1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271 #include <linux/uid_stat.h>
272
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283
284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285
286 int sysctl_tcp_min_tso_segs __read_mostly = 2;
287
288 int sysctl_tcp_autocorking __read_mostly = 1;
289
290 struct percpu_counter tcp_orphan_count;
291 EXPORT_SYMBOL_GPL(tcp_orphan_count);
292
293 long sysctl_tcp_mem[3] __read_mostly;
294 int sysctl_tcp_wmem[3] __read_mostly;
295 int sysctl_tcp_rmem[3] __read_mostly;
296
297 EXPORT_SYMBOL(sysctl_tcp_mem);
298 EXPORT_SYMBOL(sysctl_tcp_rmem);
299 EXPORT_SYMBOL(sysctl_tcp_wmem);
300
301 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
302 EXPORT_SYMBOL(tcp_memory_allocated);
303
304 /*
305 * Current number of TCP sockets.
306 */
307 struct percpu_counter tcp_sockets_allocated;
308 EXPORT_SYMBOL(tcp_sockets_allocated);
309
310 /*
311 * TCP splice context
312 */
313 struct tcp_splice_state {
314 struct pipe_inode_info *pipe;
315 size_t len;
316 unsigned int flags;
317 };
318
319 /*
320 * Pressure flag: try to collapse.
321 * Technical note: it is used by multiple contexts non atomically.
322 * All the __sk_mem_schedule() is of this nature: accounting
323 * is strict, actions are advisory and have some latency.
324 */
325 int tcp_memory_pressure __read_mostly;
326 EXPORT_SYMBOL(tcp_memory_pressure);
327
tcp_enter_memory_pressure(struct sock * sk)328 void tcp_enter_memory_pressure(struct sock *sk)
329 {
330 if (!tcp_memory_pressure) {
331 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
332 tcp_memory_pressure = 1;
333 }
334 }
335 EXPORT_SYMBOL(tcp_enter_memory_pressure);
336
337 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)338 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
339 {
340 u8 res = 0;
341
342 if (seconds > 0) {
343 int period = timeout;
344
345 res = 1;
346 while (seconds > period && res < 255) {
347 res++;
348 timeout <<= 1;
349 if (timeout > rto_max)
350 timeout = rto_max;
351 period += timeout;
352 }
353 }
354 return res;
355 }
356
357 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)358 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
359 {
360 int period = 0;
361
362 if (retrans > 0) {
363 period = timeout;
364 while (--retrans) {
365 timeout <<= 1;
366 if (timeout > rto_max)
367 timeout = rto_max;
368 period += timeout;
369 }
370 }
371 return period;
372 }
373
374 /* Address-family independent initialization for a tcp_sock.
375 *
376 * NOTE: A lot of things set to zero explicitly by call to
377 * sk_alloc() so need not be done here.
378 */
tcp_init_sock(struct sock * sk)379 void tcp_init_sock(struct sock *sk)
380 {
381 struct inet_connection_sock *icsk = inet_csk(sk);
382 struct tcp_sock *tp = tcp_sk(sk);
383
384 __skb_queue_head_init(&tp->out_of_order_queue);
385 tcp_init_xmit_timers(sk);
386 tcp_prequeue_init(tp);
387 INIT_LIST_HEAD(&tp->tsq_node);
388
389 icsk->icsk_rto = TCP_TIMEOUT_INIT;
390 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
391
392 /* So many TCP implementations out there (incorrectly) count the
393 * initial SYN frame in their delayed-ACK and congestion control
394 * algorithms that we must have the following bandaid to talk
395 * efficiently to them. -DaveM
396 */
397 tp->snd_cwnd = TCP_INIT_CWND;
398
399 /* See draft-stevens-tcpca-spec-01 for discussion of the
400 * initialization of these values.
401 */
402 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
403 tp->snd_cwnd_clamp = ~0;
404 tp->mss_cache = TCP_MSS_DEFAULT;
405
406 tp->reordering = sysctl_tcp_reordering;
407 tcp_enable_early_retrans(tp);
408 tcp_assign_congestion_control(sk);
409
410 tp->tsoffset = 0;
411
412 sk->sk_state = TCP_CLOSE;
413
414 sk->sk_write_space = sk_stream_write_space;
415 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
416
417 icsk->icsk_sync_mss = tcp_sync_mss;
418
419 sk->sk_sndbuf = sysctl_tcp_wmem[1];
420 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
421
422 local_bh_disable();
423 sock_update_memcg(sk);
424 sk_sockets_allocated_inc(sk);
425 local_bh_enable();
426 }
427 EXPORT_SYMBOL(tcp_init_sock);
428
tcp_tx_timestamp(struct sock * sk,struct sk_buff * skb)429 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
430 {
431 if (sk->sk_tsflags) {
432 struct skb_shared_info *shinfo = skb_shinfo(skb);
433
434 sock_tx_timestamp(sk, &shinfo->tx_flags);
435 if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
436 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
437 }
438 }
439
440 /*
441 * Wait for a TCP event.
442 *
443 * Note that we don't need to lock the socket, as the upper poll layers
444 * take care of normal races (between the test and the event) and we don't
445 * go look at any of the socket buffers directly.
446 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)447 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
448 {
449 unsigned int mask;
450 struct sock *sk = sock->sk;
451 const struct tcp_sock *tp = tcp_sk(sk);
452
453 sock_rps_record_flow(sk);
454
455 sock_poll_wait(file, sk_sleep(sk), wait);
456 if (sk->sk_state == TCP_LISTEN)
457 return inet_csk_listen_poll(sk);
458
459 /* Socket is not locked. We are protected from async events
460 * by poll logic and correct handling of state changes
461 * made by other threads is impossible in any case.
462 */
463
464 mask = 0;
465
466 /*
467 * POLLHUP is certainly not done right. But poll() doesn't
468 * have a notion of HUP in just one direction, and for a
469 * socket the read side is more interesting.
470 *
471 * Some poll() documentation says that POLLHUP is incompatible
472 * with the POLLOUT/POLLWR flags, so somebody should check this
473 * all. But careful, it tends to be safer to return too many
474 * bits than too few, and you can easily break real applications
475 * if you don't tell them that something has hung up!
476 *
477 * Check-me.
478 *
479 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
480 * our fs/select.c). It means that after we received EOF,
481 * poll always returns immediately, making impossible poll() on write()
482 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
483 * if and only if shutdown has been made in both directions.
484 * Actually, it is interesting to look how Solaris and DUX
485 * solve this dilemma. I would prefer, if POLLHUP were maskable,
486 * then we could set it on SND_SHUTDOWN. BTW examples given
487 * in Stevens' books assume exactly this behaviour, it explains
488 * why POLLHUP is incompatible with POLLOUT. --ANK
489 *
490 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
491 * blocking on fresh not-connected or disconnected socket. --ANK
492 */
493 if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
494 mask |= POLLHUP;
495 if (sk->sk_shutdown & RCV_SHUTDOWN)
496 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
497
498 /* Connected or passive Fast Open socket? */
499 if (sk->sk_state != TCP_SYN_SENT &&
500 (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
501 int target = sock_rcvlowat(sk, 0, INT_MAX);
502
503 if (tp->urg_seq == tp->copied_seq &&
504 !sock_flag(sk, SOCK_URGINLINE) &&
505 tp->urg_data)
506 target++;
507
508 /* Potential race condition. If read of tp below will
509 * escape above sk->sk_state, we can be illegally awaken
510 * in SYN_* states. */
511 if (tp->rcv_nxt - tp->copied_seq >= target)
512 mask |= POLLIN | POLLRDNORM;
513
514 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
515 if (sk_stream_is_writeable(sk)) {
516 mask |= POLLOUT | POLLWRNORM;
517 } else { /* send SIGIO later */
518 set_bit(SOCK_ASYNC_NOSPACE,
519 &sk->sk_socket->flags);
520 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
521
522 /* Race breaker. If space is freed after
523 * wspace test but before the flags are set,
524 * IO signal will be lost.
525 */
526 if (sk_stream_is_writeable(sk))
527 mask |= POLLOUT | POLLWRNORM;
528 }
529 } else
530 mask |= POLLOUT | POLLWRNORM;
531
532 if (tp->urg_data & TCP_URG_VALID)
533 mask |= POLLPRI;
534 }
535 /* This barrier is coupled with smp_wmb() in tcp_reset() */
536 smp_rmb();
537 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
538 mask |= POLLERR;
539
540 return mask;
541 }
542 EXPORT_SYMBOL(tcp_poll);
543
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)544 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
545 {
546 struct tcp_sock *tp = tcp_sk(sk);
547 int answ;
548 bool slow;
549
550 switch (cmd) {
551 case SIOCINQ:
552 if (sk->sk_state == TCP_LISTEN)
553 return -EINVAL;
554
555 slow = lock_sock_fast(sk);
556 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
557 answ = 0;
558 else if (sock_flag(sk, SOCK_URGINLINE) ||
559 !tp->urg_data ||
560 before(tp->urg_seq, tp->copied_seq) ||
561 !before(tp->urg_seq, tp->rcv_nxt)) {
562
563 answ = tp->rcv_nxt - tp->copied_seq;
564
565 /* Subtract 1, if FIN was received */
566 if (answ && sock_flag(sk, SOCK_DONE))
567 answ--;
568 } else
569 answ = tp->urg_seq - tp->copied_seq;
570 unlock_sock_fast(sk, slow);
571 break;
572 case SIOCATMARK:
573 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
574 break;
575 case SIOCOUTQ:
576 if (sk->sk_state == TCP_LISTEN)
577 return -EINVAL;
578
579 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
580 answ = 0;
581 else
582 answ = tp->write_seq - tp->snd_una;
583 break;
584 case SIOCOUTQNSD:
585 if (sk->sk_state == TCP_LISTEN)
586 return -EINVAL;
587
588 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
589 answ = 0;
590 else
591 answ = tp->write_seq - tp->snd_nxt;
592 break;
593 default:
594 return -ENOIOCTLCMD;
595 }
596
597 return put_user(answ, (int __user *)arg);
598 }
599 EXPORT_SYMBOL(tcp_ioctl);
600
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)601 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
602 {
603 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
604 tp->pushed_seq = tp->write_seq;
605 }
606
forced_push(const struct tcp_sock * tp)607 static inline bool forced_push(const struct tcp_sock *tp)
608 {
609 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
610 }
611
skb_entail(struct sock * sk,struct sk_buff * skb)612 static void skb_entail(struct sock *sk, struct sk_buff *skb)
613 {
614 struct tcp_sock *tp = tcp_sk(sk);
615 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
616
617 skb->csum = 0;
618 tcb->seq = tcb->end_seq = tp->write_seq;
619 tcb->tcp_flags = TCPHDR_ACK;
620 tcb->sacked = 0;
621 __skb_header_release(skb);
622 tcp_add_write_queue_tail(sk, skb);
623 sk->sk_wmem_queued += skb->truesize;
624 sk_mem_charge(sk, skb->truesize);
625 if (tp->nonagle & TCP_NAGLE_PUSH)
626 tp->nonagle &= ~TCP_NAGLE_PUSH;
627 }
628
tcp_mark_urg(struct tcp_sock * tp,int flags)629 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
630 {
631 if (flags & MSG_OOB)
632 tp->snd_up = tp->write_seq;
633 }
634
635 /* If a not yet filled skb is pushed, do not send it if
636 * we have data packets in Qdisc or NIC queues :
637 * Because TX completion will happen shortly, it gives a chance
638 * to coalesce future sendmsg() payload into this skb, without
639 * need for a timer, and with no latency trade off.
640 * As packets containing data payload have a bigger truesize
641 * than pure acks (dataless) packets, the last checks prevent
642 * autocorking if we only have an ACK in Qdisc/NIC queues,
643 * or if TX completion was delayed after we processed ACK packet.
644 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)645 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
646 int size_goal)
647 {
648 return skb->len < size_goal &&
649 sysctl_tcp_autocorking &&
650 skb != tcp_write_queue_head(sk) &&
651 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
652 }
653
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)654 static void tcp_push(struct sock *sk, int flags, int mss_now,
655 int nonagle, int size_goal)
656 {
657 struct tcp_sock *tp = tcp_sk(sk);
658 struct sk_buff *skb;
659
660 if (!tcp_send_head(sk))
661 return;
662
663 skb = tcp_write_queue_tail(sk);
664 if (!(flags & MSG_MORE) || forced_push(tp))
665 tcp_mark_push(tp, skb);
666
667 tcp_mark_urg(tp, flags);
668
669 if (tcp_should_autocork(sk, skb, size_goal)) {
670
671 /* avoid atomic op if TSQ_THROTTLED bit is already set */
672 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
673 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
674 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
675 }
676 /* It is possible TX completion already happened
677 * before we set TSQ_THROTTLED.
678 */
679 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
680 return;
681 }
682
683 if (flags & MSG_MORE)
684 nonagle = TCP_NAGLE_CORK;
685
686 __tcp_push_pending_frames(sk, mss_now, nonagle);
687 }
688
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)689 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
690 unsigned int offset, size_t len)
691 {
692 struct tcp_splice_state *tss = rd_desc->arg.data;
693 int ret;
694
695 ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
696 tss->flags);
697 if (ret > 0)
698 rd_desc->count -= ret;
699 return ret;
700 }
701
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)702 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
703 {
704 /* Store TCP splice context information in read_descriptor_t. */
705 read_descriptor_t rd_desc = {
706 .arg.data = tss,
707 .count = tss->len,
708 };
709
710 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
711 }
712
713 /**
714 * tcp_splice_read - splice data from TCP socket to a pipe
715 * @sock: socket to splice from
716 * @ppos: position (not valid)
717 * @pipe: pipe to splice to
718 * @len: number of bytes to splice
719 * @flags: splice modifier flags
720 *
721 * Description:
722 * Will read pages from given socket and fill them into a pipe.
723 *
724 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)725 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
726 struct pipe_inode_info *pipe, size_t len,
727 unsigned int flags)
728 {
729 struct sock *sk = sock->sk;
730 struct tcp_splice_state tss = {
731 .pipe = pipe,
732 .len = len,
733 .flags = flags,
734 };
735 long timeo;
736 ssize_t spliced;
737 int ret;
738
739 sock_rps_record_flow(sk);
740 /*
741 * We can't seek on a socket input
742 */
743 if (unlikely(*ppos))
744 return -ESPIPE;
745
746 ret = spliced = 0;
747
748 lock_sock(sk);
749
750 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
751 while (tss.len) {
752 ret = __tcp_splice_read(sk, &tss);
753 if (ret < 0)
754 break;
755 else if (!ret) {
756 if (spliced)
757 break;
758 if (sock_flag(sk, SOCK_DONE))
759 break;
760 if (sk->sk_err) {
761 ret = sock_error(sk);
762 break;
763 }
764 if (sk->sk_shutdown & RCV_SHUTDOWN)
765 break;
766 if (sk->sk_state == TCP_CLOSE) {
767 /*
768 * This occurs when user tries to read
769 * from never connected socket.
770 */
771 if (!sock_flag(sk, SOCK_DONE))
772 ret = -ENOTCONN;
773 break;
774 }
775 if (!timeo) {
776 ret = -EAGAIN;
777 break;
778 }
779 /* if __tcp_splice_read() got nothing while we have
780 * an skb in receive queue, we do not want to loop.
781 * This might happen with URG data.
782 */
783 if (!skb_queue_empty(&sk->sk_receive_queue))
784 break;
785 sk_wait_data(sk, &timeo);
786 if (signal_pending(current)) {
787 ret = sock_intr_errno(timeo);
788 break;
789 }
790 continue;
791 }
792 tss.len -= ret;
793 spliced += ret;
794
795 if (!timeo)
796 break;
797 release_sock(sk);
798 lock_sock(sk);
799
800 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
801 (sk->sk_shutdown & RCV_SHUTDOWN) ||
802 signal_pending(current))
803 break;
804 }
805
806 release_sock(sk);
807
808 if (spliced)
809 return spliced;
810
811 return ret;
812 }
813 EXPORT_SYMBOL(tcp_splice_read);
814
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp)815 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
816 {
817 struct sk_buff *skb;
818
819 /* The TCP header must be at least 32-bit aligned. */
820 size = ALIGN(size, 4);
821
822 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
823 if (skb) {
824 if (sk_wmem_schedule(sk, skb->truesize)) {
825 skb_reserve(skb, sk->sk_prot->max_header);
826 /*
827 * Make sure that we have exactly size bytes
828 * available to the caller, no more, no less.
829 */
830 skb->reserved_tailroom = skb->end - skb->tail - size;
831 return skb;
832 }
833 __kfree_skb(skb);
834 } else {
835 sk->sk_prot->enter_memory_pressure(sk);
836 sk_stream_moderate_sndbuf(sk);
837 }
838 return NULL;
839 }
840
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)841 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
842 int large_allowed)
843 {
844 struct tcp_sock *tp = tcp_sk(sk);
845 u32 xmit_size_goal, old_size_goal;
846
847 xmit_size_goal = mss_now;
848
849 if (large_allowed && sk_can_gso(sk)) {
850 u32 gso_size, hlen;
851
852 /* Maybe we should/could use sk->sk_prot->max_header here ? */
853 hlen = inet_csk(sk)->icsk_af_ops->net_header_len +
854 inet_csk(sk)->icsk_ext_hdr_len +
855 tp->tcp_header_len;
856
857 /* Goal is to send at least one packet per ms,
858 * not one big TSO packet every 100 ms.
859 * This preserves ACK clocking and is consistent
860 * with tcp_tso_should_defer() heuristic.
861 */
862 gso_size = sk->sk_pacing_rate / (2 * MSEC_PER_SEC);
863 gso_size = max_t(u32, gso_size,
864 sysctl_tcp_min_tso_segs * mss_now);
865
866 xmit_size_goal = min_t(u32, gso_size,
867 sk->sk_gso_max_size - 1 - hlen);
868
869 xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
870
871 /* We try hard to avoid divides here */
872 old_size_goal = tp->xmit_size_goal_segs * mss_now;
873
874 if (likely(old_size_goal <= xmit_size_goal &&
875 old_size_goal + mss_now > xmit_size_goal)) {
876 xmit_size_goal = old_size_goal;
877 } else {
878 tp->xmit_size_goal_segs =
879 min_t(u16, xmit_size_goal / mss_now,
880 sk->sk_gso_max_segs);
881 xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
882 }
883 }
884
885 return max(xmit_size_goal, mss_now);
886 }
887
tcp_send_mss(struct sock * sk,int * size_goal,int flags)888 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
889 {
890 int mss_now;
891
892 mss_now = tcp_current_mss(sk);
893 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
894
895 return mss_now;
896 }
897
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)898 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
899 size_t size, int flags)
900 {
901 struct tcp_sock *tp = tcp_sk(sk);
902 int mss_now, size_goal;
903 int err;
904 ssize_t copied;
905 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
906
907 /* Wait for a connection to finish. One exception is TCP Fast Open
908 * (passive side) where data is allowed to be sent before a connection
909 * is fully established.
910 */
911 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
912 !tcp_passive_fastopen(sk)) {
913 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
914 goto out_err;
915 }
916
917 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
918
919 mss_now = tcp_send_mss(sk, &size_goal, flags);
920 copied = 0;
921
922 err = -EPIPE;
923 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
924 goto out_err;
925
926 while (size > 0) {
927 struct sk_buff *skb = tcp_write_queue_tail(sk);
928 int copy, i;
929 bool can_coalesce;
930
931 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
932 new_segment:
933 if (!sk_stream_memory_free(sk))
934 goto wait_for_sndbuf;
935
936 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
937 if (!skb)
938 goto wait_for_memory;
939
940 skb_entail(sk, skb);
941 copy = size_goal;
942 }
943
944 if (copy > size)
945 copy = size;
946
947 i = skb_shinfo(skb)->nr_frags;
948 can_coalesce = skb_can_coalesce(skb, i, page, offset);
949 if (!can_coalesce && i >= sysctl_max_skb_frags) {
950 tcp_mark_push(tp, skb);
951 goto new_segment;
952 }
953 if (!sk_wmem_schedule(sk, copy))
954 goto wait_for_memory;
955
956 if (can_coalesce) {
957 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
958 } else {
959 get_page(page);
960 skb_fill_page_desc(skb, i, page, offset, copy);
961 }
962 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
963
964 skb->len += copy;
965 skb->data_len += copy;
966 skb->truesize += copy;
967 sk->sk_wmem_queued += copy;
968 sk_mem_charge(sk, copy);
969 skb->ip_summed = CHECKSUM_PARTIAL;
970 tp->write_seq += copy;
971 TCP_SKB_CB(skb)->end_seq += copy;
972 tcp_skb_pcount_set(skb, 0);
973
974 if (!copied)
975 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
976
977 copied += copy;
978 offset += copy;
979 if (!(size -= copy)) {
980 tcp_tx_timestamp(sk, skb);
981 goto out;
982 }
983
984 if (skb->len < size_goal || (flags & MSG_OOB))
985 continue;
986
987 if (forced_push(tp)) {
988 tcp_mark_push(tp, skb);
989 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
990 } else if (skb == tcp_send_head(sk))
991 tcp_push_one(sk, mss_now);
992 continue;
993
994 wait_for_sndbuf:
995 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
996 wait_for_memory:
997 tcp_push(sk, flags & ~MSG_MORE, mss_now,
998 TCP_NAGLE_PUSH, size_goal);
999
1000 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1001 goto do_error;
1002
1003 mss_now = tcp_send_mss(sk, &size_goal, flags);
1004 }
1005
1006 out:
1007 if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
1008 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1009 return copied;
1010
1011 do_error:
1012 if (copied)
1013 goto out;
1014 out_err:
1015 return sk_stream_error(sk, flags, err);
1016 }
1017
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1018 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1019 size_t size, int flags)
1020 {
1021 ssize_t res;
1022
1023 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1024 !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
1025 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1026 flags);
1027
1028 lock_sock(sk);
1029 res = do_tcp_sendpages(sk, page, offset, size, flags);
1030 release_sock(sk);
1031 return res;
1032 }
1033 EXPORT_SYMBOL(tcp_sendpage);
1034
select_size(const struct sock * sk,bool sg)1035 static inline int select_size(const struct sock *sk, bool sg)
1036 {
1037 const struct tcp_sock *tp = tcp_sk(sk);
1038 int tmp = tp->mss_cache;
1039
1040 if (sg) {
1041 if (sk_can_gso(sk)) {
1042 /* Small frames wont use a full page:
1043 * Payload will immediately follow tcp header.
1044 */
1045 tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1046 } else {
1047 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1048
1049 if (tmp >= pgbreak &&
1050 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1051 tmp = pgbreak;
1052 }
1053 }
1054
1055 return tmp;
1056 }
1057
tcp_free_fastopen_req(struct tcp_sock * tp)1058 void tcp_free_fastopen_req(struct tcp_sock *tp)
1059 {
1060 if (tp->fastopen_req != NULL) {
1061 kfree(tp->fastopen_req);
1062 tp->fastopen_req = NULL;
1063 }
1064 }
1065
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size)1066 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1067 int *copied, size_t size)
1068 {
1069 struct tcp_sock *tp = tcp_sk(sk);
1070 struct sockaddr *uaddr = msg->msg_name;
1071 int err, flags;
1072
1073 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1074 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1075 uaddr->sa_family == AF_UNSPEC))
1076 return -EOPNOTSUPP;
1077 if (tp->fastopen_req != NULL)
1078 return -EALREADY; /* Another Fast Open is in progress */
1079
1080 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1081 sk->sk_allocation);
1082 if (unlikely(tp->fastopen_req == NULL))
1083 return -ENOBUFS;
1084 tp->fastopen_req->data = msg;
1085 tp->fastopen_req->size = size;
1086
1087 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1088 err = __inet_stream_connect(sk->sk_socket, uaddr,
1089 msg->msg_namelen, flags);
1090 *copied = tp->fastopen_req->copied;
1091 tcp_free_fastopen_req(tp);
1092 return err;
1093 }
1094
tcp_sendmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t size)1095 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1096 size_t size)
1097 {
1098 struct iovec *iov;
1099 struct tcp_sock *tp = tcp_sk(sk);
1100 struct sk_buff *skb;
1101 int iovlen, flags, err, copied = 0;
1102 int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1103 bool sg;
1104 long timeo;
1105
1106 lock_sock(sk);
1107
1108 flags = msg->msg_flags;
1109 if (flags & MSG_FASTOPEN) {
1110 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1111 if (err == -EINPROGRESS && copied_syn > 0)
1112 goto out;
1113 else if (err)
1114 goto out_err;
1115 offset = copied_syn;
1116 }
1117
1118 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1119
1120 /* Wait for a connection to finish. One exception is TCP Fast Open
1121 * (passive side) where data is allowed to be sent before a connection
1122 * is fully established.
1123 */
1124 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1125 !tcp_passive_fastopen(sk)) {
1126 if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1127 goto do_error;
1128 }
1129
1130 if (unlikely(tp->repair)) {
1131 if (tp->repair_queue == TCP_RECV_QUEUE) {
1132 copied = tcp_send_rcvq(sk, msg, size);
1133 goto out_nopush;
1134 }
1135
1136 err = -EINVAL;
1137 if (tp->repair_queue == TCP_NO_QUEUE)
1138 goto out_err;
1139
1140 /* 'common' sending to sendq */
1141 }
1142
1143 /* This should be in poll */
1144 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1145
1146 mss_now = tcp_send_mss(sk, &size_goal, flags);
1147
1148 /* Ok commence sending. */
1149 iovlen = msg->msg_iovlen;
1150 iov = msg->msg_iov;
1151 copied = 0;
1152
1153 err = -EPIPE;
1154 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1155 goto out_err;
1156
1157 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1158
1159 while (--iovlen >= 0) {
1160 size_t seglen = iov->iov_len;
1161 unsigned char __user *from = iov->iov_base;
1162
1163 iov++;
1164 if (unlikely(offset > 0)) { /* Skip bytes copied in SYN */
1165 if (offset >= seglen) {
1166 offset -= seglen;
1167 continue;
1168 }
1169 seglen -= offset;
1170 from += offset;
1171 offset = 0;
1172 }
1173
1174 while (seglen > 0) {
1175 int copy = 0;
1176 int max = size_goal;
1177
1178 skb = tcp_write_queue_tail(sk);
1179 if (tcp_send_head(sk)) {
1180 if (skb->ip_summed == CHECKSUM_NONE)
1181 max = mss_now;
1182 copy = max - skb->len;
1183 }
1184
1185 if (copy <= 0) {
1186 new_segment:
1187 /* Allocate new segment. If the interface is SG,
1188 * allocate skb fitting to single page.
1189 */
1190 if (!sk_stream_memory_free(sk))
1191 goto wait_for_sndbuf;
1192
1193 skb = sk_stream_alloc_skb(sk,
1194 select_size(sk, sg),
1195 sk->sk_allocation);
1196 if (!skb)
1197 goto wait_for_memory;
1198
1199 /*
1200 * Check whether we can use HW checksum.
1201 */
1202 if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1203 skb->ip_summed = CHECKSUM_PARTIAL;
1204
1205 skb_entail(sk, skb);
1206 copy = size_goal;
1207 max = size_goal;
1208
1209 /* All packets are restored as if they have
1210 * already been sent. skb_mstamp isn't set to
1211 * avoid wrong rtt estimation.
1212 */
1213 if (tp->repair)
1214 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1215 }
1216
1217 /* Try to append data to the end of skb. */
1218 if (copy > seglen)
1219 copy = seglen;
1220
1221 /* Where to copy to? */
1222 if (skb_availroom(skb) > 0) {
1223 /* We have some space in skb head. Superb! */
1224 copy = min_t(int, copy, skb_availroom(skb));
1225 err = skb_add_data_nocache(sk, skb, from, copy);
1226 if (err)
1227 goto do_fault;
1228 } else {
1229 bool merge = true;
1230 int i = skb_shinfo(skb)->nr_frags;
1231 struct page_frag *pfrag = sk_page_frag(sk);
1232
1233 if (!sk_page_frag_refill(sk, pfrag))
1234 goto wait_for_memory;
1235
1236 if (!skb_can_coalesce(skb, i, pfrag->page,
1237 pfrag->offset)) {
1238 if (i == sysctl_max_skb_frags || !sg) {
1239 tcp_mark_push(tp, skb);
1240 goto new_segment;
1241 }
1242 merge = false;
1243 }
1244
1245 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1246
1247 if (!sk_wmem_schedule(sk, copy))
1248 goto wait_for_memory;
1249
1250 err = skb_copy_to_page_nocache(sk, from, skb,
1251 pfrag->page,
1252 pfrag->offset,
1253 copy);
1254 if (err)
1255 goto do_error;
1256
1257 /* Update the skb. */
1258 if (merge) {
1259 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1260 } else {
1261 skb_fill_page_desc(skb, i, pfrag->page,
1262 pfrag->offset, copy);
1263 get_page(pfrag->page);
1264 }
1265 pfrag->offset += copy;
1266 }
1267
1268 if (!copied)
1269 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1270
1271 tp->write_seq += copy;
1272 TCP_SKB_CB(skb)->end_seq += copy;
1273 tcp_skb_pcount_set(skb, 0);
1274
1275 from += copy;
1276 copied += copy;
1277 if ((seglen -= copy) == 0 && iovlen == 0) {
1278 tcp_tx_timestamp(sk, skb);
1279 goto out;
1280 }
1281
1282 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1283 continue;
1284
1285 if (forced_push(tp)) {
1286 tcp_mark_push(tp, skb);
1287 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1288 } else if (skb == tcp_send_head(sk))
1289 tcp_push_one(sk, mss_now);
1290 continue;
1291
1292 wait_for_sndbuf:
1293 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1294 wait_for_memory:
1295 if (copied)
1296 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1297 TCP_NAGLE_PUSH, size_goal);
1298
1299 if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1300 goto do_error;
1301
1302 mss_now = tcp_send_mss(sk, &size_goal, flags);
1303 }
1304 }
1305
1306 out:
1307 if (copied)
1308 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1309 out_nopush:
1310 release_sock(sk);
1311
1312 if (copied + copied_syn)
1313 uid_stat_tcp_snd(from_kuid(&init_user_ns, current_uid()),
1314 copied + copied_syn);
1315 return copied + copied_syn;
1316
1317 do_fault:
1318 if (!skb->len) {
1319 tcp_unlink_write_queue(skb, sk);
1320 /* It is the one place in all of TCP, except connection
1321 * reset, where we can be unlinking the send_head.
1322 */
1323 tcp_check_send_head(sk, skb);
1324 sk_wmem_free_skb(sk, skb);
1325 }
1326
1327 do_error:
1328 if (copied + copied_syn)
1329 goto out;
1330 out_err:
1331 err = sk_stream_error(sk, flags, err);
1332 release_sock(sk);
1333 return err;
1334 }
1335 EXPORT_SYMBOL(tcp_sendmsg);
1336
1337 /*
1338 * Handle reading urgent data. BSD has very simple semantics for
1339 * this, no blocking and very strange errors 8)
1340 */
1341
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1342 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1343 {
1344 struct tcp_sock *tp = tcp_sk(sk);
1345
1346 /* No URG data to read. */
1347 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1348 tp->urg_data == TCP_URG_READ)
1349 return -EINVAL; /* Yes this is right ! */
1350
1351 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1352 return -ENOTCONN;
1353
1354 if (tp->urg_data & TCP_URG_VALID) {
1355 int err = 0;
1356 char c = tp->urg_data;
1357
1358 if (!(flags & MSG_PEEK))
1359 tp->urg_data = TCP_URG_READ;
1360
1361 /* Read urgent data. */
1362 msg->msg_flags |= MSG_OOB;
1363
1364 if (len > 0) {
1365 if (!(flags & MSG_TRUNC))
1366 err = memcpy_toiovec(msg->msg_iov, &c, 1);
1367 len = 1;
1368 } else
1369 msg->msg_flags |= MSG_TRUNC;
1370
1371 return err ? -EFAULT : len;
1372 }
1373
1374 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1375 return 0;
1376
1377 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1378 * the available implementations agree in this case:
1379 * this call should never block, independent of the
1380 * blocking state of the socket.
1381 * Mike <pall@rz.uni-karlsruhe.de>
1382 */
1383 return -EAGAIN;
1384 }
1385
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1386 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1387 {
1388 struct sk_buff *skb;
1389 int copied = 0, err = 0;
1390
1391 /* XXX -- need to support SO_PEEK_OFF */
1392
1393 skb_queue_walk(&sk->sk_write_queue, skb) {
1394 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1395 if (err)
1396 break;
1397
1398 copied += skb->len;
1399 }
1400
1401 return err ?: copied;
1402 }
1403
1404 /* Clean up the receive buffer for full frames taken by the user,
1405 * then send an ACK if necessary. COPIED is the number of bytes
1406 * tcp_recvmsg has given to the user so far, it speeds up the
1407 * calculation of whether or not we must ACK for the sake of
1408 * a window update.
1409 */
tcp_cleanup_rbuf(struct sock * sk,int copied)1410 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1411 {
1412 struct tcp_sock *tp = tcp_sk(sk);
1413 bool time_to_ack = false;
1414
1415 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1416
1417 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1418 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1419 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1420
1421 if (inet_csk_ack_scheduled(sk)) {
1422 const struct inet_connection_sock *icsk = inet_csk(sk);
1423 /* Delayed ACKs frequently hit locked sockets during bulk
1424 * receive. */
1425 if (icsk->icsk_ack.blocked ||
1426 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1427 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1428 /*
1429 * If this read emptied read buffer, we send ACK, if
1430 * connection is not bidirectional, user drained
1431 * receive buffer and there was a small segment
1432 * in queue.
1433 */
1434 (copied > 0 &&
1435 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1436 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1437 !icsk->icsk_ack.pingpong)) &&
1438 !atomic_read(&sk->sk_rmem_alloc)))
1439 time_to_ack = true;
1440 }
1441
1442 /* We send an ACK if we can now advertise a non-zero window
1443 * which has been raised "significantly".
1444 *
1445 * Even if window raised up to infinity, do not send window open ACK
1446 * in states, where we will not receive more. It is useless.
1447 */
1448 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1449 __u32 rcv_window_now = tcp_receive_window(tp);
1450
1451 /* Optimize, __tcp_select_window() is not cheap. */
1452 if (2*rcv_window_now <= tp->window_clamp) {
1453 __u32 new_window = __tcp_select_window(sk);
1454
1455 /* Send ACK now, if this read freed lots of space
1456 * in our buffer. Certainly, new_window is new window.
1457 * We can advertise it now, if it is not less than current one.
1458 * "Lots" means "at least twice" here.
1459 */
1460 if (new_window && new_window >= 2 * rcv_window_now)
1461 time_to_ack = true;
1462 }
1463 }
1464 if (time_to_ack)
1465 tcp_send_ack(sk);
1466 }
1467
tcp_prequeue_process(struct sock * sk)1468 static void tcp_prequeue_process(struct sock *sk)
1469 {
1470 struct sk_buff *skb;
1471 struct tcp_sock *tp = tcp_sk(sk);
1472
1473 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1474
1475 /* RX process wants to run with disabled BHs, though it is not
1476 * necessary */
1477 local_bh_disable();
1478 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1479 sk_backlog_rcv(sk, skb);
1480 local_bh_enable();
1481
1482 /* Clear memory counter. */
1483 tp->ucopy.memory = 0;
1484 }
1485
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1486 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1487 {
1488 struct sk_buff *skb;
1489 u32 offset;
1490
1491 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1492 offset = seq - TCP_SKB_CB(skb)->seq;
1493 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1494 offset--;
1495 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1496 *off = offset;
1497 return skb;
1498 }
1499 /* This looks weird, but this can happen if TCP collapsing
1500 * splitted a fat GRO packet, while we released socket lock
1501 * in skb_splice_bits()
1502 */
1503 sk_eat_skb(sk, skb);
1504 }
1505 return NULL;
1506 }
1507
1508 /*
1509 * This routine provides an alternative to tcp_recvmsg() for routines
1510 * that would like to handle copying from skbuffs directly in 'sendfile'
1511 * fashion.
1512 * Note:
1513 * - It is assumed that the socket was locked by the caller.
1514 * - The routine does not block.
1515 * - At present, there is no support for reading OOB data
1516 * or for 'peeking' the socket using this routine
1517 * (although both would be easy to implement).
1518 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1519 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1520 sk_read_actor_t recv_actor)
1521 {
1522 struct sk_buff *skb;
1523 struct tcp_sock *tp = tcp_sk(sk);
1524 u32 seq = tp->copied_seq;
1525 u32 offset;
1526 int copied = 0;
1527
1528 if (sk->sk_state == TCP_LISTEN)
1529 return -ENOTCONN;
1530 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1531 if (offset < skb->len) {
1532 int used;
1533 size_t len;
1534
1535 len = skb->len - offset;
1536 /* Stop reading if we hit a patch of urgent data */
1537 if (tp->urg_data) {
1538 u32 urg_offset = tp->urg_seq - seq;
1539 if (urg_offset < len)
1540 len = urg_offset;
1541 if (!len)
1542 break;
1543 }
1544 used = recv_actor(desc, skb, offset, len);
1545 if (used <= 0) {
1546 if (!copied)
1547 copied = used;
1548 break;
1549 } else if (used <= len) {
1550 seq += used;
1551 copied += used;
1552 offset += used;
1553 }
1554 /* If recv_actor drops the lock (e.g. TCP splice
1555 * receive) the skb pointer might be invalid when
1556 * getting here: tcp_collapse might have deleted it
1557 * while aggregating skbs from the socket queue.
1558 */
1559 skb = tcp_recv_skb(sk, seq - 1, &offset);
1560 if (!skb)
1561 break;
1562 /* TCP coalescing might have appended data to the skb.
1563 * Try to splice more frags
1564 */
1565 if (offset + 1 != skb->len)
1566 continue;
1567 }
1568 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1569 sk_eat_skb(sk, skb);
1570 ++seq;
1571 break;
1572 }
1573 sk_eat_skb(sk, skb);
1574 if (!desc->count)
1575 break;
1576 tp->copied_seq = seq;
1577 }
1578 tp->copied_seq = seq;
1579
1580 tcp_rcv_space_adjust(sk);
1581
1582 /* Clean up data we have read: This will do ACK frames. */
1583 if (copied > 0) {
1584 tcp_recv_skb(sk, seq, &offset);
1585 tcp_cleanup_rbuf(sk, copied);
1586 uid_stat_tcp_rcv(from_kuid(&init_user_ns, current_uid()),
1587 copied);
1588 }
1589 return copied;
1590 }
1591 EXPORT_SYMBOL(tcp_read_sock);
1592
1593 /*
1594 * This routine copies from a sock struct into the user buffer.
1595 *
1596 * Technical note: in 2.3 we work on _locked_ socket, so that
1597 * tricks with *seq access order and skb->users are not required.
1598 * Probably, code can be easily improved even more.
1599 */
1600
tcp_recvmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)1601 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1602 size_t len, int nonblock, int flags, int *addr_len)
1603 {
1604 struct tcp_sock *tp = tcp_sk(sk);
1605 int copied = 0;
1606 u32 peek_seq;
1607 u32 *seq;
1608 unsigned long used;
1609 int err;
1610 int target; /* Read at least this many bytes */
1611 long timeo;
1612 struct task_struct *user_recv = NULL;
1613 struct sk_buff *skb;
1614 u32 urg_hole = 0;
1615
1616 if (unlikely(flags & MSG_ERRQUEUE))
1617 return inet_recv_error(sk, msg, len, addr_len);
1618
1619 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1620 (sk->sk_state == TCP_ESTABLISHED))
1621 sk_busy_loop(sk, nonblock);
1622
1623 lock_sock(sk);
1624
1625 err = -ENOTCONN;
1626 if (sk->sk_state == TCP_LISTEN)
1627 goto out;
1628
1629 timeo = sock_rcvtimeo(sk, nonblock);
1630
1631 /* Urgent data needs to be handled specially. */
1632 if (flags & MSG_OOB)
1633 goto recv_urg;
1634
1635 if (unlikely(tp->repair)) {
1636 err = -EPERM;
1637 if (!(flags & MSG_PEEK))
1638 goto out;
1639
1640 if (tp->repair_queue == TCP_SEND_QUEUE)
1641 goto recv_sndq;
1642
1643 err = -EINVAL;
1644 if (tp->repair_queue == TCP_NO_QUEUE)
1645 goto out;
1646
1647 /* 'common' recv queue MSG_PEEK-ing */
1648 }
1649
1650 seq = &tp->copied_seq;
1651 if (flags & MSG_PEEK) {
1652 peek_seq = tp->copied_seq;
1653 seq = &peek_seq;
1654 }
1655
1656 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1657
1658 do {
1659 u32 offset;
1660
1661 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1662 if (tp->urg_data && tp->urg_seq == *seq) {
1663 if (copied)
1664 break;
1665 if (signal_pending(current)) {
1666 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1667 break;
1668 }
1669 }
1670
1671 /* Next get a buffer. */
1672
1673 skb_queue_walk(&sk->sk_receive_queue, skb) {
1674 /* Now that we have two receive queues this
1675 * shouldn't happen.
1676 */
1677 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1678 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1679 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1680 flags))
1681 break;
1682
1683 offset = *seq - TCP_SKB_CB(skb)->seq;
1684 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1685 offset--;
1686 if (offset < skb->len)
1687 goto found_ok_skb;
1688 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1689 goto found_fin_ok;
1690 WARN(!(flags & MSG_PEEK),
1691 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1692 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1693 }
1694
1695 /* Well, if we have backlog, try to process it now yet. */
1696
1697 if (copied >= target && !sk->sk_backlog.tail)
1698 break;
1699
1700 if (copied) {
1701 if (sk->sk_err ||
1702 sk->sk_state == TCP_CLOSE ||
1703 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1704 !timeo ||
1705 signal_pending(current))
1706 break;
1707 } else {
1708 if (sock_flag(sk, SOCK_DONE))
1709 break;
1710
1711 if (sk->sk_err) {
1712 copied = sock_error(sk);
1713 break;
1714 }
1715
1716 if (sk->sk_shutdown & RCV_SHUTDOWN)
1717 break;
1718
1719 if (sk->sk_state == TCP_CLOSE) {
1720 if (!sock_flag(sk, SOCK_DONE)) {
1721 /* This occurs when user tries to read
1722 * from never connected socket.
1723 */
1724 copied = -ENOTCONN;
1725 break;
1726 }
1727 break;
1728 }
1729
1730 if (!timeo) {
1731 copied = -EAGAIN;
1732 break;
1733 }
1734
1735 if (signal_pending(current)) {
1736 copied = sock_intr_errno(timeo);
1737 break;
1738 }
1739 }
1740
1741 tcp_cleanup_rbuf(sk, copied);
1742
1743 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1744 /* Install new reader */
1745 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1746 user_recv = current;
1747 tp->ucopy.task = user_recv;
1748 tp->ucopy.iov = msg->msg_iov;
1749 }
1750
1751 tp->ucopy.len = len;
1752
1753 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1754 !(flags & (MSG_PEEK | MSG_TRUNC)));
1755
1756 /* Ugly... If prequeue is not empty, we have to
1757 * process it before releasing socket, otherwise
1758 * order will be broken at second iteration.
1759 * More elegant solution is required!!!
1760 *
1761 * Look: we have the following (pseudo)queues:
1762 *
1763 * 1. packets in flight
1764 * 2. backlog
1765 * 3. prequeue
1766 * 4. receive_queue
1767 *
1768 * Each queue can be processed only if the next ones
1769 * are empty. At this point we have empty receive_queue.
1770 * But prequeue _can_ be not empty after 2nd iteration,
1771 * when we jumped to start of loop because backlog
1772 * processing added something to receive_queue.
1773 * We cannot release_sock(), because backlog contains
1774 * packets arrived _after_ prequeued ones.
1775 *
1776 * Shortly, algorithm is clear --- to process all
1777 * the queues in order. We could make it more directly,
1778 * requeueing packets from backlog to prequeue, if
1779 * is not empty. It is more elegant, but eats cycles,
1780 * unfortunately.
1781 */
1782 if (!skb_queue_empty(&tp->ucopy.prequeue))
1783 goto do_prequeue;
1784
1785 /* __ Set realtime policy in scheduler __ */
1786 }
1787
1788 if (copied >= target) {
1789 /* Do not sleep, just process backlog. */
1790 release_sock(sk);
1791 lock_sock(sk);
1792 } else
1793 sk_wait_data(sk, &timeo);
1794
1795 if (user_recv) {
1796 int chunk;
1797
1798 /* __ Restore normal policy in scheduler __ */
1799
1800 if ((chunk = len - tp->ucopy.len) != 0) {
1801 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1802 len -= chunk;
1803 copied += chunk;
1804 }
1805
1806 if (tp->rcv_nxt == tp->copied_seq &&
1807 !skb_queue_empty(&tp->ucopy.prequeue)) {
1808 do_prequeue:
1809 tcp_prequeue_process(sk);
1810
1811 if ((chunk = len - tp->ucopy.len) != 0) {
1812 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1813 len -= chunk;
1814 copied += chunk;
1815 }
1816 }
1817 }
1818 if ((flags & MSG_PEEK) &&
1819 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1820 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1821 current->comm,
1822 task_pid_nr(current));
1823 peek_seq = tp->copied_seq;
1824 }
1825 continue;
1826
1827 found_ok_skb:
1828 /* Ok so how much can we use? */
1829 used = skb->len - offset;
1830 if (len < used)
1831 used = len;
1832
1833 /* Do we have urgent data here? */
1834 if (tp->urg_data) {
1835 u32 urg_offset = tp->urg_seq - *seq;
1836 if (urg_offset < used) {
1837 if (!urg_offset) {
1838 if (!sock_flag(sk, SOCK_URGINLINE)) {
1839 ++*seq;
1840 urg_hole++;
1841 offset++;
1842 used--;
1843 if (!used)
1844 goto skip_copy;
1845 }
1846 } else
1847 used = urg_offset;
1848 }
1849 }
1850
1851 if (!(flags & MSG_TRUNC)) {
1852 err = skb_copy_datagram_iovec(skb, offset,
1853 msg->msg_iov, used);
1854 if (err) {
1855 /* Exception. Bailout! */
1856 if (!copied)
1857 copied = -EFAULT;
1858 break;
1859 }
1860 }
1861
1862 *seq += used;
1863 copied += used;
1864 len -= used;
1865
1866 tcp_rcv_space_adjust(sk);
1867
1868 skip_copy:
1869 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1870 tp->urg_data = 0;
1871 tcp_fast_path_check(sk);
1872 }
1873 if (used + offset < skb->len)
1874 continue;
1875
1876 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1877 goto found_fin_ok;
1878 if (!(flags & MSG_PEEK))
1879 sk_eat_skb(sk, skb);
1880 continue;
1881
1882 found_fin_ok:
1883 /* Process the FIN. */
1884 ++*seq;
1885 if (!(flags & MSG_PEEK))
1886 sk_eat_skb(sk, skb);
1887 break;
1888 } while (len > 0);
1889
1890 if (user_recv) {
1891 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1892 int chunk;
1893
1894 tp->ucopy.len = copied > 0 ? len : 0;
1895
1896 tcp_prequeue_process(sk);
1897
1898 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1899 NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1900 len -= chunk;
1901 copied += chunk;
1902 }
1903 }
1904
1905 tp->ucopy.task = NULL;
1906 tp->ucopy.len = 0;
1907 }
1908
1909 /* According to UNIX98, msg_name/msg_namelen are ignored
1910 * on connected socket. I was just happy when found this 8) --ANK
1911 */
1912
1913 /* Clean up data we have read: This will do ACK frames. */
1914 tcp_cleanup_rbuf(sk, copied);
1915
1916 release_sock(sk);
1917
1918 if (copied > 0)
1919 uid_stat_tcp_rcv(from_kuid(&init_user_ns, current_uid()),
1920 copied);
1921 return copied;
1922
1923 out:
1924 release_sock(sk);
1925 return err;
1926
1927 recv_urg:
1928 err = tcp_recv_urg(sk, msg, len, flags);
1929 if (err > 0)
1930 uid_stat_tcp_rcv(from_kuid(&init_user_ns, current_uid()),
1931 err);
1932 goto out;
1933
1934 recv_sndq:
1935 err = tcp_peek_sndq(sk, msg, len);
1936 goto out;
1937 }
1938 EXPORT_SYMBOL(tcp_recvmsg);
1939
tcp_set_state(struct sock * sk,int state)1940 void tcp_set_state(struct sock *sk, int state)
1941 {
1942 int oldstate = sk->sk_state;
1943
1944 switch (state) {
1945 case TCP_ESTABLISHED:
1946 if (oldstate != TCP_ESTABLISHED)
1947 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1948 break;
1949
1950 case TCP_CLOSE:
1951 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1952 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1953
1954 sk->sk_prot->unhash(sk);
1955 if (inet_csk(sk)->icsk_bind_hash &&
1956 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1957 inet_put_port(sk);
1958 /* fall through */
1959 default:
1960 if (oldstate == TCP_ESTABLISHED)
1961 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1962 }
1963
1964 /* Change state AFTER socket is unhashed to avoid closed
1965 * socket sitting in hash tables.
1966 */
1967 sk->sk_state = state;
1968
1969 #ifdef STATE_TRACE
1970 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1971 #endif
1972 }
1973 EXPORT_SYMBOL_GPL(tcp_set_state);
1974
1975 /*
1976 * State processing on a close. This implements the state shift for
1977 * sending our FIN frame. Note that we only send a FIN for some
1978 * states. A shutdown() may have already sent the FIN, or we may be
1979 * closed.
1980 */
1981
1982 static const unsigned char new_state[16] = {
1983 /* current state: new state: action: */
1984 /* (Invalid) */ TCP_CLOSE,
1985 /* TCP_ESTABLISHED */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1986 /* TCP_SYN_SENT */ TCP_CLOSE,
1987 /* TCP_SYN_RECV */ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1988 /* TCP_FIN_WAIT1 */ TCP_FIN_WAIT1,
1989 /* TCP_FIN_WAIT2 */ TCP_FIN_WAIT2,
1990 /* TCP_TIME_WAIT */ TCP_CLOSE,
1991 /* TCP_CLOSE */ TCP_CLOSE,
1992 /* TCP_CLOSE_WAIT */ TCP_LAST_ACK | TCP_ACTION_FIN,
1993 /* TCP_LAST_ACK */ TCP_LAST_ACK,
1994 /* TCP_LISTEN */ TCP_CLOSE,
1995 /* TCP_CLOSING */ TCP_CLOSING,
1996 };
1997
tcp_close_state(struct sock * sk)1998 static int tcp_close_state(struct sock *sk)
1999 {
2000 int next = (int)new_state[sk->sk_state];
2001 int ns = next & TCP_STATE_MASK;
2002
2003 tcp_set_state(sk, ns);
2004
2005 return next & TCP_ACTION_FIN;
2006 }
2007
2008 /*
2009 * Shutdown the sending side of a connection. Much like close except
2010 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2011 */
2012
tcp_shutdown(struct sock * sk,int how)2013 void tcp_shutdown(struct sock *sk, int how)
2014 {
2015 /* We need to grab some memory, and put together a FIN,
2016 * and then put it into the queue to be sent.
2017 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2018 */
2019 if (!(how & SEND_SHUTDOWN))
2020 return;
2021
2022 /* If we've already sent a FIN, or it's a closed state, skip this. */
2023 if ((1 << sk->sk_state) &
2024 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2025 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2026 /* Clear out any half completed packets. FIN if needed. */
2027 if (tcp_close_state(sk))
2028 tcp_send_fin(sk);
2029 }
2030 }
2031 EXPORT_SYMBOL(tcp_shutdown);
2032
tcp_check_oom(struct sock * sk,int shift)2033 bool tcp_check_oom(struct sock *sk, int shift)
2034 {
2035 bool too_many_orphans, out_of_socket_memory;
2036
2037 too_many_orphans = tcp_too_many_orphans(sk, shift);
2038 out_of_socket_memory = tcp_out_of_memory(sk);
2039
2040 if (too_many_orphans)
2041 net_info_ratelimited("too many orphaned sockets\n");
2042 if (out_of_socket_memory)
2043 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2044 return too_many_orphans || out_of_socket_memory;
2045 }
2046
tcp_close(struct sock * sk,long timeout)2047 void tcp_close(struct sock *sk, long timeout)
2048 {
2049 struct sk_buff *skb;
2050 int data_was_unread = 0;
2051 int state;
2052
2053 lock_sock(sk);
2054 sk->sk_shutdown = SHUTDOWN_MASK;
2055
2056 if (sk->sk_state == TCP_LISTEN) {
2057 tcp_set_state(sk, TCP_CLOSE);
2058
2059 /* Special case. */
2060 inet_csk_listen_stop(sk);
2061
2062 goto adjudge_to_death;
2063 }
2064
2065 /* We need to flush the recv. buffs. We do this only on the
2066 * descriptor close, not protocol-sourced closes, because the
2067 * reader process may not have drained the data yet!
2068 */
2069 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2070 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2071
2072 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2073 len--;
2074 data_was_unread += len;
2075 __kfree_skb(skb);
2076 }
2077
2078 sk_mem_reclaim(sk);
2079
2080 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2081 if (sk->sk_state == TCP_CLOSE)
2082 goto adjudge_to_death;
2083
2084 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2085 * data was lost. To witness the awful effects of the old behavior of
2086 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2087 * GET in an FTP client, suspend the process, wait for the client to
2088 * advertise a zero window, then kill -9 the FTP client, wheee...
2089 * Note: timeout is always zero in such a case.
2090 */
2091 if (unlikely(tcp_sk(sk)->repair)) {
2092 sk->sk_prot->disconnect(sk, 0);
2093 } else if (data_was_unread) {
2094 /* Unread data was tossed, zap the connection. */
2095 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2096 tcp_set_state(sk, TCP_CLOSE);
2097 tcp_send_active_reset(sk, sk->sk_allocation);
2098 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2099 /* Check zero linger _after_ checking for unread data. */
2100 sk->sk_prot->disconnect(sk, 0);
2101 NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2102 } else if (tcp_close_state(sk)) {
2103 /* We FIN if the application ate all the data before
2104 * zapping the connection.
2105 */
2106
2107 /* RED-PEN. Formally speaking, we have broken TCP state
2108 * machine. State transitions:
2109 *
2110 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2111 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2112 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2113 *
2114 * are legal only when FIN has been sent (i.e. in window),
2115 * rather than queued out of window. Purists blame.
2116 *
2117 * F.e. "RFC state" is ESTABLISHED,
2118 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2119 *
2120 * The visible declinations are that sometimes
2121 * we enter time-wait state, when it is not required really
2122 * (harmless), do not send active resets, when they are
2123 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2124 * they look as CLOSING or LAST_ACK for Linux)
2125 * Probably, I missed some more holelets.
2126 * --ANK
2127 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2128 * in a single packet! (May consider it later but will
2129 * probably need API support or TCP_CORK SYN-ACK until
2130 * data is written and socket is closed.)
2131 */
2132 tcp_send_fin(sk);
2133 }
2134
2135 sk_stream_wait_close(sk, timeout);
2136
2137 adjudge_to_death:
2138 state = sk->sk_state;
2139 sock_hold(sk);
2140 sock_orphan(sk);
2141
2142 /* It is the last release_sock in its life. It will remove backlog. */
2143 release_sock(sk);
2144
2145
2146 /* Now socket is owned by kernel and we acquire BH lock
2147 to finish close. No need to check for user refs.
2148 */
2149 local_bh_disable();
2150 bh_lock_sock(sk);
2151 WARN_ON(sock_owned_by_user(sk));
2152
2153 percpu_counter_inc(sk->sk_prot->orphan_count);
2154
2155 /* Have we already been destroyed by a softirq or backlog? */
2156 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2157 goto out;
2158
2159 /* This is a (useful) BSD violating of the RFC. There is a
2160 * problem with TCP as specified in that the other end could
2161 * keep a socket open forever with no application left this end.
2162 * We use a 1 minute timeout (about the same as BSD) then kill
2163 * our end. If they send after that then tough - BUT: long enough
2164 * that we won't make the old 4*rto = almost no time - whoops
2165 * reset mistake.
2166 *
2167 * Nope, it was not mistake. It is really desired behaviour
2168 * f.e. on http servers, when such sockets are useless, but
2169 * consume significant resources. Let's do it with special
2170 * linger2 option. --ANK
2171 */
2172
2173 if (sk->sk_state == TCP_FIN_WAIT2) {
2174 struct tcp_sock *tp = tcp_sk(sk);
2175 if (tp->linger2 < 0) {
2176 tcp_set_state(sk, TCP_CLOSE);
2177 tcp_send_active_reset(sk, GFP_ATOMIC);
2178 NET_INC_STATS_BH(sock_net(sk),
2179 LINUX_MIB_TCPABORTONLINGER);
2180 } else {
2181 const int tmo = tcp_fin_time(sk);
2182
2183 if (tmo > TCP_TIMEWAIT_LEN) {
2184 inet_csk_reset_keepalive_timer(sk,
2185 tmo - TCP_TIMEWAIT_LEN);
2186 } else {
2187 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2188 goto out;
2189 }
2190 }
2191 }
2192 if (sk->sk_state != TCP_CLOSE) {
2193 sk_mem_reclaim(sk);
2194 if (tcp_check_oom(sk, 0)) {
2195 tcp_set_state(sk, TCP_CLOSE);
2196 tcp_send_active_reset(sk, GFP_ATOMIC);
2197 NET_INC_STATS_BH(sock_net(sk),
2198 LINUX_MIB_TCPABORTONMEMORY);
2199 } else if (!check_net(sock_net(sk))) {
2200 /* Not possible to send reset; just close */
2201 tcp_set_state(sk, TCP_CLOSE);
2202 }
2203 }
2204
2205 if (sk->sk_state == TCP_CLOSE) {
2206 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2207 /* We could get here with a non-NULL req if the socket is
2208 * aborted (e.g., closed with unread data) before 3WHS
2209 * finishes.
2210 */
2211 if (req != NULL)
2212 reqsk_fastopen_remove(sk, req, false);
2213 inet_csk_destroy_sock(sk);
2214 }
2215 /* Otherwise, socket is reprieved until protocol close. */
2216
2217 out:
2218 bh_unlock_sock(sk);
2219 local_bh_enable();
2220 sock_put(sk);
2221 }
2222 EXPORT_SYMBOL(tcp_close);
2223
2224 /* These states need RST on ABORT according to RFC793 */
2225
tcp_need_reset(int state)2226 static inline bool tcp_need_reset(int state)
2227 {
2228 return (1 << state) &
2229 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2230 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2231 }
2232
tcp_disconnect(struct sock * sk,int flags)2233 int tcp_disconnect(struct sock *sk, int flags)
2234 {
2235 struct inet_sock *inet = inet_sk(sk);
2236 struct inet_connection_sock *icsk = inet_csk(sk);
2237 struct tcp_sock *tp = tcp_sk(sk);
2238 int err = 0;
2239 int old_state = sk->sk_state;
2240
2241 if (old_state != TCP_CLOSE)
2242 tcp_set_state(sk, TCP_CLOSE);
2243
2244 /* ABORT function of RFC793 */
2245 if (old_state == TCP_LISTEN) {
2246 inet_csk_listen_stop(sk);
2247 } else if (unlikely(tp->repair)) {
2248 sk->sk_err = ECONNABORTED;
2249 } else if (tcp_need_reset(old_state) ||
2250 (tp->snd_nxt != tp->write_seq &&
2251 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2252 /* The last check adjusts for discrepancy of Linux wrt. RFC
2253 * states
2254 */
2255 tcp_send_active_reset(sk, gfp_any());
2256 sk->sk_err = ECONNRESET;
2257 } else if (old_state == TCP_SYN_SENT)
2258 sk->sk_err = ECONNRESET;
2259
2260 tcp_clear_xmit_timers(sk);
2261 __skb_queue_purge(&sk->sk_receive_queue);
2262 tcp_write_queue_purge(sk);
2263 __skb_queue_purge(&tp->out_of_order_queue);
2264
2265 inet->inet_dport = 0;
2266
2267 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2268 inet_reset_saddr(sk);
2269
2270 sk->sk_shutdown = 0;
2271 sock_reset_flag(sk, SOCK_DONE);
2272 tp->srtt_us = 0;
2273 if ((tp->write_seq += tp->max_window + 2) == 0)
2274 tp->write_seq = 1;
2275 icsk->icsk_backoff = 0;
2276 tp->snd_cwnd = 2;
2277 icsk->icsk_probes_out = 0;
2278 tp->packets_out = 0;
2279 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2280 tp->snd_cwnd_cnt = 0;
2281 tp->window_clamp = 0;
2282 tcp_set_ca_state(sk, TCP_CA_Open);
2283 tcp_clear_retrans(tp);
2284 inet_csk_delack_init(sk);
2285 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2286 * issue in __tcp_select_window()
2287 */
2288 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2289 tcp_init_send_head(sk);
2290 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2291 __sk_dst_reset(sk);
2292 dst_release(sk->sk_rx_dst);
2293 sk->sk_rx_dst = NULL;
2294
2295 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2296
2297 sk->sk_error_report(sk);
2298 return err;
2299 }
2300 EXPORT_SYMBOL(tcp_disconnect);
2301
tcp_sock_destruct(struct sock * sk)2302 void tcp_sock_destruct(struct sock *sk)
2303 {
2304 inet_sock_destruct(sk);
2305
2306 kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2307 }
2308
tcp_can_repair_sock(const struct sock * sk)2309 static inline bool tcp_can_repair_sock(const struct sock *sk)
2310 {
2311 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2312 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2313 }
2314
tcp_repair_options_est(struct tcp_sock * tp,struct tcp_repair_opt __user * optbuf,unsigned int len)2315 static int tcp_repair_options_est(struct tcp_sock *tp,
2316 struct tcp_repair_opt __user *optbuf, unsigned int len)
2317 {
2318 struct tcp_repair_opt opt;
2319
2320 while (len >= sizeof(opt)) {
2321 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2322 return -EFAULT;
2323
2324 optbuf++;
2325 len -= sizeof(opt);
2326
2327 switch (opt.opt_code) {
2328 case TCPOPT_MSS:
2329 tp->rx_opt.mss_clamp = opt.opt_val;
2330 break;
2331 case TCPOPT_WINDOW:
2332 {
2333 u16 snd_wscale = opt.opt_val & 0xFFFF;
2334 u16 rcv_wscale = opt.opt_val >> 16;
2335
2336 if (snd_wscale > 14 || rcv_wscale > 14)
2337 return -EFBIG;
2338
2339 tp->rx_opt.snd_wscale = snd_wscale;
2340 tp->rx_opt.rcv_wscale = rcv_wscale;
2341 tp->rx_opt.wscale_ok = 1;
2342 }
2343 break;
2344 case TCPOPT_SACK_PERM:
2345 if (opt.opt_val != 0)
2346 return -EINVAL;
2347
2348 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2349 if (sysctl_tcp_fack)
2350 tcp_enable_fack(tp);
2351 break;
2352 case TCPOPT_TIMESTAMP:
2353 if (opt.opt_val != 0)
2354 return -EINVAL;
2355
2356 tp->rx_opt.tstamp_ok = 1;
2357 break;
2358 }
2359 }
2360
2361 return 0;
2362 }
2363
2364 /*
2365 * Socket option code for TCP.
2366 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2367 static int do_tcp_setsockopt(struct sock *sk, int level,
2368 int optname, char __user *optval, unsigned int optlen)
2369 {
2370 struct tcp_sock *tp = tcp_sk(sk);
2371 struct inet_connection_sock *icsk = inet_csk(sk);
2372 int val;
2373 int err = 0;
2374
2375 /* These are data/string values, all the others are ints */
2376 switch (optname) {
2377 case TCP_CONGESTION: {
2378 char name[TCP_CA_NAME_MAX];
2379
2380 if (optlen < 1)
2381 return -EINVAL;
2382
2383 val = strncpy_from_user(name, optval,
2384 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2385 if (val < 0)
2386 return -EFAULT;
2387 name[val] = 0;
2388
2389 lock_sock(sk);
2390 err = tcp_set_congestion_control(sk, name);
2391 release_sock(sk);
2392 return err;
2393 }
2394 default:
2395 /* fallthru */
2396 break;
2397 }
2398
2399 if (optlen < sizeof(int))
2400 return -EINVAL;
2401
2402 if (get_user(val, (int __user *)optval))
2403 return -EFAULT;
2404
2405 lock_sock(sk);
2406
2407 switch (optname) {
2408 case TCP_MAXSEG:
2409 /* Values greater than interface MTU won't take effect. However
2410 * at the point when this call is done we typically don't yet
2411 * know which interface is going to be used */
2412 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2413 err = -EINVAL;
2414 break;
2415 }
2416 tp->rx_opt.user_mss = val;
2417 break;
2418
2419 case TCP_NODELAY:
2420 if (val) {
2421 /* TCP_NODELAY is weaker than TCP_CORK, so that
2422 * this option on corked socket is remembered, but
2423 * it is not activated until cork is cleared.
2424 *
2425 * However, when TCP_NODELAY is set we make
2426 * an explicit push, which overrides even TCP_CORK
2427 * for currently queued segments.
2428 */
2429 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2430 tcp_push_pending_frames(sk);
2431 } else {
2432 tp->nonagle &= ~TCP_NAGLE_OFF;
2433 }
2434 break;
2435
2436 case TCP_THIN_LINEAR_TIMEOUTS:
2437 if (val < 0 || val > 1)
2438 err = -EINVAL;
2439 else
2440 tp->thin_lto = val;
2441 break;
2442
2443 case TCP_THIN_DUPACK:
2444 if (val < 0 || val > 1)
2445 err = -EINVAL;
2446 else {
2447 tp->thin_dupack = val;
2448 if (tp->thin_dupack)
2449 tcp_disable_early_retrans(tp);
2450 }
2451 break;
2452
2453 case TCP_REPAIR:
2454 if (!tcp_can_repair_sock(sk))
2455 err = -EPERM;
2456 else if (val == 1) {
2457 tp->repair = 1;
2458 sk->sk_reuse = SK_FORCE_REUSE;
2459 tp->repair_queue = TCP_NO_QUEUE;
2460 } else if (val == 0) {
2461 tp->repair = 0;
2462 sk->sk_reuse = SK_NO_REUSE;
2463 tcp_send_window_probe(sk);
2464 } else
2465 err = -EINVAL;
2466
2467 break;
2468
2469 case TCP_REPAIR_QUEUE:
2470 if (!tp->repair)
2471 err = -EPERM;
2472 else if (val < TCP_QUEUES_NR)
2473 tp->repair_queue = val;
2474 else
2475 err = -EINVAL;
2476 break;
2477
2478 case TCP_QUEUE_SEQ:
2479 if (sk->sk_state != TCP_CLOSE)
2480 err = -EPERM;
2481 else if (tp->repair_queue == TCP_SEND_QUEUE)
2482 tp->write_seq = val;
2483 else if (tp->repair_queue == TCP_RECV_QUEUE)
2484 tp->rcv_nxt = val;
2485 else
2486 err = -EINVAL;
2487 break;
2488
2489 case TCP_REPAIR_OPTIONS:
2490 if (!tp->repair)
2491 err = -EINVAL;
2492 else if (sk->sk_state == TCP_ESTABLISHED)
2493 err = tcp_repair_options_est(tp,
2494 (struct tcp_repair_opt __user *)optval,
2495 optlen);
2496 else
2497 err = -EPERM;
2498 break;
2499
2500 case TCP_CORK:
2501 /* When set indicates to always queue non-full frames.
2502 * Later the user clears this option and we transmit
2503 * any pending partial frames in the queue. This is
2504 * meant to be used alongside sendfile() to get properly
2505 * filled frames when the user (for example) must write
2506 * out headers with a write() call first and then use
2507 * sendfile to send out the data parts.
2508 *
2509 * TCP_CORK can be set together with TCP_NODELAY and it is
2510 * stronger than TCP_NODELAY.
2511 */
2512 if (val) {
2513 tp->nonagle |= TCP_NAGLE_CORK;
2514 } else {
2515 tp->nonagle &= ~TCP_NAGLE_CORK;
2516 if (tp->nonagle&TCP_NAGLE_OFF)
2517 tp->nonagle |= TCP_NAGLE_PUSH;
2518 tcp_push_pending_frames(sk);
2519 }
2520 break;
2521
2522 case TCP_KEEPIDLE:
2523 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2524 err = -EINVAL;
2525 else {
2526 tp->keepalive_time = val * HZ;
2527 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2528 !((1 << sk->sk_state) &
2529 (TCPF_CLOSE | TCPF_LISTEN))) {
2530 u32 elapsed = keepalive_time_elapsed(tp);
2531 if (tp->keepalive_time > elapsed)
2532 elapsed = tp->keepalive_time - elapsed;
2533 else
2534 elapsed = 0;
2535 inet_csk_reset_keepalive_timer(sk, elapsed);
2536 }
2537 }
2538 break;
2539 case TCP_KEEPINTVL:
2540 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2541 err = -EINVAL;
2542 else
2543 tp->keepalive_intvl = val * HZ;
2544 break;
2545 case TCP_KEEPCNT:
2546 if (val < 1 || val > MAX_TCP_KEEPCNT)
2547 err = -EINVAL;
2548 else
2549 tp->keepalive_probes = val;
2550 break;
2551 case TCP_SYNCNT:
2552 if (val < 1 || val > MAX_TCP_SYNCNT)
2553 err = -EINVAL;
2554 else
2555 icsk->icsk_syn_retries = val;
2556 break;
2557
2558 case TCP_LINGER2:
2559 if (val < 0)
2560 tp->linger2 = -1;
2561 else if (val > sysctl_tcp_fin_timeout / HZ)
2562 tp->linger2 = 0;
2563 else
2564 tp->linger2 = val * HZ;
2565 break;
2566
2567 case TCP_DEFER_ACCEPT:
2568 /* Translate value in seconds to number of retransmits */
2569 icsk->icsk_accept_queue.rskq_defer_accept =
2570 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2571 TCP_RTO_MAX / HZ);
2572 break;
2573
2574 case TCP_WINDOW_CLAMP:
2575 if (!val) {
2576 if (sk->sk_state != TCP_CLOSE) {
2577 err = -EINVAL;
2578 break;
2579 }
2580 tp->window_clamp = 0;
2581 } else
2582 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2583 SOCK_MIN_RCVBUF / 2 : val;
2584 break;
2585
2586 case TCP_QUICKACK:
2587 if (!val) {
2588 icsk->icsk_ack.pingpong = 1;
2589 } else {
2590 icsk->icsk_ack.pingpong = 0;
2591 if ((1 << sk->sk_state) &
2592 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2593 inet_csk_ack_scheduled(sk)) {
2594 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2595 tcp_cleanup_rbuf(sk, 1);
2596 if (!(val & 1))
2597 icsk->icsk_ack.pingpong = 1;
2598 }
2599 }
2600 break;
2601
2602 #ifdef CONFIG_TCP_MD5SIG
2603 case TCP_MD5SIG:
2604 /* Read the IP->Key mappings from userspace */
2605 err = tp->af_specific->md5_parse(sk, optval, optlen);
2606 break;
2607 #endif
2608 case TCP_USER_TIMEOUT:
2609 /* Cap the max time in ms TCP will retry or probe the window
2610 * before giving up and aborting (ETIMEDOUT) a connection.
2611 */
2612 if (val < 0)
2613 err = -EINVAL;
2614 else
2615 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2616 break;
2617
2618 case TCP_FASTOPEN:
2619 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2620 TCPF_LISTEN))) {
2621 tcp_fastopen_init_key_once(true);
2622
2623 err = fastopen_init_queue(sk, val);
2624 } else {
2625 err = -EINVAL;
2626 }
2627 break;
2628 case TCP_TIMESTAMP:
2629 if (!tp->repair)
2630 err = -EPERM;
2631 else
2632 tp->tsoffset = val - tcp_time_stamp;
2633 break;
2634 case TCP_NOTSENT_LOWAT:
2635 tp->notsent_lowat = val;
2636 sk->sk_write_space(sk);
2637 break;
2638 default:
2639 err = -ENOPROTOOPT;
2640 break;
2641 }
2642
2643 release_sock(sk);
2644 return err;
2645 }
2646
tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2647 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2648 unsigned int optlen)
2649 {
2650 const struct inet_connection_sock *icsk = inet_csk(sk);
2651
2652 if (level != SOL_TCP)
2653 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2654 optval, optlen);
2655 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2656 }
2657 EXPORT_SYMBOL(tcp_setsockopt);
2658
2659 #ifdef CONFIG_COMPAT
compat_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2660 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2661 char __user *optval, unsigned int optlen)
2662 {
2663 if (level != SOL_TCP)
2664 return inet_csk_compat_setsockopt(sk, level, optname,
2665 optval, optlen);
2666 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2667 }
2668 EXPORT_SYMBOL(compat_tcp_setsockopt);
2669 #endif
2670
2671 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(const struct sock * sk,struct tcp_info * info)2672 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2673 {
2674 const struct tcp_sock *tp = tcp_sk(sk);
2675 const struct inet_connection_sock *icsk = inet_csk(sk);
2676 u32 now = tcp_time_stamp;
2677 u32 rate;
2678
2679 memset(info, 0, sizeof(*info));
2680
2681 info->tcpi_state = sk->sk_state;
2682 info->tcpi_ca_state = icsk->icsk_ca_state;
2683 info->tcpi_retransmits = icsk->icsk_retransmits;
2684 info->tcpi_probes = icsk->icsk_probes_out;
2685 info->tcpi_backoff = icsk->icsk_backoff;
2686
2687 if (tp->rx_opt.tstamp_ok)
2688 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2689 if (tcp_is_sack(tp))
2690 info->tcpi_options |= TCPI_OPT_SACK;
2691 if (tp->rx_opt.wscale_ok) {
2692 info->tcpi_options |= TCPI_OPT_WSCALE;
2693 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2694 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2695 }
2696
2697 if (tp->ecn_flags & TCP_ECN_OK)
2698 info->tcpi_options |= TCPI_OPT_ECN;
2699 if (tp->ecn_flags & TCP_ECN_SEEN)
2700 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2701 if (tp->syn_data_acked)
2702 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2703
2704 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2705 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2706 info->tcpi_snd_mss = tp->mss_cache;
2707 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2708
2709 if (sk->sk_state == TCP_LISTEN) {
2710 info->tcpi_unacked = sk->sk_ack_backlog;
2711 info->tcpi_sacked = sk->sk_max_ack_backlog;
2712 } else {
2713 info->tcpi_unacked = tp->packets_out;
2714 info->tcpi_sacked = tp->sacked_out;
2715 }
2716 info->tcpi_lost = tp->lost_out;
2717 info->tcpi_retrans = tp->retrans_out;
2718 info->tcpi_fackets = tp->fackets_out;
2719
2720 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2721 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2722 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2723
2724 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2725 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2726 info->tcpi_rtt = tp->srtt_us >> 3;
2727 info->tcpi_rttvar = tp->mdev_us >> 2;
2728 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2729 info->tcpi_snd_cwnd = tp->snd_cwnd;
2730 info->tcpi_advmss = tp->advmss;
2731 info->tcpi_reordering = tp->reordering;
2732
2733 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2734 info->tcpi_rcv_space = tp->rcvq_space.space;
2735
2736 info->tcpi_total_retrans = tp->total_retrans;
2737
2738 rate = READ_ONCE(sk->sk_pacing_rate);
2739 info->tcpi_pacing_rate = rate != ~0U ? rate : ~0ULL;
2740
2741 rate = READ_ONCE(sk->sk_max_pacing_rate);
2742 info->tcpi_max_pacing_rate = rate != ~0U ? rate : ~0ULL;
2743 }
2744 EXPORT_SYMBOL_GPL(tcp_get_info);
2745
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2746 static int do_tcp_getsockopt(struct sock *sk, int level,
2747 int optname, char __user *optval, int __user *optlen)
2748 {
2749 struct inet_connection_sock *icsk = inet_csk(sk);
2750 struct tcp_sock *tp = tcp_sk(sk);
2751 int val, len;
2752
2753 if (get_user(len, optlen))
2754 return -EFAULT;
2755
2756 len = min_t(unsigned int, len, sizeof(int));
2757
2758 if (len < 0)
2759 return -EINVAL;
2760
2761 switch (optname) {
2762 case TCP_MAXSEG:
2763 val = tp->mss_cache;
2764 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2765 val = tp->rx_opt.user_mss;
2766 if (tp->repair)
2767 val = tp->rx_opt.mss_clamp;
2768 break;
2769 case TCP_NODELAY:
2770 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2771 break;
2772 case TCP_CORK:
2773 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2774 break;
2775 case TCP_KEEPIDLE:
2776 val = keepalive_time_when(tp) / HZ;
2777 break;
2778 case TCP_KEEPINTVL:
2779 val = keepalive_intvl_when(tp) / HZ;
2780 break;
2781 case TCP_KEEPCNT:
2782 val = keepalive_probes(tp);
2783 break;
2784 case TCP_SYNCNT:
2785 val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2786 break;
2787 case TCP_LINGER2:
2788 val = tp->linger2;
2789 if (val >= 0)
2790 val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2791 break;
2792 case TCP_DEFER_ACCEPT:
2793 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2794 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2795 break;
2796 case TCP_WINDOW_CLAMP:
2797 val = tp->window_clamp;
2798 break;
2799 case TCP_INFO: {
2800 struct tcp_info info;
2801
2802 if (get_user(len, optlen))
2803 return -EFAULT;
2804
2805 tcp_get_info(sk, &info);
2806
2807 len = min_t(unsigned int, len, sizeof(info));
2808 if (put_user(len, optlen))
2809 return -EFAULT;
2810 if (copy_to_user(optval, &info, len))
2811 return -EFAULT;
2812 return 0;
2813 }
2814 case TCP_QUICKACK:
2815 val = !icsk->icsk_ack.pingpong;
2816 break;
2817
2818 case TCP_CONGESTION:
2819 if (get_user(len, optlen))
2820 return -EFAULT;
2821 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2822 if (put_user(len, optlen))
2823 return -EFAULT;
2824 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2825 return -EFAULT;
2826 return 0;
2827
2828 case TCP_THIN_LINEAR_TIMEOUTS:
2829 val = tp->thin_lto;
2830 break;
2831 case TCP_THIN_DUPACK:
2832 val = tp->thin_dupack;
2833 break;
2834
2835 case TCP_REPAIR:
2836 val = tp->repair;
2837 break;
2838
2839 case TCP_REPAIR_QUEUE:
2840 if (tp->repair)
2841 val = tp->repair_queue;
2842 else
2843 return -EINVAL;
2844 break;
2845
2846 case TCP_QUEUE_SEQ:
2847 if (tp->repair_queue == TCP_SEND_QUEUE)
2848 val = tp->write_seq;
2849 else if (tp->repair_queue == TCP_RECV_QUEUE)
2850 val = tp->rcv_nxt;
2851 else
2852 return -EINVAL;
2853 break;
2854
2855 case TCP_USER_TIMEOUT:
2856 val = jiffies_to_msecs(icsk->icsk_user_timeout);
2857 break;
2858
2859 case TCP_FASTOPEN:
2860 if (icsk->icsk_accept_queue.fastopenq != NULL)
2861 val = icsk->icsk_accept_queue.fastopenq->max_qlen;
2862 else
2863 val = 0;
2864 break;
2865
2866 case TCP_TIMESTAMP:
2867 val = tcp_time_stamp + tp->tsoffset;
2868 break;
2869 case TCP_NOTSENT_LOWAT:
2870 val = tp->notsent_lowat;
2871 break;
2872 default:
2873 return -ENOPROTOOPT;
2874 }
2875
2876 if (put_user(len, optlen))
2877 return -EFAULT;
2878 if (copy_to_user(optval, &val, len))
2879 return -EFAULT;
2880 return 0;
2881 }
2882
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2883 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2884 int __user *optlen)
2885 {
2886 struct inet_connection_sock *icsk = inet_csk(sk);
2887
2888 if (level != SOL_TCP)
2889 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2890 optval, optlen);
2891 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2892 }
2893 EXPORT_SYMBOL(tcp_getsockopt);
2894
2895 #ifdef CONFIG_COMPAT
compat_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2896 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2897 char __user *optval, int __user *optlen)
2898 {
2899 if (level != SOL_TCP)
2900 return inet_csk_compat_getsockopt(sk, level, optname,
2901 optval, optlen);
2902 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2903 }
2904 EXPORT_SYMBOL(compat_tcp_getsockopt);
2905 #endif
2906
2907 #ifdef CONFIG_TCP_MD5SIG
2908 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2909 static DEFINE_MUTEX(tcp_md5sig_mutex);
2910 static bool tcp_md5sig_pool_populated = false;
2911
__tcp_alloc_md5sig_pool(void)2912 static void __tcp_alloc_md5sig_pool(void)
2913 {
2914 int cpu;
2915
2916 for_each_possible_cpu(cpu) {
2917 if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) {
2918 struct crypto_hash *hash;
2919
2920 hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2921 if (IS_ERR_OR_NULL(hash))
2922 return;
2923 per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash;
2924 }
2925 }
2926 /* before setting tcp_md5sig_pool_populated, we must commit all writes
2927 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2928 */
2929 smp_wmb();
2930 tcp_md5sig_pool_populated = true;
2931 }
2932
tcp_alloc_md5sig_pool(void)2933 bool tcp_alloc_md5sig_pool(void)
2934 {
2935 if (unlikely(!tcp_md5sig_pool_populated)) {
2936 mutex_lock(&tcp_md5sig_mutex);
2937
2938 if (!tcp_md5sig_pool_populated)
2939 __tcp_alloc_md5sig_pool();
2940
2941 mutex_unlock(&tcp_md5sig_mutex);
2942 }
2943 return tcp_md5sig_pool_populated;
2944 }
2945 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2946
2947
2948 /**
2949 * tcp_get_md5sig_pool - get md5sig_pool for this user
2950 *
2951 * We use percpu structure, so if we succeed, we exit with preemption
2952 * and BH disabled, to make sure another thread or softirq handling
2953 * wont try to get same context.
2954 */
tcp_get_md5sig_pool(void)2955 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2956 {
2957 local_bh_disable();
2958
2959 if (tcp_md5sig_pool_populated) {
2960 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
2961 smp_rmb();
2962 return this_cpu_ptr(&tcp_md5sig_pool);
2963 }
2964 local_bh_enable();
2965 return NULL;
2966 }
2967 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2968
tcp_md5_hash_header(struct tcp_md5sig_pool * hp,const struct tcphdr * th)2969 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2970 const struct tcphdr *th)
2971 {
2972 struct scatterlist sg;
2973 struct tcphdr hdr;
2974 int err;
2975
2976 /* We are not allowed to change tcphdr, make a local copy */
2977 memcpy(&hdr, th, sizeof(hdr));
2978 hdr.check = 0;
2979
2980 /* options aren't included in the hash */
2981 sg_init_one(&sg, &hdr, sizeof(hdr));
2982 err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
2983 return err;
2984 }
2985 EXPORT_SYMBOL(tcp_md5_hash_header);
2986
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)2987 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2988 const struct sk_buff *skb, unsigned int header_len)
2989 {
2990 struct scatterlist sg;
2991 const struct tcphdr *tp = tcp_hdr(skb);
2992 struct hash_desc *desc = &hp->md5_desc;
2993 unsigned int i;
2994 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
2995 skb_headlen(skb) - header_len : 0;
2996 const struct skb_shared_info *shi = skb_shinfo(skb);
2997 struct sk_buff *frag_iter;
2998
2999 sg_init_table(&sg, 1);
3000
3001 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3002 if (crypto_hash_update(desc, &sg, head_data_len))
3003 return 1;
3004
3005 for (i = 0; i < shi->nr_frags; ++i) {
3006 const struct skb_frag_struct *f = &shi->frags[i];
3007 unsigned int offset = f->page_offset;
3008 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3009
3010 sg_set_page(&sg, page, skb_frag_size(f),
3011 offset_in_page(offset));
3012 if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3013 return 1;
3014 }
3015
3016 skb_walk_frags(skb, frag_iter)
3017 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3018 return 1;
3019
3020 return 0;
3021 }
3022 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3023
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)3024 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3025 {
3026 struct scatterlist sg;
3027
3028 sg_init_one(&sg, key->key, key->keylen);
3029 return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3030 }
3031 EXPORT_SYMBOL(tcp_md5_hash_key);
3032
3033 #endif
3034
tcp_done(struct sock * sk)3035 void tcp_done(struct sock *sk)
3036 {
3037 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3038
3039 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3040 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3041
3042 tcp_set_state(sk, TCP_CLOSE);
3043 tcp_clear_xmit_timers(sk);
3044 if (req != NULL)
3045 reqsk_fastopen_remove(sk, req, false);
3046
3047 sk->sk_shutdown = SHUTDOWN_MASK;
3048
3049 if (!sock_flag(sk, SOCK_DEAD))
3050 sk->sk_state_change(sk);
3051 else
3052 inet_csk_destroy_sock(sk);
3053 }
3054 EXPORT_SYMBOL_GPL(tcp_done);
3055
tcp_abort(struct sock * sk,int err)3056 int tcp_abort(struct sock *sk, int err)
3057 {
3058 if (!sk_fullsock(sk)) {
3059 sock_gen_put(sk);
3060 return -EOPNOTSUPP;
3061 }
3062
3063 /* Don't race with userspace socket closes such as tcp_close. */
3064 lock_sock(sk);
3065
3066 if (sk->sk_state == TCP_LISTEN) {
3067 tcp_set_state(sk, TCP_CLOSE);
3068 inet_csk_listen_stop(sk);
3069 }
3070
3071 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3072 local_bh_disable();
3073 bh_lock_sock(sk);
3074
3075 if (!sock_flag(sk, SOCK_DEAD)) {
3076 sk->sk_err = err;
3077 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3078 smp_wmb();
3079 sk->sk_error_report(sk);
3080 if (tcp_need_reset(sk->sk_state))
3081 tcp_send_active_reset(sk, GFP_ATOMIC);
3082 tcp_done(sk);
3083 }
3084
3085 bh_unlock_sock(sk);
3086 local_bh_enable();
3087 release_sock(sk);
3088 sock_put(sk);
3089 return 0;
3090 }
3091 EXPORT_SYMBOL_GPL(tcp_abort);
3092
3093 extern struct tcp_congestion_ops tcp_reno;
3094
3095 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)3096 static int __init set_thash_entries(char *str)
3097 {
3098 ssize_t ret;
3099
3100 if (!str)
3101 return 0;
3102
3103 ret = kstrtoul(str, 0, &thash_entries);
3104 if (ret)
3105 return 0;
3106
3107 return 1;
3108 }
3109 __setup("thash_entries=", set_thash_entries);
3110
tcp_init_mem(void)3111 static void __init tcp_init_mem(void)
3112 {
3113 unsigned long limit = nr_free_buffer_pages() / 8;
3114 limit = max(limit, 128UL);
3115 sysctl_tcp_mem[0] = limit / 4 * 3;
3116 sysctl_tcp_mem[1] = limit;
3117 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3118 }
3119
tcp_init(void)3120 void __init tcp_init(void)
3121 {
3122 struct sk_buff *skb = NULL;
3123 unsigned long limit;
3124 int max_rshare, max_wshare, cnt;
3125 unsigned int i;
3126
3127 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3128
3129 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3130 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3131 tcp_hashinfo.bind_bucket_cachep =
3132 kmem_cache_create("tcp_bind_bucket",
3133 sizeof(struct inet_bind_bucket), 0,
3134 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3135
3136 /* Size and allocate the main established and bind bucket
3137 * hash tables.
3138 *
3139 * The methodology is similar to that of the buffer cache.
3140 */
3141 tcp_hashinfo.ehash =
3142 alloc_large_system_hash("TCP established",
3143 sizeof(struct inet_ehash_bucket),
3144 thash_entries,
3145 17, /* one slot per 128 KB of memory */
3146 0,
3147 NULL,
3148 &tcp_hashinfo.ehash_mask,
3149 0,
3150 thash_entries ? 0 : 512 * 1024);
3151 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3152 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3153
3154 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3155 panic("TCP: failed to alloc ehash_locks");
3156 tcp_hashinfo.bhash =
3157 alloc_large_system_hash("TCP bind",
3158 sizeof(struct inet_bind_hashbucket),
3159 tcp_hashinfo.ehash_mask + 1,
3160 17, /* one slot per 128 KB of memory */
3161 0,
3162 &tcp_hashinfo.bhash_size,
3163 NULL,
3164 0,
3165 64 * 1024);
3166 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3167 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3168 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3169 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3170 }
3171
3172
3173 cnt = tcp_hashinfo.ehash_mask + 1;
3174
3175 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3176 sysctl_tcp_max_orphans = cnt / 2;
3177 sysctl_max_syn_backlog = max(128, cnt / 256);
3178
3179 tcp_init_mem();
3180 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3181 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3182 max_wshare = min(4UL*1024*1024, limit);
3183 max_rshare = min(6UL*1024*1024, limit);
3184
3185 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3186 sysctl_tcp_wmem[1] = 16*1024;
3187 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3188
3189 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3190 sysctl_tcp_rmem[1] = 87380;
3191 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3192
3193 pr_info("Hash tables configured (established %u bind %u)\n",
3194 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3195
3196 tcp_metrics_init();
3197 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3198 tcp_tasklet_init();
3199 }
3200