• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <linux/kernel.h>
251 #include <linux/module.h>
252 #include <linux/types.h>
253 #include <linux/fcntl.h>
254 #include <linux/poll.h>
255 #include <linux/init.h>
256 #include <linux/fs.h>
257 #include <linux/skbuff.h>
258 #include <linux/scatterlist.h>
259 #include <linux/splice.h>
260 #include <linux/net.h>
261 #include <linux/socket.h>
262 #include <linux/random.h>
263 #include <linux/bootmem.h>
264 #include <linux/highmem.h>
265 #include <linux/swap.h>
266 #include <linux/cache.h>
267 #include <linux/err.h>
268 #include <linux/crypto.h>
269 #include <linux/time.h>
270 #include <linux/slab.h>
271 #include <linux/uid_stat.h>
272 
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283 
284 int sysctl_tcp_fin_timeout __read_mostly = TCP_FIN_TIMEOUT;
285 
286 int sysctl_tcp_min_tso_segs __read_mostly = 2;
287 
288 int sysctl_tcp_autocorking __read_mostly = 1;
289 
290 struct percpu_counter tcp_orphan_count;
291 EXPORT_SYMBOL_GPL(tcp_orphan_count);
292 
293 long sysctl_tcp_mem[3] __read_mostly;
294 int sysctl_tcp_wmem[3] __read_mostly;
295 int sysctl_tcp_rmem[3] __read_mostly;
296 
297 EXPORT_SYMBOL(sysctl_tcp_mem);
298 EXPORT_SYMBOL(sysctl_tcp_rmem);
299 EXPORT_SYMBOL(sysctl_tcp_wmem);
300 
301 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
302 EXPORT_SYMBOL(tcp_memory_allocated);
303 
304 /*
305  * Current number of TCP sockets.
306  */
307 struct percpu_counter tcp_sockets_allocated;
308 EXPORT_SYMBOL(tcp_sockets_allocated);
309 
310 /*
311  * TCP splice context
312  */
313 struct tcp_splice_state {
314 	struct pipe_inode_info *pipe;
315 	size_t len;
316 	unsigned int flags;
317 };
318 
319 /*
320  * Pressure flag: try to collapse.
321  * Technical note: it is used by multiple contexts non atomically.
322  * All the __sk_mem_schedule() is of this nature: accounting
323  * is strict, actions are advisory and have some latency.
324  */
325 int tcp_memory_pressure __read_mostly;
326 EXPORT_SYMBOL(tcp_memory_pressure);
327 
tcp_enter_memory_pressure(struct sock * sk)328 void tcp_enter_memory_pressure(struct sock *sk)
329 {
330 	if (!tcp_memory_pressure) {
331 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
332 		tcp_memory_pressure = 1;
333 	}
334 }
335 EXPORT_SYMBOL(tcp_enter_memory_pressure);
336 
337 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)338 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
339 {
340 	u8 res = 0;
341 
342 	if (seconds > 0) {
343 		int period = timeout;
344 
345 		res = 1;
346 		while (seconds > period && res < 255) {
347 			res++;
348 			timeout <<= 1;
349 			if (timeout > rto_max)
350 				timeout = rto_max;
351 			period += timeout;
352 		}
353 	}
354 	return res;
355 }
356 
357 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)358 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
359 {
360 	int period = 0;
361 
362 	if (retrans > 0) {
363 		period = timeout;
364 		while (--retrans) {
365 			timeout <<= 1;
366 			if (timeout > rto_max)
367 				timeout = rto_max;
368 			period += timeout;
369 		}
370 	}
371 	return period;
372 }
373 
374 /* Address-family independent initialization for a tcp_sock.
375  *
376  * NOTE: A lot of things set to zero explicitly by call to
377  *       sk_alloc() so need not be done here.
378  */
tcp_init_sock(struct sock * sk)379 void tcp_init_sock(struct sock *sk)
380 {
381 	struct inet_connection_sock *icsk = inet_csk(sk);
382 	struct tcp_sock *tp = tcp_sk(sk);
383 
384 	__skb_queue_head_init(&tp->out_of_order_queue);
385 	tcp_init_xmit_timers(sk);
386 	tcp_prequeue_init(tp);
387 	INIT_LIST_HEAD(&tp->tsq_node);
388 
389 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
390 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
391 
392 	/* So many TCP implementations out there (incorrectly) count the
393 	 * initial SYN frame in their delayed-ACK and congestion control
394 	 * algorithms that we must have the following bandaid to talk
395 	 * efficiently to them.  -DaveM
396 	 */
397 	tp->snd_cwnd = TCP_INIT_CWND;
398 
399 	/* See draft-stevens-tcpca-spec-01 for discussion of the
400 	 * initialization of these values.
401 	 */
402 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
403 	tp->snd_cwnd_clamp = ~0;
404 	tp->mss_cache = TCP_MSS_DEFAULT;
405 
406 	tp->reordering = sysctl_tcp_reordering;
407 	tcp_enable_early_retrans(tp);
408 	tcp_assign_congestion_control(sk);
409 
410 	tp->tsoffset = 0;
411 
412 	sk->sk_state = TCP_CLOSE;
413 
414 	sk->sk_write_space = sk_stream_write_space;
415 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
416 
417 	icsk->icsk_sync_mss = tcp_sync_mss;
418 
419 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
420 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
421 
422 	local_bh_disable();
423 	sock_update_memcg(sk);
424 	sk_sockets_allocated_inc(sk);
425 	local_bh_enable();
426 }
427 EXPORT_SYMBOL(tcp_init_sock);
428 
tcp_tx_timestamp(struct sock * sk,struct sk_buff * skb)429 static void tcp_tx_timestamp(struct sock *sk, struct sk_buff *skb)
430 {
431 	if (sk->sk_tsflags) {
432 		struct skb_shared_info *shinfo = skb_shinfo(skb);
433 
434 		sock_tx_timestamp(sk, &shinfo->tx_flags);
435 		if (shinfo->tx_flags & SKBTX_ANY_TSTAMP)
436 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
437 	}
438 }
439 
440 /*
441  *	Wait for a TCP event.
442  *
443  *	Note that we don't need to lock the socket, as the upper poll layers
444  *	take care of normal races (between the test and the event) and we don't
445  *	go look at any of the socket buffers directly.
446  */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)447 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
448 {
449 	unsigned int mask;
450 	struct sock *sk = sock->sk;
451 	const struct tcp_sock *tp = tcp_sk(sk);
452 
453 	sock_rps_record_flow(sk);
454 
455 	sock_poll_wait(file, sk_sleep(sk), wait);
456 	if (sk->sk_state == TCP_LISTEN)
457 		return inet_csk_listen_poll(sk);
458 
459 	/* Socket is not locked. We are protected from async events
460 	 * by poll logic and correct handling of state changes
461 	 * made by other threads is impossible in any case.
462 	 */
463 
464 	mask = 0;
465 
466 	/*
467 	 * POLLHUP is certainly not done right. But poll() doesn't
468 	 * have a notion of HUP in just one direction, and for a
469 	 * socket the read side is more interesting.
470 	 *
471 	 * Some poll() documentation says that POLLHUP is incompatible
472 	 * with the POLLOUT/POLLWR flags, so somebody should check this
473 	 * all. But careful, it tends to be safer to return too many
474 	 * bits than too few, and you can easily break real applications
475 	 * if you don't tell them that something has hung up!
476 	 *
477 	 * Check-me.
478 	 *
479 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
480 	 * our fs/select.c). It means that after we received EOF,
481 	 * poll always returns immediately, making impossible poll() on write()
482 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
483 	 * if and only if shutdown has been made in both directions.
484 	 * Actually, it is interesting to look how Solaris and DUX
485 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
486 	 * then we could set it on SND_SHUTDOWN. BTW examples given
487 	 * in Stevens' books assume exactly this behaviour, it explains
488 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
489 	 *
490 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
491 	 * blocking on fresh not-connected or disconnected socket. --ANK
492 	 */
493 	if (sk->sk_shutdown == SHUTDOWN_MASK || sk->sk_state == TCP_CLOSE)
494 		mask |= POLLHUP;
495 	if (sk->sk_shutdown & RCV_SHUTDOWN)
496 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
497 
498 	/* Connected or passive Fast Open socket? */
499 	if (sk->sk_state != TCP_SYN_SENT &&
500 	    (sk->sk_state != TCP_SYN_RECV || tp->fastopen_rsk != NULL)) {
501 		int target = sock_rcvlowat(sk, 0, INT_MAX);
502 
503 		if (tp->urg_seq == tp->copied_seq &&
504 		    !sock_flag(sk, SOCK_URGINLINE) &&
505 		    tp->urg_data)
506 			target++;
507 
508 		/* Potential race condition. If read of tp below will
509 		 * escape above sk->sk_state, we can be illegally awaken
510 		 * in SYN_* states. */
511 		if (tp->rcv_nxt - tp->copied_seq >= target)
512 			mask |= POLLIN | POLLRDNORM;
513 
514 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
515 			if (sk_stream_is_writeable(sk)) {
516 				mask |= POLLOUT | POLLWRNORM;
517 			} else {  /* send SIGIO later */
518 				set_bit(SOCK_ASYNC_NOSPACE,
519 					&sk->sk_socket->flags);
520 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
521 
522 				/* Race breaker. If space is freed after
523 				 * wspace test but before the flags are set,
524 				 * IO signal will be lost.
525 				 */
526 				if (sk_stream_is_writeable(sk))
527 					mask |= POLLOUT | POLLWRNORM;
528 			}
529 		} else
530 			mask |= POLLOUT | POLLWRNORM;
531 
532 		if (tp->urg_data & TCP_URG_VALID)
533 			mask |= POLLPRI;
534 	}
535 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
536 	smp_rmb();
537 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
538 		mask |= POLLERR;
539 
540 	return mask;
541 }
542 EXPORT_SYMBOL(tcp_poll);
543 
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)544 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
545 {
546 	struct tcp_sock *tp = tcp_sk(sk);
547 	int answ;
548 	bool slow;
549 
550 	switch (cmd) {
551 	case SIOCINQ:
552 		if (sk->sk_state == TCP_LISTEN)
553 			return -EINVAL;
554 
555 		slow = lock_sock_fast(sk);
556 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
557 			answ = 0;
558 		else if (sock_flag(sk, SOCK_URGINLINE) ||
559 			 !tp->urg_data ||
560 			 before(tp->urg_seq, tp->copied_seq) ||
561 			 !before(tp->urg_seq, tp->rcv_nxt)) {
562 
563 			answ = tp->rcv_nxt - tp->copied_seq;
564 
565 			/* Subtract 1, if FIN was received */
566 			if (answ && sock_flag(sk, SOCK_DONE))
567 				answ--;
568 		} else
569 			answ = tp->urg_seq - tp->copied_seq;
570 		unlock_sock_fast(sk, slow);
571 		break;
572 	case SIOCATMARK:
573 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
574 		break;
575 	case SIOCOUTQ:
576 		if (sk->sk_state == TCP_LISTEN)
577 			return -EINVAL;
578 
579 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
580 			answ = 0;
581 		else
582 			answ = tp->write_seq - tp->snd_una;
583 		break;
584 	case SIOCOUTQNSD:
585 		if (sk->sk_state == TCP_LISTEN)
586 			return -EINVAL;
587 
588 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
589 			answ = 0;
590 		else
591 			answ = tp->write_seq - tp->snd_nxt;
592 		break;
593 	default:
594 		return -ENOIOCTLCMD;
595 	}
596 
597 	return put_user(answ, (int __user *)arg);
598 }
599 EXPORT_SYMBOL(tcp_ioctl);
600 
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)601 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
602 {
603 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
604 	tp->pushed_seq = tp->write_seq;
605 }
606 
forced_push(const struct tcp_sock * tp)607 static inline bool forced_push(const struct tcp_sock *tp)
608 {
609 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
610 }
611 
skb_entail(struct sock * sk,struct sk_buff * skb)612 static void skb_entail(struct sock *sk, struct sk_buff *skb)
613 {
614 	struct tcp_sock *tp = tcp_sk(sk);
615 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
616 
617 	skb->csum    = 0;
618 	tcb->seq     = tcb->end_seq = tp->write_seq;
619 	tcb->tcp_flags = TCPHDR_ACK;
620 	tcb->sacked  = 0;
621 	__skb_header_release(skb);
622 	tcp_add_write_queue_tail(sk, skb);
623 	sk->sk_wmem_queued += skb->truesize;
624 	sk_mem_charge(sk, skb->truesize);
625 	if (tp->nonagle & TCP_NAGLE_PUSH)
626 		tp->nonagle &= ~TCP_NAGLE_PUSH;
627 }
628 
tcp_mark_urg(struct tcp_sock * tp,int flags)629 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
630 {
631 	if (flags & MSG_OOB)
632 		tp->snd_up = tp->write_seq;
633 }
634 
635 /* If a not yet filled skb is pushed, do not send it if
636  * we have data packets in Qdisc or NIC queues :
637  * Because TX completion will happen shortly, it gives a chance
638  * to coalesce future sendmsg() payload into this skb, without
639  * need for a timer, and with no latency trade off.
640  * As packets containing data payload have a bigger truesize
641  * than pure acks (dataless) packets, the last checks prevent
642  * autocorking if we only have an ACK in Qdisc/NIC queues,
643  * or if TX completion was delayed after we processed ACK packet.
644  */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)645 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
646 				int size_goal)
647 {
648 	return skb->len < size_goal &&
649 	       sysctl_tcp_autocorking &&
650 	       skb != tcp_write_queue_head(sk) &&
651 	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
652 }
653 
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)654 static void tcp_push(struct sock *sk, int flags, int mss_now,
655 		     int nonagle, int size_goal)
656 {
657 	struct tcp_sock *tp = tcp_sk(sk);
658 	struct sk_buff *skb;
659 
660 	if (!tcp_send_head(sk))
661 		return;
662 
663 	skb = tcp_write_queue_tail(sk);
664 	if (!(flags & MSG_MORE) || forced_push(tp))
665 		tcp_mark_push(tp, skb);
666 
667 	tcp_mark_urg(tp, flags);
668 
669 	if (tcp_should_autocork(sk, skb, size_goal)) {
670 
671 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
672 		if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
673 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
674 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
675 		}
676 		/* It is possible TX completion already happened
677 		 * before we set TSQ_THROTTLED.
678 		 */
679 		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
680 			return;
681 	}
682 
683 	if (flags & MSG_MORE)
684 		nonagle = TCP_NAGLE_CORK;
685 
686 	__tcp_push_pending_frames(sk, mss_now, nonagle);
687 }
688 
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)689 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
690 				unsigned int offset, size_t len)
691 {
692 	struct tcp_splice_state *tss = rd_desc->arg.data;
693 	int ret;
694 
695 	ret = skb_splice_bits(skb, offset, tss->pipe, min(rd_desc->count, len),
696 			      tss->flags);
697 	if (ret > 0)
698 		rd_desc->count -= ret;
699 	return ret;
700 }
701 
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)702 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
703 {
704 	/* Store TCP splice context information in read_descriptor_t. */
705 	read_descriptor_t rd_desc = {
706 		.arg.data = tss,
707 		.count	  = tss->len,
708 	};
709 
710 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
711 }
712 
713 /**
714  *  tcp_splice_read - splice data from TCP socket to a pipe
715  * @sock:	socket to splice from
716  * @ppos:	position (not valid)
717  * @pipe:	pipe to splice to
718  * @len:	number of bytes to splice
719  * @flags:	splice modifier flags
720  *
721  * Description:
722  *    Will read pages from given socket and fill them into a pipe.
723  *
724  **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)725 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
726 			struct pipe_inode_info *pipe, size_t len,
727 			unsigned int flags)
728 {
729 	struct sock *sk = sock->sk;
730 	struct tcp_splice_state tss = {
731 		.pipe = pipe,
732 		.len = len,
733 		.flags = flags,
734 	};
735 	long timeo;
736 	ssize_t spliced;
737 	int ret;
738 
739 	sock_rps_record_flow(sk);
740 	/*
741 	 * We can't seek on a socket input
742 	 */
743 	if (unlikely(*ppos))
744 		return -ESPIPE;
745 
746 	ret = spliced = 0;
747 
748 	lock_sock(sk);
749 
750 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
751 	while (tss.len) {
752 		ret = __tcp_splice_read(sk, &tss);
753 		if (ret < 0)
754 			break;
755 		else if (!ret) {
756 			if (spliced)
757 				break;
758 			if (sock_flag(sk, SOCK_DONE))
759 				break;
760 			if (sk->sk_err) {
761 				ret = sock_error(sk);
762 				break;
763 			}
764 			if (sk->sk_shutdown & RCV_SHUTDOWN)
765 				break;
766 			if (sk->sk_state == TCP_CLOSE) {
767 				/*
768 				 * This occurs when user tries to read
769 				 * from never connected socket.
770 				 */
771 				if (!sock_flag(sk, SOCK_DONE))
772 					ret = -ENOTCONN;
773 				break;
774 			}
775 			if (!timeo) {
776 				ret = -EAGAIN;
777 				break;
778 			}
779 			/* if __tcp_splice_read() got nothing while we have
780 			 * an skb in receive queue, we do not want to loop.
781 			 * This might happen with URG data.
782 			 */
783 			if (!skb_queue_empty(&sk->sk_receive_queue))
784 				break;
785 			sk_wait_data(sk, &timeo);
786 			if (signal_pending(current)) {
787 				ret = sock_intr_errno(timeo);
788 				break;
789 			}
790 			continue;
791 		}
792 		tss.len -= ret;
793 		spliced += ret;
794 
795 		if (!timeo)
796 			break;
797 		release_sock(sk);
798 		lock_sock(sk);
799 
800 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
801 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
802 		    signal_pending(current))
803 			break;
804 	}
805 
806 	release_sock(sk);
807 
808 	if (spliced)
809 		return spliced;
810 
811 	return ret;
812 }
813 EXPORT_SYMBOL(tcp_splice_read);
814 
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp)815 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp)
816 {
817 	struct sk_buff *skb;
818 
819 	/* The TCP header must be at least 32-bit aligned.  */
820 	size = ALIGN(size, 4);
821 
822 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
823 	if (skb) {
824 		if (sk_wmem_schedule(sk, skb->truesize)) {
825 			skb_reserve(skb, sk->sk_prot->max_header);
826 			/*
827 			 * Make sure that we have exactly size bytes
828 			 * available to the caller, no more, no less.
829 			 */
830 			skb->reserved_tailroom = skb->end - skb->tail - size;
831 			return skb;
832 		}
833 		__kfree_skb(skb);
834 	} else {
835 		sk->sk_prot->enter_memory_pressure(sk);
836 		sk_stream_moderate_sndbuf(sk);
837 	}
838 	return NULL;
839 }
840 
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)841 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
842 				       int large_allowed)
843 {
844 	struct tcp_sock *tp = tcp_sk(sk);
845 	u32 xmit_size_goal, old_size_goal;
846 
847 	xmit_size_goal = mss_now;
848 
849 	if (large_allowed && sk_can_gso(sk)) {
850 		u32 gso_size, hlen;
851 
852 		/* Maybe we should/could use sk->sk_prot->max_header here ? */
853 		hlen = inet_csk(sk)->icsk_af_ops->net_header_len +
854 		       inet_csk(sk)->icsk_ext_hdr_len +
855 		       tp->tcp_header_len;
856 
857 		/* Goal is to send at least one packet per ms,
858 		 * not one big TSO packet every 100 ms.
859 		 * This preserves ACK clocking and is consistent
860 		 * with tcp_tso_should_defer() heuristic.
861 		 */
862 		gso_size = sk->sk_pacing_rate / (2 * MSEC_PER_SEC);
863 		gso_size = max_t(u32, gso_size,
864 				 sysctl_tcp_min_tso_segs * mss_now);
865 
866 		xmit_size_goal = min_t(u32, gso_size,
867 				       sk->sk_gso_max_size - 1 - hlen);
868 
869 		xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
870 
871 		/* We try hard to avoid divides here */
872 		old_size_goal = tp->xmit_size_goal_segs * mss_now;
873 
874 		if (likely(old_size_goal <= xmit_size_goal &&
875 			   old_size_goal + mss_now > xmit_size_goal)) {
876 			xmit_size_goal = old_size_goal;
877 		} else {
878 			tp->xmit_size_goal_segs =
879 				min_t(u16, xmit_size_goal / mss_now,
880 				      sk->sk_gso_max_segs);
881 			xmit_size_goal = tp->xmit_size_goal_segs * mss_now;
882 		}
883 	}
884 
885 	return max(xmit_size_goal, mss_now);
886 }
887 
tcp_send_mss(struct sock * sk,int * size_goal,int flags)888 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
889 {
890 	int mss_now;
891 
892 	mss_now = tcp_current_mss(sk);
893 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
894 
895 	return mss_now;
896 }
897 
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)898 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
899 				size_t size, int flags)
900 {
901 	struct tcp_sock *tp = tcp_sk(sk);
902 	int mss_now, size_goal;
903 	int err;
904 	ssize_t copied;
905 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
906 
907 	/* Wait for a connection to finish. One exception is TCP Fast Open
908 	 * (passive side) where data is allowed to be sent before a connection
909 	 * is fully established.
910 	 */
911 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
912 	    !tcp_passive_fastopen(sk)) {
913 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
914 			goto out_err;
915 	}
916 
917 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
918 
919 	mss_now = tcp_send_mss(sk, &size_goal, flags);
920 	copied = 0;
921 
922 	err = -EPIPE;
923 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
924 		goto out_err;
925 
926 	while (size > 0) {
927 		struct sk_buff *skb = tcp_write_queue_tail(sk);
928 		int copy, i;
929 		bool can_coalesce;
930 
931 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0) {
932 new_segment:
933 			if (!sk_stream_memory_free(sk))
934 				goto wait_for_sndbuf;
935 
936 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation);
937 			if (!skb)
938 				goto wait_for_memory;
939 
940 			skb_entail(sk, skb);
941 			copy = size_goal;
942 		}
943 
944 		if (copy > size)
945 			copy = size;
946 
947 		i = skb_shinfo(skb)->nr_frags;
948 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
949 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
950 			tcp_mark_push(tp, skb);
951 			goto new_segment;
952 		}
953 		if (!sk_wmem_schedule(sk, copy))
954 			goto wait_for_memory;
955 
956 		if (can_coalesce) {
957 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
958 		} else {
959 			get_page(page);
960 			skb_fill_page_desc(skb, i, page, offset, copy);
961 		}
962 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
963 
964 		skb->len += copy;
965 		skb->data_len += copy;
966 		skb->truesize += copy;
967 		sk->sk_wmem_queued += copy;
968 		sk_mem_charge(sk, copy);
969 		skb->ip_summed = CHECKSUM_PARTIAL;
970 		tp->write_seq += copy;
971 		TCP_SKB_CB(skb)->end_seq += copy;
972 		tcp_skb_pcount_set(skb, 0);
973 
974 		if (!copied)
975 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
976 
977 		copied += copy;
978 		offset += copy;
979 		if (!(size -= copy)) {
980 			tcp_tx_timestamp(sk, skb);
981 			goto out;
982 		}
983 
984 		if (skb->len < size_goal || (flags & MSG_OOB))
985 			continue;
986 
987 		if (forced_push(tp)) {
988 			tcp_mark_push(tp, skb);
989 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
990 		} else if (skb == tcp_send_head(sk))
991 			tcp_push_one(sk, mss_now);
992 		continue;
993 
994 wait_for_sndbuf:
995 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
996 wait_for_memory:
997 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
998 			 TCP_NAGLE_PUSH, size_goal);
999 
1000 		if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1001 			goto do_error;
1002 
1003 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1004 	}
1005 
1006 out:
1007 	if (copied && !(flags & MSG_SENDPAGE_NOTLAST))
1008 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1009 	return copied;
1010 
1011 do_error:
1012 	if (copied)
1013 		goto out;
1014 out_err:
1015 	return sk_stream_error(sk, flags, err);
1016 }
1017 
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1018 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1019 		 size_t size, int flags)
1020 {
1021 	ssize_t res;
1022 
1023 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1024 	    !(sk->sk_route_caps & NETIF_F_ALL_CSUM))
1025 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1026 					flags);
1027 
1028 	lock_sock(sk);
1029 	res = do_tcp_sendpages(sk, page, offset, size, flags);
1030 	release_sock(sk);
1031 	return res;
1032 }
1033 EXPORT_SYMBOL(tcp_sendpage);
1034 
select_size(const struct sock * sk,bool sg)1035 static inline int select_size(const struct sock *sk, bool sg)
1036 {
1037 	const struct tcp_sock *tp = tcp_sk(sk);
1038 	int tmp = tp->mss_cache;
1039 
1040 	if (sg) {
1041 		if (sk_can_gso(sk)) {
1042 			/* Small frames wont use a full page:
1043 			 * Payload will immediately follow tcp header.
1044 			 */
1045 			tmp = SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1046 		} else {
1047 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1048 
1049 			if (tmp >= pgbreak &&
1050 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1051 				tmp = pgbreak;
1052 		}
1053 	}
1054 
1055 	return tmp;
1056 }
1057 
tcp_free_fastopen_req(struct tcp_sock * tp)1058 void tcp_free_fastopen_req(struct tcp_sock *tp)
1059 {
1060 	if (tp->fastopen_req != NULL) {
1061 		kfree(tp->fastopen_req);
1062 		tp->fastopen_req = NULL;
1063 	}
1064 }
1065 
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size)1066 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1067 				int *copied, size_t size)
1068 {
1069 	struct tcp_sock *tp = tcp_sk(sk);
1070 	struct sockaddr *uaddr = msg->msg_name;
1071 	int err, flags;
1072 
1073 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1074 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1075 	     uaddr->sa_family == AF_UNSPEC))
1076 		return -EOPNOTSUPP;
1077 	if (tp->fastopen_req != NULL)
1078 		return -EALREADY; /* Another Fast Open is in progress */
1079 
1080 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1081 				   sk->sk_allocation);
1082 	if (unlikely(tp->fastopen_req == NULL))
1083 		return -ENOBUFS;
1084 	tp->fastopen_req->data = msg;
1085 	tp->fastopen_req->size = size;
1086 
1087 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1088 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1089 				    msg->msg_namelen, flags);
1090 	*copied = tp->fastopen_req->copied;
1091 	tcp_free_fastopen_req(tp);
1092 	return err;
1093 }
1094 
tcp_sendmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t size)1095 int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1096 		size_t size)
1097 {
1098 	struct iovec *iov;
1099 	struct tcp_sock *tp = tcp_sk(sk);
1100 	struct sk_buff *skb;
1101 	int iovlen, flags, err, copied = 0;
1102 	int mss_now = 0, size_goal, copied_syn = 0, offset = 0;
1103 	bool sg;
1104 	long timeo;
1105 
1106 	lock_sock(sk);
1107 
1108 	flags = msg->msg_flags;
1109 	if (flags & MSG_FASTOPEN) {
1110 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1111 		if (err == -EINPROGRESS && copied_syn > 0)
1112 			goto out;
1113 		else if (err)
1114 			goto out_err;
1115 		offset = copied_syn;
1116 	}
1117 
1118 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1119 
1120 	/* Wait for a connection to finish. One exception is TCP Fast Open
1121 	 * (passive side) where data is allowed to be sent before a connection
1122 	 * is fully established.
1123 	 */
1124 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1125 	    !tcp_passive_fastopen(sk)) {
1126 		if ((err = sk_stream_wait_connect(sk, &timeo)) != 0)
1127 			goto do_error;
1128 	}
1129 
1130 	if (unlikely(tp->repair)) {
1131 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1132 			copied = tcp_send_rcvq(sk, msg, size);
1133 			goto out_nopush;
1134 		}
1135 
1136 		err = -EINVAL;
1137 		if (tp->repair_queue == TCP_NO_QUEUE)
1138 			goto out_err;
1139 
1140 		/* 'common' sending to sendq */
1141 	}
1142 
1143 	/* This should be in poll */
1144 	clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1145 
1146 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1147 
1148 	/* Ok commence sending. */
1149 	iovlen = msg->msg_iovlen;
1150 	iov = msg->msg_iov;
1151 	copied = 0;
1152 
1153 	err = -EPIPE;
1154 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1155 		goto out_err;
1156 
1157 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1158 
1159 	while (--iovlen >= 0) {
1160 		size_t seglen = iov->iov_len;
1161 		unsigned char __user *from = iov->iov_base;
1162 
1163 		iov++;
1164 		if (unlikely(offset > 0)) {  /* Skip bytes copied in SYN */
1165 			if (offset >= seglen) {
1166 				offset -= seglen;
1167 				continue;
1168 			}
1169 			seglen -= offset;
1170 			from += offset;
1171 			offset = 0;
1172 		}
1173 
1174 		while (seglen > 0) {
1175 			int copy = 0;
1176 			int max = size_goal;
1177 
1178 			skb = tcp_write_queue_tail(sk);
1179 			if (tcp_send_head(sk)) {
1180 				if (skb->ip_summed == CHECKSUM_NONE)
1181 					max = mss_now;
1182 				copy = max - skb->len;
1183 			}
1184 
1185 			if (copy <= 0) {
1186 new_segment:
1187 				/* Allocate new segment. If the interface is SG,
1188 				 * allocate skb fitting to single page.
1189 				 */
1190 				if (!sk_stream_memory_free(sk))
1191 					goto wait_for_sndbuf;
1192 
1193 				skb = sk_stream_alloc_skb(sk,
1194 							  select_size(sk, sg),
1195 							  sk->sk_allocation);
1196 				if (!skb)
1197 					goto wait_for_memory;
1198 
1199 				/*
1200 				 * Check whether we can use HW checksum.
1201 				 */
1202 				if (sk->sk_route_caps & NETIF_F_ALL_CSUM)
1203 					skb->ip_summed = CHECKSUM_PARTIAL;
1204 
1205 				skb_entail(sk, skb);
1206 				copy = size_goal;
1207 				max = size_goal;
1208 
1209 				/* All packets are restored as if they have
1210 				 * already been sent. skb_mstamp isn't set to
1211 				 * avoid wrong rtt estimation.
1212 				 */
1213 				if (tp->repair)
1214 					TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1215 			}
1216 
1217 			/* Try to append data to the end of skb. */
1218 			if (copy > seglen)
1219 				copy = seglen;
1220 
1221 			/* Where to copy to? */
1222 			if (skb_availroom(skb) > 0) {
1223 				/* We have some space in skb head. Superb! */
1224 				copy = min_t(int, copy, skb_availroom(skb));
1225 				err = skb_add_data_nocache(sk, skb, from, copy);
1226 				if (err)
1227 					goto do_fault;
1228 			} else {
1229 				bool merge = true;
1230 				int i = skb_shinfo(skb)->nr_frags;
1231 				struct page_frag *pfrag = sk_page_frag(sk);
1232 
1233 				if (!sk_page_frag_refill(sk, pfrag))
1234 					goto wait_for_memory;
1235 
1236 				if (!skb_can_coalesce(skb, i, pfrag->page,
1237 						      pfrag->offset)) {
1238 					if (i == sysctl_max_skb_frags || !sg) {
1239 						tcp_mark_push(tp, skb);
1240 						goto new_segment;
1241 					}
1242 					merge = false;
1243 				}
1244 
1245 				copy = min_t(int, copy, pfrag->size - pfrag->offset);
1246 
1247 				if (!sk_wmem_schedule(sk, copy))
1248 					goto wait_for_memory;
1249 
1250 				err = skb_copy_to_page_nocache(sk, from, skb,
1251 							       pfrag->page,
1252 							       pfrag->offset,
1253 							       copy);
1254 				if (err)
1255 					goto do_error;
1256 
1257 				/* Update the skb. */
1258 				if (merge) {
1259 					skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1260 				} else {
1261 					skb_fill_page_desc(skb, i, pfrag->page,
1262 							   pfrag->offset, copy);
1263 					get_page(pfrag->page);
1264 				}
1265 				pfrag->offset += copy;
1266 			}
1267 
1268 			if (!copied)
1269 				TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1270 
1271 			tp->write_seq += copy;
1272 			TCP_SKB_CB(skb)->end_seq += copy;
1273 			tcp_skb_pcount_set(skb, 0);
1274 
1275 			from += copy;
1276 			copied += copy;
1277 			if ((seglen -= copy) == 0 && iovlen == 0) {
1278 				tcp_tx_timestamp(sk, skb);
1279 				goto out;
1280 			}
1281 
1282 			if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1283 				continue;
1284 
1285 			if (forced_push(tp)) {
1286 				tcp_mark_push(tp, skb);
1287 				__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1288 			} else if (skb == tcp_send_head(sk))
1289 				tcp_push_one(sk, mss_now);
1290 			continue;
1291 
1292 wait_for_sndbuf:
1293 			set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1294 wait_for_memory:
1295 			if (copied)
1296 				tcp_push(sk, flags & ~MSG_MORE, mss_now,
1297 					 TCP_NAGLE_PUSH, size_goal);
1298 
1299 			if ((err = sk_stream_wait_memory(sk, &timeo)) != 0)
1300 				goto do_error;
1301 
1302 			mss_now = tcp_send_mss(sk, &size_goal, flags);
1303 		}
1304 	}
1305 
1306 out:
1307 	if (copied)
1308 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1309 out_nopush:
1310 	release_sock(sk);
1311 
1312 	if (copied + copied_syn)
1313 		uid_stat_tcp_snd(from_kuid(&init_user_ns, current_uid()),
1314 				 copied + copied_syn);
1315 	return copied + copied_syn;
1316 
1317 do_fault:
1318 	if (!skb->len) {
1319 		tcp_unlink_write_queue(skb, sk);
1320 		/* It is the one place in all of TCP, except connection
1321 		 * reset, where we can be unlinking the send_head.
1322 		 */
1323 		tcp_check_send_head(sk, skb);
1324 		sk_wmem_free_skb(sk, skb);
1325 	}
1326 
1327 do_error:
1328 	if (copied + copied_syn)
1329 		goto out;
1330 out_err:
1331 	err = sk_stream_error(sk, flags, err);
1332 	release_sock(sk);
1333 	return err;
1334 }
1335 EXPORT_SYMBOL(tcp_sendmsg);
1336 
1337 /*
1338  *	Handle reading urgent data. BSD has very simple semantics for
1339  *	this, no blocking and very strange errors 8)
1340  */
1341 
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1342 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1343 {
1344 	struct tcp_sock *tp = tcp_sk(sk);
1345 
1346 	/* No URG data to read. */
1347 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1348 	    tp->urg_data == TCP_URG_READ)
1349 		return -EINVAL;	/* Yes this is right ! */
1350 
1351 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1352 		return -ENOTCONN;
1353 
1354 	if (tp->urg_data & TCP_URG_VALID) {
1355 		int err = 0;
1356 		char c = tp->urg_data;
1357 
1358 		if (!(flags & MSG_PEEK))
1359 			tp->urg_data = TCP_URG_READ;
1360 
1361 		/* Read urgent data. */
1362 		msg->msg_flags |= MSG_OOB;
1363 
1364 		if (len > 0) {
1365 			if (!(flags & MSG_TRUNC))
1366 				err = memcpy_toiovec(msg->msg_iov, &c, 1);
1367 			len = 1;
1368 		} else
1369 			msg->msg_flags |= MSG_TRUNC;
1370 
1371 		return err ? -EFAULT : len;
1372 	}
1373 
1374 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1375 		return 0;
1376 
1377 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1378 	 * the available implementations agree in this case:
1379 	 * this call should never block, independent of the
1380 	 * blocking state of the socket.
1381 	 * Mike <pall@rz.uni-karlsruhe.de>
1382 	 */
1383 	return -EAGAIN;
1384 }
1385 
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1386 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1387 {
1388 	struct sk_buff *skb;
1389 	int copied = 0, err = 0;
1390 
1391 	/* XXX -- need to support SO_PEEK_OFF */
1392 
1393 	skb_queue_walk(&sk->sk_write_queue, skb) {
1394 		err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, skb->len);
1395 		if (err)
1396 			break;
1397 
1398 		copied += skb->len;
1399 	}
1400 
1401 	return err ?: copied;
1402 }
1403 
1404 /* Clean up the receive buffer for full frames taken by the user,
1405  * then send an ACK if necessary.  COPIED is the number of bytes
1406  * tcp_recvmsg has given to the user so far, it speeds up the
1407  * calculation of whether or not we must ACK for the sake of
1408  * a window update.
1409  */
tcp_cleanup_rbuf(struct sock * sk,int copied)1410 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1411 {
1412 	struct tcp_sock *tp = tcp_sk(sk);
1413 	bool time_to_ack = false;
1414 
1415 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1416 
1417 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1418 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1419 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1420 
1421 	if (inet_csk_ack_scheduled(sk)) {
1422 		const struct inet_connection_sock *icsk = inet_csk(sk);
1423 		   /* Delayed ACKs frequently hit locked sockets during bulk
1424 		    * receive. */
1425 		if (icsk->icsk_ack.blocked ||
1426 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1427 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1428 		    /*
1429 		     * If this read emptied read buffer, we send ACK, if
1430 		     * connection is not bidirectional, user drained
1431 		     * receive buffer and there was a small segment
1432 		     * in queue.
1433 		     */
1434 		    (copied > 0 &&
1435 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1436 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1437 		       !icsk->icsk_ack.pingpong)) &&
1438 		      !atomic_read(&sk->sk_rmem_alloc)))
1439 			time_to_ack = true;
1440 	}
1441 
1442 	/* We send an ACK if we can now advertise a non-zero window
1443 	 * which has been raised "significantly".
1444 	 *
1445 	 * Even if window raised up to infinity, do not send window open ACK
1446 	 * in states, where we will not receive more. It is useless.
1447 	 */
1448 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1449 		__u32 rcv_window_now = tcp_receive_window(tp);
1450 
1451 		/* Optimize, __tcp_select_window() is not cheap. */
1452 		if (2*rcv_window_now <= tp->window_clamp) {
1453 			__u32 new_window = __tcp_select_window(sk);
1454 
1455 			/* Send ACK now, if this read freed lots of space
1456 			 * in our buffer. Certainly, new_window is new window.
1457 			 * We can advertise it now, if it is not less than current one.
1458 			 * "Lots" means "at least twice" here.
1459 			 */
1460 			if (new_window && new_window >= 2 * rcv_window_now)
1461 				time_to_ack = true;
1462 		}
1463 	}
1464 	if (time_to_ack)
1465 		tcp_send_ack(sk);
1466 }
1467 
tcp_prequeue_process(struct sock * sk)1468 static void tcp_prequeue_process(struct sock *sk)
1469 {
1470 	struct sk_buff *skb;
1471 	struct tcp_sock *tp = tcp_sk(sk);
1472 
1473 	NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1474 
1475 	/* RX process wants to run with disabled BHs, though it is not
1476 	 * necessary */
1477 	local_bh_disable();
1478 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1479 		sk_backlog_rcv(sk, skb);
1480 	local_bh_enable();
1481 
1482 	/* Clear memory counter. */
1483 	tp->ucopy.memory = 0;
1484 }
1485 
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1486 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1487 {
1488 	struct sk_buff *skb;
1489 	u32 offset;
1490 
1491 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1492 		offset = seq - TCP_SKB_CB(skb)->seq;
1493 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1494 			offset--;
1495 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1496 			*off = offset;
1497 			return skb;
1498 		}
1499 		/* This looks weird, but this can happen if TCP collapsing
1500 		 * splitted a fat GRO packet, while we released socket lock
1501 		 * in skb_splice_bits()
1502 		 */
1503 		sk_eat_skb(sk, skb);
1504 	}
1505 	return NULL;
1506 }
1507 
1508 /*
1509  * This routine provides an alternative to tcp_recvmsg() for routines
1510  * that would like to handle copying from skbuffs directly in 'sendfile'
1511  * fashion.
1512  * Note:
1513  *	- It is assumed that the socket was locked by the caller.
1514  *	- The routine does not block.
1515  *	- At present, there is no support for reading OOB data
1516  *	  or for 'peeking' the socket using this routine
1517  *	  (although both would be easy to implement).
1518  */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1519 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1520 		  sk_read_actor_t recv_actor)
1521 {
1522 	struct sk_buff *skb;
1523 	struct tcp_sock *tp = tcp_sk(sk);
1524 	u32 seq = tp->copied_seq;
1525 	u32 offset;
1526 	int copied = 0;
1527 
1528 	if (sk->sk_state == TCP_LISTEN)
1529 		return -ENOTCONN;
1530 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1531 		if (offset < skb->len) {
1532 			int used;
1533 			size_t len;
1534 
1535 			len = skb->len - offset;
1536 			/* Stop reading if we hit a patch of urgent data */
1537 			if (tp->urg_data) {
1538 				u32 urg_offset = tp->urg_seq - seq;
1539 				if (urg_offset < len)
1540 					len = urg_offset;
1541 				if (!len)
1542 					break;
1543 			}
1544 			used = recv_actor(desc, skb, offset, len);
1545 			if (used <= 0) {
1546 				if (!copied)
1547 					copied = used;
1548 				break;
1549 			} else if (used <= len) {
1550 				seq += used;
1551 				copied += used;
1552 				offset += used;
1553 			}
1554 			/* If recv_actor drops the lock (e.g. TCP splice
1555 			 * receive) the skb pointer might be invalid when
1556 			 * getting here: tcp_collapse might have deleted it
1557 			 * while aggregating skbs from the socket queue.
1558 			 */
1559 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1560 			if (!skb)
1561 				break;
1562 			/* TCP coalescing might have appended data to the skb.
1563 			 * Try to splice more frags
1564 			 */
1565 			if (offset + 1 != skb->len)
1566 				continue;
1567 		}
1568 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1569 			sk_eat_skb(sk, skb);
1570 			++seq;
1571 			break;
1572 		}
1573 		sk_eat_skb(sk, skb);
1574 		if (!desc->count)
1575 			break;
1576 		tp->copied_seq = seq;
1577 	}
1578 	tp->copied_seq = seq;
1579 
1580 	tcp_rcv_space_adjust(sk);
1581 
1582 	/* Clean up data we have read: This will do ACK frames. */
1583 	if (copied > 0) {
1584 		tcp_recv_skb(sk, seq, &offset);
1585 		tcp_cleanup_rbuf(sk, copied);
1586 		uid_stat_tcp_rcv(from_kuid(&init_user_ns, current_uid()),
1587 				 copied);
1588 	}
1589 	return copied;
1590 }
1591 EXPORT_SYMBOL(tcp_read_sock);
1592 
1593 /*
1594  *	This routine copies from a sock struct into the user buffer.
1595  *
1596  *	Technical note: in 2.3 we work on _locked_ socket, so that
1597  *	tricks with *seq access order and skb->users are not required.
1598  *	Probably, code can be easily improved even more.
1599  */
1600 
tcp_recvmsg(struct kiocb * iocb,struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)1601 int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1602 		size_t len, int nonblock, int flags, int *addr_len)
1603 {
1604 	struct tcp_sock *tp = tcp_sk(sk);
1605 	int copied = 0;
1606 	u32 peek_seq;
1607 	u32 *seq;
1608 	unsigned long used;
1609 	int err;
1610 	int target;		/* Read at least this many bytes */
1611 	long timeo;
1612 	struct task_struct *user_recv = NULL;
1613 	struct sk_buff *skb;
1614 	u32 urg_hole = 0;
1615 
1616 	if (unlikely(flags & MSG_ERRQUEUE))
1617 		return inet_recv_error(sk, msg, len, addr_len);
1618 
1619 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1620 	    (sk->sk_state == TCP_ESTABLISHED))
1621 		sk_busy_loop(sk, nonblock);
1622 
1623 	lock_sock(sk);
1624 
1625 	err = -ENOTCONN;
1626 	if (sk->sk_state == TCP_LISTEN)
1627 		goto out;
1628 
1629 	timeo = sock_rcvtimeo(sk, nonblock);
1630 
1631 	/* Urgent data needs to be handled specially. */
1632 	if (flags & MSG_OOB)
1633 		goto recv_urg;
1634 
1635 	if (unlikely(tp->repair)) {
1636 		err = -EPERM;
1637 		if (!(flags & MSG_PEEK))
1638 			goto out;
1639 
1640 		if (tp->repair_queue == TCP_SEND_QUEUE)
1641 			goto recv_sndq;
1642 
1643 		err = -EINVAL;
1644 		if (tp->repair_queue == TCP_NO_QUEUE)
1645 			goto out;
1646 
1647 		/* 'common' recv queue MSG_PEEK-ing */
1648 	}
1649 
1650 	seq = &tp->copied_seq;
1651 	if (flags & MSG_PEEK) {
1652 		peek_seq = tp->copied_seq;
1653 		seq = &peek_seq;
1654 	}
1655 
1656 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1657 
1658 	do {
1659 		u32 offset;
1660 
1661 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1662 		if (tp->urg_data && tp->urg_seq == *seq) {
1663 			if (copied)
1664 				break;
1665 			if (signal_pending(current)) {
1666 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1667 				break;
1668 			}
1669 		}
1670 
1671 		/* Next get a buffer. */
1672 
1673 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1674 			/* Now that we have two receive queues this
1675 			 * shouldn't happen.
1676 			 */
1677 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1678 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1679 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1680 				 flags))
1681 				break;
1682 
1683 			offset = *seq - TCP_SKB_CB(skb)->seq;
1684 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
1685 				offset--;
1686 			if (offset < skb->len)
1687 				goto found_ok_skb;
1688 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1689 				goto found_fin_ok;
1690 			WARN(!(flags & MSG_PEEK),
1691 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1692 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1693 		}
1694 
1695 		/* Well, if we have backlog, try to process it now yet. */
1696 
1697 		if (copied >= target && !sk->sk_backlog.tail)
1698 			break;
1699 
1700 		if (copied) {
1701 			if (sk->sk_err ||
1702 			    sk->sk_state == TCP_CLOSE ||
1703 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1704 			    !timeo ||
1705 			    signal_pending(current))
1706 				break;
1707 		} else {
1708 			if (sock_flag(sk, SOCK_DONE))
1709 				break;
1710 
1711 			if (sk->sk_err) {
1712 				copied = sock_error(sk);
1713 				break;
1714 			}
1715 
1716 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1717 				break;
1718 
1719 			if (sk->sk_state == TCP_CLOSE) {
1720 				if (!sock_flag(sk, SOCK_DONE)) {
1721 					/* This occurs when user tries to read
1722 					 * from never connected socket.
1723 					 */
1724 					copied = -ENOTCONN;
1725 					break;
1726 				}
1727 				break;
1728 			}
1729 
1730 			if (!timeo) {
1731 				copied = -EAGAIN;
1732 				break;
1733 			}
1734 
1735 			if (signal_pending(current)) {
1736 				copied = sock_intr_errno(timeo);
1737 				break;
1738 			}
1739 		}
1740 
1741 		tcp_cleanup_rbuf(sk, copied);
1742 
1743 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1744 			/* Install new reader */
1745 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1746 				user_recv = current;
1747 				tp->ucopy.task = user_recv;
1748 				tp->ucopy.iov = msg->msg_iov;
1749 			}
1750 
1751 			tp->ucopy.len = len;
1752 
1753 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1754 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1755 
1756 			/* Ugly... If prequeue is not empty, we have to
1757 			 * process it before releasing socket, otherwise
1758 			 * order will be broken at second iteration.
1759 			 * More elegant solution is required!!!
1760 			 *
1761 			 * Look: we have the following (pseudo)queues:
1762 			 *
1763 			 * 1. packets in flight
1764 			 * 2. backlog
1765 			 * 3. prequeue
1766 			 * 4. receive_queue
1767 			 *
1768 			 * Each queue can be processed only if the next ones
1769 			 * are empty. At this point we have empty receive_queue.
1770 			 * But prequeue _can_ be not empty after 2nd iteration,
1771 			 * when we jumped to start of loop because backlog
1772 			 * processing added something to receive_queue.
1773 			 * We cannot release_sock(), because backlog contains
1774 			 * packets arrived _after_ prequeued ones.
1775 			 *
1776 			 * Shortly, algorithm is clear --- to process all
1777 			 * the queues in order. We could make it more directly,
1778 			 * requeueing packets from backlog to prequeue, if
1779 			 * is not empty. It is more elegant, but eats cycles,
1780 			 * unfortunately.
1781 			 */
1782 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1783 				goto do_prequeue;
1784 
1785 			/* __ Set realtime policy in scheduler __ */
1786 		}
1787 
1788 		if (copied >= target) {
1789 			/* Do not sleep, just process backlog. */
1790 			release_sock(sk);
1791 			lock_sock(sk);
1792 		} else
1793 			sk_wait_data(sk, &timeo);
1794 
1795 		if (user_recv) {
1796 			int chunk;
1797 
1798 			/* __ Restore normal policy in scheduler __ */
1799 
1800 			if ((chunk = len - tp->ucopy.len) != 0) {
1801 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1802 				len -= chunk;
1803 				copied += chunk;
1804 			}
1805 
1806 			if (tp->rcv_nxt == tp->copied_seq &&
1807 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1808 do_prequeue:
1809 				tcp_prequeue_process(sk);
1810 
1811 				if ((chunk = len - tp->ucopy.len) != 0) {
1812 					NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1813 					len -= chunk;
1814 					copied += chunk;
1815 				}
1816 			}
1817 		}
1818 		if ((flags & MSG_PEEK) &&
1819 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1820 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1821 					    current->comm,
1822 					    task_pid_nr(current));
1823 			peek_seq = tp->copied_seq;
1824 		}
1825 		continue;
1826 
1827 	found_ok_skb:
1828 		/* Ok so how much can we use? */
1829 		used = skb->len - offset;
1830 		if (len < used)
1831 			used = len;
1832 
1833 		/* Do we have urgent data here? */
1834 		if (tp->urg_data) {
1835 			u32 urg_offset = tp->urg_seq - *seq;
1836 			if (urg_offset < used) {
1837 				if (!urg_offset) {
1838 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1839 						++*seq;
1840 						urg_hole++;
1841 						offset++;
1842 						used--;
1843 						if (!used)
1844 							goto skip_copy;
1845 					}
1846 				} else
1847 					used = urg_offset;
1848 			}
1849 		}
1850 
1851 		if (!(flags & MSG_TRUNC)) {
1852 			err = skb_copy_datagram_iovec(skb, offset,
1853 						      msg->msg_iov, used);
1854 			if (err) {
1855 				/* Exception. Bailout! */
1856 				if (!copied)
1857 					copied = -EFAULT;
1858 				break;
1859 			}
1860 		}
1861 
1862 		*seq += used;
1863 		copied += used;
1864 		len -= used;
1865 
1866 		tcp_rcv_space_adjust(sk);
1867 
1868 skip_copy:
1869 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1870 			tp->urg_data = 0;
1871 			tcp_fast_path_check(sk);
1872 		}
1873 		if (used + offset < skb->len)
1874 			continue;
1875 
1876 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1877 			goto found_fin_ok;
1878 		if (!(flags & MSG_PEEK))
1879 			sk_eat_skb(sk, skb);
1880 		continue;
1881 
1882 	found_fin_ok:
1883 		/* Process the FIN. */
1884 		++*seq;
1885 		if (!(flags & MSG_PEEK))
1886 			sk_eat_skb(sk, skb);
1887 		break;
1888 	} while (len > 0);
1889 
1890 	if (user_recv) {
1891 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1892 			int chunk;
1893 
1894 			tp->ucopy.len = copied > 0 ? len : 0;
1895 
1896 			tcp_prequeue_process(sk);
1897 
1898 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1899 				NET_ADD_STATS_USER(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1900 				len -= chunk;
1901 				copied += chunk;
1902 			}
1903 		}
1904 
1905 		tp->ucopy.task = NULL;
1906 		tp->ucopy.len = 0;
1907 	}
1908 
1909 	/* According to UNIX98, msg_name/msg_namelen are ignored
1910 	 * on connected socket. I was just happy when found this 8) --ANK
1911 	 */
1912 
1913 	/* Clean up data we have read: This will do ACK frames. */
1914 	tcp_cleanup_rbuf(sk, copied);
1915 
1916 	release_sock(sk);
1917 
1918 	if (copied > 0)
1919 		uid_stat_tcp_rcv(from_kuid(&init_user_ns, current_uid()),
1920 				 copied);
1921 	return copied;
1922 
1923 out:
1924 	release_sock(sk);
1925 	return err;
1926 
1927 recv_urg:
1928 	err = tcp_recv_urg(sk, msg, len, flags);
1929 	if (err > 0)
1930 		uid_stat_tcp_rcv(from_kuid(&init_user_ns, current_uid()),
1931 				 err);
1932 	goto out;
1933 
1934 recv_sndq:
1935 	err = tcp_peek_sndq(sk, msg, len);
1936 	goto out;
1937 }
1938 EXPORT_SYMBOL(tcp_recvmsg);
1939 
tcp_set_state(struct sock * sk,int state)1940 void tcp_set_state(struct sock *sk, int state)
1941 {
1942 	int oldstate = sk->sk_state;
1943 
1944 	switch (state) {
1945 	case TCP_ESTABLISHED:
1946 		if (oldstate != TCP_ESTABLISHED)
1947 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1948 		break;
1949 
1950 	case TCP_CLOSE:
1951 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1952 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1953 
1954 		sk->sk_prot->unhash(sk);
1955 		if (inet_csk(sk)->icsk_bind_hash &&
1956 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1957 			inet_put_port(sk);
1958 		/* fall through */
1959 	default:
1960 		if (oldstate == TCP_ESTABLISHED)
1961 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1962 	}
1963 
1964 	/* Change state AFTER socket is unhashed to avoid closed
1965 	 * socket sitting in hash tables.
1966 	 */
1967 	sk->sk_state = state;
1968 
1969 #ifdef STATE_TRACE
1970 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
1971 #endif
1972 }
1973 EXPORT_SYMBOL_GPL(tcp_set_state);
1974 
1975 /*
1976  *	State processing on a close. This implements the state shift for
1977  *	sending our FIN frame. Note that we only send a FIN for some
1978  *	states. A shutdown() may have already sent the FIN, or we may be
1979  *	closed.
1980  */
1981 
1982 static const unsigned char new_state[16] = {
1983   /* current state:        new state:      action:	*/
1984   /* (Invalid)		*/ TCP_CLOSE,
1985   /* TCP_ESTABLISHED	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1986   /* TCP_SYN_SENT	*/ TCP_CLOSE,
1987   /* TCP_SYN_RECV	*/ TCP_FIN_WAIT1 | TCP_ACTION_FIN,
1988   /* TCP_FIN_WAIT1	*/ TCP_FIN_WAIT1,
1989   /* TCP_FIN_WAIT2	*/ TCP_FIN_WAIT2,
1990   /* TCP_TIME_WAIT	*/ TCP_CLOSE,
1991   /* TCP_CLOSE		*/ TCP_CLOSE,
1992   /* TCP_CLOSE_WAIT	*/ TCP_LAST_ACK  | TCP_ACTION_FIN,
1993   /* TCP_LAST_ACK	*/ TCP_LAST_ACK,
1994   /* TCP_LISTEN		*/ TCP_CLOSE,
1995   /* TCP_CLOSING	*/ TCP_CLOSING,
1996 };
1997 
tcp_close_state(struct sock * sk)1998 static int tcp_close_state(struct sock *sk)
1999 {
2000 	int next = (int)new_state[sk->sk_state];
2001 	int ns = next & TCP_STATE_MASK;
2002 
2003 	tcp_set_state(sk, ns);
2004 
2005 	return next & TCP_ACTION_FIN;
2006 }
2007 
2008 /*
2009  *	Shutdown the sending side of a connection. Much like close except
2010  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2011  */
2012 
tcp_shutdown(struct sock * sk,int how)2013 void tcp_shutdown(struct sock *sk, int how)
2014 {
2015 	/*	We need to grab some memory, and put together a FIN,
2016 	 *	and then put it into the queue to be sent.
2017 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2018 	 */
2019 	if (!(how & SEND_SHUTDOWN))
2020 		return;
2021 
2022 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2023 	if ((1 << sk->sk_state) &
2024 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2025 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2026 		/* Clear out any half completed packets.  FIN if needed. */
2027 		if (tcp_close_state(sk))
2028 			tcp_send_fin(sk);
2029 	}
2030 }
2031 EXPORT_SYMBOL(tcp_shutdown);
2032 
tcp_check_oom(struct sock * sk,int shift)2033 bool tcp_check_oom(struct sock *sk, int shift)
2034 {
2035 	bool too_many_orphans, out_of_socket_memory;
2036 
2037 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2038 	out_of_socket_memory = tcp_out_of_memory(sk);
2039 
2040 	if (too_many_orphans)
2041 		net_info_ratelimited("too many orphaned sockets\n");
2042 	if (out_of_socket_memory)
2043 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2044 	return too_many_orphans || out_of_socket_memory;
2045 }
2046 
tcp_close(struct sock * sk,long timeout)2047 void tcp_close(struct sock *sk, long timeout)
2048 {
2049 	struct sk_buff *skb;
2050 	int data_was_unread = 0;
2051 	int state;
2052 
2053 	lock_sock(sk);
2054 	sk->sk_shutdown = SHUTDOWN_MASK;
2055 
2056 	if (sk->sk_state == TCP_LISTEN) {
2057 		tcp_set_state(sk, TCP_CLOSE);
2058 
2059 		/* Special case. */
2060 		inet_csk_listen_stop(sk);
2061 
2062 		goto adjudge_to_death;
2063 	}
2064 
2065 	/*  We need to flush the recv. buffs.  We do this only on the
2066 	 *  descriptor close, not protocol-sourced closes, because the
2067 	 *  reader process may not have drained the data yet!
2068 	 */
2069 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2070 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2071 
2072 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2073 			len--;
2074 		data_was_unread += len;
2075 		__kfree_skb(skb);
2076 	}
2077 
2078 	sk_mem_reclaim(sk);
2079 
2080 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2081 	if (sk->sk_state == TCP_CLOSE)
2082 		goto adjudge_to_death;
2083 
2084 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2085 	 * data was lost. To witness the awful effects of the old behavior of
2086 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2087 	 * GET in an FTP client, suspend the process, wait for the client to
2088 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2089 	 * Note: timeout is always zero in such a case.
2090 	 */
2091 	if (unlikely(tcp_sk(sk)->repair)) {
2092 		sk->sk_prot->disconnect(sk, 0);
2093 	} else if (data_was_unread) {
2094 		/* Unread data was tossed, zap the connection. */
2095 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2096 		tcp_set_state(sk, TCP_CLOSE);
2097 		tcp_send_active_reset(sk, sk->sk_allocation);
2098 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2099 		/* Check zero linger _after_ checking for unread data. */
2100 		sk->sk_prot->disconnect(sk, 0);
2101 		NET_INC_STATS_USER(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2102 	} else if (tcp_close_state(sk)) {
2103 		/* We FIN if the application ate all the data before
2104 		 * zapping the connection.
2105 		 */
2106 
2107 		/* RED-PEN. Formally speaking, we have broken TCP state
2108 		 * machine. State transitions:
2109 		 *
2110 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2111 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2112 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2113 		 *
2114 		 * are legal only when FIN has been sent (i.e. in window),
2115 		 * rather than queued out of window. Purists blame.
2116 		 *
2117 		 * F.e. "RFC state" is ESTABLISHED,
2118 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2119 		 *
2120 		 * The visible declinations are that sometimes
2121 		 * we enter time-wait state, when it is not required really
2122 		 * (harmless), do not send active resets, when they are
2123 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2124 		 * they look as CLOSING or LAST_ACK for Linux)
2125 		 * Probably, I missed some more holelets.
2126 		 * 						--ANK
2127 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2128 		 * in a single packet! (May consider it later but will
2129 		 * probably need API support or TCP_CORK SYN-ACK until
2130 		 * data is written and socket is closed.)
2131 		 */
2132 		tcp_send_fin(sk);
2133 	}
2134 
2135 	sk_stream_wait_close(sk, timeout);
2136 
2137 adjudge_to_death:
2138 	state = sk->sk_state;
2139 	sock_hold(sk);
2140 	sock_orphan(sk);
2141 
2142 	/* It is the last release_sock in its life. It will remove backlog. */
2143 	release_sock(sk);
2144 
2145 
2146 	/* Now socket is owned by kernel and we acquire BH lock
2147 	   to finish close. No need to check for user refs.
2148 	 */
2149 	local_bh_disable();
2150 	bh_lock_sock(sk);
2151 	WARN_ON(sock_owned_by_user(sk));
2152 
2153 	percpu_counter_inc(sk->sk_prot->orphan_count);
2154 
2155 	/* Have we already been destroyed by a softirq or backlog? */
2156 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2157 		goto out;
2158 
2159 	/*	This is a (useful) BSD violating of the RFC. There is a
2160 	 *	problem with TCP as specified in that the other end could
2161 	 *	keep a socket open forever with no application left this end.
2162 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2163 	 *	our end. If they send after that then tough - BUT: long enough
2164 	 *	that we won't make the old 4*rto = almost no time - whoops
2165 	 *	reset mistake.
2166 	 *
2167 	 *	Nope, it was not mistake. It is really desired behaviour
2168 	 *	f.e. on http servers, when such sockets are useless, but
2169 	 *	consume significant resources. Let's do it with special
2170 	 *	linger2	option.					--ANK
2171 	 */
2172 
2173 	if (sk->sk_state == TCP_FIN_WAIT2) {
2174 		struct tcp_sock *tp = tcp_sk(sk);
2175 		if (tp->linger2 < 0) {
2176 			tcp_set_state(sk, TCP_CLOSE);
2177 			tcp_send_active_reset(sk, GFP_ATOMIC);
2178 			NET_INC_STATS_BH(sock_net(sk),
2179 					LINUX_MIB_TCPABORTONLINGER);
2180 		} else {
2181 			const int tmo = tcp_fin_time(sk);
2182 
2183 			if (tmo > TCP_TIMEWAIT_LEN) {
2184 				inet_csk_reset_keepalive_timer(sk,
2185 						tmo - TCP_TIMEWAIT_LEN);
2186 			} else {
2187 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2188 				goto out;
2189 			}
2190 		}
2191 	}
2192 	if (sk->sk_state != TCP_CLOSE) {
2193 		sk_mem_reclaim(sk);
2194 		if (tcp_check_oom(sk, 0)) {
2195 			tcp_set_state(sk, TCP_CLOSE);
2196 			tcp_send_active_reset(sk, GFP_ATOMIC);
2197 			NET_INC_STATS_BH(sock_net(sk),
2198 					LINUX_MIB_TCPABORTONMEMORY);
2199 		} else if (!check_net(sock_net(sk))) {
2200 			/* Not possible to send reset; just close */
2201 			tcp_set_state(sk, TCP_CLOSE);
2202 		}
2203 	}
2204 
2205 	if (sk->sk_state == TCP_CLOSE) {
2206 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2207 		/* We could get here with a non-NULL req if the socket is
2208 		 * aborted (e.g., closed with unread data) before 3WHS
2209 		 * finishes.
2210 		 */
2211 		if (req != NULL)
2212 			reqsk_fastopen_remove(sk, req, false);
2213 		inet_csk_destroy_sock(sk);
2214 	}
2215 	/* Otherwise, socket is reprieved until protocol close. */
2216 
2217 out:
2218 	bh_unlock_sock(sk);
2219 	local_bh_enable();
2220 	sock_put(sk);
2221 }
2222 EXPORT_SYMBOL(tcp_close);
2223 
2224 /* These states need RST on ABORT according to RFC793 */
2225 
tcp_need_reset(int state)2226 static inline bool tcp_need_reset(int state)
2227 {
2228 	return (1 << state) &
2229 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2230 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2231 }
2232 
tcp_disconnect(struct sock * sk,int flags)2233 int tcp_disconnect(struct sock *sk, int flags)
2234 {
2235 	struct inet_sock *inet = inet_sk(sk);
2236 	struct inet_connection_sock *icsk = inet_csk(sk);
2237 	struct tcp_sock *tp = tcp_sk(sk);
2238 	int err = 0;
2239 	int old_state = sk->sk_state;
2240 
2241 	if (old_state != TCP_CLOSE)
2242 		tcp_set_state(sk, TCP_CLOSE);
2243 
2244 	/* ABORT function of RFC793 */
2245 	if (old_state == TCP_LISTEN) {
2246 		inet_csk_listen_stop(sk);
2247 	} else if (unlikely(tp->repair)) {
2248 		sk->sk_err = ECONNABORTED;
2249 	} else if (tcp_need_reset(old_state) ||
2250 		   (tp->snd_nxt != tp->write_seq &&
2251 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2252 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2253 		 * states
2254 		 */
2255 		tcp_send_active_reset(sk, gfp_any());
2256 		sk->sk_err = ECONNRESET;
2257 	} else if (old_state == TCP_SYN_SENT)
2258 		sk->sk_err = ECONNRESET;
2259 
2260 	tcp_clear_xmit_timers(sk);
2261 	__skb_queue_purge(&sk->sk_receive_queue);
2262 	tcp_write_queue_purge(sk);
2263 	__skb_queue_purge(&tp->out_of_order_queue);
2264 
2265 	inet->inet_dport = 0;
2266 
2267 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2268 		inet_reset_saddr(sk);
2269 
2270 	sk->sk_shutdown = 0;
2271 	sock_reset_flag(sk, SOCK_DONE);
2272 	tp->srtt_us = 0;
2273 	if ((tp->write_seq += tp->max_window + 2) == 0)
2274 		tp->write_seq = 1;
2275 	icsk->icsk_backoff = 0;
2276 	tp->snd_cwnd = 2;
2277 	icsk->icsk_probes_out = 0;
2278 	tp->packets_out = 0;
2279 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2280 	tp->snd_cwnd_cnt = 0;
2281 	tp->window_clamp = 0;
2282 	tcp_set_ca_state(sk, TCP_CA_Open);
2283 	tcp_clear_retrans(tp);
2284 	inet_csk_delack_init(sk);
2285 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2286 	 * issue in __tcp_select_window()
2287 	 */
2288 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2289 	tcp_init_send_head(sk);
2290 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2291 	__sk_dst_reset(sk);
2292 	dst_release(sk->sk_rx_dst);
2293 	sk->sk_rx_dst = NULL;
2294 
2295 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2296 
2297 	sk->sk_error_report(sk);
2298 	return err;
2299 }
2300 EXPORT_SYMBOL(tcp_disconnect);
2301 
tcp_sock_destruct(struct sock * sk)2302 void tcp_sock_destruct(struct sock *sk)
2303 {
2304 	inet_sock_destruct(sk);
2305 
2306 	kfree(inet_csk(sk)->icsk_accept_queue.fastopenq);
2307 }
2308 
tcp_can_repair_sock(const struct sock * sk)2309 static inline bool tcp_can_repair_sock(const struct sock *sk)
2310 {
2311 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2312 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2313 }
2314 
tcp_repair_options_est(struct tcp_sock * tp,struct tcp_repair_opt __user * optbuf,unsigned int len)2315 static int tcp_repair_options_est(struct tcp_sock *tp,
2316 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2317 {
2318 	struct tcp_repair_opt opt;
2319 
2320 	while (len >= sizeof(opt)) {
2321 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2322 			return -EFAULT;
2323 
2324 		optbuf++;
2325 		len -= sizeof(opt);
2326 
2327 		switch (opt.opt_code) {
2328 		case TCPOPT_MSS:
2329 			tp->rx_opt.mss_clamp = opt.opt_val;
2330 			break;
2331 		case TCPOPT_WINDOW:
2332 			{
2333 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2334 				u16 rcv_wscale = opt.opt_val >> 16;
2335 
2336 				if (snd_wscale > 14 || rcv_wscale > 14)
2337 					return -EFBIG;
2338 
2339 				tp->rx_opt.snd_wscale = snd_wscale;
2340 				tp->rx_opt.rcv_wscale = rcv_wscale;
2341 				tp->rx_opt.wscale_ok = 1;
2342 			}
2343 			break;
2344 		case TCPOPT_SACK_PERM:
2345 			if (opt.opt_val != 0)
2346 				return -EINVAL;
2347 
2348 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2349 			if (sysctl_tcp_fack)
2350 				tcp_enable_fack(tp);
2351 			break;
2352 		case TCPOPT_TIMESTAMP:
2353 			if (opt.opt_val != 0)
2354 				return -EINVAL;
2355 
2356 			tp->rx_opt.tstamp_ok = 1;
2357 			break;
2358 		}
2359 	}
2360 
2361 	return 0;
2362 }
2363 
2364 /*
2365  *	Socket option code for TCP.
2366  */
do_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2367 static int do_tcp_setsockopt(struct sock *sk, int level,
2368 		int optname, char __user *optval, unsigned int optlen)
2369 {
2370 	struct tcp_sock *tp = tcp_sk(sk);
2371 	struct inet_connection_sock *icsk = inet_csk(sk);
2372 	int val;
2373 	int err = 0;
2374 
2375 	/* These are data/string values, all the others are ints */
2376 	switch (optname) {
2377 	case TCP_CONGESTION: {
2378 		char name[TCP_CA_NAME_MAX];
2379 
2380 		if (optlen < 1)
2381 			return -EINVAL;
2382 
2383 		val = strncpy_from_user(name, optval,
2384 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2385 		if (val < 0)
2386 			return -EFAULT;
2387 		name[val] = 0;
2388 
2389 		lock_sock(sk);
2390 		err = tcp_set_congestion_control(sk, name);
2391 		release_sock(sk);
2392 		return err;
2393 	}
2394 	default:
2395 		/* fallthru */
2396 		break;
2397 	}
2398 
2399 	if (optlen < sizeof(int))
2400 		return -EINVAL;
2401 
2402 	if (get_user(val, (int __user *)optval))
2403 		return -EFAULT;
2404 
2405 	lock_sock(sk);
2406 
2407 	switch (optname) {
2408 	case TCP_MAXSEG:
2409 		/* Values greater than interface MTU won't take effect. However
2410 		 * at the point when this call is done we typically don't yet
2411 		 * know which interface is going to be used */
2412 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2413 			err = -EINVAL;
2414 			break;
2415 		}
2416 		tp->rx_opt.user_mss = val;
2417 		break;
2418 
2419 	case TCP_NODELAY:
2420 		if (val) {
2421 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2422 			 * this option on corked socket is remembered, but
2423 			 * it is not activated until cork is cleared.
2424 			 *
2425 			 * However, when TCP_NODELAY is set we make
2426 			 * an explicit push, which overrides even TCP_CORK
2427 			 * for currently queued segments.
2428 			 */
2429 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2430 			tcp_push_pending_frames(sk);
2431 		} else {
2432 			tp->nonagle &= ~TCP_NAGLE_OFF;
2433 		}
2434 		break;
2435 
2436 	case TCP_THIN_LINEAR_TIMEOUTS:
2437 		if (val < 0 || val > 1)
2438 			err = -EINVAL;
2439 		else
2440 			tp->thin_lto = val;
2441 		break;
2442 
2443 	case TCP_THIN_DUPACK:
2444 		if (val < 0 || val > 1)
2445 			err = -EINVAL;
2446 		else {
2447 			tp->thin_dupack = val;
2448 			if (tp->thin_dupack)
2449 				tcp_disable_early_retrans(tp);
2450 		}
2451 		break;
2452 
2453 	case TCP_REPAIR:
2454 		if (!tcp_can_repair_sock(sk))
2455 			err = -EPERM;
2456 		else if (val == 1) {
2457 			tp->repair = 1;
2458 			sk->sk_reuse = SK_FORCE_REUSE;
2459 			tp->repair_queue = TCP_NO_QUEUE;
2460 		} else if (val == 0) {
2461 			tp->repair = 0;
2462 			sk->sk_reuse = SK_NO_REUSE;
2463 			tcp_send_window_probe(sk);
2464 		} else
2465 			err = -EINVAL;
2466 
2467 		break;
2468 
2469 	case TCP_REPAIR_QUEUE:
2470 		if (!tp->repair)
2471 			err = -EPERM;
2472 		else if (val < TCP_QUEUES_NR)
2473 			tp->repair_queue = val;
2474 		else
2475 			err = -EINVAL;
2476 		break;
2477 
2478 	case TCP_QUEUE_SEQ:
2479 		if (sk->sk_state != TCP_CLOSE)
2480 			err = -EPERM;
2481 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2482 			tp->write_seq = val;
2483 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2484 			tp->rcv_nxt = val;
2485 		else
2486 			err = -EINVAL;
2487 		break;
2488 
2489 	case TCP_REPAIR_OPTIONS:
2490 		if (!tp->repair)
2491 			err = -EINVAL;
2492 		else if (sk->sk_state == TCP_ESTABLISHED)
2493 			err = tcp_repair_options_est(tp,
2494 					(struct tcp_repair_opt __user *)optval,
2495 					optlen);
2496 		else
2497 			err = -EPERM;
2498 		break;
2499 
2500 	case TCP_CORK:
2501 		/* When set indicates to always queue non-full frames.
2502 		 * Later the user clears this option and we transmit
2503 		 * any pending partial frames in the queue.  This is
2504 		 * meant to be used alongside sendfile() to get properly
2505 		 * filled frames when the user (for example) must write
2506 		 * out headers with a write() call first and then use
2507 		 * sendfile to send out the data parts.
2508 		 *
2509 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2510 		 * stronger than TCP_NODELAY.
2511 		 */
2512 		if (val) {
2513 			tp->nonagle |= TCP_NAGLE_CORK;
2514 		} else {
2515 			tp->nonagle &= ~TCP_NAGLE_CORK;
2516 			if (tp->nonagle&TCP_NAGLE_OFF)
2517 				tp->nonagle |= TCP_NAGLE_PUSH;
2518 			tcp_push_pending_frames(sk);
2519 		}
2520 		break;
2521 
2522 	case TCP_KEEPIDLE:
2523 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2524 			err = -EINVAL;
2525 		else {
2526 			tp->keepalive_time = val * HZ;
2527 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2528 			    !((1 << sk->sk_state) &
2529 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2530 				u32 elapsed = keepalive_time_elapsed(tp);
2531 				if (tp->keepalive_time > elapsed)
2532 					elapsed = tp->keepalive_time - elapsed;
2533 				else
2534 					elapsed = 0;
2535 				inet_csk_reset_keepalive_timer(sk, elapsed);
2536 			}
2537 		}
2538 		break;
2539 	case TCP_KEEPINTVL:
2540 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2541 			err = -EINVAL;
2542 		else
2543 			tp->keepalive_intvl = val * HZ;
2544 		break;
2545 	case TCP_KEEPCNT:
2546 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2547 			err = -EINVAL;
2548 		else
2549 			tp->keepalive_probes = val;
2550 		break;
2551 	case TCP_SYNCNT:
2552 		if (val < 1 || val > MAX_TCP_SYNCNT)
2553 			err = -EINVAL;
2554 		else
2555 			icsk->icsk_syn_retries = val;
2556 		break;
2557 
2558 	case TCP_LINGER2:
2559 		if (val < 0)
2560 			tp->linger2 = -1;
2561 		else if (val > sysctl_tcp_fin_timeout / HZ)
2562 			tp->linger2 = 0;
2563 		else
2564 			tp->linger2 = val * HZ;
2565 		break;
2566 
2567 	case TCP_DEFER_ACCEPT:
2568 		/* Translate value in seconds to number of retransmits */
2569 		icsk->icsk_accept_queue.rskq_defer_accept =
2570 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2571 					TCP_RTO_MAX / HZ);
2572 		break;
2573 
2574 	case TCP_WINDOW_CLAMP:
2575 		if (!val) {
2576 			if (sk->sk_state != TCP_CLOSE) {
2577 				err = -EINVAL;
2578 				break;
2579 			}
2580 			tp->window_clamp = 0;
2581 		} else
2582 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2583 						SOCK_MIN_RCVBUF / 2 : val;
2584 		break;
2585 
2586 	case TCP_QUICKACK:
2587 		if (!val) {
2588 			icsk->icsk_ack.pingpong = 1;
2589 		} else {
2590 			icsk->icsk_ack.pingpong = 0;
2591 			if ((1 << sk->sk_state) &
2592 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2593 			    inet_csk_ack_scheduled(sk)) {
2594 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2595 				tcp_cleanup_rbuf(sk, 1);
2596 				if (!(val & 1))
2597 					icsk->icsk_ack.pingpong = 1;
2598 			}
2599 		}
2600 		break;
2601 
2602 #ifdef CONFIG_TCP_MD5SIG
2603 	case TCP_MD5SIG:
2604 		/* Read the IP->Key mappings from userspace */
2605 		err = tp->af_specific->md5_parse(sk, optval, optlen);
2606 		break;
2607 #endif
2608 	case TCP_USER_TIMEOUT:
2609 		/* Cap the max time in ms TCP will retry or probe the window
2610 		 * before giving up and aborting (ETIMEDOUT) a connection.
2611 		 */
2612 		if (val < 0)
2613 			err = -EINVAL;
2614 		else
2615 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2616 		break;
2617 
2618 	case TCP_FASTOPEN:
2619 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2620 		    TCPF_LISTEN))) {
2621 			tcp_fastopen_init_key_once(true);
2622 
2623 			err = fastopen_init_queue(sk, val);
2624 		} else {
2625 			err = -EINVAL;
2626 		}
2627 		break;
2628 	case TCP_TIMESTAMP:
2629 		if (!tp->repair)
2630 			err = -EPERM;
2631 		else
2632 			tp->tsoffset = val - tcp_time_stamp;
2633 		break;
2634 	case TCP_NOTSENT_LOWAT:
2635 		tp->notsent_lowat = val;
2636 		sk->sk_write_space(sk);
2637 		break;
2638 	default:
2639 		err = -ENOPROTOOPT;
2640 		break;
2641 	}
2642 
2643 	release_sock(sk);
2644 	return err;
2645 }
2646 
tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2647 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2648 		   unsigned int optlen)
2649 {
2650 	const struct inet_connection_sock *icsk = inet_csk(sk);
2651 
2652 	if (level != SOL_TCP)
2653 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2654 						     optval, optlen);
2655 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2656 }
2657 EXPORT_SYMBOL(tcp_setsockopt);
2658 
2659 #ifdef CONFIG_COMPAT
compat_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2660 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2661 			  char __user *optval, unsigned int optlen)
2662 {
2663 	if (level != SOL_TCP)
2664 		return inet_csk_compat_setsockopt(sk, level, optname,
2665 						  optval, optlen);
2666 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2667 }
2668 EXPORT_SYMBOL(compat_tcp_setsockopt);
2669 #endif
2670 
2671 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(const struct sock * sk,struct tcp_info * info)2672 void tcp_get_info(const struct sock *sk, struct tcp_info *info)
2673 {
2674 	const struct tcp_sock *tp = tcp_sk(sk);
2675 	const struct inet_connection_sock *icsk = inet_csk(sk);
2676 	u32 now = tcp_time_stamp;
2677 	u32 rate;
2678 
2679 	memset(info, 0, sizeof(*info));
2680 
2681 	info->tcpi_state = sk->sk_state;
2682 	info->tcpi_ca_state = icsk->icsk_ca_state;
2683 	info->tcpi_retransmits = icsk->icsk_retransmits;
2684 	info->tcpi_probes = icsk->icsk_probes_out;
2685 	info->tcpi_backoff = icsk->icsk_backoff;
2686 
2687 	if (tp->rx_opt.tstamp_ok)
2688 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2689 	if (tcp_is_sack(tp))
2690 		info->tcpi_options |= TCPI_OPT_SACK;
2691 	if (tp->rx_opt.wscale_ok) {
2692 		info->tcpi_options |= TCPI_OPT_WSCALE;
2693 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2694 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2695 	}
2696 
2697 	if (tp->ecn_flags & TCP_ECN_OK)
2698 		info->tcpi_options |= TCPI_OPT_ECN;
2699 	if (tp->ecn_flags & TCP_ECN_SEEN)
2700 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2701 	if (tp->syn_data_acked)
2702 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2703 
2704 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2705 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2706 	info->tcpi_snd_mss = tp->mss_cache;
2707 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2708 
2709 	if (sk->sk_state == TCP_LISTEN) {
2710 		info->tcpi_unacked = sk->sk_ack_backlog;
2711 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2712 	} else {
2713 		info->tcpi_unacked = tp->packets_out;
2714 		info->tcpi_sacked = tp->sacked_out;
2715 	}
2716 	info->tcpi_lost = tp->lost_out;
2717 	info->tcpi_retrans = tp->retrans_out;
2718 	info->tcpi_fackets = tp->fackets_out;
2719 
2720 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2721 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2722 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2723 
2724 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2725 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2726 	info->tcpi_rtt = tp->srtt_us >> 3;
2727 	info->tcpi_rttvar = tp->mdev_us >> 2;
2728 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2729 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2730 	info->tcpi_advmss = tp->advmss;
2731 	info->tcpi_reordering = tp->reordering;
2732 
2733 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2734 	info->tcpi_rcv_space = tp->rcvq_space.space;
2735 
2736 	info->tcpi_total_retrans = tp->total_retrans;
2737 
2738 	rate = READ_ONCE(sk->sk_pacing_rate);
2739 	info->tcpi_pacing_rate = rate != ~0U ? rate : ~0ULL;
2740 
2741 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2742 	info->tcpi_max_pacing_rate = rate != ~0U ? rate : ~0ULL;
2743 }
2744 EXPORT_SYMBOL_GPL(tcp_get_info);
2745 
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2746 static int do_tcp_getsockopt(struct sock *sk, int level,
2747 		int optname, char __user *optval, int __user *optlen)
2748 {
2749 	struct inet_connection_sock *icsk = inet_csk(sk);
2750 	struct tcp_sock *tp = tcp_sk(sk);
2751 	int val, len;
2752 
2753 	if (get_user(len, optlen))
2754 		return -EFAULT;
2755 
2756 	len = min_t(unsigned int, len, sizeof(int));
2757 
2758 	if (len < 0)
2759 		return -EINVAL;
2760 
2761 	switch (optname) {
2762 	case TCP_MAXSEG:
2763 		val = tp->mss_cache;
2764 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2765 			val = tp->rx_opt.user_mss;
2766 		if (tp->repair)
2767 			val = tp->rx_opt.mss_clamp;
2768 		break;
2769 	case TCP_NODELAY:
2770 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2771 		break;
2772 	case TCP_CORK:
2773 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2774 		break;
2775 	case TCP_KEEPIDLE:
2776 		val = keepalive_time_when(tp) / HZ;
2777 		break;
2778 	case TCP_KEEPINTVL:
2779 		val = keepalive_intvl_when(tp) / HZ;
2780 		break;
2781 	case TCP_KEEPCNT:
2782 		val = keepalive_probes(tp);
2783 		break;
2784 	case TCP_SYNCNT:
2785 		val = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
2786 		break;
2787 	case TCP_LINGER2:
2788 		val = tp->linger2;
2789 		if (val >= 0)
2790 			val = (val ? : sysctl_tcp_fin_timeout) / HZ;
2791 		break;
2792 	case TCP_DEFER_ACCEPT:
2793 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2794 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2795 		break;
2796 	case TCP_WINDOW_CLAMP:
2797 		val = tp->window_clamp;
2798 		break;
2799 	case TCP_INFO: {
2800 		struct tcp_info info;
2801 
2802 		if (get_user(len, optlen))
2803 			return -EFAULT;
2804 
2805 		tcp_get_info(sk, &info);
2806 
2807 		len = min_t(unsigned int, len, sizeof(info));
2808 		if (put_user(len, optlen))
2809 			return -EFAULT;
2810 		if (copy_to_user(optval, &info, len))
2811 			return -EFAULT;
2812 		return 0;
2813 	}
2814 	case TCP_QUICKACK:
2815 		val = !icsk->icsk_ack.pingpong;
2816 		break;
2817 
2818 	case TCP_CONGESTION:
2819 		if (get_user(len, optlen))
2820 			return -EFAULT;
2821 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2822 		if (put_user(len, optlen))
2823 			return -EFAULT;
2824 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2825 			return -EFAULT;
2826 		return 0;
2827 
2828 	case TCP_THIN_LINEAR_TIMEOUTS:
2829 		val = tp->thin_lto;
2830 		break;
2831 	case TCP_THIN_DUPACK:
2832 		val = tp->thin_dupack;
2833 		break;
2834 
2835 	case TCP_REPAIR:
2836 		val = tp->repair;
2837 		break;
2838 
2839 	case TCP_REPAIR_QUEUE:
2840 		if (tp->repair)
2841 			val = tp->repair_queue;
2842 		else
2843 			return -EINVAL;
2844 		break;
2845 
2846 	case TCP_QUEUE_SEQ:
2847 		if (tp->repair_queue == TCP_SEND_QUEUE)
2848 			val = tp->write_seq;
2849 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2850 			val = tp->rcv_nxt;
2851 		else
2852 			return -EINVAL;
2853 		break;
2854 
2855 	case TCP_USER_TIMEOUT:
2856 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
2857 		break;
2858 
2859 	case TCP_FASTOPEN:
2860 		if (icsk->icsk_accept_queue.fastopenq != NULL)
2861 			val = icsk->icsk_accept_queue.fastopenq->max_qlen;
2862 		else
2863 			val = 0;
2864 		break;
2865 
2866 	case TCP_TIMESTAMP:
2867 		val = tcp_time_stamp + tp->tsoffset;
2868 		break;
2869 	case TCP_NOTSENT_LOWAT:
2870 		val = tp->notsent_lowat;
2871 		break;
2872 	default:
2873 		return -ENOPROTOOPT;
2874 	}
2875 
2876 	if (put_user(len, optlen))
2877 		return -EFAULT;
2878 	if (copy_to_user(optval, &val, len))
2879 		return -EFAULT;
2880 	return 0;
2881 }
2882 
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2883 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
2884 		   int __user *optlen)
2885 {
2886 	struct inet_connection_sock *icsk = inet_csk(sk);
2887 
2888 	if (level != SOL_TCP)
2889 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
2890 						     optval, optlen);
2891 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2892 }
2893 EXPORT_SYMBOL(tcp_getsockopt);
2894 
2895 #ifdef CONFIG_COMPAT
compat_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2896 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
2897 			  char __user *optval, int __user *optlen)
2898 {
2899 	if (level != SOL_TCP)
2900 		return inet_csk_compat_getsockopt(sk, level, optname,
2901 						  optval, optlen);
2902 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
2903 }
2904 EXPORT_SYMBOL(compat_tcp_getsockopt);
2905 #endif
2906 
2907 #ifdef CONFIG_TCP_MD5SIG
2908 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
2909 static DEFINE_MUTEX(tcp_md5sig_mutex);
2910 static bool tcp_md5sig_pool_populated = false;
2911 
__tcp_alloc_md5sig_pool(void)2912 static void __tcp_alloc_md5sig_pool(void)
2913 {
2914 	int cpu;
2915 
2916 	for_each_possible_cpu(cpu) {
2917 		if (!per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm) {
2918 			struct crypto_hash *hash;
2919 
2920 			hash = crypto_alloc_hash("md5", 0, CRYPTO_ALG_ASYNC);
2921 			if (IS_ERR_OR_NULL(hash))
2922 				return;
2923 			per_cpu(tcp_md5sig_pool, cpu).md5_desc.tfm = hash;
2924 		}
2925 	}
2926 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
2927 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
2928 	 */
2929 	smp_wmb();
2930 	tcp_md5sig_pool_populated = true;
2931 }
2932 
tcp_alloc_md5sig_pool(void)2933 bool tcp_alloc_md5sig_pool(void)
2934 {
2935 	if (unlikely(!tcp_md5sig_pool_populated)) {
2936 		mutex_lock(&tcp_md5sig_mutex);
2937 
2938 		if (!tcp_md5sig_pool_populated)
2939 			__tcp_alloc_md5sig_pool();
2940 
2941 		mutex_unlock(&tcp_md5sig_mutex);
2942 	}
2943 	return tcp_md5sig_pool_populated;
2944 }
2945 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
2946 
2947 
2948 /**
2949  *	tcp_get_md5sig_pool - get md5sig_pool for this user
2950  *
2951  *	We use percpu structure, so if we succeed, we exit with preemption
2952  *	and BH disabled, to make sure another thread or softirq handling
2953  *	wont try to get same context.
2954  */
tcp_get_md5sig_pool(void)2955 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
2956 {
2957 	local_bh_disable();
2958 
2959 	if (tcp_md5sig_pool_populated) {
2960 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
2961 		smp_rmb();
2962 		return this_cpu_ptr(&tcp_md5sig_pool);
2963 	}
2964 	local_bh_enable();
2965 	return NULL;
2966 }
2967 EXPORT_SYMBOL(tcp_get_md5sig_pool);
2968 
tcp_md5_hash_header(struct tcp_md5sig_pool * hp,const struct tcphdr * th)2969 int tcp_md5_hash_header(struct tcp_md5sig_pool *hp,
2970 			const struct tcphdr *th)
2971 {
2972 	struct scatterlist sg;
2973 	struct tcphdr hdr;
2974 	int err;
2975 
2976 	/* We are not allowed to change tcphdr, make a local copy */
2977 	memcpy(&hdr, th, sizeof(hdr));
2978 	hdr.check = 0;
2979 
2980 	/* options aren't included in the hash */
2981 	sg_init_one(&sg, &hdr, sizeof(hdr));
2982 	err = crypto_hash_update(&hp->md5_desc, &sg, sizeof(hdr));
2983 	return err;
2984 }
2985 EXPORT_SYMBOL(tcp_md5_hash_header);
2986 
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)2987 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
2988 			  const struct sk_buff *skb, unsigned int header_len)
2989 {
2990 	struct scatterlist sg;
2991 	const struct tcphdr *tp = tcp_hdr(skb);
2992 	struct hash_desc *desc = &hp->md5_desc;
2993 	unsigned int i;
2994 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
2995 					   skb_headlen(skb) - header_len : 0;
2996 	const struct skb_shared_info *shi = skb_shinfo(skb);
2997 	struct sk_buff *frag_iter;
2998 
2999 	sg_init_table(&sg, 1);
3000 
3001 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3002 	if (crypto_hash_update(desc, &sg, head_data_len))
3003 		return 1;
3004 
3005 	for (i = 0; i < shi->nr_frags; ++i) {
3006 		const struct skb_frag_struct *f = &shi->frags[i];
3007 		unsigned int offset = f->page_offset;
3008 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3009 
3010 		sg_set_page(&sg, page, skb_frag_size(f),
3011 			    offset_in_page(offset));
3012 		if (crypto_hash_update(desc, &sg, skb_frag_size(f)))
3013 			return 1;
3014 	}
3015 
3016 	skb_walk_frags(skb, frag_iter)
3017 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3018 			return 1;
3019 
3020 	return 0;
3021 }
3022 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3023 
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)3024 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3025 {
3026 	struct scatterlist sg;
3027 
3028 	sg_init_one(&sg, key->key, key->keylen);
3029 	return crypto_hash_update(&hp->md5_desc, &sg, key->keylen);
3030 }
3031 EXPORT_SYMBOL(tcp_md5_hash_key);
3032 
3033 #endif
3034 
tcp_done(struct sock * sk)3035 void tcp_done(struct sock *sk)
3036 {
3037 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3038 
3039 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3040 		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3041 
3042 	tcp_set_state(sk, TCP_CLOSE);
3043 	tcp_clear_xmit_timers(sk);
3044 	if (req != NULL)
3045 		reqsk_fastopen_remove(sk, req, false);
3046 
3047 	sk->sk_shutdown = SHUTDOWN_MASK;
3048 
3049 	if (!sock_flag(sk, SOCK_DEAD))
3050 		sk->sk_state_change(sk);
3051 	else
3052 		inet_csk_destroy_sock(sk);
3053 }
3054 EXPORT_SYMBOL_GPL(tcp_done);
3055 
tcp_abort(struct sock * sk,int err)3056 int tcp_abort(struct sock *sk, int err)
3057 {
3058 	if (!sk_fullsock(sk)) {
3059 		sock_gen_put(sk);
3060 		return -EOPNOTSUPP;
3061 	}
3062 
3063 	/* Don't race with userspace socket closes such as tcp_close. */
3064 	lock_sock(sk);
3065 
3066 	if (sk->sk_state == TCP_LISTEN) {
3067 		tcp_set_state(sk, TCP_CLOSE);
3068 		inet_csk_listen_stop(sk);
3069 	}
3070 
3071 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3072 	local_bh_disable();
3073 	bh_lock_sock(sk);
3074 
3075 	if (!sock_flag(sk, SOCK_DEAD)) {
3076 		sk->sk_err = err;
3077 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3078 		smp_wmb();
3079 		sk->sk_error_report(sk);
3080 		if (tcp_need_reset(sk->sk_state))
3081 			tcp_send_active_reset(sk, GFP_ATOMIC);
3082 		tcp_done(sk);
3083 	}
3084 
3085 	bh_unlock_sock(sk);
3086 	local_bh_enable();
3087 	release_sock(sk);
3088 	sock_put(sk);
3089 	return 0;
3090 }
3091 EXPORT_SYMBOL_GPL(tcp_abort);
3092 
3093 extern struct tcp_congestion_ops tcp_reno;
3094 
3095 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)3096 static int __init set_thash_entries(char *str)
3097 {
3098 	ssize_t ret;
3099 
3100 	if (!str)
3101 		return 0;
3102 
3103 	ret = kstrtoul(str, 0, &thash_entries);
3104 	if (ret)
3105 		return 0;
3106 
3107 	return 1;
3108 }
3109 __setup("thash_entries=", set_thash_entries);
3110 
tcp_init_mem(void)3111 static void __init tcp_init_mem(void)
3112 {
3113 	unsigned long limit = nr_free_buffer_pages() / 8;
3114 	limit = max(limit, 128UL);
3115 	sysctl_tcp_mem[0] = limit / 4 * 3;
3116 	sysctl_tcp_mem[1] = limit;
3117 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;
3118 }
3119 
tcp_init(void)3120 void __init tcp_init(void)
3121 {
3122 	struct sk_buff *skb = NULL;
3123 	unsigned long limit;
3124 	int max_rshare, max_wshare, cnt;
3125 	unsigned int i;
3126 
3127 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > sizeof(skb->cb));
3128 
3129 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3130 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3131 	tcp_hashinfo.bind_bucket_cachep =
3132 		kmem_cache_create("tcp_bind_bucket",
3133 				  sizeof(struct inet_bind_bucket), 0,
3134 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3135 
3136 	/* Size and allocate the main established and bind bucket
3137 	 * hash tables.
3138 	 *
3139 	 * The methodology is similar to that of the buffer cache.
3140 	 */
3141 	tcp_hashinfo.ehash =
3142 		alloc_large_system_hash("TCP established",
3143 					sizeof(struct inet_ehash_bucket),
3144 					thash_entries,
3145 					17, /* one slot per 128 KB of memory */
3146 					0,
3147 					NULL,
3148 					&tcp_hashinfo.ehash_mask,
3149 					0,
3150 					thash_entries ? 0 : 512 * 1024);
3151 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3152 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3153 
3154 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3155 		panic("TCP: failed to alloc ehash_locks");
3156 	tcp_hashinfo.bhash =
3157 		alloc_large_system_hash("TCP bind",
3158 					sizeof(struct inet_bind_hashbucket),
3159 					tcp_hashinfo.ehash_mask + 1,
3160 					17, /* one slot per 128 KB of memory */
3161 					0,
3162 					&tcp_hashinfo.bhash_size,
3163 					NULL,
3164 					0,
3165 					64 * 1024);
3166 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3167 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3168 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3169 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3170 	}
3171 
3172 
3173 	cnt = tcp_hashinfo.ehash_mask + 1;
3174 
3175 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3176 	sysctl_tcp_max_orphans = cnt / 2;
3177 	sysctl_max_syn_backlog = max(128, cnt / 256);
3178 
3179 	tcp_init_mem();
3180 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3181 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3182 	max_wshare = min(4UL*1024*1024, limit);
3183 	max_rshare = min(6UL*1024*1024, limit);
3184 
3185 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3186 	sysctl_tcp_wmem[1] = 16*1024;
3187 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3188 
3189 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3190 	sysctl_tcp_rmem[1] = 87380;
3191 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3192 
3193 	pr_info("Hash tables configured (established %u bind %u)\n",
3194 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3195 
3196 	tcp_metrics_init();
3197 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3198 	tcp_tasklet_init();
3199 }
3200