• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3  * driver for Linux.
4  *
5  * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/skbuff.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/ip.h>
41 #include <net/ipv6.h>
42 #include <net/tcp.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/prefetch.h>
45 
46 #include "t4vf_common.h"
47 #include "t4vf_defs.h"
48 
49 #include "../cxgb4/t4_regs.h"
50 #include "../cxgb4/t4fw_api.h"
51 #include "../cxgb4/t4_msg.h"
52 
53 /*
54  * Constants ...
55  */
56 enum {
57 	/*
58 	 * Egress Queue sizes, producer and consumer indices are all in units
59 	 * of Egress Context Units bytes.  Note that as far as the hardware is
60 	 * concerned, the free list is an Egress Queue (the host produces free
61 	 * buffers which the hardware consumes) and free list entries are
62 	 * 64-bit PCI DMA addresses.
63 	 */
64 	EQ_UNIT = SGE_EQ_IDXSIZE,
65 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
66 	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
67 
68 	/*
69 	 * Max number of TX descriptors we clean up at a time.  Should be
70 	 * modest as freeing skbs isn't cheap and it happens while holding
71 	 * locks.  We just need to free packets faster than they arrive, we
72 	 * eventually catch up and keep the amortized cost reasonable.
73 	 */
74 	MAX_TX_RECLAIM = 16,
75 
76 	/*
77 	 * Max number of Rx buffers we replenish at a time.  Again keep this
78 	 * modest, allocating buffers isn't cheap either.
79 	 */
80 	MAX_RX_REFILL = 16,
81 
82 	/*
83 	 * Period of the Rx queue check timer.  This timer is infrequent as it
84 	 * has something to do only when the system experiences severe memory
85 	 * shortage.
86 	 */
87 	RX_QCHECK_PERIOD = (HZ / 2),
88 
89 	/*
90 	 * Period of the TX queue check timer and the maximum number of TX
91 	 * descriptors to be reclaimed by the TX timer.
92 	 */
93 	TX_QCHECK_PERIOD = (HZ / 2),
94 	MAX_TIMER_TX_RECLAIM = 100,
95 
96 	/*
97 	 * Suspend an Ethernet TX queue with fewer available descriptors than
98 	 * this.  We always want to have room for a maximum sized packet:
99 	 * inline immediate data + MAX_SKB_FRAGS. This is the same as
100 	 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
101 	 * (see that function and its helpers for a description of the
102 	 * calculation).
103 	 */
104 	ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
105 	ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
106 				   ((ETHTXQ_MAX_FRAGS-1) & 1) +
107 				   2),
108 	ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
109 			  sizeof(struct cpl_tx_pkt_lso_core) +
110 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
111 	ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
112 
113 	ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
114 
115 	/*
116 	 * Max TX descriptor space we allow for an Ethernet packet to be
117 	 * inlined into a WR.  This is limited by the maximum value which
118 	 * we can specify for immediate data in the firmware Ethernet TX
119 	 * Work Request.
120 	 */
121 	MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_MASK,
122 
123 	/*
124 	 * Max size of a WR sent through a control TX queue.
125 	 */
126 	MAX_CTRL_WR_LEN = 256,
127 
128 	/*
129 	 * Maximum amount of data which we'll ever need to inline into a
130 	 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
131 	 */
132 	MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
133 			  ? MAX_IMM_TX_PKT_LEN
134 			  : MAX_CTRL_WR_LEN),
135 
136 	/*
137 	 * For incoming packets less than RX_COPY_THRES, we copy the data into
138 	 * an skb rather than referencing the data.  We allocate enough
139 	 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
140 	 * of the data (header).
141 	 */
142 	RX_COPY_THRES = 256,
143 	RX_PULL_LEN = 128,
144 
145 	/*
146 	 * Main body length for sk_buffs used for RX Ethernet packets with
147 	 * fragments.  Should be >= RX_PULL_LEN but possibly bigger to give
148 	 * pskb_may_pull() some room.
149 	 */
150 	RX_SKB_LEN = 512,
151 };
152 
153 /*
154  * Software state per TX descriptor.
155  */
156 struct tx_sw_desc {
157 	struct sk_buff *skb;		/* socket buffer of TX data source */
158 	struct ulptx_sgl *sgl;		/* scatter/gather list in TX Queue */
159 };
160 
161 /*
162  * Software state per RX Free List descriptor.  We keep track of the allocated
163  * FL page, its size, and its PCI DMA address (if the page is mapped).  The FL
164  * page size and its PCI DMA mapped state are stored in the low bits of the
165  * PCI DMA address as per below.
166  */
167 struct rx_sw_desc {
168 	struct page *page;		/* Free List page buffer */
169 	dma_addr_t dma_addr;		/* PCI DMA address (if mapped) */
170 					/*   and flags (see below) */
171 };
172 
173 /*
174  * The low bits of rx_sw_desc.dma_addr have special meaning.  Note that the
175  * SGE also uses the low 4 bits to determine the size of the buffer.  It uses
176  * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
177  * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
178  * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
179  * to the SGE.  Thus, our software state of "is the buffer mapped for DMA" is
180  * maintained in an inverse sense so the hardware never sees that bit high.
181  */
182 enum {
183 	RX_LARGE_BUF    = 1 << 0,	/* buffer is SGE_FL_BUFFER_SIZE[1] */
184 	RX_UNMAPPED_BUF = 1 << 1,	/* buffer is not mapped */
185 };
186 
187 /**
188  *	get_buf_addr - return DMA buffer address of software descriptor
189  *	@sdesc: pointer to the software buffer descriptor
190  *
191  *	Return the DMA buffer address of a software descriptor (stripping out
192  *	our low-order flag bits).
193  */
get_buf_addr(const struct rx_sw_desc * sdesc)194 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
195 {
196 	return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
197 }
198 
199 /**
200  *	is_buf_mapped - is buffer mapped for DMA?
201  *	@sdesc: pointer to the software buffer descriptor
202  *
203  *	Determine whether the buffer associated with a software descriptor in
204  *	mapped for DMA or not.
205  */
is_buf_mapped(const struct rx_sw_desc * sdesc)206 static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
207 {
208 	return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
209 }
210 
211 /**
212  *	need_skb_unmap - does the platform need unmapping of sk_buffs?
213  *
214  *	Returns true if the platform needs sk_buff unmapping.  The compiler
215  *	optimizes away unnecessary code if this returns true.
216  */
need_skb_unmap(void)217 static inline int need_skb_unmap(void)
218 {
219 #ifdef CONFIG_NEED_DMA_MAP_STATE
220 	return 1;
221 #else
222 	return 0;
223 #endif
224 }
225 
226 /**
227  *	txq_avail - return the number of available slots in a TX queue
228  *	@tq: the TX queue
229  *
230  *	Returns the number of available descriptors in a TX queue.
231  */
txq_avail(const struct sge_txq * tq)232 static inline unsigned int txq_avail(const struct sge_txq *tq)
233 {
234 	return tq->size - 1 - tq->in_use;
235 }
236 
237 /**
238  *	fl_cap - return the capacity of a Free List
239  *	@fl: the Free List
240  *
241  *	Returns the capacity of a Free List.  The capacity is less than the
242  *	size because an Egress Queue Index Unit worth of descriptors needs to
243  *	be left unpopulated, otherwise the Producer and Consumer indices PIDX
244  *	and CIDX will match and the hardware will think the FL is empty.
245  */
fl_cap(const struct sge_fl * fl)246 static inline unsigned int fl_cap(const struct sge_fl *fl)
247 {
248 	return fl->size - FL_PER_EQ_UNIT;
249 }
250 
251 /**
252  *	fl_starving - return whether a Free List is starving.
253  *	@adapter: pointer to the adapter
254  *	@fl: the Free List
255  *
256  *	Tests specified Free List to see whether the number of buffers
257  *	available to the hardware has falled below our "starvation"
258  *	threshold.
259  */
fl_starving(const struct adapter * adapter,const struct sge_fl * fl)260 static inline bool fl_starving(const struct adapter *adapter,
261 			       const struct sge_fl *fl)
262 {
263 	const struct sge *s = &adapter->sge;
264 
265 	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
266 }
267 
268 /**
269  *	map_skb -  map an skb for DMA to the device
270  *	@dev: the egress net device
271  *	@skb: the packet to map
272  *	@addr: a pointer to the base of the DMA mapping array
273  *
274  *	Map an skb for DMA to the device and return an array of DMA addresses.
275  */
map_skb(struct device * dev,const struct sk_buff * skb,dma_addr_t * addr)276 static int map_skb(struct device *dev, const struct sk_buff *skb,
277 		   dma_addr_t *addr)
278 {
279 	const skb_frag_t *fp, *end;
280 	const struct skb_shared_info *si;
281 
282 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
283 	if (dma_mapping_error(dev, *addr))
284 		goto out_err;
285 
286 	si = skb_shinfo(skb);
287 	end = &si->frags[si->nr_frags];
288 	for (fp = si->frags; fp < end; fp++) {
289 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
290 					   DMA_TO_DEVICE);
291 		if (dma_mapping_error(dev, *addr))
292 			goto unwind;
293 	}
294 	return 0;
295 
296 unwind:
297 	while (fp-- > si->frags)
298 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
299 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
300 
301 out_err:
302 	return -ENOMEM;
303 }
304 
unmap_sgl(struct device * dev,const struct sk_buff * skb,const struct ulptx_sgl * sgl,const struct sge_txq * tq)305 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
306 		      const struct ulptx_sgl *sgl, const struct sge_txq *tq)
307 {
308 	const struct ulptx_sge_pair *p;
309 	unsigned int nfrags = skb_shinfo(skb)->nr_frags;
310 
311 	if (likely(skb_headlen(skb)))
312 		dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
313 				 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
314 	else {
315 		dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
316 			       be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
317 		nfrags--;
318 	}
319 
320 	/*
321 	 * the complexity below is because of the possibility of a wrap-around
322 	 * in the middle of an SGL
323 	 */
324 	for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
325 		if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
326 unmap:
327 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
328 				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
329 			dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
330 				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
331 			p++;
332 		} else if ((u8 *)p == (u8 *)tq->stat) {
333 			p = (const struct ulptx_sge_pair *)tq->desc;
334 			goto unmap;
335 		} else if ((u8 *)p + 8 == (u8 *)tq->stat) {
336 			const __be64 *addr = (const __be64 *)tq->desc;
337 
338 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
339 				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
340 			dma_unmap_page(dev, be64_to_cpu(addr[1]),
341 				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
342 			p = (const struct ulptx_sge_pair *)&addr[2];
343 		} else {
344 			const __be64 *addr = (const __be64 *)tq->desc;
345 
346 			dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
347 				       be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
348 			dma_unmap_page(dev, be64_to_cpu(addr[0]),
349 				       be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
350 			p = (const struct ulptx_sge_pair *)&addr[1];
351 		}
352 	}
353 	if (nfrags) {
354 		__be64 addr;
355 
356 		if ((u8 *)p == (u8 *)tq->stat)
357 			p = (const struct ulptx_sge_pair *)tq->desc;
358 		addr = ((u8 *)p + 16 <= (u8 *)tq->stat
359 			? p->addr[0]
360 			: *(const __be64 *)tq->desc);
361 		dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
362 			       DMA_TO_DEVICE);
363 	}
364 }
365 
366 /**
367  *	free_tx_desc - reclaims TX descriptors and their buffers
368  *	@adapter: the adapter
369  *	@tq: the TX queue to reclaim descriptors from
370  *	@n: the number of descriptors to reclaim
371  *	@unmap: whether the buffers should be unmapped for DMA
372  *
373  *	Reclaims TX descriptors from an SGE TX queue and frees the associated
374  *	TX buffers.  Called with the TX queue lock held.
375  */
free_tx_desc(struct adapter * adapter,struct sge_txq * tq,unsigned int n,bool unmap)376 static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
377 			 unsigned int n, bool unmap)
378 {
379 	struct tx_sw_desc *sdesc;
380 	unsigned int cidx = tq->cidx;
381 	struct device *dev = adapter->pdev_dev;
382 
383 	const int need_unmap = need_skb_unmap() && unmap;
384 
385 	sdesc = &tq->sdesc[cidx];
386 	while (n--) {
387 		/*
388 		 * If we kept a reference to the original TX skb, we need to
389 		 * unmap it from PCI DMA space (if required) and free it.
390 		 */
391 		if (sdesc->skb) {
392 			if (need_unmap)
393 				unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
394 			dev_consume_skb_any(sdesc->skb);
395 			sdesc->skb = NULL;
396 		}
397 
398 		sdesc++;
399 		if (++cidx == tq->size) {
400 			cidx = 0;
401 			sdesc = tq->sdesc;
402 		}
403 	}
404 	tq->cidx = cidx;
405 }
406 
407 /*
408  * Return the number of reclaimable descriptors in a TX queue.
409  */
reclaimable(const struct sge_txq * tq)410 static inline int reclaimable(const struct sge_txq *tq)
411 {
412 	int hw_cidx = be16_to_cpu(tq->stat->cidx);
413 	int reclaimable = hw_cidx - tq->cidx;
414 	if (reclaimable < 0)
415 		reclaimable += tq->size;
416 	return reclaimable;
417 }
418 
419 /**
420  *	reclaim_completed_tx - reclaims completed TX descriptors
421  *	@adapter: the adapter
422  *	@tq: the TX queue to reclaim completed descriptors from
423  *	@unmap: whether the buffers should be unmapped for DMA
424  *
425  *	Reclaims TX descriptors that the SGE has indicated it has processed,
426  *	and frees the associated buffers if possible.  Called with the TX
427  *	queue locked.
428  */
reclaim_completed_tx(struct adapter * adapter,struct sge_txq * tq,bool unmap)429 static inline void reclaim_completed_tx(struct adapter *adapter,
430 					struct sge_txq *tq,
431 					bool unmap)
432 {
433 	int avail = reclaimable(tq);
434 
435 	if (avail) {
436 		/*
437 		 * Limit the amount of clean up work we do at a time to keep
438 		 * the TX lock hold time O(1).
439 		 */
440 		if (avail > MAX_TX_RECLAIM)
441 			avail = MAX_TX_RECLAIM;
442 
443 		free_tx_desc(adapter, tq, avail, unmap);
444 		tq->in_use -= avail;
445 	}
446 }
447 
448 /**
449  *	get_buf_size - return the size of an RX Free List buffer.
450  *	@adapter: pointer to the associated adapter
451  *	@sdesc: pointer to the software buffer descriptor
452  */
get_buf_size(const struct adapter * adapter,const struct rx_sw_desc * sdesc)453 static inline int get_buf_size(const struct adapter *adapter,
454 			       const struct rx_sw_desc *sdesc)
455 {
456 	const struct sge *s = &adapter->sge;
457 
458 	return (s->fl_pg_order > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
459 		? (PAGE_SIZE << s->fl_pg_order) : PAGE_SIZE);
460 }
461 
462 /**
463  *	free_rx_bufs - free RX buffers on an SGE Free List
464  *	@adapter: the adapter
465  *	@fl: the SGE Free List to free buffers from
466  *	@n: how many buffers to free
467  *
468  *	Release the next @n buffers on an SGE Free List RX queue.   The
469  *	buffers must be made inaccessible to hardware before calling this
470  *	function.
471  */
free_rx_bufs(struct adapter * adapter,struct sge_fl * fl,int n)472 static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
473 {
474 	while (n--) {
475 		struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
476 
477 		if (is_buf_mapped(sdesc))
478 			dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
479 				       get_buf_size(adapter, sdesc),
480 				       PCI_DMA_FROMDEVICE);
481 		put_page(sdesc->page);
482 		sdesc->page = NULL;
483 		if (++fl->cidx == fl->size)
484 			fl->cidx = 0;
485 		fl->avail--;
486 	}
487 }
488 
489 /**
490  *	unmap_rx_buf - unmap the current RX buffer on an SGE Free List
491  *	@adapter: the adapter
492  *	@fl: the SGE Free List
493  *
494  *	Unmap the current buffer on an SGE Free List RX queue.   The
495  *	buffer must be made inaccessible to HW before calling this function.
496  *
497  *	This is similar to @free_rx_bufs above but does not free the buffer.
498  *	Do note that the FL still loses any further access to the buffer.
499  *	This is used predominantly to "transfer ownership" of an FL buffer
500  *	to another entity (typically an skb's fragment list).
501  */
unmap_rx_buf(struct adapter * adapter,struct sge_fl * fl)502 static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
503 {
504 	struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
505 
506 	if (is_buf_mapped(sdesc))
507 		dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
508 			       get_buf_size(adapter, sdesc),
509 			       PCI_DMA_FROMDEVICE);
510 	sdesc->page = NULL;
511 	if (++fl->cidx == fl->size)
512 		fl->cidx = 0;
513 	fl->avail--;
514 }
515 
516 /**
517  *	ring_fl_db - righ doorbell on free list
518  *	@adapter: the adapter
519  *	@fl: the Free List whose doorbell should be rung ...
520  *
521  *	Tell the Scatter Gather Engine that there are new free list entries
522  *	available.
523  */
ring_fl_db(struct adapter * adapter,struct sge_fl * fl)524 static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
525 {
526 	u32 val;
527 
528 	/*
529 	 * The SGE keeps track of its Producer and Consumer Indices in terms
530 	 * of Egress Queue Units so we can only tell it about integral numbers
531 	 * of multiples of Free List Entries per Egress Queue Units ...
532 	 */
533 	if (fl->pend_cred >= FL_PER_EQ_UNIT) {
534 		val = PIDX(fl->pend_cred / FL_PER_EQ_UNIT);
535 		if (!is_t4(adapter->params.chip))
536 			val |= DBTYPE(1);
537 		wmb();
538 		t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
539 			     DBPRIO(1) |
540 			     QID(fl->cntxt_id) | val);
541 		fl->pend_cred %= FL_PER_EQ_UNIT;
542 	}
543 }
544 
545 /**
546  *	set_rx_sw_desc - initialize software RX buffer descriptor
547  *	@sdesc: pointer to the softwore RX buffer descriptor
548  *	@page: pointer to the page data structure backing the RX buffer
549  *	@dma_addr: PCI DMA address (possibly with low-bit flags)
550  */
set_rx_sw_desc(struct rx_sw_desc * sdesc,struct page * page,dma_addr_t dma_addr)551 static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
552 				  dma_addr_t dma_addr)
553 {
554 	sdesc->page = page;
555 	sdesc->dma_addr = dma_addr;
556 }
557 
558 /*
559  * Support for poisoning RX buffers ...
560  */
561 #define POISON_BUF_VAL -1
562 
poison_buf(struct page * page,size_t sz)563 static inline void poison_buf(struct page *page, size_t sz)
564 {
565 #if POISON_BUF_VAL >= 0
566 	memset(page_address(page), POISON_BUF_VAL, sz);
567 #endif
568 }
569 
570 /**
571  *	refill_fl - refill an SGE RX buffer ring
572  *	@adapter: the adapter
573  *	@fl: the Free List ring to refill
574  *	@n: the number of new buffers to allocate
575  *	@gfp: the gfp flags for the allocations
576  *
577  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
578  *	allocated with the supplied gfp flags.  The caller must assure that
579  *	@n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
580  *	EGRESS QUEUE UNITS_ indicates an empty Free List!  Returns the number
581  *	of buffers allocated.  If afterwards the queue is found critically low,
582  *	mark it as starving in the bitmap of starving FLs.
583  */
refill_fl(struct adapter * adapter,struct sge_fl * fl,int n,gfp_t gfp)584 static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
585 			      int n, gfp_t gfp)
586 {
587 	struct sge *s = &adapter->sge;
588 	struct page *page;
589 	dma_addr_t dma_addr;
590 	unsigned int cred = fl->avail;
591 	__be64 *d = &fl->desc[fl->pidx];
592 	struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
593 
594 	/*
595 	 * Sanity: ensure that the result of adding n Free List buffers
596 	 * won't result in wrapping the SGE's Producer Index around to
597 	 * it's Consumer Index thereby indicating an empty Free List ...
598 	 */
599 	BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
600 
601 	/*
602 	 * If we support large pages, prefer large buffers and fail over to
603 	 * small pages if we can't allocate large pages to satisfy the refill.
604 	 * If we don't support large pages, drop directly into the small page
605 	 * allocation code.
606 	 */
607 	if (s->fl_pg_order == 0)
608 		goto alloc_small_pages;
609 
610 	while (n) {
611 		page = alloc_pages(gfp | __GFP_COMP | __GFP_NOWARN,
612 				   s->fl_pg_order);
613 		if (unlikely(!page)) {
614 			/*
615 			 * We've failed inour attempt to allocate a "large
616 			 * page".  Fail over to the "small page" allocation
617 			 * below.
618 			 */
619 			fl->large_alloc_failed++;
620 			break;
621 		}
622 		poison_buf(page, PAGE_SIZE << s->fl_pg_order);
623 
624 		dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
625 					PAGE_SIZE << s->fl_pg_order,
626 					PCI_DMA_FROMDEVICE);
627 		if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
628 			/*
629 			 * We've run out of DMA mapping space.  Free up the
630 			 * buffer and return with what we've managed to put
631 			 * into the free list.  We don't want to fail over to
632 			 * the small page allocation below in this case
633 			 * because DMA mapping resources are typically
634 			 * critical resources once they become scarse.
635 			 */
636 			__free_pages(page, s->fl_pg_order);
637 			goto out;
638 		}
639 		dma_addr |= RX_LARGE_BUF;
640 		*d++ = cpu_to_be64(dma_addr);
641 
642 		set_rx_sw_desc(sdesc, page, dma_addr);
643 		sdesc++;
644 
645 		fl->avail++;
646 		if (++fl->pidx == fl->size) {
647 			fl->pidx = 0;
648 			sdesc = fl->sdesc;
649 			d = fl->desc;
650 		}
651 		n--;
652 	}
653 
654 alloc_small_pages:
655 	while (n--) {
656 		page = __skb_alloc_page(gfp | __GFP_NOWARN, NULL);
657 		if (unlikely(!page)) {
658 			fl->alloc_failed++;
659 			break;
660 		}
661 		poison_buf(page, PAGE_SIZE);
662 
663 		dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
664 				       PCI_DMA_FROMDEVICE);
665 		if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
666 			put_page(page);
667 			break;
668 		}
669 		*d++ = cpu_to_be64(dma_addr);
670 
671 		set_rx_sw_desc(sdesc, page, dma_addr);
672 		sdesc++;
673 
674 		fl->avail++;
675 		if (++fl->pidx == fl->size) {
676 			fl->pidx = 0;
677 			sdesc = fl->sdesc;
678 			d = fl->desc;
679 		}
680 	}
681 
682 out:
683 	/*
684 	 * Update our accounting state to incorporate the new Free List
685 	 * buffers, tell the hardware about them and return the number of
686 	 * buffers which we were able to allocate.
687 	 */
688 	cred = fl->avail - cred;
689 	fl->pend_cred += cred;
690 	ring_fl_db(adapter, fl);
691 
692 	if (unlikely(fl_starving(adapter, fl))) {
693 		smp_wmb();
694 		set_bit(fl->cntxt_id, adapter->sge.starving_fl);
695 	}
696 
697 	return cred;
698 }
699 
700 /*
701  * Refill a Free List to its capacity or the Maximum Refill Increment,
702  * whichever is smaller ...
703  */
__refill_fl(struct adapter * adapter,struct sge_fl * fl)704 static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
705 {
706 	refill_fl(adapter, fl,
707 		  min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
708 		  GFP_ATOMIC);
709 }
710 
711 /**
712  *	alloc_ring - allocate resources for an SGE descriptor ring
713  *	@dev: the PCI device's core device
714  *	@nelem: the number of descriptors
715  *	@hwsize: the size of each hardware descriptor
716  *	@swsize: the size of each software descriptor
717  *	@busaddrp: the physical PCI bus address of the allocated ring
718  *	@swringp: return address pointer for software ring
719  *	@stat_size: extra space in hardware ring for status information
720  *
721  *	Allocates resources for an SGE descriptor ring, such as TX queues,
722  *	free buffer lists, response queues, etc.  Each SGE ring requires
723  *	space for its hardware descriptors plus, optionally, space for software
724  *	state associated with each hardware entry (the metadata).  The function
725  *	returns three values: the virtual address for the hardware ring (the
726  *	return value of the function), the PCI bus address of the hardware
727  *	ring (in *busaddrp), and the address of the software ring (in swringp).
728  *	Both the hardware and software rings are returned zeroed out.
729  */
alloc_ring(struct device * dev,size_t nelem,size_t hwsize,size_t swsize,dma_addr_t * busaddrp,void * swringp,size_t stat_size)730 static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
731 			size_t swsize, dma_addr_t *busaddrp, void *swringp,
732 			size_t stat_size)
733 {
734 	/*
735 	 * Allocate the hardware ring and PCI DMA bus address space for said.
736 	 */
737 	size_t hwlen = nelem * hwsize + stat_size;
738 	void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
739 
740 	if (!hwring)
741 		return NULL;
742 
743 	/*
744 	 * If the caller wants a software ring, allocate it and return a
745 	 * pointer to it in *swringp.
746 	 */
747 	BUG_ON((swsize != 0) != (swringp != NULL));
748 	if (swsize) {
749 		void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
750 
751 		if (!swring) {
752 			dma_free_coherent(dev, hwlen, hwring, *busaddrp);
753 			return NULL;
754 		}
755 		*(void **)swringp = swring;
756 	}
757 
758 	/*
759 	 * Zero out the hardware ring and return its address as our function
760 	 * value.
761 	 */
762 	memset(hwring, 0, hwlen);
763 	return hwring;
764 }
765 
766 /**
767  *	sgl_len - calculates the size of an SGL of the given capacity
768  *	@n: the number of SGL entries
769  *
770  *	Calculates the number of flits (8-byte units) needed for a Direct
771  *	Scatter/Gather List that can hold the given number of entries.
772  */
sgl_len(unsigned int n)773 static inline unsigned int sgl_len(unsigned int n)
774 {
775 	/*
776 	 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
777 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
778 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
779 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
780 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
781 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
782 	 * Address[N+1] is omitted.
783 	 *
784 	 * The following calculation incorporates all of the above.  It's
785 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
786 	 * first two flits which include the DSGL header, Length0 and
787 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
788 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
789 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
790 	 * (n-1) is odd ...
791 	 */
792 	n--;
793 	return (3 * n) / 2 + (n & 1) + 2;
794 }
795 
796 /**
797  *	flits_to_desc - returns the num of TX descriptors for the given flits
798  *	@flits: the number of flits
799  *
800  *	Returns the number of TX descriptors needed for the supplied number
801  *	of flits.
802  */
flits_to_desc(unsigned int flits)803 static inline unsigned int flits_to_desc(unsigned int flits)
804 {
805 	BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
806 	return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
807 }
808 
809 /**
810  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
811  *	@skb: the packet
812  *
813  *	Returns whether an Ethernet packet is small enough to fit completely as
814  *	immediate data.
815  */
is_eth_imm(const struct sk_buff * skb)816 static inline int is_eth_imm(const struct sk_buff *skb)
817 {
818 	/*
819 	 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
820 	 * which does not accommodate immediate data.  We could dike out all
821 	 * of the support code for immediate data but that would tie our hands
822 	 * too much if we ever want to enhace the firmware.  It would also
823 	 * create more differences between the PF and VF Drivers.
824 	 */
825 	return false;
826 }
827 
828 /**
829  *	calc_tx_flits - calculate the number of flits for a packet TX WR
830  *	@skb: the packet
831  *
832  *	Returns the number of flits needed for a TX Work Request for the
833  *	given Ethernet packet, including the needed WR and CPL headers.
834  */
calc_tx_flits(const struct sk_buff * skb)835 static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
836 {
837 	unsigned int flits;
838 
839 	/*
840 	 * If the skb is small enough, we can pump it out as a work request
841 	 * with only immediate data.  In that case we just have to have the
842 	 * TX Packet header plus the skb data in the Work Request.
843 	 */
844 	if (is_eth_imm(skb))
845 		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
846 				    sizeof(__be64));
847 
848 	/*
849 	 * Otherwise, we're going to have to construct a Scatter gather list
850 	 * of the skb body and fragments.  We also include the flits necessary
851 	 * for the TX Packet Work Request and CPL.  We always have a firmware
852 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
853 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
854 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
855 	 * with an embeded TX Packet Write CPL message.
856 	 */
857 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
858 	if (skb_shinfo(skb)->gso_size)
859 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
860 			  sizeof(struct cpl_tx_pkt_lso_core) +
861 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
862 	else
863 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
864 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
865 	return flits;
866 }
867 
868 /**
869  *	write_sgl - populate a Scatter/Gather List for a packet
870  *	@skb: the packet
871  *	@tq: the TX queue we are writing into
872  *	@sgl: starting location for writing the SGL
873  *	@end: points right after the end of the SGL
874  *	@start: start offset into skb main-body data to include in the SGL
875  *	@addr: the list of DMA bus addresses for the SGL elements
876  *
877  *	Generates a Scatter/Gather List for the buffers that make up a packet.
878  *	The caller must provide adequate space for the SGL that will be written.
879  *	The SGL includes all of the packet's page fragments and the data in its
880  *	main body except for the first @start bytes.  @pos must be 16-byte
881  *	aligned and within a TX descriptor with available space.  @end points
882  *	write after the end of the SGL but does not account for any potential
883  *	wrap around, i.e., @end > @tq->stat.
884  */
write_sgl(const struct sk_buff * skb,struct sge_txq * tq,struct ulptx_sgl * sgl,u64 * end,unsigned int start,const dma_addr_t * addr)885 static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
886 		      struct ulptx_sgl *sgl, u64 *end, unsigned int start,
887 		      const dma_addr_t *addr)
888 {
889 	unsigned int i, len;
890 	struct ulptx_sge_pair *to;
891 	const struct skb_shared_info *si = skb_shinfo(skb);
892 	unsigned int nfrags = si->nr_frags;
893 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
894 
895 	len = skb_headlen(skb) - start;
896 	if (likely(len)) {
897 		sgl->len0 = htonl(len);
898 		sgl->addr0 = cpu_to_be64(addr[0] + start);
899 		nfrags++;
900 	} else {
901 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
902 		sgl->addr0 = cpu_to_be64(addr[1]);
903 	}
904 
905 	sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) |
906 			      ULPTX_NSGE(nfrags));
907 	if (likely(--nfrags == 0))
908 		return;
909 	/*
910 	 * Most of the complexity below deals with the possibility we hit the
911 	 * end of the queue in the middle of writing the SGL.  For this case
912 	 * only we create the SGL in a temporary buffer and then copy it.
913 	 */
914 	to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
915 
916 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
917 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
918 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
919 		to->addr[0] = cpu_to_be64(addr[i]);
920 		to->addr[1] = cpu_to_be64(addr[++i]);
921 	}
922 	if (nfrags) {
923 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
924 		to->len[1] = cpu_to_be32(0);
925 		to->addr[0] = cpu_to_be64(addr[i + 1]);
926 	}
927 	if (unlikely((u8 *)end > (u8 *)tq->stat)) {
928 		unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
929 
930 		if (likely(part0))
931 			memcpy(sgl->sge, buf, part0);
932 		part1 = (u8 *)end - (u8 *)tq->stat;
933 		memcpy(tq->desc, (u8 *)buf + part0, part1);
934 		end = (void *)tq->desc + part1;
935 	}
936 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
937 		*end = 0;
938 }
939 
940 /**
941  *	check_ring_tx_db - check and potentially ring a TX queue's doorbell
942  *	@adapter: the adapter
943  *	@tq: the TX queue
944  *	@n: number of new descriptors to give to HW
945  *
946  *	Ring the doorbel for a TX queue.
947  */
ring_tx_db(struct adapter * adapter,struct sge_txq * tq,int n)948 static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
949 			      int n)
950 {
951 	/*
952 	 * Warn if we write doorbells with the wrong priority and write
953 	 * descriptors before telling HW.
954 	 */
955 	WARN_ON((QID(tq->cntxt_id) | PIDX(n)) & DBPRIO(1));
956 	wmb();
957 	t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
958 		     QID(tq->cntxt_id) | PIDX(n));
959 }
960 
961 /**
962  *	inline_tx_skb - inline a packet's data into TX descriptors
963  *	@skb: the packet
964  *	@tq: the TX queue where the packet will be inlined
965  *	@pos: starting position in the TX queue to inline the packet
966  *
967  *	Inline a packet's contents directly into TX descriptors, starting at
968  *	the given position within the TX DMA ring.
969  *	Most of the complexity of this operation is dealing with wrap arounds
970  *	in the middle of the packet we want to inline.
971  */
inline_tx_skb(const struct sk_buff * skb,const struct sge_txq * tq,void * pos)972 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
973 			  void *pos)
974 {
975 	u64 *p;
976 	int left = (void *)tq->stat - pos;
977 
978 	if (likely(skb->len <= left)) {
979 		if (likely(!skb->data_len))
980 			skb_copy_from_linear_data(skb, pos, skb->len);
981 		else
982 			skb_copy_bits(skb, 0, pos, skb->len);
983 		pos += skb->len;
984 	} else {
985 		skb_copy_bits(skb, 0, pos, left);
986 		skb_copy_bits(skb, left, tq->desc, skb->len - left);
987 		pos = (void *)tq->desc + (skb->len - left);
988 	}
989 
990 	/* 0-pad to multiple of 16 */
991 	p = PTR_ALIGN(pos, 8);
992 	if ((uintptr_t)p & 8)
993 		*p = 0;
994 }
995 
996 /*
997  * Figure out what HW csum a packet wants and return the appropriate control
998  * bits.
999  */
hwcsum(const struct sk_buff * skb)1000 static u64 hwcsum(const struct sk_buff *skb)
1001 {
1002 	int csum_type;
1003 	const struct iphdr *iph = ip_hdr(skb);
1004 
1005 	if (iph->version == 4) {
1006 		if (iph->protocol == IPPROTO_TCP)
1007 			csum_type = TX_CSUM_TCPIP;
1008 		else if (iph->protocol == IPPROTO_UDP)
1009 			csum_type = TX_CSUM_UDPIP;
1010 		else {
1011 nocsum:
1012 			/*
1013 			 * unknown protocol, disable HW csum
1014 			 * and hope a bad packet is detected
1015 			 */
1016 			return TXPKT_L4CSUM_DIS;
1017 		}
1018 	} else {
1019 		/*
1020 		 * this doesn't work with extension headers
1021 		 */
1022 		const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1023 
1024 		if (ip6h->nexthdr == IPPROTO_TCP)
1025 			csum_type = TX_CSUM_TCPIP6;
1026 		else if (ip6h->nexthdr == IPPROTO_UDP)
1027 			csum_type = TX_CSUM_UDPIP6;
1028 		else
1029 			goto nocsum;
1030 	}
1031 
1032 	if (likely(csum_type >= TX_CSUM_TCPIP))
1033 		return TXPKT_CSUM_TYPE(csum_type) |
1034 			TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
1035 			TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
1036 	else {
1037 		int start = skb_transport_offset(skb);
1038 
1039 		return TXPKT_CSUM_TYPE(csum_type) |
1040 			TXPKT_CSUM_START(start) |
1041 			TXPKT_CSUM_LOC(start + skb->csum_offset);
1042 	}
1043 }
1044 
1045 /*
1046  * Stop an Ethernet TX queue and record that state change.
1047  */
txq_stop(struct sge_eth_txq * txq)1048 static void txq_stop(struct sge_eth_txq *txq)
1049 {
1050 	netif_tx_stop_queue(txq->txq);
1051 	txq->q.stops++;
1052 }
1053 
1054 /*
1055  * Advance our software state for a TX queue by adding n in use descriptors.
1056  */
txq_advance(struct sge_txq * tq,unsigned int n)1057 static inline void txq_advance(struct sge_txq *tq, unsigned int n)
1058 {
1059 	tq->in_use += n;
1060 	tq->pidx += n;
1061 	if (tq->pidx >= tq->size)
1062 		tq->pidx -= tq->size;
1063 }
1064 
1065 /**
1066  *	t4vf_eth_xmit - add a packet to an Ethernet TX queue
1067  *	@skb: the packet
1068  *	@dev: the egress net device
1069  *
1070  *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
1071  */
t4vf_eth_xmit(struct sk_buff * skb,struct net_device * dev)1072 int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1073 {
1074 	u32 wr_mid;
1075 	u64 cntrl, *end;
1076 	int qidx, credits;
1077 	unsigned int flits, ndesc;
1078 	struct adapter *adapter;
1079 	struct sge_eth_txq *txq;
1080 	const struct port_info *pi;
1081 	struct fw_eth_tx_pkt_vm_wr *wr;
1082 	struct cpl_tx_pkt_core *cpl;
1083 	const struct skb_shared_info *ssi;
1084 	dma_addr_t addr[MAX_SKB_FRAGS + 1];
1085 	const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
1086 					sizeof(wr->ethmacsrc) +
1087 					sizeof(wr->ethtype) +
1088 					sizeof(wr->vlantci));
1089 
1090 	/*
1091 	 * The chip minimum packet length is 10 octets but the firmware
1092 	 * command that we are using requires that we copy the Ethernet header
1093 	 * (including the VLAN tag) into the header so we reject anything
1094 	 * smaller than that ...
1095 	 */
1096 	if (unlikely(skb->len < fw_hdr_copy_len))
1097 		goto out_free;
1098 
1099 	/*
1100 	 * Figure out which TX Queue we're going to use.
1101 	 */
1102 	pi = netdev_priv(dev);
1103 	adapter = pi->adapter;
1104 	qidx = skb_get_queue_mapping(skb);
1105 	BUG_ON(qidx >= pi->nqsets);
1106 	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1107 
1108 	/*
1109 	 * Take this opportunity to reclaim any TX Descriptors whose DMA
1110 	 * transfers have completed.
1111 	 */
1112 	reclaim_completed_tx(adapter, &txq->q, true);
1113 
1114 	/*
1115 	 * Calculate the number of flits and TX Descriptors we're going to
1116 	 * need along with how many TX Descriptors will be left over after
1117 	 * we inject our Work Request.
1118 	 */
1119 	flits = calc_tx_flits(skb);
1120 	ndesc = flits_to_desc(flits);
1121 	credits = txq_avail(&txq->q) - ndesc;
1122 
1123 	if (unlikely(credits < 0)) {
1124 		/*
1125 		 * Not enough room for this packet's Work Request.  Stop the
1126 		 * TX Queue and return a "busy" condition.  The queue will get
1127 		 * started later on when the firmware informs us that space
1128 		 * has opened up.
1129 		 */
1130 		txq_stop(txq);
1131 		dev_err(adapter->pdev_dev,
1132 			"%s: TX ring %u full while queue awake!\n",
1133 			dev->name, qidx);
1134 		return NETDEV_TX_BUSY;
1135 	}
1136 
1137 	if (!is_eth_imm(skb) &&
1138 	    unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1139 		/*
1140 		 * We need to map the skb into PCI DMA space (because it can't
1141 		 * be in-lined directly into the Work Request) and the mapping
1142 		 * operation failed.  Record the error and drop the packet.
1143 		 */
1144 		txq->mapping_err++;
1145 		goto out_free;
1146 	}
1147 
1148 	wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2));
1149 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1150 		/*
1151 		 * After we're done injecting the Work Request for this
1152 		 * packet, we'll be below our "stop threshold" so stop the TX
1153 		 * Queue now and schedule a request for an SGE Egress Queue
1154 		 * Update message.  The queue will get started later on when
1155 		 * the firmware processes this Work Request and sends us an
1156 		 * Egress Queue Status Update message indicating that space
1157 		 * has opened up.
1158 		 */
1159 		txq_stop(txq);
1160 		wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ;
1161 	}
1162 
1163 	/*
1164 	 * Start filling in our Work Request.  Note that we do _not_ handle
1165 	 * the WR Header wrapping around the TX Descriptor Ring.  If our
1166 	 * maximum header size ever exceeds one TX Descriptor, we'll need to
1167 	 * do something else here.
1168 	 */
1169 	BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1170 	wr = (void *)&txq->q.desc[txq->q.pidx];
1171 	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1172 	wr->r3[0] = cpu_to_be64(0);
1173 	wr->r3[1] = cpu_to_be64(0);
1174 	skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1175 	end = (u64 *)wr + flits;
1176 
1177 	/*
1178 	 * If this is a Large Send Offload packet we'll put in an LSO CPL
1179 	 * message with an encapsulated TX Packet CPL message.  Otherwise we
1180 	 * just use a TX Packet CPL message.
1181 	 */
1182 	ssi = skb_shinfo(skb);
1183 	if (ssi->gso_size) {
1184 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1185 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1186 		int l3hdr_len = skb_network_header_len(skb);
1187 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1188 
1189 		wr->op_immdlen =
1190 			cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
1191 				    FW_WR_IMMDLEN(sizeof(*lso) +
1192 						  sizeof(*cpl)));
1193 		/*
1194 		 * Fill in the LSO CPL message.
1195 		 */
1196 		lso->lso_ctrl =
1197 			cpu_to_be32(LSO_OPCODE(CPL_TX_PKT_LSO) |
1198 				    LSO_FIRST_SLICE |
1199 				    LSO_LAST_SLICE |
1200 				    LSO_IPV6(v6) |
1201 				    LSO_ETHHDR_LEN(eth_xtra_len/4) |
1202 				    LSO_IPHDR_LEN(l3hdr_len/4) |
1203 				    LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1204 		lso->ipid_ofst = cpu_to_be16(0);
1205 		lso->mss = cpu_to_be16(ssi->gso_size);
1206 		lso->seqno_offset = cpu_to_be32(0);
1207 		if (is_t4(adapter->params.chip))
1208 			lso->len = cpu_to_be32(skb->len);
1209 		else
1210 			lso->len = cpu_to_be32(LSO_T5_XFER_SIZE(skb->len));
1211 
1212 		/*
1213 		 * Set up TX Packet CPL pointer, control word and perform
1214 		 * accounting.
1215 		 */
1216 		cpl = (void *)(lso + 1);
1217 		cntrl = (TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1218 			 TXPKT_IPHDR_LEN(l3hdr_len) |
1219 			 TXPKT_ETHHDR_LEN(eth_xtra_len));
1220 		txq->tso++;
1221 		txq->tx_cso += ssi->gso_segs;
1222 	} else {
1223 		int len;
1224 
1225 		len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1226 		wr->op_immdlen =
1227 			cpu_to_be32(FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
1228 				    FW_WR_IMMDLEN(len));
1229 
1230 		/*
1231 		 * Set up TX Packet CPL pointer, control word and perform
1232 		 * accounting.
1233 		 */
1234 		cpl = (void *)(wr + 1);
1235 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1236 			cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1237 			txq->tx_cso++;
1238 		} else
1239 			cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1240 	}
1241 
1242 	/*
1243 	 * If there's a VLAN tag present, add that to the list of things to
1244 	 * do in this Work Request.
1245 	 */
1246 	if (vlan_tx_tag_present(skb)) {
1247 		txq->vlan_ins++;
1248 		cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb));
1249 	}
1250 
1251 	/*
1252 	 * Fill in the TX Packet CPL message header.
1253 	 */
1254 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1255 				 TXPKT_INTF(pi->port_id) |
1256 				 TXPKT_PF(0));
1257 	cpl->pack = cpu_to_be16(0);
1258 	cpl->len = cpu_to_be16(skb->len);
1259 	cpl->ctrl1 = cpu_to_be64(cntrl);
1260 
1261 #ifdef T4_TRACE
1262 	T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
1263 		  "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
1264 		  ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
1265 #endif
1266 
1267 	/*
1268 	 * Fill in the body of the TX Packet CPL message with either in-lined
1269 	 * data or a Scatter/Gather List.
1270 	 */
1271 	if (is_eth_imm(skb)) {
1272 		/*
1273 		 * In-line the packet's data and free the skb since we don't
1274 		 * need it any longer.
1275 		 */
1276 		inline_tx_skb(skb, &txq->q, cpl + 1);
1277 		dev_consume_skb_any(skb);
1278 	} else {
1279 		/*
1280 		 * Write the skb's Scatter/Gather list into the TX Packet CPL
1281 		 * message and retain a pointer to the skb so we can free it
1282 		 * later when its DMA completes.  (We store the skb pointer
1283 		 * in the Software Descriptor corresponding to the last TX
1284 		 * Descriptor used by the Work Request.)
1285 		 *
1286 		 * The retained skb will be freed when the corresponding TX
1287 		 * Descriptors are reclaimed after their DMAs complete.
1288 		 * However, this could take quite a while since, in general,
1289 		 * the hardware is set up to be lazy about sending DMA
1290 		 * completion notifications to us and we mostly perform TX
1291 		 * reclaims in the transmit routine.
1292 		 *
1293 		 * This is good for performamce but means that we rely on new
1294 		 * TX packets arriving to run the destructors of completed
1295 		 * packets, which open up space in their sockets' send queues.
1296 		 * Sometimes we do not get such new packets causing TX to
1297 		 * stall.  A single UDP transmitter is a good example of this
1298 		 * situation.  We have a clean up timer that periodically
1299 		 * reclaims completed packets but it doesn't run often enough
1300 		 * (nor do we want it to) to prevent lengthy stalls.  A
1301 		 * solution to this problem is to run the destructor early,
1302 		 * after the packet is queued but before it's DMAd.  A con is
1303 		 * that we lie to socket memory accounting, but the amount of
1304 		 * extra memory is reasonable (limited by the number of TX
1305 		 * descriptors), the packets do actually get freed quickly by
1306 		 * new packets almost always, and for protocols like TCP that
1307 		 * wait for acks to really free up the data the extra memory
1308 		 * is even less.  On the positive side we run the destructors
1309 		 * on the sending CPU rather than on a potentially different
1310 		 * completing CPU, usually a good thing.
1311 		 *
1312 		 * Run the destructor before telling the DMA engine about the
1313 		 * packet to make sure it doesn't complete and get freed
1314 		 * prematurely.
1315 		 */
1316 		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1317 		struct sge_txq *tq = &txq->q;
1318 		int last_desc;
1319 
1320 		/*
1321 		 * If the Work Request header was an exact multiple of our TX
1322 		 * Descriptor length, then it's possible that the starting SGL
1323 		 * pointer lines up exactly with the end of our TX Descriptor
1324 		 * ring.  If that's the case, wrap around to the beginning
1325 		 * here ...
1326 		 */
1327 		if (unlikely((void *)sgl == (void *)tq->stat)) {
1328 			sgl = (void *)tq->desc;
1329 			end = ((void *)tq->desc + ((void *)end - (void *)tq->stat));
1330 		}
1331 
1332 		write_sgl(skb, tq, sgl, end, 0, addr);
1333 		skb_orphan(skb);
1334 
1335 		last_desc = tq->pidx + ndesc - 1;
1336 		if (last_desc >= tq->size)
1337 			last_desc -= tq->size;
1338 		tq->sdesc[last_desc].skb = skb;
1339 		tq->sdesc[last_desc].sgl = sgl;
1340 	}
1341 
1342 	/*
1343 	 * Advance our internal TX Queue state, tell the hardware about
1344 	 * the new TX descriptors and return success.
1345 	 */
1346 	txq_advance(&txq->q, ndesc);
1347 	dev->trans_start = jiffies;
1348 	ring_tx_db(adapter, &txq->q, ndesc);
1349 	return NETDEV_TX_OK;
1350 
1351 out_free:
1352 	/*
1353 	 * An error of some sort happened.  Free the TX skb and tell the
1354 	 * OS that we've "dealt" with the packet ...
1355 	 */
1356 	dev_kfree_skb_any(skb);
1357 	return NETDEV_TX_OK;
1358 }
1359 
1360 /**
1361  *	copy_frags - copy fragments from gather list into skb_shared_info
1362  *	@skb: destination skb
1363  *	@gl: source internal packet gather list
1364  *	@offset: packet start offset in first page
1365  *
1366  *	Copy an internal packet gather list into a Linux skb_shared_info
1367  *	structure.
1368  */
copy_frags(struct sk_buff * skb,const struct pkt_gl * gl,unsigned int offset)1369 static inline void copy_frags(struct sk_buff *skb,
1370 			      const struct pkt_gl *gl,
1371 			      unsigned int offset)
1372 {
1373 	int i;
1374 
1375 	/* usually there's just one frag */
1376 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
1377 			     gl->frags[0].offset + offset,
1378 			     gl->frags[0].size - offset);
1379 	skb_shinfo(skb)->nr_frags = gl->nfrags;
1380 	for (i = 1; i < gl->nfrags; i++)
1381 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
1382 				     gl->frags[i].offset,
1383 				     gl->frags[i].size);
1384 
1385 	/* get a reference to the last page, we don't own it */
1386 	get_page(gl->frags[gl->nfrags - 1].page);
1387 }
1388 
1389 /**
1390  *	t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
1391  *	@gl: the gather list
1392  *	@skb_len: size of sk_buff main body if it carries fragments
1393  *	@pull_len: amount of data to move to the sk_buff's main body
1394  *
1395  *	Builds an sk_buff from the given packet gather list.  Returns the
1396  *	sk_buff or %NULL if sk_buff allocation failed.
1397  */
t4vf_pktgl_to_skb(const struct pkt_gl * gl,unsigned int skb_len,unsigned int pull_len)1398 static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl,
1399 					 unsigned int skb_len,
1400 					 unsigned int pull_len)
1401 {
1402 	struct sk_buff *skb;
1403 
1404 	/*
1405 	 * If the ingress packet is small enough, allocate an skb large enough
1406 	 * for all of the data and copy it inline.  Otherwise, allocate an skb
1407 	 * with enough room to pull in the header and reference the rest of
1408 	 * the data via the skb fragment list.
1409 	 *
1410 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx
1411 	 * buff!  size, which is expected since buffers are at least
1412 	 * PAGE_SIZEd.  In this case packets up to RX_COPY_THRES have only one
1413 	 * fragment.
1414 	 */
1415 	if (gl->tot_len <= RX_COPY_THRES) {
1416 		/* small packets have only one fragment */
1417 		skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
1418 		if (unlikely(!skb))
1419 			goto out;
1420 		__skb_put(skb, gl->tot_len);
1421 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1422 	} else {
1423 		skb = alloc_skb(skb_len, GFP_ATOMIC);
1424 		if (unlikely(!skb))
1425 			goto out;
1426 		__skb_put(skb, pull_len);
1427 		skb_copy_to_linear_data(skb, gl->va, pull_len);
1428 
1429 		copy_frags(skb, gl, pull_len);
1430 		skb->len = gl->tot_len;
1431 		skb->data_len = skb->len - pull_len;
1432 		skb->truesize += skb->data_len;
1433 	}
1434 
1435 out:
1436 	return skb;
1437 }
1438 
1439 /**
1440  *	t4vf_pktgl_free - free a packet gather list
1441  *	@gl: the gather list
1442  *
1443  *	Releases the pages of a packet gather list.  We do not own the last
1444  *	page on the list and do not free it.
1445  */
t4vf_pktgl_free(const struct pkt_gl * gl)1446 static void t4vf_pktgl_free(const struct pkt_gl *gl)
1447 {
1448 	int frag;
1449 
1450 	frag = gl->nfrags - 1;
1451 	while (frag--)
1452 		put_page(gl->frags[frag].page);
1453 }
1454 
1455 /**
1456  *	do_gro - perform Generic Receive Offload ingress packet processing
1457  *	@rxq: ingress RX Ethernet Queue
1458  *	@gl: gather list for ingress packet
1459  *	@pkt: CPL header for last packet fragment
1460  *
1461  *	Perform Generic Receive Offload (GRO) ingress packet processing.
1462  *	We use the standard Linux GRO interfaces for this.
1463  */
do_gro(struct sge_eth_rxq * rxq,const struct pkt_gl * gl,const struct cpl_rx_pkt * pkt)1464 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1465 		   const struct cpl_rx_pkt *pkt)
1466 {
1467 	struct adapter *adapter = rxq->rspq.adapter;
1468 	struct sge *s = &adapter->sge;
1469 	int ret;
1470 	struct sk_buff *skb;
1471 
1472 	skb = napi_get_frags(&rxq->rspq.napi);
1473 	if (unlikely(!skb)) {
1474 		t4vf_pktgl_free(gl);
1475 		rxq->stats.rx_drops++;
1476 		return;
1477 	}
1478 
1479 	copy_frags(skb, gl, s->pktshift);
1480 	skb->len = gl->tot_len - s->pktshift;
1481 	skb->data_len = skb->len;
1482 	skb->truesize += skb->data_len;
1483 	skb->ip_summed = CHECKSUM_UNNECESSARY;
1484 	skb_record_rx_queue(skb, rxq->rspq.idx);
1485 
1486 	if (pkt->vlan_ex) {
1487 		__vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
1488 					be16_to_cpu(pkt->vlan));
1489 		rxq->stats.vlan_ex++;
1490 	}
1491 	ret = napi_gro_frags(&rxq->rspq.napi);
1492 
1493 	if (ret == GRO_HELD)
1494 		rxq->stats.lro_pkts++;
1495 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1496 		rxq->stats.lro_merged++;
1497 	rxq->stats.pkts++;
1498 	rxq->stats.rx_cso++;
1499 }
1500 
1501 /**
1502  *	t4vf_ethrx_handler - process an ingress ethernet packet
1503  *	@rspq: the response queue that received the packet
1504  *	@rsp: the response queue descriptor holding the RX_PKT message
1505  *	@gl: the gather list of packet fragments
1506  *
1507  *	Process an ingress ethernet packet and deliver it to the stack.
1508  */
t4vf_ethrx_handler(struct sge_rspq * rspq,const __be64 * rsp,const struct pkt_gl * gl)1509 int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
1510 		       const struct pkt_gl *gl)
1511 {
1512 	struct sk_buff *skb;
1513 	const struct cpl_rx_pkt *pkt = (void *)rsp;
1514 	bool csum_ok = pkt->csum_calc && !pkt->err_vec &&
1515 		       (rspq->netdev->features & NETIF_F_RXCSUM);
1516 	struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1517 	struct adapter *adapter = rspq->adapter;
1518 	struct sge *s = &adapter->sge;
1519 
1520 	/*
1521 	 * If this is a good TCP packet and we have Generic Receive Offload
1522 	 * enabled, handle the packet in the GRO path.
1523 	 */
1524 	if ((pkt->l2info & cpu_to_be32(RXF_TCP)) &&
1525 	    (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
1526 	    !pkt->ip_frag) {
1527 		do_gro(rxq, gl, pkt);
1528 		return 0;
1529 	}
1530 
1531 	/*
1532 	 * Convert the Packet Gather List into an skb.
1533 	 */
1534 	skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN);
1535 	if (unlikely(!skb)) {
1536 		t4vf_pktgl_free(gl);
1537 		rxq->stats.rx_drops++;
1538 		return 0;
1539 	}
1540 	__skb_pull(skb, s->pktshift);
1541 	skb->protocol = eth_type_trans(skb, rspq->netdev);
1542 	skb_record_rx_queue(skb, rspq->idx);
1543 	rxq->stats.pkts++;
1544 
1545 	if (csum_ok && !pkt->err_vec &&
1546 	    (be32_to_cpu(pkt->l2info) & (RXF_UDP|RXF_TCP))) {
1547 		if (!pkt->ip_frag)
1548 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1549 		else {
1550 			__sum16 c = (__force __sum16)pkt->csum;
1551 			skb->csum = csum_unfold(c);
1552 			skb->ip_summed = CHECKSUM_COMPLETE;
1553 		}
1554 		rxq->stats.rx_cso++;
1555 	} else
1556 		skb_checksum_none_assert(skb);
1557 
1558 	if (pkt->vlan_ex) {
1559 		rxq->stats.vlan_ex++;
1560 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(pkt->vlan));
1561 	}
1562 
1563 	netif_receive_skb(skb);
1564 
1565 	return 0;
1566 }
1567 
1568 /**
1569  *	is_new_response - check if a response is newly written
1570  *	@rc: the response control descriptor
1571  *	@rspq: the response queue
1572  *
1573  *	Returns true if a response descriptor contains a yet unprocessed
1574  *	response.
1575  */
is_new_response(const struct rsp_ctrl * rc,const struct sge_rspq * rspq)1576 static inline bool is_new_response(const struct rsp_ctrl *rc,
1577 				   const struct sge_rspq *rspq)
1578 {
1579 	return RSPD_GEN(rc->type_gen) == rspq->gen;
1580 }
1581 
1582 /**
1583  *	restore_rx_bufs - put back a packet's RX buffers
1584  *	@gl: the packet gather list
1585  *	@fl: the SGE Free List
1586  *	@nfrags: how many fragments in @si
1587  *
1588  *	Called when we find out that the current packet, @si, can't be
1589  *	processed right away for some reason.  This is a very rare event and
1590  *	there's no effort to make this suspension/resumption process
1591  *	particularly efficient.
1592  *
1593  *	We implement the suspension by putting all of the RX buffers associated
1594  *	with the current packet back on the original Free List.  The buffers
1595  *	have already been unmapped and are left unmapped, we mark them as
1596  *	unmapped in order to prevent further unmapping attempts.  (Effectively
1597  *	this function undoes the series of @unmap_rx_buf calls which were done
1598  *	to create the current packet's gather list.)  This leaves us ready to
1599  *	restart processing of the packet the next time we start processing the
1600  *	RX Queue ...
1601  */
restore_rx_bufs(const struct pkt_gl * gl,struct sge_fl * fl,int frags)1602 static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
1603 			    int frags)
1604 {
1605 	struct rx_sw_desc *sdesc;
1606 
1607 	while (frags--) {
1608 		if (fl->cidx == 0)
1609 			fl->cidx = fl->size - 1;
1610 		else
1611 			fl->cidx--;
1612 		sdesc = &fl->sdesc[fl->cidx];
1613 		sdesc->page = gl->frags[frags].page;
1614 		sdesc->dma_addr |= RX_UNMAPPED_BUF;
1615 		fl->avail++;
1616 	}
1617 }
1618 
1619 /**
1620  *	rspq_next - advance to the next entry in a response queue
1621  *	@rspq: the queue
1622  *
1623  *	Updates the state of a response queue to advance it to the next entry.
1624  */
rspq_next(struct sge_rspq * rspq)1625 static inline void rspq_next(struct sge_rspq *rspq)
1626 {
1627 	rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
1628 	if (unlikely(++rspq->cidx == rspq->size)) {
1629 		rspq->cidx = 0;
1630 		rspq->gen ^= 1;
1631 		rspq->cur_desc = rspq->desc;
1632 	}
1633 }
1634 
1635 /**
1636  *	process_responses - process responses from an SGE response queue
1637  *	@rspq: the ingress response queue to process
1638  *	@budget: how many responses can be processed in this round
1639  *
1640  *	Process responses from a Scatter Gather Engine response queue up to
1641  *	the supplied budget.  Responses include received packets as well as
1642  *	control messages from firmware or hardware.
1643  *
1644  *	Additionally choose the interrupt holdoff time for the next interrupt
1645  *	on this queue.  If the system is under memory shortage use a fairly
1646  *	long delay to help recovery.
1647  */
process_responses(struct sge_rspq * rspq,int budget)1648 static int process_responses(struct sge_rspq *rspq, int budget)
1649 {
1650 	struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1651 	struct adapter *adapter = rspq->adapter;
1652 	struct sge *s = &adapter->sge;
1653 	int budget_left = budget;
1654 
1655 	while (likely(budget_left)) {
1656 		int ret, rsp_type;
1657 		const struct rsp_ctrl *rc;
1658 
1659 		rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
1660 		if (!is_new_response(rc, rspq))
1661 			break;
1662 
1663 		/*
1664 		 * Figure out what kind of response we've received from the
1665 		 * SGE.
1666 		 */
1667 		rmb();
1668 		rsp_type = RSPD_TYPE(rc->type_gen);
1669 		if (likely(rsp_type == RSP_TYPE_FLBUF)) {
1670 			struct page_frag *fp;
1671 			struct pkt_gl gl;
1672 			const struct rx_sw_desc *sdesc;
1673 			u32 bufsz, frag;
1674 			u32 len = be32_to_cpu(rc->pldbuflen_qid);
1675 
1676 			/*
1677 			 * If we get a "new buffer" message from the SGE we
1678 			 * need to move on to the next Free List buffer.
1679 			 */
1680 			if (len & RSPD_NEWBUF) {
1681 				/*
1682 				 * We get one "new buffer" message when we
1683 				 * first start up a queue so we need to ignore
1684 				 * it when our offset into the buffer is 0.
1685 				 */
1686 				if (likely(rspq->offset > 0)) {
1687 					free_rx_bufs(rspq->adapter, &rxq->fl,
1688 						     1);
1689 					rspq->offset = 0;
1690 				}
1691 				len = RSPD_LEN(len);
1692 			}
1693 			gl.tot_len = len;
1694 
1695 			/*
1696 			 * Gather packet fragments.
1697 			 */
1698 			for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
1699 				BUG_ON(frag >= MAX_SKB_FRAGS);
1700 				BUG_ON(rxq->fl.avail == 0);
1701 				sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
1702 				bufsz = get_buf_size(adapter, sdesc);
1703 				fp->page = sdesc->page;
1704 				fp->offset = rspq->offset;
1705 				fp->size = min(bufsz, len);
1706 				len -= fp->size;
1707 				if (!len)
1708 					break;
1709 				unmap_rx_buf(rspq->adapter, &rxq->fl);
1710 			}
1711 			gl.nfrags = frag+1;
1712 
1713 			/*
1714 			 * Last buffer remains mapped so explicitly make it
1715 			 * coherent for CPU access and start preloading first
1716 			 * cache line ...
1717 			 */
1718 			dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
1719 						get_buf_addr(sdesc),
1720 						fp->size, DMA_FROM_DEVICE);
1721 			gl.va = (page_address(gl.frags[0].page) +
1722 				 gl.frags[0].offset);
1723 			prefetch(gl.va);
1724 
1725 			/*
1726 			 * Hand the new ingress packet to the handler for
1727 			 * this Response Queue.
1728 			 */
1729 			ret = rspq->handler(rspq, rspq->cur_desc, &gl);
1730 			if (likely(ret == 0))
1731 				rspq->offset += ALIGN(fp->size, s->fl_align);
1732 			else
1733 				restore_rx_bufs(&gl, &rxq->fl, frag);
1734 		} else if (likely(rsp_type == RSP_TYPE_CPL)) {
1735 			ret = rspq->handler(rspq, rspq->cur_desc, NULL);
1736 		} else {
1737 			WARN_ON(rsp_type > RSP_TYPE_CPL);
1738 			ret = 0;
1739 		}
1740 
1741 		if (unlikely(ret)) {
1742 			/*
1743 			 * Couldn't process descriptor, back off for recovery.
1744 			 * We use the SGE's last timer which has the longest
1745 			 * interrupt coalescing value ...
1746 			 */
1747 			const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
1748 			rspq->next_intr_params =
1749 				QINTR_TIMER_IDX(NOMEM_TIMER_IDX);
1750 			break;
1751 		}
1752 
1753 		rspq_next(rspq);
1754 		budget_left--;
1755 	}
1756 
1757 	/*
1758 	 * If this is a Response Queue with an associated Free List and
1759 	 * at least two Egress Queue units available in the Free List
1760 	 * for new buffer pointers, refill the Free List.
1761 	 */
1762 	if (rspq->offset >= 0 &&
1763 	    rxq->fl.size - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
1764 		__refill_fl(rspq->adapter, &rxq->fl);
1765 	return budget - budget_left;
1766 }
1767 
1768 /**
1769  *	napi_rx_handler - the NAPI handler for RX processing
1770  *	@napi: the napi instance
1771  *	@budget: how many packets we can process in this round
1772  *
1773  *	Handler for new data events when using NAPI.  This does not need any
1774  *	locking or protection from interrupts as data interrupts are off at
1775  *	this point and other adapter interrupts do not interfere (the latter
1776  *	in not a concern at all with MSI-X as non-data interrupts then have
1777  *	a separate handler).
1778  */
napi_rx_handler(struct napi_struct * napi,int budget)1779 static int napi_rx_handler(struct napi_struct *napi, int budget)
1780 {
1781 	unsigned int intr_params;
1782 	struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
1783 	int work_done = process_responses(rspq, budget);
1784 
1785 	if (likely(work_done < budget)) {
1786 		napi_complete(napi);
1787 		intr_params = rspq->next_intr_params;
1788 		rspq->next_intr_params = rspq->intr_params;
1789 	} else
1790 		intr_params = QINTR_TIMER_IDX(SGE_TIMER_UPD_CIDX);
1791 
1792 	if (unlikely(work_done == 0))
1793 		rspq->unhandled_irqs++;
1794 
1795 	t4_write_reg(rspq->adapter,
1796 		     T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1797 		     CIDXINC(work_done) |
1798 		     INGRESSQID((u32)rspq->cntxt_id) |
1799 		     SEINTARM(intr_params));
1800 	return work_done;
1801 }
1802 
1803 /*
1804  * The MSI-X interrupt handler for an SGE response queue for the NAPI case
1805  * (i.e., response queue serviced by NAPI polling).
1806  */
t4vf_sge_intr_msix(int irq,void * cookie)1807 irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
1808 {
1809 	struct sge_rspq *rspq = cookie;
1810 
1811 	napi_schedule(&rspq->napi);
1812 	return IRQ_HANDLED;
1813 }
1814 
1815 /*
1816  * Process the indirect interrupt entries in the interrupt queue and kick off
1817  * NAPI for each queue that has generated an entry.
1818  */
process_intrq(struct adapter * adapter)1819 static unsigned int process_intrq(struct adapter *adapter)
1820 {
1821 	struct sge *s = &adapter->sge;
1822 	struct sge_rspq *intrq = &s->intrq;
1823 	unsigned int work_done;
1824 
1825 	spin_lock(&adapter->sge.intrq_lock);
1826 	for (work_done = 0; ; work_done++) {
1827 		const struct rsp_ctrl *rc;
1828 		unsigned int qid, iq_idx;
1829 		struct sge_rspq *rspq;
1830 
1831 		/*
1832 		 * Grab the next response from the interrupt queue and bail
1833 		 * out if it's not a new response.
1834 		 */
1835 		rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
1836 		if (!is_new_response(rc, intrq))
1837 			break;
1838 
1839 		/*
1840 		 * If the response isn't a forwarded interrupt message issue a
1841 		 * error and go on to the next response message.  This should
1842 		 * never happen ...
1843 		 */
1844 		rmb();
1845 		if (unlikely(RSPD_TYPE(rc->type_gen) != RSP_TYPE_INTR)) {
1846 			dev_err(adapter->pdev_dev,
1847 				"Unexpected INTRQ response type %d\n",
1848 				RSPD_TYPE(rc->type_gen));
1849 			continue;
1850 		}
1851 
1852 		/*
1853 		 * Extract the Queue ID from the interrupt message and perform
1854 		 * sanity checking to make sure it really refers to one of our
1855 		 * Ingress Queues which is active and matches the queue's ID.
1856 		 * None of these error conditions should ever happen so we may
1857 		 * want to either make them fatal and/or conditionalized under
1858 		 * DEBUG.
1859 		 */
1860 		qid = RSPD_QID(be32_to_cpu(rc->pldbuflen_qid));
1861 		iq_idx = IQ_IDX(s, qid);
1862 		if (unlikely(iq_idx >= MAX_INGQ)) {
1863 			dev_err(adapter->pdev_dev,
1864 				"Ingress QID %d out of range\n", qid);
1865 			continue;
1866 		}
1867 		rspq = s->ingr_map[iq_idx];
1868 		if (unlikely(rspq == NULL)) {
1869 			dev_err(adapter->pdev_dev,
1870 				"Ingress QID %d RSPQ=NULL\n", qid);
1871 			continue;
1872 		}
1873 		if (unlikely(rspq->abs_id != qid)) {
1874 			dev_err(adapter->pdev_dev,
1875 				"Ingress QID %d refers to RSPQ %d\n",
1876 				qid, rspq->abs_id);
1877 			continue;
1878 		}
1879 
1880 		/*
1881 		 * Schedule NAPI processing on the indicated Response Queue
1882 		 * and move on to the next entry in the Forwarded Interrupt
1883 		 * Queue.
1884 		 */
1885 		napi_schedule(&rspq->napi);
1886 		rspq_next(intrq);
1887 	}
1888 
1889 	t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1890 		     CIDXINC(work_done) |
1891 		     INGRESSQID(intrq->cntxt_id) |
1892 		     SEINTARM(intrq->intr_params));
1893 
1894 	spin_unlock(&adapter->sge.intrq_lock);
1895 
1896 	return work_done;
1897 }
1898 
1899 /*
1900  * The MSI interrupt handler handles data events from SGE response queues as
1901  * well as error and other async events as they all use the same MSI vector.
1902  */
t4vf_intr_msi(int irq,void * cookie)1903 static irqreturn_t t4vf_intr_msi(int irq, void *cookie)
1904 {
1905 	struct adapter *adapter = cookie;
1906 
1907 	process_intrq(adapter);
1908 	return IRQ_HANDLED;
1909 }
1910 
1911 /**
1912  *	t4vf_intr_handler - select the top-level interrupt handler
1913  *	@adapter: the adapter
1914  *
1915  *	Selects the top-level interrupt handler based on the type of interrupts
1916  *	(MSI-X or MSI).
1917  */
t4vf_intr_handler(struct adapter * adapter)1918 irq_handler_t t4vf_intr_handler(struct adapter *adapter)
1919 {
1920 	BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
1921 	if (adapter->flags & USING_MSIX)
1922 		return t4vf_sge_intr_msix;
1923 	else
1924 		return t4vf_intr_msi;
1925 }
1926 
1927 /**
1928  *	sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
1929  *	@data: the adapter
1930  *
1931  *	Runs periodically from a timer to perform maintenance of SGE RX queues.
1932  *
1933  *	a) Replenishes RX queues that have run out due to memory shortage.
1934  *	Normally new RX buffers are added when existing ones are consumed but
1935  *	when out of memory a queue can become empty.  We schedule NAPI to do
1936  *	the actual refill.
1937  */
sge_rx_timer_cb(unsigned long data)1938 static void sge_rx_timer_cb(unsigned long data)
1939 {
1940 	struct adapter *adapter = (struct adapter *)data;
1941 	struct sge *s = &adapter->sge;
1942 	unsigned int i;
1943 
1944 	/*
1945 	 * Scan the "Starving Free Lists" flag array looking for any Free
1946 	 * Lists in need of more free buffers.  If we find one and it's not
1947 	 * being actively polled, then bump its "starving" counter and attempt
1948 	 * to refill it.  If we're successful in adding enough buffers to push
1949 	 * the Free List over the starving threshold, then we can clear its
1950 	 * "starving" status.
1951 	 */
1952 	for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
1953 		unsigned long m;
1954 
1955 		for (m = s->starving_fl[i]; m; m &= m - 1) {
1956 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
1957 			struct sge_fl *fl = s->egr_map[id];
1958 
1959 			clear_bit(id, s->starving_fl);
1960 			smp_mb__after_atomic();
1961 
1962 			/*
1963 			 * Since we are accessing fl without a lock there's a
1964 			 * small probability of a false positive where we
1965 			 * schedule napi but the FL is no longer starving.
1966 			 * No biggie.
1967 			 */
1968 			if (fl_starving(adapter, fl)) {
1969 				struct sge_eth_rxq *rxq;
1970 
1971 				rxq = container_of(fl, struct sge_eth_rxq, fl);
1972 				if (napi_reschedule(&rxq->rspq.napi))
1973 					fl->starving++;
1974 				else
1975 					set_bit(id, s->starving_fl);
1976 			}
1977 		}
1978 	}
1979 
1980 	/*
1981 	 * Reschedule the next scan for starving Free Lists ...
1982 	 */
1983 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
1984 }
1985 
1986 /**
1987  *	sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
1988  *	@data: the adapter
1989  *
1990  *	Runs periodically from a timer to perform maintenance of SGE TX queues.
1991  *
1992  *	b) Reclaims completed Tx packets for the Ethernet queues.  Normally
1993  *	packets are cleaned up by new Tx packets, this timer cleans up packets
1994  *	when no new packets are being submitted.  This is essential for pktgen,
1995  *	at least.
1996  */
sge_tx_timer_cb(unsigned long data)1997 static void sge_tx_timer_cb(unsigned long data)
1998 {
1999 	struct adapter *adapter = (struct adapter *)data;
2000 	struct sge *s = &adapter->sge;
2001 	unsigned int i, budget;
2002 
2003 	budget = MAX_TIMER_TX_RECLAIM;
2004 	i = s->ethtxq_rover;
2005 	do {
2006 		struct sge_eth_txq *txq = &s->ethtxq[i];
2007 
2008 		if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
2009 			int avail = reclaimable(&txq->q);
2010 
2011 			if (avail > budget)
2012 				avail = budget;
2013 
2014 			free_tx_desc(adapter, &txq->q, avail, true);
2015 			txq->q.in_use -= avail;
2016 			__netif_tx_unlock(txq->txq);
2017 
2018 			budget -= avail;
2019 			if (!budget)
2020 				break;
2021 		}
2022 
2023 		i++;
2024 		if (i >= s->ethqsets)
2025 			i = 0;
2026 	} while (i != s->ethtxq_rover);
2027 	s->ethtxq_rover = i;
2028 
2029 	/*
2030 	 * If we found too many reclaimable packets schedule a timer in the
2031 	 * near future to continue where we left off.  Otherwise the next timer
2032 	 * will be at its normal interval.
2033 	 */
2034 	mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2035 }
2036 
2037 /**
2038  *	t4vf_sge_alloc_rxq - allocate an SGE RX Queue
2039  *	@adapter: the adapter
2040  *	@rspq: pointer to to the new rxq's Response Queue to be filled in
2041  *	@iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
2042  *	@dev: the network device associated with the new rspq
2043  *	@intr_dest: MSI-X vector index (overriden in MSI mode)
2044  *	@fl: pointer to the new rxq's Free List to be filled in
2045  *	@hnd: the interrupt handler to invoke for the rspq
2046  */
t4vf_sge_alloc_rxq(struct adapter * adapter,struct sge_rspq * rspq,bool iqasynch,struct net_device * dev,int intr_dest,struct sge_fl * fl,rspq_handler_t hnd)2047 int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
2048 		       bool iqasynch, struct net_device *dev,
2049 		       int intr_dest,
2050 		       struct sge_fl *fl, rspq_handler_t hnd)
2051 {
2052 	struct sge *s = &adapter->sge;
2053 	struct port_info *pi = netdev_priv(dev);
2054 	struct fw_iq_cmd cmd, rpl;
2055 	int ret, iqandst, flsz = 0;
2056 
2057 	/*
2058 	 * If we're using MSI interrupts and we're not initializing the
2059 	 * Forwarded Interrupt Queue itself, then set up this queue for
2060 	 * indirect interrupts to the Forwarded Interrupt Queue.  Obviously
2061 	 * the Forwarded Interrupt Queue must be set up before any other
2062 	 * ingress queue ...
2063 	 */
2064 	if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) {
2065 		iqandst = SGE_INTRDST_IQ;
2066 		intr_dest = adapter->sge.intrq.abs_id;
2067 	} else
2068 		iqandst = SGE_INTRDST_PCI;
2069 
2070 	/*
2071 	 * Allocate the hardware ring for the Response Queue.  The size needs
2072 	 * to be a multiple of 16 which includes the mandatory status entry
2073 	 * (regardless of whether the Status Page capabilities are enabled or
2074 	 * not).
2075 	 */
2076 	rspq->size = roundup(rspq->size, 16);
2077 	rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
2078 				0, &rspq->phys_addr, NULL, 0);
2079 	if (!rspq->desc)
2080 		return -ENOMEM;
2081 
2082 	/*
2083 	 * Fill in the Ingress Queue Command.  Note: Ideally this code would
2084 	 * be in t4vf_hw.c but there are so many parameters and dependencies
2085 	 * on our Linux SGE state that we would end up having to pass tons of
2086 	 * parameters.  We'll have to think about how this might be migrated
2087 	 * into OS-independent common code ...
2088 	 */
2089 	memset(&cmd, 0, sizeof(cmd));
2090 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_IQ_CMD) |
2091 				    FW_CMD_REQUEST |
2092 				    FW_CMD_WRITE |
2093 				    FW_CMD_EXEC);
2094 	cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC |
2095 					 FW_IQ_CMD_IQSTART(1) |
2096 					 FW_LEN16(cmd));
2097 	cmd.type_to_iqandstindex =
2098 		cpu_to_be32(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2099 			    FW_IQ_CMD_IQASYNCH(iqasynch) |
2100 			    FW_IQ_CMD_VIID(pi->viid) |
2101 			    FW_IQ_CMD_IQANDST(iqandst) |
2102 			    FW_IQ_CMD_IQANUS(1) |
2103 			    FW_IQ_CMD_IQANUD(SGE_UPDATEDEL_INTR) |
2104 			    FW_IQ_CMD_IQANDSTINDEX(intr_dest));
2105 	cmd.iqdroprss_to_iqesize =
2106 		cpu_to_be16(FW_IQ_CMD_IQPCIECH(pi->port_id) |
2107 			    FW_IQ_CMD_IQGTSMODE |
2108 			    FW_IQ_CMD_IQINTCNTTHRESH(rspq->pktcnt_idx) |
2109 			    FW_IQ_CMD_IQESIZE(ilog2(rspq->iqe_len) - 4));
2110 	cmd.iqsize = cpu_to_be16(rspq->size);
2111 	cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
2112 
2113 	if (fl) {
2114 		/*
2115 		 * Allocate the ring for the hardware free list (with space
2116 		 * for its status page) along with the associated software
2117 		 * descriptor ring.  The free list size needs to be a multiple
2118 		 * of the Egress Queue Unit.
2119 		 */
2120 		fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
2121 		fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
2122 				      sizeof(__be64), sizeof(struct rx_sw_desc),
2123 				      &fl->addr, &fl->sdesc, s->stat_len);
2124 		if (!fl->desc) {
2125 			ret = -ENOMEM;
2126 			goto err;
2127 		}
2128 
2129 		/*
2130 		 * Calculate the size of the hardware free list ring plus
2131 		 * Status Page (which the SGE will place after the end of the
2132 		 * free list ring) in Egress Queue Units.
2133 		 */
2134 		flsz = (fl->size / FL_PER_EQ_UNIT +
2135 			s->stat_len / EQ_UNIT);
2136 
2137 		/*
2138 		 * Fill in all the relevant firmware Ingress Queue Command
2139 		 * fields for the free list.
2140 		 */
2141 		cmd.iqns_to_fl0congen =
2142 			cpu_to_be32(
2143 				FW_IQ_CMD_FL0HOSTFCMODE(SGE_HOSTFCMODE_NONE) |
2144 				FW_IQ_CMD_FL0PACKEN(1) |
2145 				FW_IQ_CMD_FL0PADEN(1));
2146 		cmd.fl0dcaen_to_fl0cidxfthresh =
2147 			cpu_to_be16(
2148 				FW_IQ_CMD_FL0FBMIN(SGE_FETCHBURSTMIN_64B) |
2149 				FW_IQ_CMD_FL0FBMAX(SGE_FETCHBURSTMAX_512B));
2150 		cmd.fl0size = cpu_to_be16(flsz);
2151 		cmd.fl0addr = cpu_to_be64(fl->addr);
2152 	}
2153 
2154 	/*
2155 	 * Issue the firmware Ingress Queue Command and extract the results if
2156 	 * it completes successfully.
2157 	 */
2158 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2159 	if (ret)
2160 		goto err;
2161 
2162 	netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64);
2163 	rspq->cur_desc = rspq->desc;
2164 	rspq->cidx = 0;
2165 	rspq->gen = 1;
2166 	rspq->next_intr_params = rspq->intr_params;
2167 	rspq->cntxt_id = be16_to_cpu(rpl.iqid);
2168 	rspq->abs_id = be16_to_cpu(rpl.physiqid);
2169 	rspq->size--;			/* subtract status entry */
2170 	rspq->adapter = adapter;
2171 	rspq->netdev = dev;
2172 	rspq->handler = hnd;
2173 
2174 	/* set offset to -1 to distinguish ingress queues without FL */
2175 	rspq->offset = fl ? 0 : -1;
2176 
2177 	if (fl) {
2178 		fl->cntxt_id = be16_to_cpu(rpl.fl0id);
2179 		fl->avail = 0;
2180 		fl->pend_cred = 0;
2181 		fl->pidx = 0;
2182 		fl->cidx = 0;
2183 		fl->alloc_failed = 0;
2184 		fl->large_alloc_failed = 0;
2185 		fl->starving = 0;
2186 		refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
2187 	}
2188 
2189 	return 0;
2190 
2191 err:
2192 	/*
2193 	 * An error occurred.  Clean up our partial allocation state and
2194 	 * return the error.
2195 	 */
2196 	if (rspq->desc) {
2197 		dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
2198 				  rspq->desc, rspq->phys_addr);
2199 		rspq->desc = NULL;
2200 	}
2201 	if (fl && fl->desc) {
2202 		kfree(fl->sdesc);
2203 		fl->sdesc = NULL;
2204 		dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
2205 				  fl->desc, fl->addr);
2206 		fl->desc = NULL;
2207 	}
2208 	return ret;
2209 }
2210 
2211 /**
2212  *	t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
2213  *	@adapter: the adapter
2214  *	@txq: pointer to the new txq to be filled in
2215  *	@devq: the network TX queue associated with the new txq
2216  *	@iqid: the relative ingress queue ID to which events relating to
2217  *		the new txq should be directed
2218  */
t4vf_sge_alloc_eth_txq(struct adapter * adapter,struct sge_eth_txq * txq,struct net_device * dev,struct netdev_queue * devq,unsigned int iqid)2219 int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
2220 			   struct net_device *dev, struct netdev_queue *devq,
2221 			   unsigned int iqid)
2222 {
2223 	struct sge *s = &adapter->sge;
2224 	int ret, nentries;
2225 	struct fw_eq_eth_cmd cmd, rpl;
2226 	struct port_info *pi = netdev_priv(dev);
2227 
2228 	/*
2229 	 * Calculate the size of the hardware TX Queue (including the Status
2230 	 * Page on the end of the TX Queue) in units of TX Descriptors.
2231 	 */
2232 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2233 
2234 	/*
2235 	 * Allocate the hardware ring for the TX ring (with space for its
2236 	 * status page) along with the associated software descriptor ring.
2237 	 */
2238 	txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
2239 				 sizeof(struct tx_desc),
2240 				 sizeof(struct tx_sw_desc),
2241 				 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len);
2242 	if (!txq->q.desc)
2243 		return -ENOMEM;
2244 
2245 	/*
2246 	 * Fill in the Egress Queue Command.  Note: As with the direct use of
2247 	 * the firmware Ingress Queue COmmand above in our RXQ allocation
2248 	 * routine, ideally, this code would be in t4vf_hw.c.  Again, we'll
2249 	 * have to see if there's some reasonable way to parameterize it
2250 	 * into the common code ...
2251 	 */
2252 	memset(&cmd, 0, sizeof(cmd));
2253 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD) |
2254 				    FW_CMD_REQUEST |
2255 				    FW_CMD_WRITE |
2256 				    FW_CMD_EXEC);
2257 	cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC |
2258 					 FW_EQ_ETH_CMD_EQSTART |
2259 					 FW_LEN16(cmd));
2260 	cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_AUTOEQUEQE |
2261 				   FW_EQ_ETH_CMD_VIID(pi->viid));
2262 	cmd.fetchszm_to_iqid =
2263 		cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE(SGE_HOSTFCMODE_STPG) |
2264 			    FW_EQ_ETH_CMD_PCIECHN(pi->port_id) |
2265 			    FW_EQ_ETH_CMD_IQID(iqid));
2266 	cmd.dcaen_to_eqsize =
2267 		cpu_to_be32(FW_EQ_ETH_CMD_FBMIN(SGE_FETCHBURSTMIN_64B) |
2268 			    FW_EQ_ETH_CMD_FBMAX(SGE_FETCHBURSTMAX_512B) |
2269 			    FW_EQ_ETH_CMD_CIDXFTHRESH(SGE_CIDXFLUSHTHRESH_32) |
2270 			    FW_EQ_ETH_CMD_EQSIZE(nentries));
2271 	cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
2272 
2273 	/*
2274 	 * Issue the firmware Egress Queue Command and extract the results if
2275 	 * it completes successfully.
2276 	 */
2277 	ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2278 	if (ret) {
2279 		/*
2280 		 * The girmware Ingress Queue Command failed for some reason.
2281 		 * Free up our partial allocation state and return the error.
2282 		 */
2283 		kfree(txq->q.sdesc);
2284 		txq->q.sdesc = NULL;
2285 		dma_free_coherent(adapter->pdev_dev,
2286 				  nentries * sizeof(struct tx_desc),
2287 				  txq->q.desc, txq->q.phys_addr);
2288 		txq->q.desc = NULL;
2289 		return ret;
2290 	}
2291 
2292 	txq->q.in_use = 0;
2293 	txq->q.cidx = 0;
2294 	txq->q.pidx = 0;
2295 	txq->q.stat = (void *)&txq->q.desc[txq->q.size];
2296 	txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_GET(be32_to_cpu(rpl.eqid_pkd));
2297 	txq->q.abs_id =
2298 		FW_EQ_ETH_CMD_PHYSEQID_GET(be32_to_cpu(rpl.physeqid_pkd));
2299 	txq->txq = devq;
2300 	txq->tso = 0;
2301 	txq->tx_cso = 0;
2302 	txq->vlan_ins = 0;
2303 	txq->q.stops = 0;
2304 	txq->q.restarts = 0;
2305 	txq->mapping_err = 0;
2306 	return 0;
2307 }
2308 
2309 /*
2310  * Free the DMA map resources associated with a TX queue.
2311  */
free_txq(struct adapter * adapter,struct sge_txq * tq)2312 static void free_txq(struct adapter *adapter, struct sge_txq *tq)
2313 {
2314 	struct sge *s = &adapter->sge;
2315 
2316 	dma_free_coherent(adapter->pdev_dev,
2317 			  tq->size * sizeof(*tq->desc) + s->stat_len,
2318 			  tq->desc, tq->phys_addr);
2319 	tq->cntxt_id = 0;
2320 	tq->sdesc = NULL;
2321 	tq->desc = NULL;
2322 }
2323 
2324 /*
2325  * Free the resources associated with a response queue (possibly including a
2326  * free list).
2327  */
free_rspq_fl(struct adapter * adapter,struct sge_rspq * rspq,struct sge_fl * fl)2328 static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
2329 			 struct sge_fl *fl)
2330 {
2331 	struct sge *s = &adapter->sge;
2332 	unsigned int flid = fl ? fl->cntxt_id : 0xffff;
2333 
2334 	t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
2335 		     rspq->cntxt_id, flid, 0xffff);
2336 	dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
2337 			  rspq->desc, rspq->phys_addr);
2338 	netif_napi_del(&rspq->napi);
2339 	rspq->netdev = NULL;
2340 	rspq->cntxt_id = 0;
2341 	rspq->abs_id = 0;
2342 	rspq->desc = NULL;
2343 
2344 	if (fl) {
2345 		free_rx_bufs(adapter, fl, fl->avail);
2346 		dma_free_coherent(adapter->pdev_dev,
2347 				  fl->size * sizeof(*fl->desc) + s->stat_len,
2348 				  fl->desc, fl->addr);
2349 		kfree(fl->sdesc);
2350 		fl->sdesc = NULL;
2351 		fl->cntxt_id = 0;
2352 		fl->desc = NULL;
2353 	}
2354 }
2355 
2356 /**
2357  *	t4vf_free_sge_resources - free SGE resources
2358  *	@adapter: the adapter
2359  *
2360  *	Frees resources used by the SGE queue sets.
2361  */
t4vf_free_sge_resources(struct adapter * adapter)2362 void t4vf_free_sge_resources(struct adapter *adapter)
2363 {
2364 	struct sge *s = &adapter->sge;
2365 	struct sge_eth_rxq *rxq = s->ethrxq;
2366 	struct sge_eth_txq *txq = s->ethtxq;
2367 	struct sge_rspq *evtq = &s->fw_evtq;
2368 	struct sge_rspq *intrq = &s->intrq;
2369 	int qs;
2370 
2371 	for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) {
2372 		if (rxq->rspq.desc)
2373 			free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
2374 		if (txq->q.desc) {
2375 			t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
2376 			free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
2377 			kfree(txq->q.sdesc);
2378 			free_txq(adapter, &txq->q);
2379 		}
2380 	}
2381 	if (evtq->desc)
2382 		free_rspq_fl(adapter, evtq, NULL);
2383 	if (intrq->desc)
2384 		free_rspq_fl(adapter, intrq, NULL);
2385 }
2386 
2387 /**
2388  *	t4vf_sge_start - enable SGE operation
2389  *	@adapter: the adapter
2390  *
2391  *	Start tasklets and timers associated with the DMA engine.
2392  */
t4vf_sge_start(struct adapter * adapter)2393 void t4vf_sge_start(struct adapter *adapter)
2394 {
2395 	adapter->sge.ethtxq_rover = 0;
2396 	mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2397 	mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2398 }
2399 
2400 /**
2401  *	t4vf_sge_stop - disable SGE operation
2402  *	@adapter: the adapter
2403  *
2404  *	Stop tasklets and timers associated with the DMA engine.  Note that
2405  *	this is effective only if measures have been taken to disable any HW
2406  *	events that may restart them.
2407  */
t4vf_sge_stop(struct adapter * adapter)2408 void t4vf_sge_stop(struct adapter *adapter)
2409 {
2410 	struct sge *s = &adapter->sge;
2411 
2412 	if (s->rx_timer.function)
2413 		del_timer_sync(&s->rx_timer);
2414 	if (s->tx_timer.function)
2415 		del_timer_sync(&s->tx_timer);
2416 }
2417 
2418 /**
2419  *	t4vf_sge_init - initialize SGE
2420  *	@adapter: the adapter
2421  *
2422  *	Performs SGE initialization needed every time after a chip reset.
2423  *	We do not initialize any of the queue sets here, instead the driver
2424  *	top-level must request those individually.  We also do not enable DMA
2425  *	here, that should be done after the queues have been set up.
2426  */
t4vf_sge_init(struct adapter * adapter)2427 int t4vf_sge_init(struct adapter *adapter)
2428 {
2429 	struct sge_params *sge_params = &adapter->params.sge;
2430 	u32 fl0 = sge_params->sge_fl_buffer_size[0];
2431 	u32 fl1 = sge_params->sge_fl_buffer_size[1];
2432 	struct sge *s = &adapter->sge;
2433 	unsigned int ingpadboundary, ingpackboundary;
2434 
2435 	/*
2436 	 * Start by vetting the basic SGE parameters which have been set up by
2437 	 * the Physical Function Driver.  Ideally we should be able to deal
2438 	 * with _any_ configuration.  Practice is different ...
2439 	 */
2440 	if (fl0 != PAGE_SIZE || (fl1 != 0 && fl1 <= fl0)) {
2441 		dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2442 			fl0, fl1);
2443 		return -EINVAL;
2444 	}
2445 	if ((sge_params->sge_control & RXPKTCPLMODE_MASK) == 0) {
2446 		dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2447 		return -EINVAL;
2448 	}
2449 
2450 	/*
2451 	 * Now translate the adapter parameters into our internal forms.
2452 	 */
2453 	if (fl1)
2454 		s->fl_pg_order = ilog2(fl1) - PAGE_SHIFT;
2455 	s->stat_len = ((sge_params->sge_control & EGRSTATUSPAGESIZE_MASK)
2456 			? 128 : 64);
2457 	s->pktshift = PKTSHIFT_GET(sge_params->sge_control);
2458 
2459 	/* T4 uses a single control field to specify both the PCIe Padding and
2460 	 * Packing Boundary.  T5 introduced the ability to specify these
2461 	 * separately.  The actual Ingress Packet Data alignment boundary
2462 	 * within Packed Buffer Mode is the maximum of these two
2463 	 * specifications.  (Note that it makes no real practical sense to
2464 	 * have the Pading Boudary be larger than the Packing Boundary but you
2465 	 * could set the chip up that way and, in fact, legacy T4 code would
2466 	 * end doing this because it would initialize the Padding Boundary and
2467 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
2468 	 */
2469 	ingpadboundary = 1 << (INGPADBOUNDARY_GET(sge_params->sge_control) +
2470 			       X_INGPADBOUNDARY_SHIFT);
2471 	if (is_t4(adapter->params.chip)) {
2472 		s->fl_align = ingpadboundary;
2473 	} else {
2474 		/* T5 has a different interpretation of one of the PCIe Packing
2475 		 * Boundary values.
2476 		 */
2477 		ingpackboundary = INGPACKBOUNDARY_G(sge_params->sge_control2);
2478 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
2479 			ingpackboundary = 16;
2480 		else
2481 			ingpackboundary = 1 << (ingpackboundary +
2482 						INGPACKBOUNDARY_SHIFT_X);
2483 
2484 		s->fl_align = max(ingpadboundary, ingpackboundary);
2485 	}
2486 
2487 	/* A FL with <= fl_starve_thres buffers is starving and a periodic
2488 	 * timer will attempt to refill it.  This needs to be larger than the
2489 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
2490 	 * stuck waiting for new packets while the SGE is waiting for us to
2491 	 * give it more Free List entries.  (Note that the SGE's Egress
2492 	 * Congestion Threshold is in units of 2 Free List pointers.)
2493 	 */
2494 	s->fl_starve_thres
2495 		= EGRTHRESHOLD_GET(sge_params->sge_congestion_control)*2 + 1;
2496 
2497 	/*
2498 	 * Set up tasklet timers.
2499 	 */
2500 	setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adapter);
2501 	setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adapter);
2502 
2503 	/*
2504 	 * Initialize Forwarded Interrupt Queue lock.
2505 	 */
2506 	spin_lock_init(&s->intrq_lock);
2507 
2508 	return 0;
2509 }
2510