• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29 
30 int sysctl_tcp_syncookies __read_mostly = 1;
31 EXPORT_SYMBOL(sysctl_tcp_syncookies);
32 
33 int sysctl_tcp_abort_on_overflow __read_mostly;
34 
35 struct inet_timewait_death_row tcp_death_row = {
36 	.sysctl_max_tw_buckets = NR_FILE * 2,
37 	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
38 	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
39 	.hashinfo	= &tcp_hashinfo,
40 	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
41 					    (unsigned long)&tcp_death_row),
42 	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
43 					     inet_twdr_twkill_work),
44 /* Short-time timewait calendar */
45 
46 	.twcal_hand	= -1,
47 	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
48 					    (unsigned long)&tcp_death_row),
49 };
50 EXPORT_SYMBOL_GPL(tcp_death_row);
51 
tcp_in_window(u32 seq,u32 end_seq,u32 s_win,u32 e_win)52 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
53 {
54 	if (seq == s_win)
55 		return true;
56 	if (after(end_seq, s_win) && before(seq, e_win))
57 		return true;
58 	return seq == e_win && seq == end_seq;
59 }
60 
61 /*
62  * * Main purpose of TIME-WAIT state is to close connection gracefully,
63  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64  *   (and, probably, tail of data) and one or more our ACKs are lost.
65  * * What is TIME-WAIT timeout? It is associated with maximal packet
66  *   lifetime in the internet, which results in wrong conclusion, that
67  *   it is set to catch "old duplicate segments" wandering out of their path.
68  *   It is not quite correct. This timeout is calculated so that it exceeds
69  *   maximal retransmission timeout enough to allow to lose one (or more)
70  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
71  * * When TIME-WAIT socket receives RST, it means that another end
72  *   finally closed and we are allowed to kill TIME-WAIT too.
73  * * Second purpose of TIME-WAIT is catching old duplicate segments.
74  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
75  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76  * * If we invented some more clever way to catch duplicates
77  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78  *
79  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81  * from the very beginning.
82  *
83  * NOTE. With recycling (and later with fin-wait-2) TW bucket
84  * is _not_ stateless. It means, that strictly speaking we must
85  * spinlock it. I do not want! Well, probability of misbehaviour
86  * is ridiculously low and, seems, we could use some mb() tricks
87  * to avoid misread sequence numbers, states etc.  --ANK
88  *
89  * We don't need to initialize tmp_out.sack_ok as we don't use the results
90  */
91 enum tcp_tw_status
tcp_timewait_state_process(struct inet_timewait_sock * tw,struct sk_buff * skb,const struct tcphdr * th)92 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
93 			   const struct tcphdr *th)
94 {
95 	struct tcp_options_received tmp_opt;
96 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
97 	bool paws_reject = false;
98 
99 	tmp_opt.saw_tstamp = 0;
100 	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
101 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
102 
103 		if (tmp_opt.saw_tstamp) {
104 			tmp_opt.rcv_tsecr	-= tcptw->tw_ts_offset;
105 			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
106 			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
107 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
108 		}
109 	}
110 
111 	if (tw->tw_substate == TCP_FIN_WAIT2) {
112 		/* Just repeat all the checks of tcp_rcv_state_process() */
113 
114 		/* Out of window, send ACK */
115 		if (paws_reject ||
116 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
117 				   tcptw->tw_rcv_nxt,
118 				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
119 			return TCP_TW_ACK;
120 
121 		if (th->rst)
122 			goto kill;
123 
124 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
125 			goto kill_with_rst;
126 
127 		/* Dup ACK? */
128 		if (!th->ack ||
129 		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
130 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
131 			inet_twsk_put(tw);
132 			return TCP_TW_SUCCESS;
133 		}
134 
135 		/* New data or FIN. If new data arrive after half-duplex close,
136 		 * reset.
137 		 */
138 		if (!th->fin ||
139 		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
140 kill_with_rst:
141 			inet_twsk_deschedule(tw, &tcp_death_row);
142 			inet_twsk_put(tw);
143 			return TCP_TW_RST;
144 		}
145 
146 		/* FIN arrived, enter true time-wait state. */
147 		tw->tw_substate	  = TCP_TIME_WAIT;
148 		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
149 		if (tmp_opt.saw_tstamp) {
150 			tcptw->tw_ts_recent_stamp = get_seconds();
151 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
152 		}
153 
154 		if (tcp_death_row.sysctl_tw_recycle &&
155 		    tcptw->tw_ts_recent_stamp &&
156 		    tcp_tw_remember_stamp(tw))
157 			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
158 					   TCP_TIMEWAIT_LEN);
159 		else
160 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
161 					   TCP_TIMEWAIT_LEN);
162 		return TCP_TW_ACK;
163 	}
164 
165 	/*
166 	 *	Now real TIME-WAIT state.
167 	 *
168 	 *	RFC 1122:
169 	 *	"When a connection is [...] on TIME-WAIT state [...]
170 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
171 	 *	reopen the connection directly, if it:
172 	 *
173 	 *	(1)  assigns its initial sequence number for the new
174 	 *	connection to be larger than the largest sequence
175 	 *	number it used on the previous connection incarnation,
176 	 *	and
177 	 *
178 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
179 	 *	to be an old duplicate".
180 	 */
181 
182 	if (!paws_reject &&
183 	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
184 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
185 		/* In window segment, it may be only reset or bare ack. */
186 
187 		if (th->rst) {
188 			/* This is TIME_WAIT assassination, in two flavors.
189 			 * Oh well... nobody has a sufficient solution to this
190 			 * protocol bug yet.
191 			 */
192 			if (sysctl_tcp_rfc1337 == 0) {
193 kill:
194 				inet_twsk_deschedule(tw, &tcp_death_row);
195 				inet_twsk_put(tw);
196 				return TCP_TW_SUCCESS;
197 			}
198 		}
199 		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
200 				   TCP_TIMEWAIT_LEN);
201 
202 		if (tmp_opt.saw_tstamp) {
203 			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
204 			tcptw->tw_ts_recent_stamp = get_seconds();
205 		}
206 
207 		inet_twsk_put(tw);
208 		return TCP_TW_SUCCESS;
209 	}
210 
211 	/* Out of window segment.
212 
213 	   All the segments are ACKed immediately.
214 
215 	   The only exception is new SYN. We accept it, if it is
216 	   not old duplicate and we are not in danger to be killed
217 	   by delayed old duplicates. RFC check is that it has
218 	   newer sequence number works at rates <40Mbit/sec.
219 	   However, if paws works, it is reliable AND even more,
220 	   we even may relax silly seq space cutoff.
221 
222 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
223 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
224 	   we must return socket to time-wait state. It is not good,
225 	   but not fatal yet.
226 	 */
227 
228 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
229 	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
230 	     (tmp_opt.saw_tstamp &&
231 	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
232 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
233 		if (isn == 0)
234 			isn++;
235 		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
236 		return TCP_TW_SYN;
237 	}
238 
239 	if (paws_reject)
240 		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
241 
242 	if (!th->rst) {
243 		/* In this case we must reset the TIMEWAIT timer.
244 		 *
245 		 * If it is ACKless SYN it may be both old duplicate
246 		 * and new good SYN with random sequence number <rcv_nxt.
247 		 * Do not reschedule in the last case.
248 		 */
249 		if (paws_reject || th->ack)
250 			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
251 					   TCP_TIMEWAIT_LEN);
252 
253 		/* Send ACK. Note, we do not put the bucket,
254 		 * it will be released by caller.
255 		 */
256 		return TCP_TW_ACK;
257 	}
258 	inet_twsk_put(tw);
259 	return TCP_TW_SUCCESS;
260 }
261 EXPORT_SYMBOL(tcp_timewait_state_process);
262 
263 /*
264  * Move a socket to time-wait or dead fin-wait-2 state.
265  */
tcp_time_wait(struct sock * sk,int state,int timeo)266 void tcp_time_wait(struct sock *sk, int state, int timeo)
267 {
268 	struct inet_timewait_sock *tw = NULL;
269 	const struct inet_connection_sock *icsk = inet_csk(sk);
270 	const struct tcp_sock *tp = tcp_sk(sk);
271 	bool recycle_ok = false;
272 
273 	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
274 		recycle_ok = tcp_remember_stamp(sk);
275 
276 	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
277 		tw = inet_twsk_alloc(sk, state);
278 
279 	if (tw != NULL) {
280 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
281 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
282 		struct inet_sock *inet = inet_sk(sk);
283 
284 		tw->tw_transparent	= inet->transparent;
285 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
286 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
287 		tcptw->tw_snd_nxt	= tp->snd_nxt;
288 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
289 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
290 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
291 		tcptw->tw_ts_offset	= tp->tsoffset;
292 
293 #if IS_ENABLED(CONFIG_IPV6)
294 		if (tw->tw_family == PF_INET6) {
295 			struct ipv6_pinfo *np = inet6_sk(sk);
296 
297 			tw->tw_v6_daddr = sk->sk_v6_daddr;
298 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
299 			tw->tw_tclass = np->tclass;
300 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
301 			tw->tw_ipv6only = sk->sk_ipv6only;
302 		}
303 #endif
304 
305 #ifdef CONFIG_TCP_MD5SIG
306 		/*
307 		 * The timewait bucket does not have the key DB from the
308 		 * sock structure. We just make a quick copy of the
309 		 * md5 key being used (if indeed we are using one)
310 		 * so the timewait ack generating code has the key.
311 		 */
312 		do {
313 			struct tcp_md5sig_key *key;
314 			tcptw->tw_md5_key = NULL;
315 			key = tp->af_specific->md5_lookup(sk, sk);
316 			if (key != NULL) {
317 				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
318 				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
319 					BUG();
320 			}
321 		} while (0);
322 #endif
323 
324 		/* Linkage updates. */
325 		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
326 
327 		/* Get the TIME_WAIT timeout firing. */
328 		if (timeo < rto)
329 			timeo = rto;
330 
331 		if (recycle_ok) {
332 			tw->tw_timeout = rto;
333 		} else {
334 			tw->tw_timeout = TCP_TIMEWAIT_LEN;
335 			if (state == TCP_TIME_WAIT)
336 				timeo = TCP_TIMEWAIT_LEN;
337 		}
338 
339 		inet_twsk_schedule(tw, &tcp_death_row, timeo,
340 				   TCP_TIMEWAIT_LEN);
341 		inet_twsk_put(tw);
342 	} else {
343 		/* Sorry, if we're out of memory, just CLOSE this
344 		 * socket up.  We've got bigger problems than
345 		 * non-graceful socket closings.
346 		 */
347 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
348 	}
349 
350 	tcp_update_metrics(sk);
351 	tcp_done(sk);
352 }
353 
tcp_twsk_destructor(struct sock * sk)354 void tcp_twsk_destructor(struct sock *sk)
355 {
356 #ifdef CONFIG_TCP_MD5SIG
357 	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
358 
359 	if (twsk->tw_md5_key)
360 		kfree_rcu(twsk->tw_md5_key, rcu);
361 #endif
362 }
363 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
364 
tcp_openreq_init_rwin(struct request_sock * req,struct sock * sk,struct dst_entry * dst)365 void tcp_openreq_init_rwin(struct request_sock *req,
366 			   struct sock *sk, struct dst_entry *dst)
367 {
368 	struct inet_request_sock *ireq = inet_rsk(req);
369 	struct tcp_sock *tp = tcp_sk(sk);
370 	__u8 rcv_wscale;
371 	int mss = dst_metric_advmss(dst);
372 
373 	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
374 		mss = tp->rx_opt.user_mss;
375 
376 	/* Set this up on the first call only */
377 	req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
378 
379 	/* limit the window selection if the user enforce a smaller rx buffer */
380 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
381 	    (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
382 		req->window_clamp = tcp_full_space(sk);
383 
384 	/* tcp_full_space because it is guaranteed to be the first packet */
385 	tcp_select_initial_window(tcp_full_space(sk),
386 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
387 		&req->rcv_wnd,
388 		&req->window_clamp,
389 		ireq->wscale_ok,
390 		&rcv_wscale,
391 		dst_metric(dst, RTAX_INITRWND));
392 	ireq->rcv_wscale = rcv_wscale;
393 }
394 EXPORT_SYMBOL(tcp_openreq_init_rwin);
395 
tcp_ecn_openreq_child(struct tcp_sock * tp,const struct request_sock * req)396 static void tcp_ecn_openreq_child(struct tcp_sock *tp,
397 				  const struct request_sock *req)
398 {
399 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
400 }
401 
402 /* This is not only more efficient than what we used to do, it eliminates
403  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
404  *
405  * Actually, we could lots of memory writes here. tp of listening
406  * socket contains all necessary default parameters.
407  */
tcp_create_openreq_child(struct sock * sk,struct request_sock * req,struct sk_buff * skb)408 struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
409 {
410 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
411 
412 	if (newsk != NULL) {
413 		const struct inet_request_sock *ireq = inet_rsk(req);
414 		struct tcp_request_sock *treq = tcp_rsk(req);
415 		struct inet_connection_sock *newicsk = inet_csk(newsk);
416 		struct tcp_sock *newtp = tcp_sk(newsk);
417 
418 		/* Now setup tcp_sock */
419 		newtp->pred_flags = 0;
420 
421 		newtp->rcv_wup = newtp->copied_seq =
422 		newtp->rcv_nxt = treq->rcv_isn + 1;
423 
424 		newtp->snd_sml = newtp->snd_una =
425 		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
426 
427 		tcp_prequeue_init(newtp);
428 		INIT_LIST_HEAD(&newtp->tsq_node);
429 
430 		tcp_init_wl(newtp, treq->rcv_isn);
431 
432 		newtp->srtt_us = 0;
433 		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
434 		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
435 		newicsk->icsk_ack.lrcvtime = tcp_time_stamp;
436 
437 		newtp->packets_out = 0;
438 		newtp->retrans_out = 0;
439 		newtp->sacked_out = 0;
440 		newtp->fackets_out = 0;
441 		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
442 		tcp_enable_early_retrans(newtp);
443 		newtp->tlp_high_seq = 0;
444 		newtp->lsndtime = treq->snt_synack;
445 		newtp->total_retrans = req->num_retrans;
446 
447 		/* So many TCP implementations out there (incorrectly) count the
448 		 * initial SYN frame in their delayed-ACK and congestion control
449 		 * algorithms that we must have the following bandaid to talk
450 		 * efficiently to them.  -DaveM
451 		 */
452 		newtp->snd_cwnd = TCP_INIT_CWND;
453 		newtp->snd_cwnd_cnt = 0;
454 
455 		if (!newicsk->icsk_ca_setsockopt ||
456 		    !try_module_get(newicsk->icsk_ca_ops->owner))
457 			tcp_assign_congestion_control(newsk);
458 
459 		tcp_set_ca_state(newsk, TCP_CA_Open);
460 		tcp_init_xmit_timers(newsk);
461 		__skb_queue_head_init(&newtp->out_of_order_queue);
462 		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
463 
464 		newtp->rx_opt.saw_tstamp = 0;
465 
466 		newtp->rx_opt.dsack = 0;
467 		newtp->rx_opt.num_sacks = 0;
468 
469 		newtp->urg_data = 0;
470 
471 		if (sock_flag(newsk, SOCK_KEEPOPEN))
472 			inet_csk_reset_keepalive_timer(newsk,
473 						       keepalive_time_when(newtp));
474 
475 		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
476 		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
477 			if (sysctl_tcp_fack)
478 				tcp_enable_fack(newtp);
479 		}
480 		newtp->window_clamp = req->window_clamp;
481 		newtp->rcv_ssthresh = req->rcv_wnd;
482 		newtp->rcv_wnd = req->rcv_wnd;
483 		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
484 		if (newtp->rx_opt.wscale_ok) {
485 			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
486 			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
487 		} else {
488 			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
489 			newtp->window_clamp = min(newtp->window_clamp, 65535U);
490 		}
491 		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
492 				  newtp->rx_opt.snd_wscale);
493 		newtp->max_window = newtp->snd_wnd;
494 
495 		if (newtp->rx_opt.tstamp_ok) {
496 			newtp->rx_opt.ts_recent = req->ts_recent;
497 			newtp->rx_opt.ts_recent_stamp = get_seconds();
498 			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
499 		} else {
500 			newtp->rx_opt.ts_recent_stamp = 0;
501 			newtp->tcp_header_len = sizeof(struct tcphdr);
502 		}
503 		newtp->tsoffset = 0;
504 #ifdef CONFIG_TCP_MD5SIG
505 		newtp->md5sig_info = NULL;	/*XXX*/
506 		if (newtp->af_specific->md5_lookup(sk, newsk))
507 			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
508 #endif
509 		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
510 			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
511 		newtp->rx_opt.mss_clamp = req->mss;
512 		tcp_ecn_openreq_child(newtp, req);
513 		newtp->fastopen_rsk = NULL;
514 		newtp->syn_data_acked = 0;
515 
516 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
517 	}
518 	return newsk;
519 }
520 EXPORT_SYMBOL(tcp_create_openreq_child);
521 
522 /*
523  * Process an incoming packet for SYN_RECV sockets represented as a
524  * request_sock. Normally sk is the listener socket but for TFO it
525  * points to the child socket.
526  *
527  * XXX (TFO) - The current impl contains a special check for ack
528  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
529  *
530  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
531  */
532 
tcp_check_req(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct request_sock ** prev,bool fastopen)533 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
534 			   struct request_sock *req,
535 			   struct request_sock **prev,
536 			   bool fastopen)
537 {
538 	struct tcp_options_received tmp_opt;
539 	struct sock *child;
540 	const struct tcphdr *th = tcp_hdr(skb);
541 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
542 	bool paws_reject = false;
543 
544 	BUG_ON(fastopen == (sk->sk_state == TCP_LISTEN));
545 
546 	tmp_opt.saw_tstamp = 0;
547 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
548 		tcp_parse_options(skb, &tmp_opt, 0, NULL);
549 
550 		if (tmp_opt.saw_tstamp) {
551 			tmp_opt.ts_recent = req->ts_recent;
552 			/* We do not store true stamp, but it is not required,
553 			 * it can be estimated (approximately)
554 			 * from another data.
555 			 */
556 			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
557 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
558 		}
559 	}
560 
561 	/* Check for pure retransmitted SYN. */
562 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
563 	    flg == TCP_FLAG_SYN &&
564 	    !paws_reject) {
565 		/*
566 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
567 		 * this case on figure 6 and figure 8, but formal
568 		 * protocol description says NOTHING.
569 		 * To be more exact, it says that we should send ACK,
570 		 * because this segment (at least, if it has no data)
571 		 * is out of window.
572 		 *
573 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
574 		 *  describe SYN-RECV state. All the description
575 		 *  is wrong, we cannot believe to it and should
576 		 *  rely only on common sense and implementation
577 		 *  experience.
578 		 *
579 		 * Enforce "SYN-ACK" according to figure 8, figure 6
580 		 * of RFC793, fixed by RFC1122.
581 		 *
582 		 * Note that even if there is new data in the SYN packet
583 		 * they will be thrown away too.
584 		 *
585 		 * Reset timer after retransmitting SYNACK, similar to
586 		 * the idea of fast retransmit in recovery.
587 		 */
588 		if (!inet_rtx_syn_ack(sk, req))
589 			req->expires = min(TCP_TIMEOUT_INIT << req->num_timeout,
590 					   TCP_RTO_MAX) + jiffies;
591 		return NULL;
592 	}
593 
594 	/* Further reproduces section "SEGMENT ARRIVES"
595 	   for state SYN-RECEIVED of RFC793.
596 	   It is broken, however, it does not work only
597 	   when SYNs are crossed.
598 
599 	   You would think that SYN crossing is impossible here, since
600 	   we should have a SYN_SENT socket (from connect()) on our end,
601 	   but this is not true if the crossed SYNs were sent to both
602 	   ends by a malicious third party.  We must defend against this,
603 	   and to do that we first verify the ACK (as per RFC793, page
604 	   36) and reset if it is invalid.  Is this a true full defense?
605 	   To convince ourselves, let us consider a way in which the ACK
606 	   test can still pass in this 'malicious crossed SYNs' case.
607 	   Malicious sender sends identical SYNs (and thus identical sequence
608 	   numbers) to both A and B:
609 
610 		A: gets SYN, seq=7
611 		B: gets SYN, seq=7
612 
613 	   By our good fortune, both A and B select the same initial
614 	   send sequence number of seven :-)
615 
616 		A: sends SYN|ACK, seq=7, ack_seq=8
617 		B: sends SYN|ACK, seq=7, ack_seq=8
618 
619 	   So we are now A eating this SYN|ACK, ACK test passes.  So
620 	   does sequence test, SYN is truncated, and thus we consider
621 	   it a bare ACK.
622 
623 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
624 	   bare ACK.  Otherwise, we create an established connection.  Both
625 	   ends (listening sockets) accept the new incoming connection and try
626 	   to talk to each other. 8-)
627 
628 	   Note: This case is both harmless, and rare.  Possibility is about the
629 	   same as us discovering intelligent life on another plant tomorrow.
630 
631 	   But generally, we should (RFC lies!) to accept ACK
632 	   from SYNACK both here and in tcp_rcv_state_process().
633 	   tcp_rcv_state_process() does not, hence, we do not too.
634 
635 	   Note that the case is absolutely generic:
636 	   we cannot optimize anything here without
637 	   violating protocol. All the checks must be made
638 	   before attempt to create socket.
639 	 */
640 
641 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
642 	 *                  and the incoming segment acknowledges something not yet
643 	 *                  sent (the segment carries an unacceptable ACK) ...
644 	 *                  a reset is sent."
645 	 *
646 	 * Invalid ACK: reset will be sent by listening socket.
647 	 * Note that the ACK validity check for a Fast Open socket is done
648 	 * elsewhere and is checked directly against the child socket rather
649 	 * than req because user data may have been sent out.
650 	 */
651 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
652 	    (TCP_SKB_CB(skb)->ack_seq !=
653 	     tcp_rsk(req)->snt_isn + 1))
654 		return sk;
655 
656 	/* Also, it would be not so bad idea to check rcv_tsecr, which
657 	 * is essentially ACK extension and too early or too late values
658 	 * should cause reset in unsynchronized states.
659 	 */
660 
661 	/* RFC793: "first check sequence number". */
662 
663 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
664 					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rcv_wnd)) {
665 		/* Out of window: send ACK and drop. */
666 		if (!(flg & TCP_FLAG_RST))
667 			req->rsk_ops->send_ack(sk, skb, req);
668 		if (paws_reject)
669 			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
670 		return NULL;
671 	}
672 
673 	/* In sequence, PAWS is OK. */
674 
675 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
676 		req->ts_recent = tmp_opt.rcv_tsval;
677 
678 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
679 		/* Truncate SYN, it is out of window starting
680 		   at tcp_rsk(req)->rcv_isn + 1. */
681 		flg &= ~TCP_FLAG_SYN;
682 	}
683 
684 	/* RFC793: "second check the RST bit" and
685 	 *	   "fourth, check the SYN bit"
686 	 */
687 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
688 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
689 		goto embryonic_reset;
690 	}
691 
692 	/* ACK sequence verified above, just make sure ACK is
693 	 * set.  If ACK not set, just silently drop the packet.
694 	 *
695 	 * XXX (TFO) - if we ever allow "data after SYN", the
696 	 * following check needs to be removed.
697 	 */
698 	if (!(flg & TCP_FLAG_ACK))
699 		return NULL;
700 
701 	/* For Fast Open no more processing is needed (sk is the
702 	 * child socket).
703 	 */
704 	if (fastopen)
705 		return sk;
706 
707 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
708 	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
709 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
710 		inet_rsk(req)->acked = 1;
711 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
712 		return NULL;
713 	}
714 
715 	/* OK, ACK is valid, create big socket and
716 	 * feed this segment to it. It will repeat all
717 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
718 	 * ESTABLISHED STATE. If it will be dropped after
719 	 * socket is created, wait for troubles.
720 	 */
721 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
722 	if (child == NULL)
723 		goto listen_overflow;
724 
725 	inet_csk_reqsk_queue_unlink(sk, req, prev);
726 	inet_csk_reqsk_queue_removed(sk, req);
727 
728 	inet_csk_reqsk_queue_add(sk, req, child);
729 	return child;
730 
731 listen_overflow:
732 	if (!sysctl_tcp_abort_on_overflow) {
733 		inet_rsk(req)->acked = 1;
734 		return NULL;
735 	}
736 
737 embryonic_reset:
738 	if (!(flg & TCP_FLAG_RST)) {
739 		/* Received a bad SYN pkt - for TFO We try not to reset
740 		 * the local connection unless it's really necessary to
741 		 * avoid becoming vulnerable to outside attack aiming at
742 		 * resetting legit local connections.
743 		 */
744 		req->rsk_ops->send_reset(sk, skb);
745 	} else if (fastopen) { /* received a valid RST pkt */
746 		reqsk_fastopen_remove(sk, req, true);
747 		tcp_reset(sk);
748 	}
749 	if (!fastopen) {
750 		inet_csk_reqsk_queue_drop(sk, req, prev);
751 		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
752 	}
753 	return NULL;
754 }
755 EXPORT_SYMBOL(tcp_check_req);
756 
757 /*
758  * Queue segment on the new socket if the new socket is active,
759  * otherwise we just shortcircuit this and continue with
760  * the new socket.
761  *
762  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
763  * when entering. But other states are possible due to a race condition
764  * where after __inet_lookup_established() fails but before the listener
765  * locked is obtained, other packets cause the same connection to
766  * be created.
767  */
768 
tcp_child_process(struct sock * parent,struct sock * child,struct sk_buff * skb)769 int tcp_child_process(struct sock *parent, struct sock *child,
770 		      struct sk_buff *skb)
771 {
772 	int ret = 0;
773 	int state = child->sk_state;
774 
775 	if (!sock_owned_by_user(child)) {
776 		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
777 					    skb->len);
778 		/* Wakeup parent, send SIGIO */
779 		if (state == TCP_SYN_RECV && child->sk_state != state)
780 			parent->sk_data_ready(parent);
781 	} else {
782 		/* Alas, it is possible again, because we do lookup
783 		 * in main socket hash table and lock on listening
784 		 * socket does not protect us more.
785 		 */
786 		__sk_add_backlog(child, skb);
787 	}
788 
789 	bh_unlock_sock(child);
790 	sock_put(child);
791 	return ret;
792 }
793 EXPORT_SYMBOL(tcp_child_process);
794