• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Machine check handler.
3  *
4  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5  * Rest from unknown author(s).
6  * 2004 Andi Kleen. Rewrote most of it.
7  * Copyright 2008 Intel Corporation
8  * Author: Andi Kleen
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/thread_info.h>
14 #include <linux/capability.h>
15 #include <linux/miscdevice.h>
16 #include <linux/ratelimit.h>
17 #include <linux/kallsyms.h>
18 #include <linux/rcupdate.h>
19 #include <linux/kobject.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kernel.h>
23 #include <linux/percpu.h>
24 #include <linux/string.h>
25 #include <linux/device.h>
26 #include <linux/syscore_ops.h>
27 #include <linux/delay.h>
28 #include <linux/ctype.h>
29 #include <linux/sched.h>
30 #include <linux/sysfs.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/kmod.h>
35 #include <linux/poll.h>
36 #include <linux/nmi.h>
37 #include <linux/cpu.h>
38 #include <linux/smp.h>
39 #include <linux/fs.h>
40 #include <linux/mm.h>
41 #include <linux/debugfs.h>
42 #include <linux/irq_work.h>
43 #include <linux/export.h>
44 
45 #include <asm/processor.h>
46 #include <asm/tlbflush.h>
47 #include <asm/mce.h>
48 #include <asm/msr.h>
49 
50 #include "mce-internal.h"
51 
52 static DEFINE_MUTEX(mce_chrdev_read_mutex);
53 
54 #define rcu_dereference_check_mce(p) \
55 	rcu_dereference_index_check((p), \
56 			      rcu_read_lock_sched_held() || \
57 			      lockdep_is_held(&mce_chrdev_read_mutex))
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/mce.h>
61 
62 #define SPINUNIT 100	/* 100ns */
63 
64 DEFINE_PER_CPU(unsigned, mce_exception_count);
65 
66 struct mce_bank *mce_banks __read_mostly;
67 
68 struct mca_config mca_cfg __read_mostly = {
69 	.bootlog  = -1,
70 	/*
71 	 * Tolerant levels:
72 	 * 0: always panic on uncorrected errors, log corrected errors
73 	 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
74 	 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
75 	 * 3: never panic or SIGBUS, log all errors (for testing only)
76 	 */
77 	.tolerant = 1,
78 	.monarch_timeout = -1
79 };
80 
81 /* User mode helper program triggered by machine check event */
82 static unsigned long		mce_need_notify;
83 static char			mce_helper[128];
84 static char			*mce_helper_argv[2] = { mce_helper, NULL };
85 
86 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
87 
88 static DEFINE_PER_CPU(struct mce, mces_seen);
89 static int			cpu_missing;
90 
91 /* CMCI storm detection filter */
92 static DEFINE_PER_CPU(unsigned long, mce_polled_error);
93 
94 /*
95  * MCA banks polled by the period polling timer for corrected events.
96  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
97  */
98 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
99 	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
100 };
101 
102 /*
103  * MCA banks controlled through firmware first for corrected errors.
104  * This is a global list of banks for which we won't enable CMCI and we
105  * won't poll. Firmware controls these banks and is responsible for
106  * reporting corrected errors through GHES. Uncorrected/recoverable
107  * errors are still notified through a machine check.
108  */
109 mce_banks_t mce_banks_ce_disabled;
110 
111 static DEFINE_PER_CPU(struct work_struct, mce_work);
112 
113 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
114 
115 /*
116  * CPU/chipset specific EDAC code can register a notifier call here to print
117  * MCE errors in a human-readable form.
118  */
119 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
120 
121 /* Do initial initialization of a struct mce */
mce_setup(struct mce * m)122 void mce_setup(struct mce *m)
123 {
124 	memset(m, 0, sizeof(struct mce));
125 	m->cpu = m->extcpu = smp_processor_id();
126 	rdtscll(m->tsc);
127 	/* We hope get_seconds stays lockless */
128 	m->time = get_seconds();
129 	m->cpuvendor = boot_cpu_data.x86_vendor;
130 	m->cpuid = cpuid_eax(1);
131 	m->socketid = cpu_data(m->extcpu).phys_proc_id;
132 	m->apicid = cpu_data(m->extcpu).initial_apicid;
133 	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
134 }
135 
136 DEFINE_PER_CPU(struct mce, injectm);
137 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
138 
139 /*
140  * Lockless MCE logging infrastructure.
141  * This avoids deadlocks on printk locks without having to break locks. Also
142  * separate MCEs from kernel messages to avoid bogus bug reports.
143  */
144 
145 static struct mce_log mcelog = {
146 	.signature	= MCE_LOG_SIGNATURE,
147 	.len		= MCE_LOG_LEN,
148 	.recordlen	= sizeof(struct mce),
149 };
150 
mce_log(struct mce * mce)151 void mce_log(struct mce *mce)
152 {
153 	unsigned next, entry;
154 	int ret = 0;
155 
156 	/* Emit the trace record: */
157 	trace_mce_record(mce);
158 
159 	ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
160 	if (ret == NOTIFY_STOP)
161 		return;
162 
163 	mce->finished = 0;
164 	wmb();
165 	for (;;) {
166 		entry = rcu_dereference_check_mce(mcelog.next);
167 		for (;;) {
168 
169 			/*
170 			 * When the buffer fills up discard new entries.
171 			 * Assume that the earlier errors are the more
172 			 * interesting ones:
173 			 */
174 			if (entry >= MCE_LOG_LEN) {
175 				set_bit(MCE_OVERFLOW,
176 					(unsigned long *)&mcelog.flags);
177 				return;
178 			}
179 			/* Old left over entry. Skip: */
180 			if (mcelog.entry[entry].finished) {
181 				entry++;
182 				continue;
183 			}
184 			break;
185 		}
186 		smp_rmb();
187 		next = entry + 1;
188 		if (cmpxchg(&mcelog.next, entry, next) == entry)
189 			break;
190 	}
191 	memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
192 	wmb();
193 	mcelog.entry[entry].finished = 1;
194 	wmb();
195 
196 	mce->finished = 1;
197 	set_bit(0, &mce_need_notify);
198 }
199 
drain_mcelog_buffer(void)200 static void drain_mcelog_buffer(void)
201 {
202 	unsigned int next, i, prev = 0;
203 
204 	next = ACCESS_ONCE(mcelog.next);
205 
206 	do {
207 		struct mce *m;
208 
209 		/* drain what was logged during boot */
210 		for (i = prev; i < next; i++) {
211 			unsigned long start = jiffies;
212 			unsigned retries = 1;
213 
214 			m = &mcelog.entry[i];
215 
216 			while (!m->finished) {
217 				if (time_after_eq(jiffies, start + 2*retries))
218 					retries++;
219 
220 				cpu_relax();
221 
222 				if (!m->finished && retries >= 4) {
223 					pr_err("skipping error being logged currently!\n");
224 					break;
225 				}
226 			}
227 			smp_rmb();
228 			atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
229 		}
230 
231 		memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
232 		prev = next;
233 		next = cmpxchg(&mcelog.next, prev, 0);
234 	} while (next != prev);
235 }
236 
237 
mce_register_decode_chain(struct notifier_block * nb)238 void mce_register_decode_chain(struct notifier_block *nb)
239 {
240 	atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
241 	drain_mcelog_buffer();
242 }
243 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
244 
mce_unregister_decode_chain(struct notifier_block * nb)245 void mce_unregister_decode_chain(struct notifier_block *nb)
246 {
247 	atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
248 }
249 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
250 
print_mce(struct mce * m)251 static void print_mce(struct mce *m)
252 {
253 	int ret = 0;
254 
255 	pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
256 	       m->extcpu, m->mcgstatus, m->bank, m->status);
257 
258 	if (m->ip) {
259 		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
260 			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
261 				m->cs, m->ip);
262 
263 		if (m->cs == __KERNEL_CS)
264 			print_symbol("{%s}", m->ip);
265 		pr_cont("\n");
266 	}
267 
268 	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
269 	if (m->addr)
270 		pr_cont("ADDR %llx ", m->addr);
271 	if (m->misc)
272 		pr_cont("MISC %llx ", m->misc);
273 
274 	pr_cont("\n");
275 	/*
276 	 * Note this output is parsed by external tools and old fields
277 	 * should not be changed.
278 	 */
279 	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
280 		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
281 		cpu_data(m->extcpu).microcode);
282 
283 	/*
284 	 * Print out human-readable details about the MCE error,
285 	 * (if the CPU has an implementation for that)
286 	 */
287 	ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
288 	if (ret == NOTIFY_STOP)
289 		return;
290 
291 	pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
292 }
293 
294 #define PANIC_TIMEOUT 5 /* 5 seconds */
295 
296 static atomic_t mce_paniced;
297 
298 static int fake_panic;
299 static atomic_t mce_fake_paniced;
300 
301 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)302 static void wait_for_panic(void)
303 {
304 	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
305 
306 	preempt_disable();
307 	local_irq_enable();
308 	while (timeout-- > 0)
309 		udelay(1);
310 	if (panic_timeout == 0)
311 		panic_timeout = mca_cfg.panic_timeout;
312 	panic("Panicing machine check CPU died");
313 }
314 
mce_panic(char * msg,struct mce * final,char * exp)315 static void mce_panic(char *msg, struct mce *final, char *exp)
316 {
317 	int i, apei_err = 0;
318 
319 	if (!fake_panic) {
320 		/*
321 		 * Make sure only one CPU runs in machine check panic
322 		 */
323 		if (atomic_inc_return(&mce_paniced) > 1)
324 			wait_for_panic();
325 		barrier();
326 
327 		bust_spinlocks(1);
328 		console_verbose();
329 	} else {
330 		/* Don't log too much for fake panic */
331 		if (atomic_inc_return(&mce_fake_paniced) > 1)
332 			return;
333 	}
334 	/* First print corrected ones that are still unlogged */
335 	for (i = 0; i < MCE_LOG_LEN; i++) {
336 		struct mce *m = &mcelog.entry[i];
337 		if (!(m->status & MCI_STATUS_VAL))
338 			continue;
339 		if (!(m->status & MCI_STATUS_UC)) {
340 			print_mce(m);
341 			if (!apei_err)
342 				apei_err = apei_write_mce(m);
343 		}
344 	}
345 	/* Now print uncorrected but with the final one last */
346 	for (i = 0; i < MCE_LOG_LEN; i++) {
347 		struct mce *m = &mcelog.entry[i];
348 		if (!(m->status & MCI_STATUS_VAL))
349 			continue;
350 		if (!(m->status & MCI_STATUS_UC))
351 			continue;
352 		if (!final || memcmp(m, final, sizeof(struct mce))) {
353 			print_mce(m);
354 			if (!apei_err)
355 				apei_err = apei_write_mce(m);
356 		}
357 	}
358 	if (final) {
359 		print_mce(final);
360 		if (!apei_err)
361 			apei_err = apei_write_mce(final);
362 	}
363 	if (cpu_missing)
364 		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
365 	if (exp)
366 		pr_emerg(HW_ERR "Machine check: %s\n", exp);
367 	if (!fake_panic) {
368 		if (panic_timeout == 0)
369 			panic_timeout = mca_cfg.panic_timeout;
370 		panic(msg);
371 	} else
372 		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
373 }
374 
375 /* Support code for software error injection */
376 
msr_to_offset(u32 msr)377 static int msr_to_offset(u32 msr)
378 {
379 	unsigned bank = __this_cpu_read(injectm.bank);
380 
381 	if (msr == mca_cfg.rip_msr)
382 		return offsetof(struct mce, ip);
383 	if (msr == MSR_IA32_MCx_STATUS(bank))
384 		return offsetof(struct mce, status);
385 	if (msr == MSR_IA32_MCx_ADDR(bank))
386 		return offsetof(struct mce, addr);
387 	if (msr == MSR_IA32_MCx_MISC(bank))
388 		return offsetof(struct mce, misc);
389 	if (msr == MSR_IA32_MCG_STATUS)
390 		return offsetof(struct mce, mcgstatus);
391 	return -1;
392 }
393 
394 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)395 static u64 mce_rdmsrl(u32 msr)
396 {
397 	u64 v;
398 
399 	if (__this_cpu_read(injectm.finished)) {
400 		int offset = msr_to_offset(msr);
401 
402 		if (offset < 0)
403 			return 0;
404 		return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
405 	}
406 
407 	if (rdmsrl_safe(msr, &v)) {
408 		WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
409 		/*
410 		 * Return zero in case the access faulted. This should
411 		 * not happen normally but can happen if the CPU does
412 		 * something weird, or if the code is buggy.
413 		 */
414 		v = 0;
415 	}
416 
417 	return v;
418 }
419 
mce_wrmsrl(u32 msr,u64 v)420 static void mce_wrmsrl(u32 msr, u64 v)
421 {
422 	if (__this_cpu_read(injectm.finished)) {
423 		int offset = msr_to_offset(msr);
424 
425 		if (offset >= 0)
426 			*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
427 		return;
428 	}
429 	wrmsrl(msr, v);
430 }
431 
432 /*
433  * Collect all global (w.r.t. this processor) status about this machine
434  * check into our "mce" struct so that we can use it later to assess
435  * the severity of the problem as we read per-bank specific details.
436  */
mce_gather_info(struct mce * m,struct pt_regs * regs)437 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
438 {
439 	mce_setup(m);
440 
441 	m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
442 	if (regs) {
443 		/*
444 		 * Get the address of the instruction at the time of
445 		 * the machine check error.
446 		 */
447 		if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
448 			m->ip = regs->ip;
449 			m->cs = regs->cs;
450 
451 			/*
452 			 * When in VM86 mode make the cs look like ring 3
453 			 * always. This is a lie, but it's better than passing
454 			 * the additional vm86 bit around everywhere.
455 			 */
456 			if (v8086_mode(regs))
457 				m->cs |= 3;
458 		}
459 		/* Use accurate RIP reporting if available. */
460 		if (mca_cfg.rip_msr)
461 			m->ip = mce_rdmsrl(mca_cfg.rip_msr);
462 	}
463 }
464 
465 /*
466  * Simple lockless ring to communicate PFNs from the exception handler with the
467  * process context work function. This is vastly simplified because there's
468  * only a single reader and a single writer.
469  */
470 #define MCE_RING_SIZE 16	/* we use one entry less */
471 
472 struct mce_ring {
473 	unsigned short start;
474 	unsigned short end;
475 	unsigned long ring[MCE_RING_SIZE];
476 };
477 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
478 
479 /* Runs with CPU affinity in workqueue */
mce_ring_empty(void)480 static int mce_ring_empty(void)
481 {
482 	struct mce_ring *r = this_cpu_ptr(&mce_ring);
483 
484 	return r->start == r->end;
485 }
486 
mce_ring_get(unsigned long * pfn)487 static int mce_ring_get(unsigned long *pfn)
488 {
489 	struct mce_ring *r;
490 	int ret = 0;
491 
492 	*pfn = 0;
493 	get_cpu();
494 	r = this_cpu_ptr(&mce_ring);
495 	if (r->start == r->end)
496 		goto out;
497 	*pfn = r->ring[r->start];
498 	r->start = (r->start + 1) % MCE_RING_SIZE;
499 	ret = 1;
500 out:
501 	put_cpu();
502 	return ret;
503 }
504 
505 /* Always runs in MCE context with preempt off */
mce_ring_add(unsigned long pfn)506 static int mce_ring_add(unsigned long pfn)
507 {
508 	struct mce_ring *r = this_cpu_ptr(&mce_ring);
509 	unsigned next;
510 
511 	next = (r->end + 1) % MCE_RING_SIZE;
512 	if (next == r->start)
513 		return -1;
514 	r->ring[r->end] = pfn;
515 	wmb();
516 	r->end = next;
517 	return 0;
518 }
519 
mce_available(struct cpuinfo_x86 * c)520 int mce_available(struct cpuinfo_x86 *c)
521 {
522 	if (mca_cfg.disabled)
523 		return 0;
524 	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
525 }
526 
mce_schedule_work(void)527 static void mce_schedule_work(void)
528 {
529 	if (!mce_ring_empty())
530 		schedule_work(this_cpu_ptr(&mce_work));
531 }
532 
533 DEFINE_PER_CPU(struct irq_work, mce_irq_work);
534 
mce_irq_work_cb(struct irq_work * entry)535 static void mce_irq_work_cb(struct irq_work *entry)
536 {
537 	mce_notify_irq();
538 	mce_schedule_work();
539 }
540 
mce_report_event(struct pt_regs * regs)541 static void mce_report_event(struct pt_regs *regs)
542 {
543 	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
544 		mce_notify_irq();
545 		/*
546 		 * Triggering the work queue here is just an insurance
547 		 * policy in case the syscall exit notify handler
548 		 * doesn't run soon enough or ends up running on the
549 		 * wrong CPU (can happen when audit sleeps)
550 		 */
551 		mce_schedule_work();
552 		return;
553 	}
554 
555 	irq_work_queue(this_cpu_ptr(&mce_irq_work));
556 }
557 
558 /*
559  * Read ADDR and MISC registers.
560  */
mce_read_aux(struct mce * m,int i)561 static void mce_read_aux(struct mce *m, int i)
562 {
563 	if (m->status & MCI_STATUS_MISCV)
564 		m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
565 	if (m->status & MCI_STATUS_ADDRV) {
566 		m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
567 
568 		/*
569 		 * Mask the reported address by the reported granularity.
570 		 */
571 		if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
572 			u8 shift = MCI_MISC_ADDR_LSB(m->misc);
573 			m->addr >>= shift;
574 			m->addr <<= shift;
575 		}
576 	}
577 }
578 
579 DEFINE_PER_CPU(unsigned, mce_poll_count);
580 
581 /*
582  * Poll for corrected events or events that happened before reset.
583  * Those are just logged through /dev/mcelog.
584  *
585  * This is executed in standard interrupt context.
586  *
587  * Note: spec recommends to panic for fatal unsignalled
588  * errors here. However this would be quite problematic --
589  * we would need to reimplement the Monarch handling and
590  * it would mess up the exclusion between exception handler
591  * and poll hander -- * so we skip this for now.
592  * These cases should not happen anyways, or only when the CPU
593  * is already totally * confused. In this case it's likely it will
594  * not fully execute the machine check handler either.
595  */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)596 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
597 {
598 	struct mce m;
599 	int i;
600 
601 	this_cpu_inc(mce_poll_count);
602 
603 	mce_gather_info(&m, NULL);
604 
605 	for (i = 0; i < mca_cfg.banks; i++) {
606 		if (!mce_banks[i].ctl || !test_bit(i, *b))
607 			continue;
608 
609 		m.misc = 0;
610 		m.addr = 0;
611 		m.bank = i;
612 		m.tsc = 0;
613 
614 		barrier();
615 		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
616 		if (!(m.status & MCI_STATUS_VAL))
617 			continue;
618 
619 		this_cpu_write(mce_polled_error, 1);
620 		/*
621 		 * Uncorrected or signalled events are handled by the exception
622 		 * handler when it is enabled, so don't process those here.
623 		 *
624 		 * TBD do the same check for MCI_STATUS_EN here?
625 		 */
626 		if (!(flags & MCP_UC) &&
627 		    (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
628 			continue;
629 
630 		mce_read_aux(&m, i);
631 
632 		if (!(flags & MCP_TIMESTAMP))
633 			m.tsc = 0;
634 		/*
635 		 * Don't get the IP here because it's unlikely to
636 		 * have anything to do with the actual error location.
637 		 */
638 		if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
639 			mce_log(&m);
640 
641 		/*
642 		 * Clear state for this bank.
643 		 */
644 		mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
645 	}
646 
647 	/*
648 	 * Don't clear MCG_STATUS here because it's only defined for
649 	 * exceptions.
650 	 */
651 
652 	sync_core();
653 }
654 EXPORT_SYMBOL_GPL(machine_check_poll);
655 
656 /*
657  * Do a quick check if any of the events requires a panic.
658  * This decides if we keep the events around or clear them.
659  */
mce_no_way_out(struct mce * m,char ** msg,unsigned long * validp,struct pt_regs * regs)660 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
661 			  struct pt_regs *regs)
662 {
663 	int i, ret = 0;
664 	char *tmp;
665 
666 	for (i = 0; i < mca_cfg.banks; i++) {
667 		m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
668 		if (m->status & MCI_STATUS_VAL) {
669 			__set_bit(i, validp);
670 			if (quirk_no_way_out)
671 				quirk_no_way_out(i, m, regs);
672 		}
673 
674 		if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
675 			*msg = tmp;
676 			ret = 1;
677 		}
678 	}
679 	return ret;
680 }
681 
682 /*
683  * Variable to establish order between CPUs while scanning.
684  * Each CPU spins initially until executing is equal its number.
685  */
686 static atomic_t mce_executing;
687 
688 /*
689  * Defines order of CPUs on entry. First CPU becomes Monarch.
690  */
691 static atomic_t mce_callin;
692 
693 /*
694  * Check if a timeout waiting for other CPUs happened.
695  */
mce_timed_out(u64 * t)696 static int mce_timed_out(u64 *t)
697 {
698 	/*
699 	 * The others already did panic for some reason.
700 	 * Bail out like in a timeout.
701 	 * rmb() to tell the compiler that system_state
702 	 * might have been modified by someone else.
703 	 */
704 	rmb();
705 	if (atomic_read(&mce_paniced))
706 		wait_for_panic();
707 	if (!mca_cfg.monarch_timeout)
708 		goto out;
709 	if ((s64)*t < SPINUNIT) {
710 		if (mca_cfg.tolerant <= 1)
711 			mce_panic("Timeout synchronizing machine check over CPUs",
712 				  NULL, NULL);
713 		cpu_missing = 1;
714 		return 1;
715 	}
716 	*t -= SPINUNIT;
717 out:
718 	touch_nmi_watchdog();
719 	return 0;
720 }
721 
722 /*
723  * The Monarch's reign.  The Monarch is the CPU who entered
724  * the machine check handler first. It waits for the others to
725  * raise the exception too and then grades them. When any
726  * error is fatal panic. Only then let the others continue.
727  *
728  * The other CPUs entering the MCE handler will be controlled by the
729  * Monarch. They are called Subjects.
730  *
731  * This way we prevent any potential data corruption in a unrecoverable case
732  * and also makes sure always all CPU's errors are examined.
733  *
734  * Also this detects the case of a machine check event coming from outer
735  * space (not detected by any CPUs) In this case some external agent wants
736  * us to shut down, so panic too.
737  *
738  * The other CPUs might still decide to panic if the handler happens
739  * in a unrecoverable place, but in this case the system is in a semi-stable
740  * state and won't corrupt anything by itself. It's ok to let the others
741  * continue for a bit first.
742  *
743  * All the spin loops have timeouts; when a timeout happens a CPU
744  * typically elects itself to be Monarch.
745  */
mce_reign(void)746 static void mce_reign(void)
747 {
748 	int cpu;
749 	struct mce *m = NULL;
750 	int global_worst = 0;
751 	char *msg = NULL;
752 	char *nmsg = NULL;
753 
754 	/*
755 	 * This CPU is the Monarch and the other CPUs have run
756 	 * through their handlers.
757 	 * Grade the severity of the errors of all the CPUs.
758 	 */
759 	for_each_possible_cpu(cpu) {
760 		int severity = mce_severity(&per_cpu(mces_seen, cpu),
761 					    mca_cfg.tolerant,
762 					    &nmsg, true);
763 		if (severity > global_worst) {
764 			msg = nmsg;
765 			global_worst = severity;
766 			m = &per_cpu(mces_seen, cpu);
767 		}
768 	}
769 
770 	/*
771 	 * Cannot recover? Panic here then.
772 	 * This dumps all the mces in the log buffer and stops the
773 	 * other CPUs.
774 	 */
775 	if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
776 		mce_panic("Fatal Machine check", m, msg);
777 
778 	/*
779 	 * For UC somewhere we let the CPU who detects it handle it.
780 	 * Also must let continue the others, otherwise the handling
781 	 * CPU could deadlock on a lock.
782 	 */
783 
784 	/*
785 	 * No machine check event found. Must be some external
786 	 * source or one CPU is hung. Panic.
787 	 */
788 	if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
789 		mce_panic("Machine check from unknown source", NULL, NULL);
790 
791 	/*
792 	 * Now clear all the mces_seen so that they don't reappear on
793 	 * the next mce.
794 	 */
795 	for_each_possible_cpu(cpu)
796 		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
797 }
798 
799 static atomic_t global_nwo;
800 
801 /*
802  * Start of Monarch synchronization. This waits until all CPUs have
803  * entered the exception handler and then determines if any of them
804  * saw a fatal event that requires panic. Then it executes them
805  * in the entry order.
806  * TBD double check parallel CPU hotunplug
807  */
mce_start(int * no_way_out)808 static int mce_start(int *no_way_out)
809 {
810 	int order;
811 	int cpus = num_online_cpus();
812 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
813 
814 	if (!timeout)
815 		return -1;
816 
817 	atomic_add(*no_way_out, &global_nwo);
818 	/*
819 	 * global_nwo should be updated before mce_callin
820 	 */
821 	smp_wmb();
822 	order = atomic_inc_return(&mce_callin);
823 
824 	/*
825 	 * Wait for everyone.
826 	 */
827 	while (atomic_read(&mce_callin) != cpus) {
828 		if (mce_timed_out(&timeout)) {
829 			atomic_set(&global_nwo, 0);
830 			return -1;
831 		}
832 		ndelay(SPINUNIT);
833 	}
834 
835 	/*
836 	 * mce_callin should be read before global_nwo
837 	 */
838 	smp_rmb();
839 
840 	if (order == 1) {
841 		/*
842 		 * Monarch: Starts executing now, the others wait.
843 		 */
844 		atomic_set(&mce_executing, 1);
845 	} else {
846 		/*
847 		 * Subject: Now start the scanning loop one by one in
848 		 * the original callin order.
849 		 * This way when there are any shared banks it will be
850 		 * only seen by one CPU before cleared, avoiding duplicates.
851 		 */
852 		while (atomic_read(&mce_executing) < order) {
853 			if (mce_timed_out(&timeout)) {
854 				atomic_set(&global_nwo, 0);
855 				return -1;
856 			}
857 			ndelay(SPINUNIT);
858 		}
859 	}
860 
861 	/*
862 	 * Cache the global no_way_out state.
863 	 */
864 	*no_way_out = atomic_read(&global_nwo);
865 
866 	return order;
867 }
868 
869 /*
870  * Synchronize between CPUs after main scanning loop.
871  * This invokes the bulk of the Monarch processing.
872  */
mce_end(int order)873 static int mce_end(int order)
874 {
875 	int ret = -1;
876 	u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
877 
878 	if (!timeout)
879 		goto reset;
880 	if (order < 0)
881 		goto reset;
882 
883 	/*
884 	 * Allow others to run.
885 	 */
886 	atomic_inc(&mce_executing);
887 
888 	if (order == 1) {
889 		/* CHECKME: Can this race with a parallel hotplug? */
890 		int cpus = num_online_cpus();
891 
892 		/*
893 		 * Monarch: Wait for everyone to go through their scanning
894 		 * loops.
895 		 */
896 		while (atomic_read(&mce_executing) <= cpus) {
897 			if (mce_timed_out(&timeout))
898 				goto reset;
899 			ndelay(SPINUNIT);
900 		}
901 
902 		mce_reign();
903 		barrier();
904 		ret = 0;
905 	} else {
906 		/*
907 		 * Subject: Wait for Monarch to finish.
908 		 */
909 		while (atomic_read(&mce_executing) != 0) {
910 			if (mce_timed_out(&timeout))
911 				goto reset;
912 			ndelay(SPINUNIT);
913 		}
914 
915 		/*
916 		 * Don't reset anything. That's done by the Monarch.
917 		 */
918 		return 0;
919 	}
920 
921 	/*
922 	 * Reset all global state.
923 	 */
924 reset:
925 	atomic_set(&global_nwo, 0);
926 	atomic_set(&mce_callin, 0);
927 	barrier();
928 
929 	/*
930 	 * Let others run again.
931 	 */
932 	atomic_set(&mce_executing, 0);
933 	return ret;
934 }
935 
936 /*
937  * Check if the address reported by the CPU is in a format we can parse.
938  * It would be possible to add code for most other cases, but all would
939  * be somewhat complicated (e.g. segment offset would require an instruction
940  * parser). So only support physical addresses up to page granuality for now.
941  */
mce_usable_address(struct mce * m)942 static int mce_usable_address(struct mce *m)
943 {
944 	if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
945 		return 0;
946 	if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
947 		return 0;
948 	if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
949 		return 0;
950 	return 1;
951 }
952 
mce_clear_state(unsigned long * toclear)953 static void mce_clear_state(unsigned long *toclear)
954 {
955 	int i;
956 
957 	for (i = 0; i < mca_cfg.banks; i++) {
958 		if (test_bit(i, toclear))
959 			mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
960 	}
961 }
962 
963 /*
964  * Need to save faulting physical address associated with a process
965  * in the machine check handler some place where we can grab it back
966  * later in mce_notify_process()
967  */
968 #define	MCE_INFO_MAX	16
969 
970 struct mce_info {
971 	atomic_t		inuse;
972 	struct task_struct	*t;
973 	__u64			paddr;
974 	int			restartable;
975 } mce_info[MCE_INFO_MAX];
976 
mce_save_info(__u64 addr,int c)977 static void mce_save_info(__u64 addr, int c)
978 {
979 	struct mce_info *mi;
980 
981 	for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++) {
982 		if (atomic_cmpxchg(&mi->inuse, 0, 1) == 0) {
983 			mi->t = current;
984 			mi->paddr = addr;
985 			mi->restartable = c;
986 			return;
987 		}
988 	}
989 
990 	mce_panic("Too many concurrent recoverable errors", NULL, NULL);
991 }
992 
mce_find_info(void)993 static struct mce_info *mce_find_info(void)
994 {
995 	struct mce_info *mi;
996 
997 	for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++)
998 		if (atomic_read(&mi->inuse) && mi->t == current)
999 			return mi;
1000 	return NULL;
1001 }
1002 
mce_clear_info(struct mce_info * mi)1003 static void mce_clear_info(struct mce_info *mi)
1004 {
1005 	atomic_set(&mi->inuse, 0);
1006 }
1007 
1008 /*
1009  * The actual machine check handler. This only handles real
1010  * exceptions when something got corrupted coming in through int 18.
1011  *
1012  * This is executed in NMI context not subject to normal locking rules. This
1013  * implies that most kernel services cannot be safely used. Don't even
1014  * think about putting a printk in there!
1015  *
1016  * On Intel systems this is entered on all CPUs in parallel through
1017  * MCE broadcast. However some CPUs might be broken beyond repair,
1018  * so be always careful when synchronizing with others.
1019  */
do_machine_check(struct pt_regs * regs,long error_code)1020 void do_machine_check(struct pt_regs *regs, long error_code)
1021 {
1022 	struct mca_config *cfg = &mca_cfg;
1023 	struct mce m, *final;
1024 	int i;
1025 	int worst = 0;
1026 	int severity;
1027 	/*
1028 	 * Establish sequential order between the CPUs entering the machine
1029 	 * check handler.
1030 	 */
1031 	int order;
1032 	/*
1033 	 * If no_way_out gets set, there is no safe way to recover from this
1034 	 * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1035 	 */
1036 	int no_way_out = 0;
1037 	/*
1038 	 * If kill_it gets set, there might be a way to recover from this
1039 	 * error.
1040 	 */
1041 	int kill_it = 0;
1042 	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1043 	DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1044 	char *msg = "Unknown";
1045 
1046 	this_cpu_inc(mce_exception_count);
1047 
1048 	if (!cfg->banks)
1049 		goto out;
1050 
1051 	mce_gather_info(&m, regs);
1052 
1053 	final = this_cpu_ptr(&mces_seen);
1054 	*final = m;
1055 
1056 	memset(valid_banks, 0, sizeof(valid_banks));
1057 	no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1058 
1059 	barrier();
1060 
1061 	/*
1062 	 * When no restart IP might need to kill or panic.
1063 	 * Assume the worst for now, but if we find the
1064 	 * severity is MCE_AR_SEVERITY we have other options.
1065 	 */
1066 	if (!(m.mcgstatus & MCG_STATUS_RIPV))
1067 		kill_it = 1;
1068 
1069 	/*
1070 	 * Go through all the banks in exclusion of the other CPUs.
1071 	 * This way we don't report duplicated events on shared banks
1072 	 * because the first one to see it will clear it.
1073 	 */
1074 	order = mce_start(&no_way_out);
1075 	for (i = 0; i < cfg->banks; i++) {
1076 		__clear_bit(i, toclear);
1077 		if (!test_bit(i, valid_banks))
1078 			continue;
1079 		if (!mce_banks[i].ctl)
1080 			continue;
1081 
1082 		m.misc = 0;
1083 		m.addr = 0;
1084 		m.bank = i;
1085 
1086 		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
1087 		if ((m.status & MCI_STATUS_VAL) == 0)
1088 			continue;
1089 
1090 		/*
1091 		 * Non uncorrected or non signaled errors are handled by
1092 		 * machine_check_poll. Leave them alone, unless this panics.
1093 		 */
1094 		if (!(m.status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1095 			!no_way_out)
1096 			continue;
1097 
1098 		/*
1099 		 * Set taint even when machine check was not enabled.
1100 		 */
1101 		add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1102 
1103 		severity = mce_severity(&m, cfg->tolerant, NULL, true);
1104 
1105 		/*
1106 		 * When machine check was for corrected/deferred handler don't
1107 		 * touch, unless we're panicing.
1108 		 */
1109 		if ((severity == MCE_KEEP_SEVERITY ||
1110 		     severity == MCE_UCNA_SEVERITY) && !no_way_out)
1111 			continue;
1112 		__set_bit(i, toclear);
1113 		if (severity == MCE_NO_SEVERITY) {
1114 			/*
1115 			 * Machine check event was not enabled. Clear, but
1116 			 * ignore.
1117 			 */
1118 			continue;
1119 		}
1120 
1121 		mce_read_aux(&m, i);
1122 
1123 		/*
1124 		 * Action optional error. Queue address for later processing.
1125 		 * When the ring overflows we just ignore the AO error.
1126 		 * RED-PEN add some logging mechanism when
1127 		 * usable_address or mce_add_ring fails.
1128 		 * RED-PEN don't ignore overflow for mca_cfg.tolerant == 0
1129 		 */
1130 		if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1131 			mce_ring_add(m.addr >> PAGE_SHIFT);
1132 
1133 		mce_log(&m);
1134 
1135 		if (severity > worst) {
1136 			*final = m;
1137 			worst = severity;
1138 		}
1139 	}
1140 
1141 	/* mce_clear_state will clear *final, save locally for use later */
1142 	m = *final;
1143 
1144 	if (!no_way_out)
1145 		mce_clear_state(toclear);
1146 
1147 	/*
1148 	 * Do most of the synchronization with other CPUs.
1149 	 * When there's any problem use only local no_way_out state.
1150 	 */
1151 	if (mce_end(order) < 0)
1152 		no_way_out = worst >= MCE_PANIC_SEVERITY;
1153 
1154 	/*
1155 	 * At insane "tolerant" levels we take no action. Otherwise
1156 	 * we only die if we have no other choice. For less serious
1157 	 * issues we try to recover, or limit damage to the current
1158 	 * process.
1159 	 */
1160 	if (cfg->tolerant < 3) {
1161 		if (no_way_out)
1162 			mce_panic("Fatal machine check on current CPU", &m, msg);
1163 		if (worst == MCE_AR_SEVERITY) {
1164 			/* schedule action before return to userland */
1165 			mce_save_info(m.addr, m.mcgstatus & MCG_STATUS_RIPV);
1166 			set_thread_flag(TIF_MCE_NOTIFY);
1167 		} else if (kill_it) {
1168 			force_sig(SIGBUS, current);
1169 		}
1170 	}
1171 
1172 	if (worst > 0)
1173 		mce_report_event(regs);
1174 	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1175 out:
1176 	sync_core();
1177 }
1178 EXPORT_SYMBOL_GPL(do_machine_check);
1179 
1180 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int vector,int flags)1181 int memory_failure(unsigned long pfn, int vector, int flags)
1182 {
1183 	/* mce_severity() should not hand us an ACTION_REQUIRED error */
1184 	BUG_ON(flags & MF_ACTION_REQUIRED);
1185 	pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1186 	       "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1187 	       pfn);
1188 
1189 	return 0;
1190 }
1191 #endif
1192 
1193 /*
1194  * Called in process context that interrupted by MCE and marked with
1195  * TIF_MCE_NOTIFY, just before returning to erroneous userland.
1196  * This code is allowed to sleep.
1197  * Attempt possible recovery such as calling the high level VM handler to
1198  * process any corrupted pages, and kill/signal current process if required.
1199  * Action required errors are handled here.
1200  */
mce_notify_process(void)1201 void mce_notify_process(void)
1202 {
1203 	unsigned long pfn;
1204 	struct mce_info *mi = mce_find_info();
1205 	int flags = MF_ACTION_REQUIRED;
1206 
1207 	if (!mi)
1208 		mce_panic("Lost physical address for unconsumed uncorrectable error", NULL, NULL);
1209 	pfn = mi->paddr >> PAGE_SHIFT;
1210 
1211 	clear_thread_flag(TIF_MCE_NOTIFY);
1212 
1213 	pr_err("Uncorrected hardware memory error in user-access at %llx",
1214 		 mi->paddr);
1215 	/*
1216 	 * We must call memory_failure() here even if the current process is
1217 	 * doomed. We still need to mark the page as poisoned and alert any
1218 	 * other users of the page.
1219 	 */
1220 	if (!mi->restartable)
1221 		flags |= MF_MUST_KILL;
1222 	if (memory_failure(pfn, MCE_VECTOR, flags) < 0) {
1223 		pr_err("Memory error not recovered");
1224 		force_sig(SIGBUS, current);
1225 	}
1226 	mce_clear_info(mi);
1227 }
1228 
1229 /*
1230  * Action optional processing happens here (picking up
1231  * from the list of faulting pages that do_machine_check()
1232  * placed into the "ring").
1233  */
mce_process_work(struct work_struct * dummy)1234 static void mce_process_work(struct work_struct *dummy)
1235 {
1236 	unsigned long pfn;
1237 
1238 	while (mce_ring_get(&pfn))
1239 		memory_failure(pfn, MCE_VECTOR, 0);
1240 }
1241 
1242 #ifdef CONFIG_X86_MCE_INTEL
1243 /***
1244  * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1245  * @cpu: The CPU on which the event occurred.
1246  * @status: Event status information
1247  *
1248  * This function should be called by the thermal interrupt after the
1249  * event has been processed and the decision was made to log the event
1250  * further.
1251  *
1252  * The status parameter will be saved to the 'status' field of 'struct mce'
1253  * and historically has been the register value of the
1254  * MSR_IA32_THERMAL_STATUS (Intel) msr.
1255  */
mce_log_therm_throt_event(__u64 status)1256 void mce_log_therm_throt_event(__u64 status)
1257 {
1258 	struct mce m;
1259 
1260 	mce_setup(&m);
1261 	m.bank = MCE_THERMAL_BANK;
1262 	m.status = status;
1263 	mce_log(&m);
1264 }
1265 #endif /* CONFIG_X86_MCE_INTEL */
1266 
1267 /*
1268  * Periodic polling timer for "silent" machine check errors.  If the
1269  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1270  * errors, poll 2x slower (up to check_interval seconds).
1271  */
1272 static unsigned long check_interval = 5 * 60; /* 5 minutes */
1273 
1274 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1275 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1276 
mce_adjust_timer_default(unsigned long interval)1277 static unsigned long mce_adjust_timer_default(unsigned long interval)
1278 {
1279 	return interval;
1280 }
1281 
1282 static unsigned long (*mce_adjust_timer)(unsigned long interval) =
1283 	mce_adjust_timer_default;
1284 
cmc_error_seen(void)1285 static int cmc_error_seen(void)
1286 {
1287 	unsigned long *v = this_cpu_ptr(&mce_polled_error);
1288 
1289 	return test_and_clear_bit(0, v);
1290 }
1291 
mce_timer_fn(unsigned long data)1292 static void mce_timer_fn(unsigned long data)
1293 {
1294 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1295 	unsigned long iv;
1296 	int notify;
1297 
1298 	WARN_ON(smp_processor_id() != data);
1299 
1300 	if (mce_available(this_cpu_ptr(&cpu_info))) {
1301 		machine_check_poll(MCP_TIMESTAMP,
1302 				this_cpu_ptr(&mce_poll_banks));
1303 		mce_intel_cmci_poll();
1304 	}
1305 
1306 	/*
1307 	 * Alert userspace if needed.  If we logged an MCE, reduce the
1308 	 * polling interval, otherwise increase the polling interval.
1309 	 */
1310 	iv = __this_cpu_read(mce_next_interval);
1311 	notify = mce_notify_irq();
1312 	notify |= cmc_error_seen();
1313 	if (notify) {
1314 		iv = max(iv / 2, (unsigned long) HZ/100);
1315 	} else {
1316 		iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1317 		iv = mce_adjust_timer(iv);
1318 	}
1319 	__this_cpu_write(mce_next_interval, iv);
1320 	/* Might have become 0 after CMCI storm subsided */
1321 	if (iv) {
1322 		t->expires = jiffies + iv;
1323 		add_timer_on(t, smp_processor_id());
1324 	}
1325 }
1326 
1327 /*
1328  * Ensure that the timer is firing in @interval from now.
1329  */
mce_timer_kick(unsigned long interval)1330 void mce_timer_kick(unsigned long interval)
1331 {
1332 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1333 	unsigned long when = jiffies + interval;
1334 	unsigned long iv = __this_cpu_read(mce_next_interval);
1335 
1336 	if (timer_pending(t)) {
1337 		if (time_before(when, t->expires))
1338 			mod_timer_pinned(t, when);
1339 	} else {
1340 		t->expires = round_jiffies(when);
1341 		add_timer_on(t, smp_processor_id());
1342 	}
1343 	if (interval < iv)
1344 		__this_cpu_write(mce_next_interval, interval);
1345 }
1346 
1347 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1348 static void mce_timer_delete_all(void)
1349 {
1350 	int cpu;
1351 
1352 	for_each_online_cpu(cpu)
1353 		del_timer_sync(&per_cpu(mce_timer, cpu));
1354 }
1355 
mce_do_trigger(struct work_struct * work)1356 static void mce_do_trigger(struct work_struct *work)
1357 {
1358 	call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1359 }
1360 
1361 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1362 
1363 /*
1364  * Notify the user(s) about new machine check events.
1365  * Can be called from interrupt context, but not from machine check/NMI
1366  * context.
1367  */
mce_notify_irq(void)1368 int mce_notify_irq(void)
1369 {
1370 	/* Not more than two messages every minute */
1371 	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1372 
1373 	if (test_and_clear_bit(0, &mce_need_notify)) {
1374 		/* wake processes polling /dev/mcelog */
1375 		wake_up_interruptible(&mce_chrdev_wait);
1376 
1377 		if (mce_helper[0])
1378 			schedule_work(&mce_trigger_work);
1379 
1380 		if (__ratelimit(&ratelimit))
1381 			pr_info(HW_ERR "Machine check events logged\n");
1382 
1383 		return 1;
1384 	}
1385 	return 0;
1386 }
1387 EXPORT_SYMBOL_GPL(mce_notify_irq);
1388 
__mcheck_cpu_mce_banks_init(void)1389 static int __mcheck_cpu_mce_banks_init(void)
1390 {
1391 	int i;
1392 	u8 num_banks = mca_cfg.banks;
1393 
1394 	mce_banks = kzalloc(num_banks * sizeof(struct mce_bank), GFP_KERNEL);
1395 	if (!mce_banks)
1396 		return -ENOMEM;
1397 
1398 	for (i = 0; i < num_banks; i++) {
1399 		struct mce_bank *b = &mce_banks[i];
1400 
1401 		b->ctl = -1ULL;
1402 		b->init = 1;
1403 	}
1404 	return 0;
1405 }
1406 
1407 /*
1408  * Initialize Machine Checks for a CPU.
1409  */
__mcheck_cpu_cap_init(void)1410 static int __mcheck_cpu_cap_init(void)
1411 {
1412 	unsigned b;
1413 	u64 cap;
1414 
1415 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1416 
1417 	b = cap & MCG_BANKCNT_MASK;
1418 	if (!mca_cfg.banks)
1419 		pr_info("CPU supports %d MCE banks\n", b);
1420 
1421 	if (b > MAX_NR_BANKS) {
1422 		pr_warn("Using only %u machine check banks out of %u\n",
1423 			MAX_NR_BANKS, b);
1424 		b = MAX_NR_BANKS;
1425 	}
1426 
1427 	/* Don't support asymmetric configurations today */
1428 	WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
1429 	mca_cfg.banks = b;
1430 
1431 	if (!mce_banks) {
1432 		int err = __mcheck_cpu_mce_banks_init();
1433 
1434 		if (err)
1435 			return err;
1436 	}
1437 
1438 	/* Use accurate RIP reporting if available. */
1439 	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1440 		mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1441 
1442 	if (cap & MCG_SER_P)
1443 		mca_cfg.ser = true;
1444 
1445 	return 0;
1446 }
1447 
__mcheck_cpu_init_generic(void)1448 static void __mcheck_cpu_init_generic(void)
1449 {
1450 	enum mcp_flags m_fl = 0;
1451 	mce_banks_t all_banks;
1452 	u64 cap;
1453 	int i;
1454 
1455 	if (!mca_cfg.bootlog)
1456 		m_fl = MCP_DONTLOG;
1457 
1458 	/*
1459 	 * Log the machine checks left over from the previous reset.
1460 	 */
1461 	bitmap_fill(all_banks, MAX_NR_BANKS);
1462 	machine_check_poll(MCP_UC | m_fl, &all_banks);
1463 
1464 	cr4_set_bits(X86_CR4_MCE);
1465 
1466 	rdmsrl(MSR_IA32_MCG_CAP, cap);
1467 	if (cap & MCG_CTL_P)
1468 		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1469 
1470 	for (i = 0; i < mca_cfg.banks; i++) {
1471 		struct mce_bank *b = &mce_banks[i];
1472 
1473 		if (!b->init)
1474 			continue;
1475 		wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1476 		wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1477 	}
1478 }
1479 
1480 /*
1481  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1482  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1483  * Vol 3B Table 15-20). But this confuses both the code that determines
1484  * whether the machine check occurred in kernel or user mode, and also
1485  * the severity assessment code. Pretend that EIPV was set, and take the
1486  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1487  */
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)1488 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1489 {
1490 	if (bank != 0)
1491 		return;
1492 	if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1493 		return;
1494 	if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1495 		          MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1496 			  MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1497 			  MCACOD)) !=
1498 			 (MCI_STATUS_UC|MCI_STATUS_EN|
1499 			  MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1500 			  MCI_STATUS_AR|MCACOD_INSTR))
1501 		return;
1502 
1503 	m->mcgstatus |= MCG_STATUS_EIPV;
1504 	m->ip = regs->ip;
1505 	m->cs = regs->cs;
1506 }
1507 
1508 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1509 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1510 {
1511 	struct mca_config *cfg = &mca_cfg;
1512 
1513 	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1514 		pr_info("unknown CPU type - not enabling MCE support\n");
1515 		return -EOPNOTSUPP;
1516 	}
1517 
1518 	/* This should be disabled by the BIOS, but isn't always */
1519 	if (c->x86_vendor == X86_VENDOR_AMD) {
1520 		if (c->x86 == 15 && cfg->banks > 4) {
1521 			/*
1522 			 * disable GART TBL walk error reporting, which
1523 			 * trips off incorrectly with the IOMMU & 3ware
1524 			 * & Cerberus:
1525 			 */
1526 			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1527 		}
1528 		if (c->x86 <= 17 && cfg->bootlog < 0) {
1529 			/*
1530 			 * Lots of broken BIOS around that don't clear them
1531 			 * by default and leave crap in there. Don't log:
1532 			 */
1533 			cfg->bootlog = 0;
1534 		}
1535 		/*
1536 		 * Various K7s with broken bank 0 around. Always disable
1537 		 * by default.
1538 		 */
1539 		 if (c->x86 == 6 && cfg->banks > 0)
1540 			mce_banks[0].ctl = 0;
1541 
1542 		 /*
1543 		  * Turn off MC4_MISC thresholding banks on those models since
1544 		  * they're not supported there.
1545 		  */
1546 		 if (c->x86 == 0x15 &&
1547 		     (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1548 			 int i;
1549 			 u64 val, hwcr;
1550 			 bool need_toggle;
1551 			 u32 msrs[] = {
1552 				0x00000413, /* MC4_MISC0 */
1553 				0xc0000408, /* MC4_MISC1 */
1554 			 };
1555 
1556 			 rdmsrl(MSR_K7_HWCR, hwcr);
1557 
1558 			 /* McStatusWrEn has to be set */
1559 			 need_toggle = !(hwcr & BIT(18));
1560 
1561 			 if (need_toggle)
1562 				 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1563 
1564 			 for (i = 0; i < ARRAY_SIZE(msrs); i++) {
1565 				 rdmsrl(msrs[i], val);
1566 
1567 				 /* CntP bit set? */
1568 				 if (val & BIT_64(62)) {
1569 					val &= ~BIT_64(62);
1570 					wrmsrl(msrs[i], val);
1571 				 }
1572 			 }
1573 
1574 			 /* restore old settings */
1575 			 if (need_toggle)
1576 				 wrmsrl(MSR_K7_HWCR, hwcr);
1577 		 }
1578 	}
1579 
1580 	if (c->x86_vendor == X86_VENDOR_INTEL) {
1581 		/*
1582 		 * SDM documents that on family 6 bank 0 should not be written
1583 		 * because it aliases to another special BIOS controlled
1584 		 * register.
1585 		 * But it's not aliased anymore on model 0x1a+
1586 		 * Don't ignore bank 0 completely because there could be a
1587 		 * valid event later, merely don't write CTL0.
1588 		 */
1589 
1590 		if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1591 			mce_banks[0].init = 0;
1592 
1593 		/*
1594 		 * All newer Intel systems support MCE broadcasting. Enable
1595 		 * synchronization with a one second timeout.
1596 		 */
1597 		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1598 			cfg->monarch_timeout < 0)
1599 			cfg->monarch_timeout = USEC_PER_SEC;
1600 
1601 		/*
1602 		 * There are also broken BIOSes on some Pentium M and
1603 		 * earlier systems:
1604 		 */
1605 		if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1606 			cfg->bootlog = 0;
1607 
1608 		if (c->x86 == 6 && c->x86_model == 45)
1609 			quirk_no_way_out = quirk_sandybridge_ifu;
1610 	}
1611 	if (cfg->monarch_timeout < 0)
1612 		cfg->monarch_timeout = 0;
1613 	if (cfg->bootlog != 0)
1614 		cfg->panic_timeout = 30;
1615 
1616 	return 0;
1617 }
1618 
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1619 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1620 {
1621 	if (c->x86 != 5)
1622 		return 0;
1623 
1624 	switch (c->x86_vendor) {
1625 	case X86_VENDOR_INTEL:
1626 		intel_p5_mcheck_init(c);
1627 		return 1;
1628 		break;
1629 	case X86_VENDOR_CENTAUR:
1630 		winchip_mcheck_init(c);
1631 		return 1;
1632 		break;
1633 	}
1634 
1635 	return 0;
1636 }
1637 
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)1638 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1639 {
1640 	switch (c->x86_vendor) {
1641 	case X86_VENDOR_INTEL:
1642 		mce_intel_feature_init(c);
1643 		mce_adjust_timer = mce_intel_adjust_timer;
1644 		break;
1645 	case X86_VENDOR_AMD:
1646 		mce_amd_feature_init(c);
1647 		break;
1648 	default:
1649 		break;
1650 	}
1651 }
1652 
mce_start_timer(unsigned int cpu,struct timer_list * t)1653 static void mce_start_timer(unsigned int cpu, struct timer_list *t)
1654 {
1655 	unsigned long iv = check_interval * HZ;
1656 
1657 	if (mca_cfg.ignore_ce || !iv)
1658 		return;
1659 
1660 	per_cpu(mce_next_interval, cpu) = iv;
1661 
1662 	t->expires = round_jiffies(jiffies + iv);
1663 	add_timer_on(t, cpu);
1664 }
1665 
__mcheck_cpu_init_timer(void)1666 static void __mcheck_cpu_init_timer(void)
1667 {
1668 	struct timer_list *t = this_cpu_ptr(&mce_timer);
1669 	unsigned int cpu = smp_processor_id();
1670 
1671 	setup_timer(t, mce_timer_fn, cpu);
1672 	mce_start_timer(cpu, t);
1673 }
1674 
1675 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs,long error_code)1676 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1677 {
1678 	pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1679 	       smp_processor_id());
1680 }
1681 
1682 /* Call the installed machine check handler for this CPU setup. */
1683 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1684 						unexpected_machine_check;
1685 
1686 /*
1687  * Called for each booted CPU to set up machine checks.
1688  * Must be called with preempt off:
1689  */
mcheck_cpu_init(struct cpuinfo_x86 * c)1690 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1691 {
1692 	if (mca_cfg.disabled)
1693 		return;
1694 
1695 	if (__mcheck_cpu_ancient_init(c))
1696 		return;
1697 
1698 	if (!mce_available(c))
1699 		return;
1700 
1701 	if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1702 		mca_cfg.disabled = true;
1703 		return;
1704 	}
1705 
1706 	machine_check_vector = do_machine_check;
1707 
1708 	__mcheck_cpu_init_generic();
1709 	__mcheck_cpu_init_vendor(c);
1710 	__mcheck_cpu_init_timer();
1711 	INIT_WORK(this_cpu_ptr(&mce_work), mce_process_work);
1712 	init_irq_work(this_cpu_ptr(&mce_irq_work), &mce_irq_work_cb);
1713 }
1714 
1715 /*
1716  * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1717  */
1718 
1719 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1720 static int mce_chrdev_open_count;	/* #times opened */
1721 static int mce_chrdev_open_exclu;	/* already open exclusive? */
1722 
mce_chrdev_open(struct inode * inode,struct file * file)1723 static int mce_chrdev_open(struct inode *inode, struct file *file)
1724 {
1725 	spin_lock(&mce_chrdev_state_lock);
1726 
1727 	if (mce_chrdev_open_exclu ||
1728 	    (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1729 		spin_unlock(&mce_chrdev_state_lock);
1730 
1731 		return -EBUSY;
1732 	}
1733 
1734 	if (file->f_flags & O_EXCL)
1735 		mce_chrdev_open_exclu = 1;
1736 	mce_chrdev_open_count++;
1737 
1738 	spin_unlock(&mce_chrdev_state_lock);
1739 
1740 	return nonseekable_open(inode, file);
1741 }
1742 
mce_chrdev_release(struct inode * inode,struct file * file)1743 static int mce_chrdev_release(struct inode *inode, struct file *file)
1744 {
1745 	spin_lock(&mce_chrdev_state_lock);
1746 
1747 	mce_chrdev_open_count--;
1748 	mce_chrdev_open_exclu = 0;
1749 
1750 	spin_unlock(&mce_chrdev_state_lock);
1751 
1752 	return 0;
1753 }
1754 
collect_tscs(void * data)1755 static void collect_tscs(void *data)
1756 {
1757 	unsigned long *cpu_tsc = (unsigned long *)data;
1758 
1759 	rdtscll(cpu_tsc[smp_processor_id()]);
1760 }
1761 
1762 static int mce_apei_read_done;
1763 
1764 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
__mce_read_apei(char __user ** ubuf,size_t usize)1765 static int __mce_read_apei(char __user **ubuf, size_t usize)
1766 {
1767 	int rc;
1768 	u64 record_id;
1769 	struct mce m;
1770 
1771 	if (usize < sizeof(struct mce))
1772 		return -EINVAL;
1773 
1774 	rc = apei_read_mce(&m, &record_id);
1775 	/* Error or no more MCE record */
1776 	if (rc <= 0) {
1777 		mce_apei_read_done = 1;
1778 		/*
1779 		 * When ERST is disabled, mce_chrdev_read() should return
1780 		 * "no record" instead of "no device."
1781 		 */
1782 		if (rc == -ENODEV)
1783 			return 0;
1784 		return rc;
1785 	}
1786 	rc = -EFAULT;
1787 	if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1788 		return rc;
1789 	/*
1790 	 * In fact, we should have cleared the record after that has
1791 	 * been flushed to the disk or sent to network in
1792 	 * /sbin/mcelog, but we have no interface to support that now,
1793 	 * so just clear it to avoid duplication.
1794 	 */
1795 	rc = apei_clear_mce(record_id);
1796 	if (rc) {
1797 		mce_apei_read_done = 1;
1798 		return rc;
1799 	}
1800 	*ubuf += sizeof(struct mce);
1801 
1802 	return 0;
1803 }
1804 
mce_chrdev_read(struct file * filp,char __user * ubuf,size_t usize,loff_t * off)1805 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1806 				size_t usize, loff_t *off)
1807 {
1808 	char __user *buf = ubuf;
1809 	unsigned long *cpu_tsc;
1810 	unsigned prev, next;
1811 	int i, err;
1812 
1813 	cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1814 	if (!cpu_tsc)
1815 		return -ENOMEM;
1816 
1817 	mutex_lock(&mce_chrdev_read_mutex);
1818 
1819 	if (!mce_apei_read_done) {
1820 		err = __mce_read_apei(&buf, usize);
1821 		if (err || buf != ubuf)
1822 			goto out;
1823 	}
1824 
1825 	next = rcu_dereference_check_mce(mcelog.next);
1826 
1827 	/* Only supports full reads right now */
1828 	err = -EINVAL;
1829 	if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1830 		goto out;
1831 
1832 	err = 0;
1833 	prev = 0;
1834 	do {
1835 		for (i = prev; i < next; i++) {
1836 			unsigned long start = jiffies;
1837 			struct mce *m = &mcelog.entry[i];
1838 
1839 			while (!m->finished) {
1840 				if (time_after_eq(jiffies, start + 2)) {
1841 					memset(m, 0, sizeof(*m));
1842 					goto timeout;
1843 				}
1844 				cpu_relax();
1845 			}
1846 			smp_rmb();
1847 			err |= copy_to_user(buf, m, sizeof(*m));
1848 			buf += sizeof(*m);
1849 timeout:
1850 			;
1851 		}
1852 
1853 		memset(mcelog.entry + prev, 0,
1854 		       (next - prev) * sizeof(struct mce));
1855 		prev = next;
1856 		next = cmpxchg(&mcelog.next, prev, 0);
1857 	} while (next != prev);
1858 
1859 	synchronize_sched();
1860 
1861 	/*
1862 	 * Collect entries that were still getting written before the
1863 	 * synchronize.
1864 	 */
1865 	on_each_cpu(collect_tscs, cpu_tsc, 1);
1866 
1867 	for (i = next; i < MCE_LOG_LEN; i++) {
1868 		struct mce *m = &mcelog.entry[i];
1869 
1870 		if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1871 			err |= copy_to_user(buf, m, sizeof(*m));
1872 			smp_rmb();
1873 			buf += sizeof(*m);
1874 			memset(m, 0, sizeof(*m));
1875 		}
1876 	}
1877 
1878 	if (err)
1879 		err = -EFAULT;
1880 
1881 out:
1882 	mutex_unlock(&mce_chrdev_read_mutex);
1883 	kfree(cpu_tsc);
1884 
1885 	return err ? err : buf - ubuf;
1886 }
1887 
mce_chrdev_poll(struct file * file,poll_table * wait)1888 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1889 {
1890 	poll_wait(file, &mce_chrdev_wait, wait);
1891 	if (rcu_access_index(mcelog.next))
1892 		return POLLIN | POLLRDNORM;
1893 	if (!mce_apei_read_done && apei_check_mce())
1894 		return POLLIN | POLLRDNORM;
1895 	return 0;
1896 }
1897 
mce_chrdev_ioctl(struct file * f,unsigned int cmd,unsigned long arg)1898 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1899 				unsigned long arg)
1900 {
1901 	int __user *p = (int __user *)arg;
1902 
1903 	if (!capable(CAP_SYS_ADMIN))
1904 		return -EPERM;
1905 
1906 	switch (cmd) {
1907 	case MCE_GET_RECORD_LEN:
1908 		return put_user(sizeof(struct mce), p);
1909 	case MCE_GET_LOG_LEN:
1910 		return put_user(MCE_LOG_LEN, p);
1911 	case MCE_GETCLEAR_FLAGS: {
1912 		unsigned flags;
1913 
1914 		do {
1915 			flags = mcelog.flags;
1916 		} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1917 
1918 		return put_user(flags, p);
1919 	}
1920 	default:
1921 		return -ENOTTY;
1922 	}
1923 }
1924 
1925 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1926 			    size_t usize, loff_t *off);
1927 
register_mce_write_callback(ssize_t (* fn)(struct file * filp,const char __user * ubuf,size_t usize,loff_t * off))1928 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1929 			     const char __user *ubuf,
1930 			     size_t usize, loff_t *off))
1931 {
1932 	mce_write = fn;
1933 }
1934 EXPORT_SYMBOL_GPL(register_mce_write_callback);
1935 
mce_chrdev_write(struct file * filp,const char __user * ubuf,size_t usize,loff_t * off)1936 ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1937 			 size_t usize, loff_t *off)
1938 {
1939 	if (mce_write)
1940 		return mce_write(filp, ubuf, usize, off);
1941 	else
1942 		return -EINVAL;
1943 }
1944 
1945 static const struct file_operations mce_chrdev_ops = {
1946 	.open			= mce_chrdev_open,
1947 	.release		= mce_chrdev_release,
1948 	.read			= mce_chrdev_read,
1949 	.write			= mce_chrdev_write,
1950 	.poll			= mce_chrdev_poll,
1951 	.unlocked_ioctl		= mce_chrdev_ioctl,
1952 	.llseek			= no_llseek,
1953 };
1954 
1955 static struct miscdevice mce_chrdev_device = {
1956 	MISC_MCELOG_MINOR,
1957 	"mcelog",
1958 	&mce_chrdev_ops,
1959 };
1960 
__mce_disable_bank(void * arg)1961 static void __mce_disable_bank(void *arg)
1962 {
1963 	int bank = *((int *)arg);
1964 	__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
1965 	cmci_disable_bank(bank);
1966 }
1967 
mce_disable_bank(int bank)1968 void mce_disable_bank(int bank)
1969 {
1970 	if (bank >= mca_cfg.banks) {
1971 		pr_warn(FW_BUG
1972 			"Ignoring request to disable invalid MCA bank %d.\n",
1973 			bank);
1974 		return;
1975 	}
1976 	set_bit(bank, mce_banks_ce_disabled);
1977 	on_each_cpu(__mce_disable_bank, &bank, 1);
1978 }
1979 
1980 /*
1981  * mce=off Disables machine check
1982  * mce=no_cmci Disables CMCI
1983  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1984  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1985  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1986  *	monarchtimeout is how long to wait for other CPUs on machine
1987  *	check, or 0 to not wait
1988  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1989  * mce=nobootlog Don't log MCEs from before booting.
1990  * mce=bios_cmci_threshold Don't program the CMCI threshold
1991  */
mcheck_enable(char * str)1992 static int __init mcheck_enable(char *str)
1993 {
1994 	struct mca_config *cfg = &mca_cfg;
1995 
1996 	if (*str == 0) {
1997 		enable_p5_mce();
1998 		return 1;
1999 	}
2000 	if (*str == '=')
2001 		str++;
2002 	if (!strcmp(str, "off"))
2003 		cfg->disabled = true;
2004 	else if (!strcmp(str, "no_cmci"))
2005 		cfg->cmci_disabled = true;
2006 	else if (!strcmp(str, "dont_log_ce"))
2007 		cfg->dont_log_ce = true;
2008 	else if (!strcmp(str, "ignore_ce"))
2009 		cfg->ignore_ce = true;
2010 	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2011 		cfg->bootlog = (str[0] == 'b');
2012 	else if (!strcmp(str, "bios_cmci_threshold"))
2013 		cfg->bios_cmci_threshold = true;
2014 	else if (isdigit(str[0])) {
2015 		get_option(&str, &(cfg->tolerant));
2016 		if (*str == ',') {
2017 			++str;
2018 			get_option(&str, &(cfg->monarch_timeout));
2019 		}
2020 	} else {
2021 		pr_info("mce argument %s ignored. Please use /sys\n", str);
2022 		return 0;
2023 	}
2024 	return 1;
2025 }
2026 __setup("mce", mcheck_enable);
2027 
mcheck_init(void)2028 int __init mcheck_init(void)
2029 {
2030 	mcheck_intel_therm_init();
2031 
2032 	return 0;
2033 }
2034 
2035 /*
2036  * mce_syscore: PM support
2037  */
2038 
2039 /*
2040  * Disable machine checks on suspend and shutdown. We can't really handle
2041  * them later.
2042  */
mce_disable_error_reporting(void)2043 static int mce_disable_error_reporting(void)
2044 {
2045 	int i;
2046 
2047 	for (i = 0; i < mca_cfg.banks; i++) {
2048 		struct mce_bank *b = &mce_banks[i];
2049 
2050 		if (b->init)
2051 			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2052 	}
2053 	return 0;
2054 }
2055 
mce_syscore_suspend(void)2056 static int mce_syscore_suspend(void)
2057 {
2058 	return mce_disable_error_reporting();
2059 }
2060 
mce_syscore_shutdown(void)2061 static void mce_syscore_shutdown(void)
2062 {
2063 	mce_disable_error_reporting();
2064 }
2065 
2066 /*
2067  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2068  * Only one CPU is active at this time, the others get re-added later using
2069  * CPU hotplug:
2070  */
mce_syscore_resume(void)2071 static void mce_syscore_resume(void)
2072 {
2073 	__mcheck_cpu_init_generic();
2074 	__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2075 }
2076 
2077 static struct syscore_ops mce_syscore_ops = {
2078 	.suspend	= mce_syscore_suspend,
2079 	.shutdown	= mce_syscore_shutdown,
2080 	.resume		= mce_syscore_resume,
2081 };
2082 
2083 /*
2084  * mce_device: Sysfs support
2085  */
2086 
mce_cpu_restart(void * data)2087 static void mce_cpu_restart(void *data)
2088 {
2089 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2090 		return;
2091 	__mcheck_cpu_init_generic();
2092 	__mcheck_cpu_init_timer();
2093 }
2094 
2095 /* Reinit MCEs after user configuration changes */
mce_restart(void)2096 static void mce_restart(void)
2097 {
2098 	mce_timer_delete_all();
2099 	on_each_cpu(mce_cpu_restart, NULL, 1);
2100 }
2101 
2102 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2103 static void mce_disable_cmci(void *data)
2104 {
2105 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2106 		return;
2107 	cmci_clear();
2108 }
2109 
mce_enable_ce(void * all)2110 static void mce_enable_ce(void *all)
2111 {
2112 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2113 		return;
2114 	cmci_reenable();
2115 	cmci_recheck();
2116 	if (all)
2117 		__mcheck_cpu_init_timer();
2118 }
2119 
2120 static struct bus_type mce_subsys = {
2121 	.name		= "machinecheck",
2122 	.dev_name	= "machinecheck",
2123 };
2124 
2125 DEFINE_PER_CPU(struct device *, mce_device);
2126 
2127 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
2128 
attr_to_bank(struct device_attribute * attr)2129 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2130 {
2131 	return container_of(attr, struct mce_bank, attr);
2132 }
2133 
show_bank(struct device * s,struct device_attribute * attr,char * buf)2134 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2135 			 char *buf)
2136 {
2137 	return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2138 }
2139 
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2140 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2141 			const char *buf, size_t size)
2142 {
2143 	u64 new;
2144 
2145 	if (kstrtou64(buf, 0, &new) < 0)
2146 		return -EINVAL;
2147 
2148 	attr_to_bank(attr)->ctl = new;
2149 	mce_restart();
2150 
2151 	return size;
2152 }
2153 
2154 static ssize_t
show_trigger(struct device * s,struct device_attribute * attr,char * buf)2155 show_trigger(struct device *s, struct device_attribute *attr, char *buf)
2156 {
2157 	strcpy(buf, mce_helper);
2158 	strcat(buf, "\n");
2159 	return strlen(mce_helper) + 1;
2160 }
2161 
set_trigger(struct device * s,struct device_attribute * attr,const char * buf,size_t siz)2162 static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
2163 				const char *buf, size_t siz)
2164 {
2165 	char *p;
2166 
2167 	strncpy(mce_helper, buf, sizeof(mce_helper));
2168 	mce_helper[sizeof(mce_helper)-1] = 0;
2169 	p = strchr(mce_helper, '\n');
2170 
2171 	if (p)
2172 		*p = 0;
2173 
2174 	return strlen(mce_helper) + !!p;
2175 }
2176 
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2177 static ssize_t set_ignore_ce(struct device *s,
2178 			     struct device_attribute *attr,
2179 			     const char *buf, size_t size)
2180 {
2181 	u64 new;
2182 
2183 	if (kstrtou64(buf, 0, &new) < 0)
2184 		return -EINVAL;
2185 
2186 	if (mca_cfg.ignore_ce ^ !!new) {
2187 		if (new) {
2188 			/* disable ce features */
2189 			mce_timer_delete_all();
2190 			on_each_cpu(mce_disable_cmci, NULL, 1);
2191 			mca_cfg.ignore_ce = true;
2192 		} else {
2193 			/* enable ce features */
2194 			mca_cfg.ignore_ce = false;
2195 			on_each_cpu(mce_enable_ce, (void *)1, 1);
2196 		}
2197 	}
2198 	return size;
2199 }
2200 
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2201 static ssize_t set_cmci_disabled(struct device *s,
2202 				 struct device_attribute *attr,
2203 				 const char *buf, size_t size)
2204 {
2205 	u64 new;
2206 
2207 	if (kstrtou64(buf, 0, &new) < 0)
2208 		return -EINVAL;
2209 
2210 	if (mca_cfg.cmci_disabled ^ !!new) {
2211 		if (new) {
2212 			/* disable cmci */
2213 			on_each_cpu(mce_disable_cmci, NULL, 1);
2214 			mca_cfg.cmci_disabled = true;
2215 		} else {
2216 			/* enable cmci */
2217 			mca_cfg.cmci_disabled = false;
2218 			on_each_cpu(mce_enable_ce, NULL, 1);
2219 		}
2220 	}
2221 	return size;
2222 }
2223 
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2224 static ssize_t store_int_with_restart(struct device *s,
2225 				      struct device_attribute *attr,
2226 				      const char *buf, size_t size)
2227 {
2228 	ssize_t ret = device_store_int(s, attr, buf, size);
2229 	mce_restart();
2230 	return ret;
2231 }
2232 
2233 static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2234 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2235 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2236 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2237 
2238 static struct dev_ext_attribute dev_attr_check_interval = {
2239 	__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2240 	&check_interval
2241 };
2242 
2243 static struct dev_ext_attribute dev_attr_ignore_ce = {
2244 	__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2245 	&mca_cfg.ignore_ce
2246 };
2247 
2248 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2249 	__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2250 	&mca_cfg.cmci_disabled
2251 };
2252 
2253 static struct device_attribute *mce_device_attrs[] = {
2254 	&dev_attr_tolerant.attr,
2255 	&dev_attr_check_interval.attr,
2256 	&dev_attr_trigger,
2257 	&dev_attr_monarch_timeout.attr,
2258 	&dev_attr_dont_log_ce.attr,
2259 	&dev_attr_ignore_ce.attr,
2260 	&dev_attr_cmci_disabled.attr,
2261 	NULL
2262 };
2263 
2264 static cpumask_var_t mce_device_initialized;
2265 
mce_device_release(struct device * dev)2266 static void mce_device_release(struct device *dev)
2267 {
2268 	kfree(dev);
2269 }
2270 
2271 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
mce_device_create(unsigned int cpu)2272 static int mce_device_create(unsigned int cpu)
2273 {
2274 	struct device *dev;
2275 	int err;
2276 	int i, j;
2277 
2278 	if (!mce_available(&boot_cpu_data))
2279 		return -EIO;
2280 
2281 	dev = kzalloc(sizeof *dev, GFP_KERNEL);
2282 	if (!dev)
2283 		return -ENOMEM;
2284 	dev->id  = cpu;
2285 	dev->bus = &mce_subsys;
2286 	dev->release = &mce_device_release;
2287 
2288 	err = device_register(dev);
2289 	if (err) {
2290 		put_device(dev);
2291 		return err;
2292 	}
2293 
2294 	for (i = 0; mce_device_attrs[i]; i++) {
2295 		err = device_create_file(dev, mce_device_attrs[i]);
2296 		if (err)
2297 			goto error;
2298 	}
2299 	for (j = 0; j < mca_cfg.banks; j++) {
2300 		err = device_create_file(dev, &mce_banks[j].attr);
2301 		if (err)
2302 			goto error2;
2303 	}
2304 	cpumask_set_cpu(cpu, mce_device_initialized);
2305 	per_cpu(mce_device, cpu) = dev;
2306 
2307 	return 0;
2308 error2:
2309 	while (--j >= 0)
2310 		device_remove_file(dev, &mce_banks[j].attr);
2311 error:
2312 	while (--i >= 0)
2313 		device_remove_file(dev, mce_device_attrs[i]);
2314 
2315 	device_unregister(dev);
2316 
2317 	return err;
2318 }
2319 
mce_device_remove(unsigned int cpu)2320 static void mce_device_remove(unsigned int cpu)
2321 {
2322 	struct device *dev = per_cpu(mce_device, cpu);
2323 	int i;
2324 
2325 	if (!cpumask_test_cpu(cpu, mce_device_initialized))
2326 		return;
2327 
2328 	for (i = 0; mce_device_attrs[i]; i++)
2329 		device_remove_file(dev, mce_device_attrs[i]);
2330 
2331 	for (i = 0; i < mca_cfg.banks; i++)
2332 		device_remove_file(dev, &mce_banks[i].attr);
2333 
2334 	device_unregister(dev);
2335 	cpumask_clear_cpu(cpu, mce_device_initialized);
2336 	per_cpu(mce_device, cpu) = NULL;
2337 }
2338 
2339 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void * h)2340 static void mce_disable_cpu(void *h)
2341 {
2342 	unsigned long action = *(unsigned long *)h;
2343 	int i;
2344 
2345 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2346 		return;
2347 
2348 	if (!(action & CPU_TASKS_FROZEN))
2349 		cmci_clear();
2350 	for (i = 0; i < mca_cfg.banks; i++) {
2351 		struct mce_bank *b = &mce_banks[i];
2352 
2353 		if (b->init)
2354 			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2355 	}
2356 }
2357 
mce_reenable_cpu(void * h)2358 static void mce_reenable_cpu(void *h)
2359 {
2360 	unsigned long action = *(unsigned long *)h;
2361 	int i;
2362 
2363 	if (!mce_available(raw_cpu_ptr(&cpu_info)))
2364 		return;
2365 
2366 	if (!(action & CPU_TASKS_FROZEN))
2367 		cmci_reenable();
2368 	for (i = 0; i < mca_cfg.banks; i++) {
2369 		struct mce_bank *b = &mce_banks[i];
2370 
2371 		if (b->init)
2372 			wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2373 	}
2374 }
2375 
2376 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2377 static int
mce_cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)2378 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2379 {
2380 	unsigned int cpu = (unsigned long)hcpu;
2381 	struct timer_list *t = &per_cpu(mce_timer, cpu);
2382 
2383 	switch (action & ~CPU_TASKS_FROZEN) {
2384 	case CPU_ONLINE:
2385 		mce_device_create(cpu);
2386 		if (threshold_cpu_callback)
2387 			threshold_cpu_callback(action, cpu);
2388 		break;
2389 	case CPU_DEAD:
2390 		if (threshold_cpu_callback)
2391 			threshold_cpu_callback(action, cpu);
2392 		mce_device_remove(cpu);
2393 		mce_intel_hcpu_update(cpu);
2394 
2395 		/* intentionally ignoring frozen here */
2396 		if (!(action & CPU_TASKS_FROZEN))
2397 			cmci_rediscover();
2398 		break;
2399 	case CPU_DOWN_PREPARE:
2400 		smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2401 		del_timer_sync(t);
2402 		break;
2403 	case CPU_DOWN_FAILED:
2404 		smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2405 		mce_start_timer(cpu, t);
2406 		break;
2407 	}
2408 
2409 	return NOTIFY_OK;
2410 }
2411 
2412 static struct notifier_block mce_cpu_notifier = {
2413 	.notifier_call = mce_cpu_callback,
2414 };
2415 
mce_init_banks(void)2416 static __init void mce_init_banks(void)
2417 {
2418 	int i;
2419 
2420 	for (i = 0; i < mca_cfg.banks; i++) {
2421 		struct mce_bank *b = &mce_banks[i];
2422 		struct device_attribute *a = &b->attr;
2423 
2424 		sysfs_attr_init(&a->attr);
2425 		a->attr.name	= b->attrname;
2426 		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2427 
2428 		a->attr.mode	= 0644;
2429 		a->show		= show_bank;
2430 		a->store	= set_bank;
2431 	}
2432 }
2433 
mcheck_init_device(void)2434 static __init int mcheck_init_device(void)
2435 {
2436 	int err;
2437 	int i = 0;
2438 
2439 	if (!mce_available(&boot_cpu_data)) {
2440 		err = -EIO;
2441 		goto err_out;
2442 	}
2443 
2444 	if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2445 		err = -ENOMEM;
2446 		goto err_out;
2447 	}
2448 
2449 	mce_init_banks();
2450 
2451 	err = subsys_system_register(&mce_subsys, NULL);
2452 	if (err)
2453 		goto err_out_mem;
2454 
2455 	cpu_notifier_register_begin();
2456 	for_each_online_cpu(i) {
2457 		err = mce_device_create(i);
2458 		if (err) {
2459 			/*
2460 			 * Register notifier anyway (and do not unreg it) so
2461 			 * that we don't leave undeleted timers, see notifier
2462 			 * callback above.
2463 			 */
2464 			__register_hotcpu_notifier(&mce_cpu_notifier);
2465 			cpu_notifier_register_done();
2466 			goto err_device_create;
2467 		}
2468 	}
2469 
2470 	__register_hotcpu_notifier(&mce_cpu_notifier);
2471 	cpu_notifier_register_done();
2472 
2473 	register_syscore_ops(&mce_syscore_ops);
2474 
2475 	/* register character device /dev/mcelog */
2476 	err = misc_register(&mce_chrdev_device);
2477 	if (err)
2478 		goto err_register;
2479 
2480 	return 0;
2481 
2482 err_register:
2483 	unregister_syscore_ops(&mce_syscore_ops);
2484 
2485 err_device_create:
2486 	/*
2487 	 * We didn't keep track of which devices were created above, but
2488 	 * even if we had, the set of online cpus might have changed.
2489 	 * Play safe and remove for every possible cpu, since
2490 	 * mce_device_remove() will do the right thing.
2491 	 */
2492 	for_each_possible_cpu(i)
2493 		mce_device_remove(i);
2494 
2495 err_out_mem:
2496 	free_cpumask_var(mce_device_initialized);
2497 
2498 err_out:
2499 	pr_err("Unable to init device /dev/mcelog (rc: %d)\n", err);
2500 
2501 	return err;
2502 }
2503 device_initcall_sync(mcheck_init_device);
2504 
2505 /*
2506  * Old style boot options parsing. Only for compatibility.
2507  */
mcheck_disable(char * str)2508 static int __init mcheck_disable(char *str)
2509 {
2510 	mca_cfg.disabled = true;
2511 	return 1;
2512 }
2513 __setup("nomce", mcheck_disable);
2514 
2515 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2516 struct dentry *mce_get_debugfs_dir(void)
2517 {
2518 	static struct dentry *dmce;
2519 
2520 	if (!dmce)
2521 		dmce = debugfs_create_dir("mce", NULL);
2522 
2523 	return dmce;
2524 }
2525 
mce_reset(void)2526 static void mce_reset(void)
2527 {
2528 	cpu_missing = 0;
2529 	atomic_set(&mce_fake_paniced, 0);
2530 	atomic_set(&mce_executing, 0);
2531 	atomic_set(&mce_callin, 0);
2532 	atomic_set(&global_nwo, 0);
2533 }
2534 
fake_panic_get(void * data,u64 * val)2535 static int fake_panic_get(void *data, u64 *val)
2536 {
2537 	*val = fake_panic;
2538 	return 0;
2539 }
2540 
fake_panic_set(void * data,u64 val)2541 static int fake_panic_set(void *data, u64 val)
2542 {
2543 	mce_reset();
2544 	fake_panic = val;
2545 	return 0;
2546 }
2547 
2548 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2549 			fake_panic_set, "%llu\n");
2550 
mcheck_debugfs_init(void)2551 static int __init mcheck_debugfs_init(void)
2552 {
2553 	struct dentry *dmce, *ffake_panic;
2554 
2555 	dmce = mce_get_debugfs_dir();
2556 	if (!dmce)
2557 		return -ENOMEM;
2558 	ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2559 					  &fake_panic_fops);
2560 	if (!ffake_panic)
2561 		return -ENOMEM;
2562 
2563 	return 0;
2564 }
2565 late_initcall(mcheck_debugfs_init);
2566 #endif
2567