /* macros for flit 0 of the cqe */
186
187 #define S_CQE_QPID 12
188 #define M_CQE_QPID 0xFFFFF
189 #define G_CQE_QPID(x) ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
190 #define V_CQE_QPID(x) ((x)<<S_CQE_QPID)
191
192 #define S_CQE_SWCQE 11
193 #define M_CQE_SWCQE 0x1
194 #define G_CQE_SWCQE(x) ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
195 #define V_CQE_SWCQE(x) ((x)<<S_CQE_SWCQE)
196
197 #define S_CQE_STATUS 5
198 #define M_CQE_STATUS 0x1F
199 #define G_CQE_STATUS(x) ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
200 #define V_CQE_STATUS(x) ((x)<<S_CQE_STATUS)
201
202 #define S_CQE_TYPE 4
203 #define M_CQE_TYPE 0x1
204 #define G_CQE_TYPE(x) ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
205 #define V_CQE_TYPE(x) ((x)<<S_CQE_TYPE)
206
207 #define S_CQE_OPCODE 0
208 #define M_CQE_OPCODE 0xF
209 #define G_CQE_OPCODE(x) ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
210 #define V_CQE_OPCODE(x) ((x)<<S_CQE_OPCODE)
211
212 #define SW_CQE(x) (G_CQE_SWCQE(be32_to_cpu((x)->header)))
213 #define CQE_QPID(x) (G_CQE_QPID(be32_to_cpu((x)->header)))
214 #define CQE_TYPE(x) (G_CQE_TYPE(be32_to_cpu((x)->header)))
215 #define SQ_TYPE(x) (CQE_TYPE((x)))
216 #define RQ_TYPE(x) (!CQE_TYPE((x)))
217 #define CQE_STATUS(x) (G_CQE_STATUS(be32_to_cpu((x)->header)))
218 #define CQE_OPCODE(x) (G_CQE_OPCODE(be32_to_cpu((x)->header)))
219
220 #define CQE_SEND_OPCODE(x)( \
221 (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
222 (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
223 (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
224 (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
225
226 #define CQE_LEN(x) (be32_to_cpu((x)->len))
227
228 /* used for RQ completion processing */
229 #define CQE_WRID_STAG(x) (be32_to_cpu((x)->u.rcqe.stag))
230 #define CQE_WRID_MSN(x) (be32_to_cpu((x)->u.rcqe.msn))
231
232 /* used for SQ completion processing */
233 #define CQE_WRID_SQ_IDX(x) ((x)->u.scqe.cidx)
234
235 /* generic accessor macros */
236 #define CQE_WRID_HI(x) (be32_to_cpu((x)->u.gen.wrid_hi))
237 #define CQE_WRID_LOW(x) (be32_to_cpu((x)->u.gen.wrid_low))
238
239 /* macros for flit 3 of the cqe */
240 #define S_CQE_GENBIT 63
241 #define M_CQE_GENBIT 0x1
242 #define G_CQE_GENBIT(x) (((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
243 #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
244
245 #define S_CQE_OVFBIT 62
246 #define M_CQE_OVFBIT 0x1
247 #define G_CQE_OVFBIT(x) ((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
248
249 #define S_CQE_IQTYPE 60
250 #define M_CQE_IQTYPE 0x3
251 #define G_CQE_IQTYPE(x) ((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
252
253 #define M_CQE_TS 0x0fffffffffffffffULL
254 #define G_CQE_TS(x) ((x) & M_CQE_TS)
255
256 #define CQE_OVFBIT(x) ((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
257 #define CQE_GENBIT(x) ((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
258 #define CQE_TS(x) (G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
259
260 struct t4_swsqe {
261 u64 wr_id;
262 struct t4_cqe cqe;
263 int read_len;
264 int opcode;
265 int complete;
266 int signaled;
267 u16 idx;
268 int flushed;
269 struct timespec host_ts;
270 u64 sge_ts;
271 };
272
t4_pgprot_wc(pgprot_t prot)273 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
274 {
275 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
276 return pgprot_writecombine(prot);
277 #else
278 return pgprot_noncached(prot);
279 #endif
280 }
281
282 enum {
283 T4_SQ_ONCHIP = (1<<0),
284 };
285
286 struct t4_sq {
287 union t4_wr *queue;
288 dma_addr_t dma_addr;
289 DEFINE_DMA_UNMAP_ADDR(mapping);
290 unsigned long phys_addr;
291 struct t4_swsqe *sw_sq;
292 struct t4_swsqe *oldest_read;
293 u64 __iomem *udb;
294 size_t memsize;
295 u32 qid;
296 u16 in_use;
297 u16 size;
298 u16 cidx;
299 u16 pidx;
300 u16 wq_pidx;
301 u16 wq_pidx_inc;
302 u16 flags;
303 short flush_cidx;
304 };
305
306 struct t4_swrqe {
307 u64 wr_id;
308 struct timespec host_ts;
309 u64 sge_ts;
310 };
311
312 struct t4_rq {
313 union t4_recv_wr *queue;
314 dma_addr_t dma_addr;
315 DEFINE_DMA_UNMAP_ADDR(mapping);
316 struct t4_swrqe *sw_rq;
317 u64 __iomem *udb;
318 size_t memsize;
319 u32 qid;
320 u32 msn;
321 u32 rqt_hwaddr;
322 u16 rqt_size;
323 u16 in_use;
324 u16 size;
325 u16 cidx;
326 u16 pidx;
327 u16 wq_pidx;
328 u16 wq_pidx_inc;
329 };
330
331 struct t4_wq {
332 struct t4_sq sq;
333 struct t4_rq rq;
334 void __iomem *db;
335 void __iomem *gts;
336 struct c4iw_rdev *rdev;
337 int flushed;
338 };
339
t4_rqes_posted(struct t4_wq * wq)340 static inline int t4_rqes_posted(struct t4_wq *wq)
341 {
342 return wq->rq.in_use;
343 }
344
t4_rq_empty(struct t4_wq * wq)345 static inline int t4_rq_empty(struct t4_wq *wq)
346 {
347 return wq->rq.in_use == 0;
348 }
349
t4_rq_full(struct t4_wq * wq)350 static inline int t4_rq_full(struct t4_wq *wq)
351 {
352 return wq->rq.in_use == (wq->rq.size - 1);
353 }
354
t4_rq_avail(struct t4_wq * wq)355 static inline u32 t4_rq_avail(struct t4_wq *wq)
356 {
357 return wq->rq.size - 1 - wq->rq.in_use;
358 }
359
t4_rq_produce(struct t4_wq * wq,u8 len16)360 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
361 {
362 wq->rq.in_use++;
363 if (++wq->rq.pidx == wq->rq.size)
364 wq->rq.pidx = 0;
365 wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
366 if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
367 wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
368 }
369
t4_rq_consume(struct t4_wq * wq)370 static inline void t4_rq_consume(struct t4_wq *wq)
371 {
372 wq->rq.in_use--;
373 wq->rq.msn++;
374 if (++wq->rq.cidx == wq->rq.size)
375 wq->rq.cidx = 0;
376 }
377
t4_rq_host_wq_pidx(struct t4_wq * wq)378 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
379 {
380 return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
381 }
382
t4_rq_wq_size(struct t4_wq * wq)383 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
384 {
385 return wq->rq.size * T4_RQ_NUM_SLOTS;
386 }
387
t4_sq_onchip(struct t4_sq * sq)388 static inline int t4_sq_onchip(struct t4_sq *sq)
389 {
390 return sq->flags & T4_SQ_ONCHIP;
391 }
392
t4_sq_empty(struct t4_wq * wq)393 static inline int t4_sq_empty(struct t4_wq *wq)
394 {
395 return wq->sq.in_use == 0;
396 }
397
t4_sq_full(struct t4_wq * wq)398 static inline int t4_sq_full(struct t4_wq *wq)
399 {
400 return wq->sq.in_use == (wq->sq.size - 1);
401 }
402
t4_sq_avail(struct t4_wq * wq)403 static inline u32 t4_sq_avail(struct t4_wq *wq)
404 {
405 return wq->sq.size - 1 - wq->sq.in_use;
406 }
407
t4_sq_produce(struct t4_wq * wq,u8 len16)408 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
409 {
410 wq->sq.in_use++;
411 if (++wq->sq.pidx == wq->sq.size)
412 wq->sq.pidx = 0;
413 wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
414 if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
415 wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
416 }
417
t4_sq_consume(struct t4_wq * wq)418 static inline void t4_sq_consume(struct t4_wq *wq)
419 {
420 BUG_ON(wq->sq.in_use < 1);
421 if (wq->sq.cidx == wq->sq.flush_cidx)
422 wq->sq.flush_cidx = -1;
423 wq->sq.in_use--;
424 if (++wq->sq.cidx == wq->sq.size)
425 wq->sq.cidx = 0;
426 }
427
t4_sq_host_wq_pidx(struct t4_wq * wq)428 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
429 {
430 return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
431 }
432
t4_sq_wq_size(struct t4_wq * wq)433 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
434 {
435 return wq->sq.size * T4_SQ_NUM_SLOTS;
436 }
437
438 /* This function copies 64 byte coalesced work request to memory
439 * mapped BAR2 space. For coalesced WRs, the SGE fetches data
440 * from the FIFO instead of from Host.
441 */
pio_copy(u64 __iomem * dst,u64 * src)442 static inline void pio_copy(u64 __iomem *dst, u64 *src)
443 {
444 int count = 8;
445
446 while (count) {
447 writeq(*src, dst);
448 src++;
449 dst++;
450 count--;
451 }
452 }
453
t4_ring_sq_db(struct t4_wq * wq,u16 inc,u8 t5,union t4_wr * wqe)454 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, u8 t5,
455 union t4_wr *wqe)
456 {
457
458 /* Flush host queue memory writes. */
459 wmb();
460 if (t5) {
461 if (inc == 1 && wqe) {
462 PDBG("%s: WC wq->sq.pidx = %d\n",
463 __func__, wq->sq.pidx);
464 pio_copy(wq->sq.udb + 7, (void *)wqe);
465 } else {
466 PDBG("%s: DB wq->sq.pidx = %d\n",
467 __func__, wq->sq.pidx);
468 writel(PIDX_T5(inc), wq->sq.udb);
469 }
470
471 /* Flush user doorbell area writes. */
472 wmb();
473 return;
474 }
475 writel(QID(wq->sq.qid) | PIDX(inc), wq->db);
476 }
477
t4_ring_rq_db(struct t4_wq * wq,u16 inc,u8 t5,union t4_recv_wr * wqe)478 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc, u8 t5,
479 union t4_recv_wr *wqe)
480 {
481
482 /* Flush host queue memory writes. */
483 wmb();
484 if (t5) {
485 if (inc == 1 && wqe) {
486 PDBG("%s: WC wq->rq.pidx = %d\n",
487 __func__, wq->rq.pidx);
488 pio_copy(wq->rq.udb + 7, (void *)wqe);
489 } else {
490 PDBG("%s: DB wq->rq.pidx = %d\n",
491 __func__, wq->rq.pidx);
492 writel(PIDX_T5(inc), wq->rq.udb);
493 }
494
495 /* Flush user doorbell area writes. */
496 wmb();
497 return;
498 }
499 writel(QID(wq->rq.qid) | PIDX(inc), wq->db);
500 }
501
t4_wq_in_error(struct t4_wq * wq)502 static inline int t4_wq_in_error(struct t4_wq *wq)
503 {
504 return wq->rq.queue[wq->rq.size].status.qp_err;
505 }
506
t4_set_wq_in_error(struct t4_wq * wq)507 static inline void t4_set_wq_in_error(struct t4_wq *wq)
508 {
509 wq->rq.queue[wq->rq.size].status.qp_err = 1;
510 }
511
t4_disable_wq_db(struct t4_wq * wq)512 static inline void t4_disable_wq_db(struct t4_wq *wq)
513 {
514 wq->rq.queue[wq->rq.size].status.db_off = 1;
515 }
516
t4_enable_wq_db(struct t4_wq * wq)517 static inline void t4_enable_wq_db(struct t4_wq *wq)
518 {
519 wq->rq.queue[wq->rq.size].status.db_off = 0;
520 }
521
t4_wq_db_enabled(struct t4_wq * wq)522 static inline int t4_wq_db_enabled(struct t4_wq *wq)
523 {
524 return !wq->rq.queue[wq->rq.size].status.db_off;
525 }
526
527 enum t4_cq_flags {
528 CQ_ARMED = 1,
529 };
530
531 struct t4_cq {
532 struct t4_cqe *queue;
533 dma_addr_t dma_addr;
534 DEFINE_DMA_UNMAP_ADDR(mapping);
535 struct t4_cqe *sw_queue;
536 void __iomem *gts;
537 struct c4iw_rdev *rdev;
538 u64 ugts;
539 size_t memsize;
540 __be64 bits_type_ts;
541 u32 cqid;
542 int vector;
543 u16 size; /* including status page */
544 u16 cidx;
545 u16 sw_pidx;
546 u16 sw_cidx;
547 u16 sw_in_use;
548 u16 cidx_inc;
549 u8 gen;
550 u8 error;
551 unsigned long flags;
552 };
553
t4_clear_cq_armed(struct t4_cq * cq)554 static inline int t4_clear_cq_armed(struct t4_cq *cq)
555 {
556 return test_and_clear_bit(CQ_ARMED, &cq->flags);
557 }
558
t4_arm_cq(struct t4_cq * cq,int se)559 static inline int t4_arm_cq(struct t4_cq *cq, int se)
560 {
561 u32 val;
562
563 set_bit(CQ_ARMED, &cq->flags);
564 while (cq->cidx_inc > CIDXINC_MASK) {
565 val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7) |
566 INGRESSQID(cq->cqid);
567 writel(val, cq->gts);
568 cq->cidx_inc -= CIDXINC_MASK;
569 }
570 val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6) |
571 INGRESSQID(cq->cqid);
572 writel(val, cq->gts);
573 cq->cidx_inc = 0;
574 return 0;
575 }
576
t4_swcq_produce(struct t4_cq * cq)577 static inline void t4_swcq_produce(struct t4_cq *cq)
578 {
579 cq->sw_in_use++;
580 if (cq->sw_in_use == cq->size) {
581 PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
582 cq->error = 1;
583 BUG_ON(1);
584 }
585 if (++cq->sw_pidx == cq->size)
586 cq->sw_pidx = 0;
587 }
588
t4_swcq_consume(struct t4_cq * cq)589 static inline void t4_swcq_consume(struct t4_cq *cq)
590 {
591 BUG_ON(cq->sw_in_use < 1);
592 cq->sw_in_use--;
593 if (++cq->sw_cidx == cq->size)
594 cq->sw_cidx = 0;
595 }
596
t4_hwcq_consume(struct t4_cq * cq)597 static inline void t4_hwcq_consume(struct t4_cq *cq)
598 {
599 cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
600 if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_MASK) {
601 u32 val;
602
603 val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7) |
604 INGRESSQID(cq->cqid);
605 writel(val, cq->gts);
606 cq->cidx_inc = 0;
607 }
608 if (++cq->cidx == cq->size) {
609 cq->cidx = 0;
610 cq->gen ^= 1;
611 }
612 }
613
t4_valid_cqe(struct t4_cq * cq,struct t4_cqe * cqe)614 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
615 {
616 return (CQE_GENBIT(cqe) == cq->gen);
617 }
618
t4_next_hw_cqe(struct t4_cq * cq,struct t4_cqe ** cqe)619 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
620 {
621 int ret;
622 u16 prev_cidx;
623
624 if (cq->cidx == 0)
625 prev_cidx = cq->size - 1;
626 else
627 prev_cidx = cq->cidx - 1;
628
629 if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
630 ret = -EOVERFLOW;
631 cq->error = 1;
632 printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
633 BUG_ON(1);
634 } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
635
636 /* Ensure CQE is flushed to memory */
637 rmb();
638 *cqe = &cq->queue[cq->cidx];
639 ret = 0;
640 } else
641 ret = -ENODATA;
642 return ret;
643 }
644
t4_next_sw_cqe(struct t4_cq * cq)645 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
646 {
647 if (cq->sw_in_use == cq->size) {
648 PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
649 cq->error = 1;
650 BUG_ON(1);
651 return NULL;
652 }
653 if (cq->sw_in_use)
654 return &cq->sw_queue[cq->sw_cidx];
655 return NULL;
656 }
657
t4_next_cqe(struct t4_cq * cq,struct t4_cqe ** cqe)658 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
659 {
660 int ret = 0;
661
662 if (cq->error)
663 ret = -ENODATA;
664 else if (cq->sw_in_use)
665 *cqe = &cq->sw_queue[cq->sw_cidx];
666 else
667 ret = t4_next_hw_cqe(cq, cqe);
668 return ret;
669 }
670
t4_cq_in_error(struct t4_cq * cq)671 static inline int t4_cq_in_error(struct t4_cq *cq)
672 {
673 return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
674 }
675
t4_set_cq_in_error(struct t4_cq * cq)676 static inline void t4_set_cq_in_error(struct t4_cq *cq)
677 {
678 ((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
679 }
680 #endif
681
682 struct t4_dev_status_page {
683 u8 db_off;
684 };
685