1 /*
2 * linux/kernel/time/tick-common.c
3 *
4 * This file contains the base functions to manage periodic tick
5 * related events.
6 *
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
10 *
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
13 */
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/module.h>
22
23 #include <asm/irq_regs.h>
24
25 #include "tick-internal.h"
26
27 /*
28 * Tick devices
29 */
30 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
31 /*
32 * Tick next event: keeps track of the tick time
33 */
34 ktime_t tick_next_period;
35 ktime_t tick_period;
36
37 /*
38 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
39 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
40 * variable has two functions:
41 *
42 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
43 * timekeeping lock all at once. Only the CPU which is assigned to do the
44 * update is handling it.
45 *
46 * 2) Hand off the duty in the NOHZ idle case by setting the value to
47 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
48 * at it will take over and keep the time keeping alive. The handover
49 * procedure also covers cpu hotplug.
50 */
51 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
52
53 /*
54 * Debugging: see timer_list.c
55 */
tick_get_device(int cpu)56 struct tick_device *tick_get_device(int cpu)
57 {
58 return &per_cpu(tick_cpu_device, cpu);
59 }
60
61 /**
62 * tick_is_oneshot_available - check for a oneshot capable event device
63 */
tick_is_oneshot_available(void)64 int tick_is_oneshot_available(void)
65 {
66 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
67
68 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
69 return 0;
70 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
71 return 1;
72 return tick_broadcast_oneshot_available();
73 }
74
75 /*
76 * Periodic tick
77 */
tick_periodic(int cpu)78 static void tick_periodic(int cpu)
79 {
80 if (tick_do_timer_cpu == cpu) {
81 write_seqlock(&jiffies_lock);
82
83 /* Keep track of the next tick event */
84 tick_next_period = ktime_add(tick_next_period, tick_period);
85
86 do_timer(1);
87 write_sequnlock(&jiffies_lock);
88 update_wall_time();
89 }
90
91 update_process_times(user_mode(get_irq_regs()));
92 profile_tick(CPU_PROFILING);
93 }
94
95 /*
96 * Event handler for periodic ticks
97 */
tick_handle_periodic(struct clock_event_device * dev)98 void tick_handle_periodic(struct clock_event_device *dev)
99 {
100 int cpu = smp_processor_id();
101 ktime_t next = dev->next_event;
102
103 tick_periodic(cpu);
104
105 if (dev->mode != CLOCK_EVT_MODE_ONESHOT)
106 return;
107 for (;;) {
108 /*
109 * Setup the next period for devices, which do not have
110 * periodic mode:
111 */
112 next = ktime_add(next, tick_period);
113
114 if (!clockevents_program_event(dev, next, false))
115 return;
116 /*
117 * Have to be careful here. If we're in oneshot mode,
118 * before we call tick_periodic() in a loop, we need
119 * to be sure we're using a real hardware clocksource.
120 * Otherwise we could get trapped in an infinite
121 * loop, as the tick_periodic() increments jiffies,
122 * which then will increment time, possibly causing
123 * the loop to trigger again and again.
124 */
125 if (timekeeping_valid_for_hres())
126 tick_periodic(cpu);
127 }
128 }
129
130 /*
131 * Setup the device for a periodic tick
132 */
tick_setup_periodic(struct clock_event_device * dev,int broadcast)133 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
134 {
135 tick_set_periodic_handler(dev, broadcast);
136
137 /* Broadcast setup ? */
138 if (!tick_device_is_functional(dev))
139 return;
140
141 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
142 !tick_broadcast_oneshot_active()) {
143 clockevents_set_mode(dev, CLOCK_EVT_MODE_PERIODIC);
144 } else {
145 unsigned long seq;
146 ktime_t next;
147
148 do {
149 seq = read_seqbegin(&jiffies_lock);
150 next = tick_next_period;
151 } while (read_seqretry(&jiffies_lock, seq));
152
153 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
154
155 for (;;) {
156 if (!clockevents_program_event(dev, next, false))
157 return;
158 next = ktime_add(next, tick_period);
159 }
160 }
161 }
162
163 /*
164 * Setup the tick device
165 */
tick_setup_device(struct tick_device * td,struct clock_event_device * newdev,int cpu,const struct cpumask * cpumask)166 static void tick_setup_device(struct tick_device *td,
167 struct clock_event_device *newdev, int cpu,
168 const struct cpumask *cpumask)
169 {
170 ktime_t next_event;
171 void (*handler)(struct clock_event_device *) = NULL;
172
173 /*
174 * First device setup ?
175 */
176 if (!td->evtdev) {
177 /*
178 * If no cpu took the do_timer update, assign it to
179 * this cpu:
180 */
181 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
182 if (!tick_nohz_full_cpu(cpu))
183 tick_do_timer_cpu = cpu;
184 else
185 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
186 tick_next_period = ktime_get();
187 tick_period = ktime_set(0, NSEC_PER_SEC / HZ);
188 }
189
190 /*
191 * Startup in periodic mode first.
192 */
193 td->mode = TICKDEV_MODE_PERIODIC;
194 } else {
195 handler = td->evtdev->event_handler;
196 next_event = td->evtdev->next_event;
197 td->evtdev->event_handler = clockevents_handle_noop;
198 }
199
200 td->evtdev = newdev;
201
202 /*
203 * When the device is not per cpu, pin the interrupt to the
204 * current cpu:
205 */
206 if (!cpumask_equal(newdev->cpumask, cpumask))
207 irq_set_affinity(newdev->irq, cpumask);
208
209 /*
210 * When global broadcasting is active, check if the current
211 * device is registered as a placeholder for broadcast mode.
212 * This allows us to handle this x86 misfeature in a generic
213 * way. This function also returns !=0 when we keep the
214 * current active broadcast state for this CPU.
215 */
216 if (tick_device_uses_broadcast(newdev, cpu))
217 return;
218
219 if (td->mode == TICKDEV_MODE_PERIODIC)
220 tick_setup_periodic(newdev, 0);
221 else
222 tick_setup_oneshot(newdev, handler, next_event);
223 }
224
tick_install_replacement(struct clock_event_device * newdev)225 void tick_install_replacement(struct clock_event_device *newdev)
226 {
227 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
228 int cpu = smp_processor_id();
229
230 clockevents_exchange_device(td->evtdev, newdev);
231 tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
232 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
233 tick_oneshot_notify();
234 }
235
tick_check_percpu(struct clock_event_device * curdev,struct clock_event_device * newdev,int cpu)236 static bool tick_check_percpu(struct clock_event_device *curdev,
237 struct clock_event_device *newdev, int cpu)
238 {
239 if (!cpumask_test_cpu(cpu, newdev->cpumask))
240 return false;
241 if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
242 return true;
243 /* Check if irq affinity can be set */
244 if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
245 return false;
246 /* Prefer an existing cpu local device */
247 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
248 return false;
249 return true;
250 }
251
tick_check_preferred(struct clock_event_device * curdev,struct clock_event_device * newdev)252 static bool tick_check_preferred(struct clock_event_device *curdev,
253 struct clock_event_device *newdev)
254 {
255 /* Prefer oneshot capable device */
256 if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
257 if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
258 return false;
259 if (tick_oneshot_mode_active())
260 return false;
261 }
262
263 /*
264 * Use the higher rated one, but prefer a CPU local device with a lower
265 * rating than a non-CPU local device
266 */
267 return !curdev ||
268 newdev->rating > curdev->rating ||
269 !cpumask_equal(curdev->cpumask, newdev->cpumask);
270 }
271
272 /*
273 * Check whether the new device is a better fit than curdev. curdev
274 * can be NULL !
275 */
tick_check_replacement(struct clock_event_device * curdev,struct clock_event_device * newdev)276 bool tick_check_replacement(struct clock_event_device *curdev,
277 struct clock_event_device *newdev)
278 {
279 if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
280 return false;
281
282 return tick_check_preferred(curdev, newdev);
283 }
284
285 /*
286 * Check, if the new registered device should be used. Called with
287 * clockevents_lock held and interrupts disabled.
288 */
tick_check_new_device(struct clock_event_device * newdev)289 void tick_check_new_device(struct clock_event_device *newdev)
290 {
291 struct clock_event_device *curdev;
292 struct tick_device *td;
293 int cpu;
294
295 cpu = smp_processor_id();
296 if (!cpumask_test_cpu(cpu, newdev->cpumask))
297 goto out_bc;
298
299 td = &per_cpu(tick_cpu_device, cpu);
300 curdev = td->evtdev;
301
302 /* cpu local device ? */
303 if (!tick_check_percpu(curdev, newdev, cpu))
304 goto out_bc;
305
306 /* Preference decision */
307 if (!tick_check_preferred(curdev, newdev))
308 goto out_bc;
309
310 if (!try_module_get(newdev->owner))
311 return;
312
313 /*
314 * Replace the eventually existing device by the new
315 * device. If the current device is the broadcast device, do
316 * not give it back to the clockevents layer !
317 */
318 if (tick_is_broadcast_device(curdev)) {
319 clockevents_shutdown(curdev);
320 curdev = NULL;
321 }
322 clockevents_exchange_device(curdev, newdev);
323 tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
324 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
325 tick_oneshot_notify();
326 return;
327
328 out_bc:
329 /*
330 * Can the new device be used as a broadcast device ?
331 */
332 tick_install_broadcast_device(newdev);
333 }
334
335 /*
336 * Transfer the do_timer job away from a dying cpu.
337 *
338 * Called with interrupts disabled.
339 */
tick_handover_do_timer(int * cpup)340 void tick_handover_do_timer(int *cpup)
341 {
342 if (*cpup == tick_do_timer_cpu) {
343 int cpu = cpumask_first(cpu_online_mask);
344
345 tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
346 TICK_DO_TIMER_NONE;
347 }
348 }
349
350 /*
351 * Shutdown an event device on a given cpu:
352 *
353 * This is called on a life CPU, when a CPU is dead. So we cannot
354 * access the hardware device itself.
355 * We just set the mode and remove it from the lists.
356 */
tick_shutdown(unsigned int * cpup)357 void tick_shutdown(unsigned int *cpup)
358 {
359 struct tick_device *td = &per_cpu(tick_cpu_device, *cpup);
360 struct clock_event_device *dev = td->evtdev;
361
362 td->mode = TICKDEV_MODE_PERIODIC;
363 if (dev) {
364 /*
365 * Prevent that the clock events layer tries to call
366 * the set mode function!
367 */
368 dev->mode = CLOCK_EVT_MODE_UNUSED;
369 clockevents_exchange_device(dev, NULL);
370 dev->event_handler = clockevents_handle_noop;
371 td->evtdev = NULL;
372 }
373 }
374
tick_suspend(void)375 void tick_suspend(void)
376 {
377 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
378
379 clockevents_shutdown(td->evtdev);
380 }
381
tick_resume(void)382 void tick_resume(void)
383 {
384 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
385 int broadcast = tick_resume_broadcast();
386
387 clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_RESUME);
388
389 if (!broadcast) {
390 if (td->mode == TICKDEV_MODE_PERIODIC)
391 tick_setup_periodic(td->evtdev, 0);
392 else
393 tick_resume_oneshot();
394 }
395 }
396
397 /**
398 * tick_init - initialize the tick control
399 */
tick_init(void)400 void __init tick_init(void)
401 {
402 tick_broadcast_init();
403 tick_nohz_init();
404 }
405