• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2013 Datera, Inc.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25 
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <asm/unaligned.h>
38 #include <net/sock.h>
39 #include <net/tcp.h>
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_tcq.h>
43 
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 #include <target/target_core_configfs.h>
48 
49 #include "target_core_internal.h"
50 #include "target_core_alua.h"
51 #include "target_core_pr.h"
52 #include "target_core_ua.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/target.h>
56 
57 static struct workqueue_struct *target_completion_wq;
58 static struct kmem_cache *se_sess_cache;
59 struct kmem_cache *se_ua_cache;
60 struct kmem_cache *t10_pr_reg_cache;
61 struct kmem_cache *t10_alua_lu_gp_cache;
62 struct kmem_cache *t10_alua_lu_gp_mem_cache;
63 struct kmem_cache *t10_alua_tg_pt_gp_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
65 struct kmem_cache *t10_alua_lba_map_cache;
66 struct kmem_cache *t10_alua_lba_map_mem_cache;
67 
68 static void transport_complete_task_attr(struct se_cmd *cmd);
69 static void transport_handle_queue_full(struct se_cmd *cmd,
70 		struct se_device *dev);
71 static int transport_put_cmd(struct se_cmd *cmd);
72 static void target_complete_ok_work(struct work_struct *work);
73 
init_se_kmem_caches(void)74 int init_se_kmem_caches(void)
75 {
76 	se_sess_cache = kmem_cache_create("se_sess_cache",
77 			sizeof(struct se_session), __alignof__(struct se_session),
78 			0, NULL);
79 	if (!se_sess_cache) {
80 		pr_err("kmem_cache_create() for struct se_session"
81 				" failed\n");
82 		goto out;
83 	}
84 	se_ua_cache = kmem_cache_create("se_ua_cache",
85 			sizeof(struct se_ua), __alignof__(struct se_ua),
86 			0, NULL);
87 	if (!se_ua_cache) {
88 		pr_err("kmem_cache_create() for struct se_ua failed\n");
89 		goto out_free_sess_cache;
90 	}
91 	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
92 			sizeof(struct t10_pr_registration),
93 			__alignof__(struct t10_pr_registration), 0, NULL);
94 	if (!t10_pr_reg_cache) {
95 		pr_err("kmem_cache_create() for struct t10_pr_registration"
96 				" failed\n");
97 		goto out_free_ua_cache;
98 	}
99 	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
100 			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
101 			0, NULL);
102 	if (!t10_alua_lu_gp_cache) {
103 		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
104 				" failed\n");
105 		goto out_free_pr_reg_cache;
106 	}
107 	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
108 			sizeof(struct t10_alua_lu_gp_member),
109 			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
110 	if (!t10_alua_lu_gp_mem_cache) {
111 		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
112 				"cache failed\n");
113 		goto out_free_lu_gp_cache;
114 	}
115 	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
116 			sizeof(struct t10_alua_tg_pt_gp),
117 			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
118 	if (!t10_alua_tg_pt_gp_cache) {
119 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
120 				"cache failed\n");
121 		goto out_free_lu_gp_mem_cache;
122 	}
123 	t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
124 			"t10_alua_tg_pt_gp_mem_cache",
125 			sizeof(struct t10_alua_tg_pt_gp_member),
126 			__alignof__(struct t10_alua_tg_pt_gp_member),
127 			0, NULL);
128 	if (!t10_alua_tg_pt_gp_mem_cache) {
129 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
130 				"mem_t failed\n");
131 		goto out_free_tg_pt_gp_cache;
132 	}
133 	t10_alua_lba_map_cache = kmem_cache_create(
134 			"t10_alua_lba_map_cache",
135 			sizeof(struct t10_alua_lba_map),
136 			__alignof__(struct t10_alua_lba_map), 0, NULL);
137 	if (!t10_alua_lba_map_cache) {
138 		pr_err("kmem_cache_create() for t10_alua_lba_map_"
139 				"cache failed\n");
140 		goto out_free_tg_pt_gp_mem_cache;
141 	}
142 	t10_alua_lba_map_mem_cache = kmem_cache_create(
143 			"t10_alua_lba_map_mem_cache",
144 			sizeof(struct t10_alua_lba_map_member),
145 			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
146 	if (!t10_alua_lba_map_mem_cache) {
147 		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
148 				"cache failed\n");
149 		goto out_free_lba_map_cache;
150 	}
151 
152 	target_completion_wq = alloc_workqueue("target_completion",
153 					       WQ_MEM_RECLAIM, 0);
154 	if (!target_completion_wq)
155 		goto out_free_lba_map_mem_cache;
156 
157 	return 0;
158 
159 out_free_lba_map_mem_cache:
160 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
161 out_free_lba_map_cache:
162 	kmem_cache_destroy(t10_alua_lba_map_cache);
163 out_free_tg_pt_gp_mem_cache:
164 	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
165 out_free_tg_pt_gp_cache:
166 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
167 out_free_lu_gp_mem_cache:
168 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
169 out_free_lu_gp_cache:
170 	kmem_cache_destroy(t10_alua_lu_gp_cache);
171 out_free_pr_reg_cache:
172 	kmem_cache_destroy(t10_pr_reg_cache);
173 out_free_ua_cache:
174 	kmem_cache_destroy(se_ua_cache);
175 out_free_sess_cache:
176 	kmem_cache_destroy(se_sess_cache);
177 out:
178 	return -ENOMEM;
179 }
180 
release_se_kmem_caches(void)181 void release_se_kmem_caches(void)
182 {
183 	destroy_workqueue(target_completion_wq);
184 	kmem_cache_destroy(se_sess_cache);
185 	kmem_cache_destroy(se_ua_cache);
186 	kmem_cache_destroy(t10_pr_reg_cache);
187 	kmem_cache_destroy(t10_alua_lu_gp_cache);
188 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
189 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
190 	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
191 	kmem_cache_destroy(t10_alua_lba_map_cache);
192 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
193 }
194 
195 /* This code ensures unique mib indexes are handed out. */
196 static DEFINE_SPINLOCK(scsi_mib_index_lock);
197 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
198 
199 /*
200  * Allocate a new row index for the entry type specified
201  */
scsi_get_new_index(scsi_index_t type)202 u32 scsi_get_new_index(scsi_index_t type)
203 {
204 	u32 new_index;
205 
206 	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
207 
208 	spin_lock(&scsi_mib_index_lock);
209 	new_index = ++scsi_mib_index[type];
210 	spin_unlock(&scsi_mib_index_lock);
211 
212 	return new_index;
213 }
214 
transport_subsystem_check_init(void)215 void transport_subsystem_check_init(void)
216 {
217 	int ret;
218 	static int sub_api_initialized;
219 
220 	if (sub_api_initialized)
221 		return;
222 
223 	ret = request_module("target_core_iblock");
224 	if (ret != 0)
225 		pr_err("Unable to load target_core_iblock\n");
226 
227 	ret = request_module("target_core_file");
228 	if (ret != 0)
229 		pr_err("Unable to load target_core_file\n");
230 
231 	ret = request_module("target_core_pscsi");
232 	if (ret != 0)
233 		pr_err("Unable to load target_core_pscsi\n");
234 
235 	ret = request_module("target_core_user");
236 	if (ret != 0)
237 		pr_err("Unable to load target_core_user\n");
238 
239 	sub_api_initialized = 1;
240 }
241 
transport_init_session(enum target_prot_op sup_prot_ops)242 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
243 {
244 	struct se_session *se_sess;
245 
246 	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
247 	if (!se_sess) {
248 		pr_err("Unable to allocate struct se_session from"
249 				" se_sess_cache\n");
250 		return ERR_PTR(-ENOMEM);
251 	}
252 	INIT_LIST_HEAD(&se_sess->sess_list);
253 	INIT_LIST_HEAD(&se_sess->sess_acl_list);
254 	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
255 	INIT_LIST_HEAD(&se_sess->sess_wait_list);
256 	spin_lock_init(&se_sess->sess_cmd_lock);
257 	kref_init(&se_sess->sess_kref);
258 	se_sess->sup_prot_ops = sup_prot_ops;
259 
260 	return se_sess;
261 }
262 EXPORT_SYMBOL(transport_init_session);
263 
transport_alloc_session_tags(struct se_session * se_sess,unsigned int tag_num,unsigned int tag_size)264 int transport_alloc_session_tags(struct se_session *se_sess,
265 			         unsigned int tag_num, unsigned int tag_size)
266 {
267 	int rc;
268 
269 	se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
270 					GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
271 	if (!se_sess->sess_cmd_map) {
272 		se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
273 		if (!se_sess->sess_cmd_map) {
274 			pr_err("Unable to allocate se_sess->sess_cmd_map\n");
275 			return -ENOMEM;
276 		}
277 	}
278 
279 	rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
280 	if (rc < 0) {
281 		pr_err("Unable to init se_sess->sess_tag_pool,"
282 			" tag_num: %u\n", tag_num);
283 		if (is_vmalloc_addr(se_sess->sess_cmd_map))
284 			vfree(se_sess->sess_cmd_map);
285 		else
286 			kfree(se_sess->sess_cmd_map);
287 		se_sess->sess_cmd_map = NULL;
288 		return -ENOMEM;
289 	}
290 
291 	return 0;
292 }
293 EXPORT_SYMBOL(transport_alloc_session_tags);
294 
transport_init_session_tags(unsigned int tag_num,unsigned int tag_size,enum target_prot_op sup_prot_ops)295 struct se_session *transport_init_session_tags(unsigned int tag_num,
296 					       unsigned int tag_size,
297 					       enum target_prot_op sup_prot_ops)
298 {
299 	struct se_session *se_sess;
300 	int rc;
301 
302 	se_sess = transport_init_session(sup_prot_ops);
303 	if (IS_ERR(se_sess))
304 		return se_sess;
305 
306 	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
307 	if (rc < 0) {
308 		transport_free_session(se_sess);
309 		return ERR_PTR(-ENOMEM);
310 	}
311 
312 	return se_sess;
313 }
314 EXPORT_SYMBOL(transport_init_session_tags);
315 
316 /*
317  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
318  */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)319 void __transport_register_session(
320 	struct se_portal_group *se_tpg,
321 	struct se_node_acl *se_nacl,
322 	struct se_session *se_sess,
323 	void *fabric_sess_ptr)
324 {
325 	unsigned char buf[PR_REG_ISID_LEN];
326 
327 	se_sess->se_tpg = se_tpg;
328 	se_sess->fabric_sess_ptr = fabric_sess_ptr;
329 	/*
330 	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
331 	 *
332 	 * Only set for struct se_session's that will actually be moving I/O.
333 	 * eg: *NOT* discovery sessions.
334 	 */
335 	if (se_nacl) {
336 		/*
337 		 * If the fabric module supports an ISID based TransportID,
338 		 * save this value in binary from the fabric I_T Nexus now.
339 		 */
340 		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
341 			memset(&buf[0], 0, PR_REG_ISID_LEN);
342 			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
343 					&buf[0], PR_REG_ISID_LEN);
344 			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
345 		}
346 		kref_get(&se_nacl->acl_kref);
347 
348 		spin_lock_irq(&se_nacl->nacl_sess_lock);
349 		/*
350 		 * The se_nacl->nacl_sess pointer will be set to the
351 		 * last active I_T Nexus for each struct se_node_acl.
352 		 */
353 		se_nacl->nacl_sess = se_sess;
354 
355 		list_add_tail(&se_sess->sess_acl_list,
356 			      &se_nacl->acl_sess_list);
357 		spin_unlock_irq(&se_nacl->nacl_sess_lock);
358 	}
359 	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
360 
361 	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
362 		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
363 }
364 EXPORT_SYMBOL(__transport_register_session);
365 
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)366 void transport_register_session(
367 	struct se_portal_group *se_tpg,
368 	struct se_node_acl *se_nacl,
369 	struct se_session *se_sess,
370 	void *fabric_sess_ptr)
371 {
372 	unsigned long flags;
373 
374 	spin_lock_irqsave(&se_tpg->session_lock, flags);
375 	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
376 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
377 }
378 EXPORT_SYMBOL(transport_register_session);
379 
target_release_session(struct kref * kref)380 static void target_release_session(struct kref *kref)
381 {
382 	struct se_session *se_sess = container_of(kref,
383 			struct se_session, sess_kref);
384 	struct se_portal_group *se_tpg = se_sess->se_tpg;
385 
386 	se_tpg->se_tpg_tfo->close_session(se_sess);
387 }
388 
target_get_session(struct se_session * se_sess)389 void target_get_session(struct se_session *se_sess)
390 {
391 	kref_get(&se_sess->sess_kref);
392 }
393 EXPORT_SYMBOL(target_get_session);
394 
target_put_session(struct se_session * se_sess)395 void target_put_session(struct se_session *se_sess)
396 {
397 	struct se_portal_group *tpg = se_sess->se_tpg;
398 
399 	if (tpg->se_tpg_tfo->put_session != NULL) {
400 		tpg->se_tpg_tfo->put_session(se_sess);
401 		return;
402 	}
403 	kref_put(&se_sess->sess_kref, target_release_session);
404 }
405 EXPORT_SYMBOL(target_put_session);
406 
target_complete_nacl(struct kref * kref)407 static void target_complete_nacl(struct kref *kref)
408 {
409 	struct se_node_acl *nacl = container_of(kref,
410 				struct se_node_acl, acl_kref);
411 
412 	complete(&nacl->acl_free_comp);
413 }
414 
target_put_nacl(struct se_node_acl * nacl)415 void target_put_nacl(struct se_node_acl *nacl)
416 {
417 	kref_put(&nacl->acl_kref, target_complete_nacl);
418 }
419 
transport_deregister_session_configfs(struct se_session * se_sess)420 void transport_deregister_session_configfs(struct se_session *se_sess)
421 {
422 	struct se_node_acl *se_nacl;
423 	unsigned long flags;
424 	/*
425 	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
426 	 */
427 	se_nacl = se_sess->se_node_acl;
428 	if (se_nacl) {
429 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
430 		if (se_nacl->acl_stop == 0)
431 			list_del(&se_sess->sess_acl_list);
432 		/*
433 		 * If the session list is empty, then clear the pointer.
434 		 * Otherwise, set the struct se_session pointer from the tail
435 		 * element of the per struct se_node_acl active session list.
436 		 */
437 		if (list_empty(&se_nacl->acl_sess_list))
438 			se_nacl->nacl_sess = NULL;
439 		else {
440 			se_nacl->nacl_sess = container_of(
441 					se_nacl->acl_sess_list.prev,
442 					struct se_session, sess_acl_list);
443 		}
444 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
445 	}
446 }
447 EXPORT_SYMBOL(transport_deregister_session_configfs);
448 
transport_free_session(struct se_session * se_sess)449 void transport_free_session(struct se_session *se_sess)
450 {
451 	if (se_sess->sess_cmd_map) {
452 		percpu_ida_destroy(&se_sess->sess_tag_pool);
453 		if (is_vmalloc_addr(se_sess->sess_cmd_map))
454 			vfree(se_sess->sess_cmd_map);
455 		else
456 			kfree(se_sess->sess_cmd_map);
457 	}
458 	kmem_cache_free(se_sess_cache, se_sess);
459 }
460 EXPORT_SYMBOL(transport_free_session);
461 
transport_deregister_session(struct se_session * se_sess)462 void transport_deregister_session(struct se_session *se_sess)
463 {
464 	struct se_portal_group *se_tpg = se_sess->se_tpg;
465 	struct target_core_fabric_ops *se_tfo;
466 	struct se_node_acl *se_nacl;
467 	unsigned long flags;
468 	bool comp_nacl = true;
469 
470 	if (!se_tpg) {
471 		transport_free_session(se_sess);
472 		return;
473 	}
474 	se_tfo = se_tpg->se_tpg_tfo;
475 
476 	spin_lock_irqsave(&se_tpg->session_lock, flags);
477 	list_del(&se_sess->sess_list);
478 	se_sess->se_tpg = NULL;
479 	se_sess->fabric_sess_ptr = NULL;
480 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
481 
482 	/*
483 	 * Determine if we need to do extra work for this initiator node's
484 	 * struct se_node_acl if it had been previously dynamically generated.
485 	 */
486 	se_nacl = se_sess->se_node_acl;
487 
488 	spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
489 	if (se_nacl && se_nacl->dynamic_node_acl) {
490 		if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
491 			list_del(&se_nacl->acl_list);
492 			se_tpg->num_node_acls--;
493 			spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
494 			core_tpg_wait_for_nacl_pr_ref(se_nacl);
495 			core_free_device_list_for_node(se_nacl, se_tpg);
496 			se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
497 
498 			comp_nacl = false;
499 			spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
500 		}
501 	}
502 	spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
503 
504 	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
505 		se_tpg->se_tpg_tfo->get_fabric_name());
506 	/*
507 	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
508 	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
509 	 * removal context.
510 	 */
511 	if (se_nacl && comp_nacl)
512 		target_put_nacl(se_nacl);
513 
514 	transport_free_session(se_sess);
515 }
516 EXPORT_SYMBOL(transport_deregister_session);
517 
target_remove_from_state_list(struct se_cmd * cmd)518 static void target_remove_from_state_list(struct se_cmd *cmd)
519 {
520 	struct se_device *dev = cmd->se_dev;
521 	unsigned long flags;
522 
523 	if (!dev)
524 		return;
525 
526 	if (cmd->transport_state & CMD_T_BUSY)
527 		return;
528 
529 	spin_lock_irqsave(&dev->execute_task_lock, flags);
530 	if (cmd->state_active) {
531 		list_del(&cmd->state_list);
532 		cmd->state_active = false;
533 	}
534 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
535 }
536 
transport_cmd_check_stop(struct se_cmd * cmd,bool remove_from_lists,bool write_pending)537 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
538 				    bool write_pending)
539 {
540 	unsigned long flags;
541 
542 	if (remove_from_lists) {
543 		target_remove_from_state_list(cmd);
544 
545 		/*
546 		 * Clear struct se_cmd->se_lun before the handoff to FE.
547 		 */
548 		cmd->se_lun = NULL;
549 	}
550 
551 	spin_lock_irqsave(&cmd->t_state_lock, flags);
552 	if (write_pending)
553 		cmd->t_state = TRANSPORT_WRITE_PENDING;
554 
555 	/*
556 	 * Determine if frontend context caller is requesting the stopping of
557 	 * this command for frontend exceptions.
558 	 */
559 	if (cmd->transport_state & CMD_T_STOP) {
560 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
561 			__func__, __LINE__,
562 			cmd->se_tfo->get_task_tag(cmd));
563 
564 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
565 
566 		complete_all(&cmd->t_transport_stop_comp);
567 		return 1;
568 	}
569 
570 	cmd->transport_state &= ~CMD_T_ACTIVE;
571 	if (remove_from_lists) {
572 		/*
573 		 * Some fabric modules like tcm_loop can release
574 		 * their internally allocated I/O reference now and
575 		 * struct se_cmd now.
576 		 *
577 		 * Fabric modules are expected to return '1' here if the
578 		 * se_cmd being passed is released at this point,
579 		 * or zero if not being released.
580 		 */
581 		if (cmd->se_tfo->check_stop_free != NULL) {
582 			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
583 			return cmd->se_tfo->check_stop_free(cmd);
584 		}
585 	}
586 
587 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
588 	return 0;
589 }
590 
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)591 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
592 {
593 	return transport_cmd_check_stop(cmd, true, false);
594 }
595 
transport_lun_remove_cmd(struct se_cmd * cmd)596 static void transport_lun_remove_cmd(struct se_cmd *cmd)
597 {
598 	struct se_lun *lun = cmd->se_lun;
599 
600 	if (!lun)
601 		return;
602 
603 	if (cmpxchg(&cmd->lun_ref_active, true, false))
604 		percpu_ref_put(&lun->lun_ref);
605 }
606 
transport_cmd_finish_abort(struct se_cmd * cmd,int remove)607 int transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
608 {
609 	bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
610 	int ret = 0;
611 
612 	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
613 		transport_lun_remove_cmd(cmd);
614 	/*
615 	 * Allow the fabric driver to unmap any resources before
616 	 * releasing the descriptor via TFO->release_cmd()
617 	 */
618 	if (remove)
619 		cmd->se_tfo->aborted_task(cmd);
620 
621 	if (transport_cmd_check_stop_to_fabric(cmd))
622 		return 1;
623 	if (remove && ack_kref)
624 		ret = transport_put_cmd(cmd);
625 
626 	return ret;
627 }
628 
target_complete_failure_work(struct work_struct * work)629 static void target_complete_failure_work(struct work_struct *work)
630 {
631 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
632 
633 	transport_generic_request_failure(cmd,
634 			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
635 }
636 
637 /*
638  * Used when asking transport to copy Sense Data from the underlying
639  * Linux/SCSI struct scsi_cmnd
640  */
transport_get_sense_buffer(struct se_cmd * cmd)641 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
642 {
643 	struct se_device *dev = cmd->se_dev;
644 
645 	WARN_ON(!cmd->se_lun);
646 
647 	if (!dev)
648 		return NULL;
649 
650 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
651 		return NULL;
652 
653 	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
654 
655 	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
656 		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
657 	return cmd->sense_buffer;
658 }
659 
target_complete_cmd(struct se_cmd * cmd,u8 scsi_status)660 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
661 {
662 	struct se_device *dev = cmd->se_dev;
663 	int success = scsi_status == GOOD;
664 	unsigned long flags;
665 
666 	cmd->scsi_status = scsi_status;
667 
668 
669 	spin_lock_irqsave(&cmd->t_state_lock, flags);
670 	cmd->transport_state &= ~CMD_T_BUSY;
671 
672 	if (dev && dev->transport->transport_complete) {
673 		dev->transport->transport_complete(cmd,
674 				cmd->t_data_sg,
675 				transport_get_sense_buffer(cmd));
676 		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
677 			success = 1;
678 	}
679 
680 	/*
681 	 * See if we are waiting to complete for an exception condition.
682 	 */
683 	if (cmd->transport_state & CMD_T_REQUEST_STOP) {
684 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
685 		complete(&cmd->task_stop_comp);
686 		return;
687 	}
688 
689 	/*
690 	 * Check for case where an explicit ABORT_TASK has been received
691 	 * and transport_wait_for_tasks() will be waiting for completion..
692 	 */
693 	if (cmd->transport_state & CMD_T_ABORTED ||
694 	    cmd->transport_state & CMD_T_STOP) {
695 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
696 		/*
697 		 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
698 		 * release se_device->caw_sem obtained by sbc_compare_and_write()
699 		 * since target_complete_ok_work() or target_complete_failure_work()
700 		 * won't be called to invoke the normal CAW completion callbacks.
701 		 */
702 		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
703 			up(&dev->caw_sem);
704 		}
705 		complete_all(&cmd->t_transport_stop_comp);
706 		return;
707 	} else if (!success) {
708 		INIT_WORK(&cmd->work, target_complete_failure_work);
709 	} else {
710 		INIT_WORK(&cmd->work, target_complete_ok_work);
711 	}
712 
713 	cmd->t_state = TRANSPORT_COMPLETE;
714 	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
715 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
716 
717 	queue_work(target_completion_wq, &cmd->work);
718 }
719 EXPORT_SYMBOL(target_complete_cmd);
720 
target_complete_cmd_with_length(struct se_cmd * cmd,u8 scsi_status,int length)721 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
722 {
723 	if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
724 		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
725 			cmd->residual_count += cmd->data_length - length;
726 		} else {
727 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
728 			cmd->residual_count = cmd->data_length - length;
729 		}
730 
731 		cmd->data_length = length;
732 	}
733 
734 	target_complete_cmd(cmd, scsi_status);
735 }
736 EXPORT_SYMBOL(target_complete_cmd_with_length);
737 
target_add_to_state_list(struct se_cmd * cmd)738 static void target_add_to_state_list(struct se_cmd *cmd)
739 {
740 	struct se_device *dev = cmd->se_dev;
741 	unsigned long flags;
742 
743 	spin_lock_irqsave(&dev->execute_task_lock, flags);
744 	if (!cmd->state_active) {
745 		list_add_tail(&cmd->state_list, &dev->state_list);
746 		cmd->state_active = true;
747 	}
748 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
749 }
750 
751 /*
752  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
753  */
754 static void transport_write_pending_qf(struct se_cmd *cmd);
755 static void transport_complete_qf(struct se_cmd *cmd);
756 
target_qf_do_work(struct work_struct * work)757 void target_qf_do_work(struct work_struct *work)
758 {
759 	struct se_device *dev = container_of(work, struct se_device,
760 					qf_work_queue);
761 	LIST_HEAD(qf_cmd_list);
762 	struct se_cmd *cmd, *cmd_tmp;
763 
764 	spin_lock_irq(&dev->qf_cmd_lock);
765 	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
766 	spin_unlock_irq(&dev->qf_cmd_lock);
767 
768 	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
769 		list_del(&cmd->se_qf_node);
770 		atomic_dec_mb(&dev->dev_qf_count);
771 
772 		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
773 			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
774 			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
775 			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
776 			: "UNKNOWN");
777 
778 		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
779 			transport_write_pending_qf(cmd);
780 		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
781 			transport_complete_qf(cmd);
782 	}
783 }
784 
transport_dump_cmd_direction(struct se_cmd * cmd)785 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
786 {
787 	switch (cmd->data_direction) {
788 	case DMA_NONE:
789 		return "NONE";
790 	case DMA_FROM_DEVICE:
791 		return "READ";
792 	case DMA_TO_DEVICE:
793 		return "WRITE";
794 	case DMA_BIDIRECTIONAL:
795 		return "BIDI";
796 	default:
797 		break;
798 	}
799 
800 	return "UNKNOWN";
801 }
802 
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)803 void transport_dump_dev_state(
804 	struct se_device *dev,
805 	char *b,
806 	int *bl)
807 {
808 	*bl += sprintf(b + *bl, "Status: ");
809 	if (dev->export_count)
810 		*bl += sprintf(b + *bl, "ACTIVATED");
811 	else
812 		*bl += sprintf(b + *bl, "DEACTIVATED");
813 
814 	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
815 	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
816 		dev->dev_attrib.block_size,
817 		dev->dev_attrib.hw_max_sectors);
818 	*bl += sprintf(b + *bl, "        ");
819 }
820 
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)821 void transport_dump_vpd_proto_id(
822 	struct t10_vpd *vpd,
823 	unsigned char *p_buf,
824 	int p_buf_len)
825 {
826 	unsigned char buf[VPD_TMP_BUF_SIZE];
827 	int len;
828 
829 	memset(buf, 0, VPD_TMP_BUF_SIZE);
830 	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
831 
832 	switch (vpd->protocol_identifier) {
833 	case 0x00:
834 		sprintf(buf+len, "Fibre Channel\n");
835 		break;
836 	case 0x10:
837 		sprintf(buf+len, "Parallel SCSI\n");
838 		break;
839 	case 0x20:
840 		sprintf(buf+len, "SSA\n");
841 		break;
842 	case 0x30:
843 		sprintf(buf+len, "IEEE 1394\n");
844 		break;
845 	case 0x40:
846 		sprintf(buf+len, "SCSI Remote Direct Memory Access"
847 				" Protocol\n");
848 		break;
849 	case 0x50:
850 		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
851 		break;
852 	case 0x60:
853 		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
854 		break;
855 	case 0x70:
856 		sprintf(buf+len, "Automation/Drive Interface Transport"
857 				" Protocol\n");
858 		break;
859 	case 0x80:
860 		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
861 		break;
862 	default:
863 		sprintf(buf+len, "Unknown 0x%02x\n",
864 				vpd->protocol_identifier);
865 		break;
866 	}
867 
868 	if (p_buf)
869 		strncpy(p_buf, buf, p_buf_len);
870 	else
871 		pr_debug("%s", buf);
872 }
873 
874 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)875 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
876 {
877 	/*
878 	 * Check if the Protocol Identifier Valid (PIV) bit is set..
879 	 *
880 	 * from spc3r23.pdf section 7.5.1
881 	 */
882 	 if (page_83[1] & 0x80) {
883 		vpd->protocol_identifier = (page_83[0] & 0xf0);
884 		vpd->protocol_identifier_set = 1;
885 		transport_dump_vpd_proto_id(vpd, NULL, 0);
886 	}
887 }
888 EXPORT_SYMBOL(transport_set_vpd_proto_id);
889 
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)890 int transport_dump_vpd_assoc(
891 	struct t10_vpd *vpd,
892 	unsigned char *p_buf,
893 	int p_buf_len)
894 {
895 	unsigned char buf[VPD_TMP_BUF_SIZE];
896 	int ret = 0;
897 	int len;
898 
899 	memset(buf, 0, VPD_TMP_BUF_SIZE);
900 	len = sprintf(buf, "T10 VPD Identifier Association: ");
901 
902 	switch (vpd->association) {
903 	case 0x00:
904 		sprintf(buf+len, "addressed logical unit\n");
905 		break;
906 	case 0x10:
907 		sprintf(buf+len, "target port\n");
908 		break;
909 	case 0x20:
910 		sprintf(buf+len, "SCSI target device\n");
911 		break;
912 	default:
913 		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
914 		ret = -EINVAL;
915 		break;
916 	}
917 
918 	if (p_buf)
919 		strncpy(p_buf, buf, p_buf_len);
920 	else
921 		pr_debug("%s", buf);
922 
923 	return ret;
924 }
925 
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)926 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
927 {
928 	/*
929 	 * The VPD identification association..
930 	 *
931 	 * from spc3r23.pdf Section 7.6.3.1 Table 297
932 	 */
933 	vpd->association = (page_83[1] & 0x30);
934 	return transport_dump_vpd_assoc(vpd, NULL, 0);
935 }
936 EXPORT_SYMBOL(transport_set_vpd_assoc);
937 
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)938 int transport_dump_vpd_ident_type(
939 	struct t10_vpd *vpd,
940 	unsigned char *p_buf,
941 	int p_buf_len)
942 {
943 	unsigned char buf[VPD_TMP_BUF_SIZE];
944 	int ret = 0;
945 	int len;
946 
947 	memset(buf, 0, VPD_TMP_BUF_SIZE);
948 	len = sprintf(buf, "T10 VPD Identifier Type: ");
949 
950 	switch (vpd->device_identifier_type) {
951 	case 0x00:
952 		sprintf(buf+len, "Vendor specific\n");
953 		break;
954 	case 0x01:
955 		sprintf(buf+len, "T10 Vendor ID based\n");
956 		break;
957 	case 0x02:
958 		sprintf(buf+len, "EUI-64 based\n");
959 		break;
960 	case 0x03:
961 		sprintf(buf+len, "NAA\n");
962 		break;
963 	case 0x04:
964 		sprintf(buf+len, "Relative target port identifier\n");
965 		break;
966 	case 0x08:
967 		sprintf(buf+len, "SCSI name string\n");
968 		break;
969 	default:
970 		sprintf(buf+len, "Unsupported: 0x%02x\n",
971 				vpd->device_identifier_type);
972 		ret = -EINVAL;
973 		break;
974 	}
975 
976 	if (p_buf) {
977 		if (p_buf_len < strlen(buf)+1)
978 			return -EINVAL;
979 		strncpy(p_buf, buf, p_buf_len);
980 	} else {
981 		pr_debug("%s", buf);
982 	}
983 
984 	return ret;
985 }
986 
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)987 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
988 {
989 	/*
990 	 * The VPD identifier type..
991 	 *
992 	 * from spc3r23.pdf Section 7.6.3.1 Table 298
993 	 */
994 	vpd->device_identifier_type = (page_83[1] & 0x0f);
995 	return transport_dump_vpd_ident_type(vpd, NULL, 0);
996 }
997 EXPORT_SYMBOL(transport_set_vpd_ident_type);
998 
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)999 int transport_dump_vpd_ident(
1000 	struct t10_vpd *vpd,
1001 	unsigned char *p_buf,
1002 	int p_buf_len)
1003 {
1004 	unsigned char buf[VPD_TMP_BUF_SIZE];
1005 	int ret = 0;
1006 
1007 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1008 
1009 	switch (vpd->device_identifier_code_set) {
1010 	case 0x01: /* Binary */
1011 		snprintf(buf, sizeof(buf),
1012 			"T10 VPD Binary Device Identifier: %s\n",
1013 			&vpd->device_identifier[0]);
1014 		break;
1015 	case 0x02: /* ASCII */
1016 		snprintf(buf, sizeof(buf),
1017 			"T10 VPD ASCII Device Identifier: %s\n",
1018 			&vpd->device_identifier[0]);
1019 		break;
1020 	case 0x03: /* UTF-8 */
1021 		snprintf(buf, sizeof(buf),
1022 			"T10 VPD UTF-8 Device Identifier: %s\n",
1023 			&vpd->device_identifier[0]);
1024 		break;
1025 	default:
1026 		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1027 			" 0x%02x", vpd->device_identifier_code_set);
1028 		ret = -EINVAL;
1029 		break;
1030 	}
1031 
1032 	if (p_buf)
1033 		strncpy(p_buf, buf, p_buf_len);
1034 	else
1035 		pr_debug("%s", buf);
1036 
1037 	return ret;
1038 }
1039 
1040 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1041 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1042 {
1043 	static const char hex_str[] = "0123456789abcdef";
1044 	int j = 0, i = 4; /* offset to start of the identifier */
1045 
1046 	/*
1047 	 * The VPD Code Set (encoding)
1048 	 *
1049 	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1050 	 */
1051 	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1052 	switch (vpd->device_identifier_code_set) {
1053 	case 0x01: /* Binary */
1054 		vpd->device_identifier[j++] =
1055 				hex_str[vpd->device_identifier_type];
1056 		while (i < (4 + page_83[3])) {
1057 			vpd->device_identifier[j++] =
1058 				hex_str[(page_83[i] & 0xf0) >> 4];
1059 			vpd->device_identifier[j++] =
1060 				hex_str[page_83[i] & 0x0f];
1061 			i++;
1062 		}
1063 		break;
1064 	case 0x02: /* ASCII */
1065 	case 0x03: /* UTF-8 */
1066 		while (i < (4 + page_83[3]))
1067 			vpd->device_identifier[j++] = page_83[i++];
1068 		break;
1069 	default:
1070 		break;
1071 	}
1072 
1073 	return transport_dump_vpd_ident(vpd, NULL, 0);
1074 }
1075 EXPORT_SYMBOL(transport_set_vpd_ident);
1076 
1077 sense_reason_t
target_cmd_size_check(struct se_cmd * cmd,unsigned int size)1078 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1079 {
1080 	struct se_device *dev = cmd->se_dev;
1081 
1082 	if (cmd->unknown_data_length) {
1083 		cmd->data_length = size;
1084 	} else if (size != cmd->data_length) {
1085 		pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1086 			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1087 			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1088 				cmd->data_length, size, cmd->t_task_cdb[0]);
1089 
1090 		if (cmd->data_direction == DMA_TO_DEVICE) {
1091 			pr_err("Rejecting underflow/overflow"
1092 					" WRITE data\n");
1093 			return TCM_INVALID_CDB_FIELD;
1094 		}
1095 		/*
1096 		 * Reject READ_* or WRITE_* with overflow/underflow for
1097 		 * type SCF_SCSI_DATA_CDB.
1098 		 */
1099 		if (dev->dev_attrib.block_size != 512)  {
1100 			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1101 				" CDB on non 512-byte sector setup subsystem"
1102 				" plugin: %s\n", dev->transport->name);
1103 			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1104 			return TCM_INVALID_CDB_FIELD;
1105 		}
1106 		/*
1107 		 * For the overflow case keep the existing fabric provided
1108 		 * ->data_length.  Otherwise for the underflow case, reset
1109 		 * ->data_length to the smaller SCSI expected data transfer
1110 		 * length.
1111 		 */
1112 		if (size > cmd->data_length) {
1113 			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1114 			cmd->residual_count = (size - cmd->data_length);
1115 		} else {
1116 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1117 			cmd->residual_count = (cmd->data_length - size);
1118 			cmd->data_length = size;
1119 		}
1120 	}
1121 
1122 	return 0;
1123 
1124 }
1125 
1126 /*
1127  * Used by fabric modules containing a local struct se_cmd within their
1128  * fabric dependent per I/O descriptor.
1129  */
transport_init_se_cmd(struct se_cmd * cmd,struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer)1130 void transport_init_se_cmd(
1131 	struct se_cmd *cmd,
1132 	struct target_core_fabric_ops *tfo,
1133 	struct se_session *se_sess,
1134 	u32 data_length,
1135 	int data_direction,
1136 	int task_attr,
1137 	unsigned char *sense_buffer)
1138 {
1139 	INIT_LIST_HEAD(&cmd->se_delayed_node);
1140 	INIT_LIST_HEAD(&cmd->se_qf_node);
1141 	INIT_LIST_HEAD(&cmd->se_cmd_list);
1142 	INIT_LIST_HEAD(&cmd->state_list);
1143 	init_completion(&cmd->t_transport_stop_comp);
1144 	init_completion(&cmd->cmd_wait_comp);
1145 	init_completion(&cmd->task_stop_comp);
1146 	spin_lock_init(&cmd->t_state_lock);
1147 	kref_init(&cmd->cmd_kref);
1148 	cmd->transport_state = CMD_T_DEV_ACTIVE;
1149 
1150 	cmd->se_tfo = tfo;
1151 	cmd->se_sess = se_sess;
1152 	cmd->data_length = data_length;
1153 	cmd->data_direction = data_direction;
1154 	cmd->sam_task_attr = task_attr;
1155 	cmd->sense_buffer = sense_buffer;
1156 
1157 	cmd->state_active = false;
1158 }
1159 EXPORT_SYMBOL(transport_init_se_cmd);
1160 
1161 static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd * cmd)1162 transport_check_alloc_task_attr(struct se_cmd *cmd)
1163 {
1164 	struct se_device *dev = cmd->se_dev;
1165 
1166 	/*
1167 	 * Check if SAM Task Attribute emulation is enabled for this
1168 	 * struct se_device storage object
1169 	 */
1170 	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1171 		return 0;
1172 
1173 	if (cmd->sam_task_attr == MSG_ACA_TAG) {
1174 		pr_debug("SAM Task Attribute ACA"
1175 			" emulation is not supported\n");
1176 		return TCM_INVALID_CDB_FIELD;
1177 	}
1178 	/*
1179 	 * Used to determine when ORDERED commands should go from
1180 	 * Dormant to Active status.
1181 	 */
1182 	cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1183 	pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1184 			cmd->se_ordered_id, cmd->sam_task_attr,
1185 			dev->transport->name);
1186 	return 0;
1187 }
1188 
1189 sense_reason_t
target_setup_cmd_from_cdb(struct se_cmd * cmd,unsigned char * cdb)1190 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1191 {
1192 	struct se_device *dev = cmd->se_dev;
1193 	sense_reason_t ret;
1194 
1195 	/*
1196 	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1197 	 * for VARIABLE_LENGTH_CMD
1198 	 */
1199 	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1200 		pr_err("Received SCSI CDB with command_size: %d that"
1201 			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1202 			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1203 		return TCM_INVALID_CDB_FIELD;
1204 	}
1205 	/*
1206 	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1207 	 * allocate the additional extended CDB buffer now..  Otherwise
1208 	 * setup the pointer from __t_task_cdb to t_task_cdb.
1209 	 */
1210 	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1211 		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1212 						GFP_KERNEL);
1213 		if (!cmd->t_task_cdb) {
1214 			pr_err("Unable to allocate cmd->t_task_cdb"
1215 				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1216 				scsi_command_size(cdb),
1217 				(unsigned long)sizeof(cmd->__t_task_cdb));
1218 			return TCM_OUT_OF_RESOURCES;
1219 		}
1220 	} else
1221 		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1222 	/*
1223 	 * Copy the original CDB into cmd->
1224 	 */
1225 	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1226 
1227 	trace_target_sequencer_start(cmd);
1228 
1229 	/*
1230 	 * Check for an existing UNIT ATTENTION condition
1231 	 */
1232 	ret = target_scsi3_ua_check(cmd);
1233 	if (ret)
1234 		return ret;
1235 
1236 	ret = target_alua_state_check(cmd);
1237 	if (ret)
1238 		return ret;
1239 
1240 	ret = target_check_reservation(cmd);
1241 	if (ret) {
1242 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1243 		return ret;
1244 	}
1245 
1246 	ret = dev->transport->parse_cdb(cmd);
1247 	if (ret)
1248 		return ret;
1249 
1250 	ret = transport_check_alloc_task_attr(cmd);
1251 	if (ret)
1252 		return ret;
1253 
1254 	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1255 
1256 	spin_lock(&cmd->se_lun->lun_sep_lock);
1257 	if (cmd->se_lun->lun_sep)
1258 		cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1259 	spin_unlock(&cmd->se_lun->lun_sep_lock);
1260 	return 0;
1261 }
1262 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1263 
1264 /*
1265  * Used by fabric module frontends to queue tasks directly.
1266  * Many only be used from process context only
1267  */
transport_handle_cdb_direct(struct se_cmd * cmd)1268 int transport_handle_cdb_direct(
1269 	struct se_cmd *cmd)
1270 {
1271 	sense_reason_t ret;
1272 
1273 	if (!cmd->se_lun) {
1274 		dump_stack();
1275 		pr_err("cmd->se_lun is NULL\n");
1276 		return -EINVAL;
1277 	}
1278 	if (in_interrupt()) {
1279 		dump_stack();
1280 		pr_err("transport_generic_handle_cdb cannot be called"
1281 				" from interrupt context\n");
1282 		return -EINVAL;
1283 	}
1284 	/*
1285 	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1286 	 * outstanding descriptors are handled correctly during shutdown via
1287 	 * transport_wait_for_tasks()
1288 	 *
1289 	 * Also, we don't take cmd->t_state_lock here as we only expect
1290 	 * this to be called for initial descriptor submission.
1291 	 */
1292 	cmd->t_state = TRANSPORT_NEW_CMD;
1293 	cmd->transport_state |= CMD_T_ACTIVE;
1294 
1295 	/*
1296 	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1297 	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1298 	 * and call transport_generic_request_failure() if necessary..
1299 	 */
1300 	ret = transport_generic_new_cmd(cmd);
1301 	if (ret)
1302 		transport_generic_request_failure(cmd, ret);
1303 	return 0;
1304 }
1305 EXPORT_SYMBOL(transport_handle_cdb_direct);
1306 
1307 sense_reason_t
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)1308 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1309 		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1310 {
1311 	if (!sgl || !sgl_count)
1312 		return 0;
1313 
1314 	/*
1315 	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1316 	 * scatterlists already have been set to follow what the fabric
1317 	 * passes for the original expected data transfer length.
1318 	 */
1319 	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1320 		pr_warn("Rejecting SCSI DATA overflow for fabric using"
1321 			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1322 		return TCM_INVALID_CDB_FIELD;
1323 	}
1324 
1325 	cmd->t_data_sg = sgl;
1326 	cmd->t_data_nents = sgl_count;
1327 
1328 	if (sgl_bidi && sgl_bidi_count) {
1329 		cmd->t_bidi_data_sg = sgl_bidi;
1330 		cmd->t_bidi_data_nents = sgl_bidi_count;
1331 	}
1332 	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1333 	return 0;
1334 }
1335 
1336 /*
1337  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1338  * 			 se_cmd + use pre-allocated SGL memory.
1339  *
1340  * @se_cmd: command descriptor to submit
1341  * @se_sess: associated se_sess for endpoint
1342  * @cdb: pointer to SCSI CDB
1343  * @sense: pointer to SCSI sense buffer
1344  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1345  * @data_length: fabric expected data transfer length
1346  * @task_addr: SAM task attribute
1347  * @data_dir: DMA data direction
1348  * @flags: flags for command submission from target_sc_flags_tables
1349  * @sgl: struct scatterlist memory for unidirectional mapping
1350  * @sgl_count: scatterlist count for unidirectional mapping
1351  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1352  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1353  * @sgl_prot: struct scatterlist memory protection information
1354  * @sgl_prot_count: scatterlist count for protection information
1355  *
1356  * Returns non zero to signal active I/O shutdown failure.  All other
1357  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1358  * but still return zero here.
1359  *
1360  * This may only be called from process context, and also currently
1361  * assumes internal allocation of fabric payload buffer by target-core.
1362  */
target_submit_cmd_map_sgls(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u32 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count,struct scatterlist * sgl_prot,u32 sgl_prot_count)1363 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1364 		unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1365 		u32 data_length, int task_attr, int data_dir, int flags,
1366 		struct scatterlist *sgl, u32 sgl_count,
1367 		struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1368 		struct scatterlist *sgl_prot, u32 sgl_prot_count)
1369 {
1370 	struct se_portal_group *se_tpg;
1371 	sense_reason_t rc;
1372 	int ret;
1373 
1374 	se_tpg = se_sess->se_tpg;
1375 	BUG_ON(!se_tpg);
1376 	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1377 	BUG_ON(in_interrupt());
1378 	/*
1379 	 * Initialize se_cmd for target operation.  From this point
1380 	 * exceptions are handled by sending exception status via
1381 	 * target_core_fabric_ops->queue_status() callback
1382 	 */
1383 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1384 				data_length, data_dir, task_attr, sense);
1385 	if (flags & TARGET_SCF_UNKNOWN_SIZE)
1386 		se_cmd->unknown_data_length = 1;
1387 	/*
1388 	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1389 	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
1390 	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1391 	 * kref_put() to happen during fabric packet acknowledgement.
1392 	 */
1393 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1394 	if (ret)
1395 		return ret;
1396 	/*
1397 	 * Signal bidirectional data payloads to target-core
1398 	 */
1399 	if (flags & TARGET_SCF_BIDI_OP)
1400 		se_cmd->se_cmd_flags |= SCF_BIDI;
1401 	/*
1402 	 * Locate se_lun pointer and attach it to struct se_cmd
1403 	 */
1404 	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1405 	if (rc) {
1406 		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1407 		target_put_sess_cmd(se_cmd);
1408 		return 0;
1409 	}
1410 
1411 	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1412 	if (rc != 0) {
1413 		transport_generic_request_failure(se_cmd, rc);
1414 		return 0;
1415 	}
1416 
1417 	/*
1418 	 * Save pointers for SGLs containing protection information,
1419 	 * if present.
1420 	 */
1421 	if (sgl_prot_count) {
1422 		se_cmd->t_prot_sg = sgl_prot;
1423 		se_cmd->t_prot_nents = sgl_prot_count;
1424 	}
1425 
1426 	/*
1427 	 * When a non zero sgl_count has been passed perform SGL passthrough
1428 	 * mapping for pre-allocated fabric memory instead of having target
1429 	 * core perform an internal SGL allocation..
1430 	 */
1431 	if (sgl_count != 0) {
1432 		BUG_ON(!sgl);
1433 
1434 		/*
1435 		 * A work-around for tcm_loop as some userspace code via
1436 		 * scsi-generic do not memset their associated read buffers,
1437 		 * so go ahead and do that here for type non-data CDBs.  Also
1438 		 * note that this is currently guaranteed to be a single SGL
1439 		 * for this case by target core in target_setup_cmd_from_cdb()
1440 		 * -> transport_generic_cmd_sequencer().
1441 		 */
1442 		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1443 		     se_cmd->data_direction == DMA_FROM_DEVICE) {
1444 			unsigned char *buf = NULL;
1445 
1446 			if (sgl)
1447 				buf = kmap(sg_page(sgl)) + sgl->offset;
1448 
1449 			if (buf) {
1450 				memset(buf, 0, sgl->length);
1451 				kunmap(sg_page(sgl));
1452 			}
1453 		}
1454 
1455 		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1456 				sgl_bidi, sgl_bidi_count);
1457 		if (rc != 0) {
1458 			transport_generic_request_failure(se_cmd, rc);
1459 			return 0;
1460 		}
1461 	}
1462 
1463 	/*
1464 	 * Check if we need to delay processing because of ALUA
1465 	 * Active/NonOptimized primary access state..
1466 	 */
1467 	core_alua_check_nonop_delay(se_cmd);
1468 
1469 	transport_handle_cdb_direct(se_cmd);
1470 	return 0;
1471 }
1472 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1473 
1474 /*
1475  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1476  *
1477  * @se_cmd: command descriptor to submit
1478  * @se_sess: associated se_sess for endpoint
1479  * @cdb: pointer to SCSI CDB
1480  * @sense: pointer to SCSI sense buffer
1481  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1482  * @data_length: fabric expected data transfer length
1483  * @task_addr: SAM task attribute
1484  * @data_dir: DMA data direction
1485  * @flags: flags for command submission from target_sc_flags_tables
1486  *
1487  * Returns non zero to signal active I/O shutdown failure.  All other
1488  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1489  * but still return zero here.
1490  *
1491  * This may only be called from process context, and also currently
1492  * assumes internal allocation of fabric payload buffer by target-core.
1493  *
1494  * It also assumes interal target core SGL memory allocation.
1495  */
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u32 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1496 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1497 		unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1498 		u32 data_length, int task_attr, int data_dir, int flags)
1499 {
1500 	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1501 			unpacked_lun, data_length, task_attr, data_dir,
1502 			flags, NULL, 0, NULL, 0, NULL, 0);
1503 }
1504 EXPORT_SYMBOL(target_submit_cmd);
1505 
target_complete_tmr_failure(struct work_struct * work)1506 static void target_complete_tmr_failure(struct work_struct *work)
1507 {
1508 	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1509 
1510 	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1511 	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1512 
1513 	transport_cmd_check_stop_to_fabric(se_cmd);
1514 }
1515 
1516 /**
1517  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1518  *                     for TMR CDBs
1519  *
1520  * @se_cmd: command descriptor to submit
1521  * @se_sess: associated se_sess for endpoint
1522  * @sense: pointer to SCSI sense buffer
1523  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1524  * @fabric_context: fabric context for TMR req
1525  * @tm_type: Type of TM request
1526  * @gfp: gfp type for caller
1527  * @tag: referenced task tag for TMR_ABORT_TASK
1528  * @flags: submit cmd flags
1529  *
1530  * Callable from all contexts.
1531  **/
1532 
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u32 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,unsigned int tag,int flags)1533 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1534 		unsigned char *sense, u32 unpacked_lun,
1535 		void *fabric_tmr_ptr, unsigned char tm_type,
1536 		gfp_t gfp, unsigned int tag, int flags)
1537 {
1538 	struct se_portal_group *se_tpg;
1539 	int ret;
1540 
1541 	se_tpg = se_sess->se_tpg;
1542 	BUG_ON(!se_tpg);
1543 
1544 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1545 			      0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1546 	/*
1547 	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1548 	 * allocation failure.
1549 	 */
1550 	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1551 	if (ret < 0)
1552 		return -ENOMEM;
1553 
1554 	if (tm_type == TMR_ABORT_TASK)
1555 		se_cmd->se_tmr_req->ref_task_tag = tag;
1556 
1557 	/* See target_submit_cmd for commentary */
1558 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1559 	if (ret) {
1560 		core_tmr_release_req(se_cmd->se_tmr_req);
1561 		return ret;
1562 	}
1563 
1564 	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1565 	if (ret) {
1566 		/*
1567 		 * For callback during failure handling, push this work off
1568 		 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1569 		 */
1570 		INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1571 		schedule_work(&se_cmd->work);
1572 		return 0;
1573 	}
1574 	transport_generic_handle_tmr(se_cmd);
1575 	return 0;
1576 }
1577 EXPORT_SYMBOL(target_submit_tmr);
1578 
1579 /*
1580  * If the cmd is active, request it to be stopped and sleep until it
1581  * has completed.
1582  */
target_stop_cmd(struct se_cmd * cmd,unsigned long * flags)1583 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1584 {
1585 	bool was_active = false;
1586 
1587 	if (cmd->transport_state & CMD_T_BUSY) {
1588 		cmd->transport_state |= CMD_T_REQUEST_STOP;
1589 		spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1590 
1591 		pr_debug("cmd %p waiting to complete\n", cmd);
1592 		wait_for_completion(&cmd->task_stop_comp);
1593 		pr_debug("cmd %p stopped successfully\n", cmd);
1594 
1595 		spin_lock_irqsave(&cmd->t_state_lock, *flags);
1596 		cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1597 		cmd->transport_state &= ~CMD_T_BUSY;
1598 		was_active = true;
1599 	}
1600 
1601 	return was_active;
1602 }
1603 
1604 /*
1605  * Handle SAM-esque emulation for generic transport request failures.
1606  */
transport_generic_request_failure(struct se_cmd * cmd,sense_reason_t sense_reason)1607 void transport_generic_request_failure(struct se_cmd *cmd,
1608 		sense_reason_t sense_reason)
1609 {
1610 	int ret = 0, post_ret = 0;
1611 
1612 	pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1613 		" CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1614 		cmd->t_task_cdb[0]);
1615 	pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1616 		cmd->se_tfo->get_cmd_state(cmd),
1617 		cmd->t_state, sense_reason);
1618 	pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1619 		(cmd->transport_state & CMD_T_ACTIVE) != 0,
1620 		(cmd->transport_state & CMD_T_STOP) != 0,
1621 		(cmd->transport_state & CMD_T_SENT) != 0);
1622 
1623 	/*
1624 	 * For SAM Task Attribute emulation for failed struct se_cmd
1625 	 */
1626 	transport_complete_task_attr(cmd);
1627 	/*
1628 	 * Handle special case for COMPARE_AND_WRITE failure, where the
1629 	 * callback is expected to drop the per device ->caw_sem.
1630 	 */
1631 	if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1632 	     cmd->transport_complete_callback)
1633 		cmd->transport_complete_callback(cmd, false, &post_ret);
1634 
1635 	switch (sense_reason) {
1636 	case TCM_NON_EXISTENT_LUN:
1637 	case TCM_UNSUPPORTED_SCSI_OPCODE:
1638 	case TCM_INVALID_CDB_FIELD:
1639 	case TCM_INVALID_PARAMETER_LIST:
1640 	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1641 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1642 	case TCM_UNKNOWN_MODE_PAGE:
1643 	case TCM_WRITE_PROTECTED:
1644 	case TCM_ADDRESS_OUT_OF_RANGE:
1645 	case TCM_CHECK_CONDITION_ABORT_CMD:
1646 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1647 	case TCM_CHECK_CONDITION_NOT_READY:
1648 	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1649 	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1650 	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1651 		break;
1652 	case TCM_OUT_OF_RESOURCES:
1653 		sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1654 		break;
1655 	case TCM_RESERVATION_CONFLICT:
1656 		/*
1657 		 * No SENSE Data payload for this case, set SCSI Status
1658 		 * and queue the response to $FABRIC_MOD.
1659 		 *
1660 		 * Uses linux/include/scsi/scsi.h SAM status codes defs
1661 		 */
1662 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1663 		/*
1664 		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1665 		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1666 		 * CONFLICT STATUS.
1667 		 *
1668 		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1669 		 */
1670 		if (cmd->se_sess &&
1671 		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1672 			core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1673 				cmd->orig_fe_lun, 0x2C,
1674 				ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1675 
1676 		trace_target_cmd_complete(cmd);
1677 		ret = cmd->se_tfo-> queue_status(cmd);
1678 		if (ret == -EAGAIN || ret == -ENOMEM)
1679 			goto queue_full;
1680 		goto check_stop;
1681 	default:
1682 		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1683 			cmd->t_task_cdb[0], sense_reason);
1684 		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1685 		break;
1686 	}
1687 
1688 	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1689 	if (ret == -EAGAIN || ret == -ENOMEM)
1690 		goto queue_full;
1691 
1692 check_stop:
1693 	transport_lun_remove_cmd(cmd);
1694 	if (!transport_cmd_check_stop_to_fabric(cmd))
1695 		;
1696 	return;
1697 
1698 queue_full:
1699 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1700 	transport_handle_queue_full(cmd, cmd->se_dev);
1701 }
1702 EXPORT_SYMBOL(transport_generic_request_failure);
1703 
__target_execute_cmd(struct se_cmd * cmd)1704 void __target_execute_cmd(struct se_cmd *cmd)
1705 {
1706 	sense_reason_t ret;
1707 
1708 	if (cmd->execute_cmd) {
1709 		ret = cmd->execute_cmd(cmd);
1710 		if (ret) {
1711 			spin_lock_irq(&cmd->t_state_lock);
1712 			cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1713 			spin_unlock_irq(&cmd->t_state_lock);
1714 
1715 			transport_generic_request_failure(cmd, ret);
1716 		}
1717 	}
1718 }
1719 
target_handle_task_attr(struct se_cmd * cmd)1720 static bool target_handle_task_attr(struct se_cmd *cmd)
1721 {
1722 	struct se_device *dev = cmd->se_dev;
1723 
1724 	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1725 		return false;
1726 
1727 	/*
1728 	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1729 	 * to allow the passed struct se_cmd list of tasks to the front of the list.
1730 	 */
1731 	switch (cmd->sam_task_attr) {
1732 	case MSG_HEAD_TAG:
1733 		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1734 			 "se_ordered_id: %u\n",
1735 			 cmd->t_task_cdb[0], cmd->se_ordered_id);
1736 		return false;
1737 	case MSG_ORDERED_TAG:
1738 		atomic_inc_mb(&dev->dev_ordered_sync);
1739 
1740 		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1741 			 " se_ordered_id: %u\n",
1742 			 cmd->t_task_cdb[0], cmd->se_ordered_id);
1743 
1744 		/*
1745 		 * Execute an ORDERED command if no other older commands
1746 		 * exist that need to be completed first.
1747 		 */
1748 		if (!atomic_read(&dev->simple_cmds))
1749 			return false;
1750 		break;
1751 	default:
1752 		/*
1753 		 * For SIMPLE and UNTAGGED Task Attribute commands
1754 		 */
1755 		atomic_inc_mb(&dev->simple_cmds);
1756 		break;
1757 	}
1758 
1759 	if (atomic_read(&dev->dev_ordered_sync) == 0)
1760 		return false;
1761 
1762 	spin_lock(&dev->delayed_cmd_lock);
1763 	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1764 	spin_unlock(&dev->delayed_cmd_lock);
1765 
1766 	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1767 		" delayed CMD list, se_ordered_id: %u\n",
1768 		cmd->t_task_cdb[0], cmd->sam_task_attr,
1769 		cmd->se_ordered_id);
1770 	return true;
1771 }
1772 
1773 static int __transport_check_aborted_status(struct se_cmd *, int);
1774 
target_execute_cmd(struct se_cmd * cmd)1775 void target_execute_cmd(struct se_cmd *cmd)
1776 {
1777 	/*
1778 	 * Determine if frontend context caller is requesting the stopping of
1779 	 * this command for frontend exceptions.
1780 	 *
1781 	 * If the received CDB has aleady been aborted stop processing it here.
1782 	 */
1783 	spin_lock_irq(&cmd->t_state_lock);
1784 	if (__transport_check_aborted_status(cmd, 1)) {
1785 		spin_unlock_irq(&cmd->t_state_lock);
1786 		return;
1787 	}
1788 	if (cmd->transport_state & CMD_T_STOP) {
1789 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1790 			__func__, __LINE__,
1791 			cmd->se_tfo->get_task_tag(cmd));
1792 
1793 		spin_unlock_irq(&cmd->t_state_lock);
1794 		complete_all(&cmd->t_transport_stop_comp);
1795 		return;
1796 	}
1797 
1798 	cmd->t_state = TRANSPORT_PROCESSING;
1799 	cmd->transport_state &= ~CMD_T_PRE_EXECUTE;
1800 	cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1801 	spin_unlock_irq(&cmd->t_state_lock);
1802 	/*
1803 	 * Perform WRITE_INSERT of PI using software emulation when backend
1804 	 * device has PI enabled, if the transport has not already generated
1805 	 * PI using hardware WRITE_INSERT offload.
1806 	 */
1807 	if (cmd->prot_op == TARGET_PROT_DOUT_INSERT) {
1808 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1809 			sbc_dif_generate(cmd);
1810 	}
1811 
1812 	if (target_handle_task_attr(cmd)) {
1813 		spin_lock_irq(&cmd->t_state_lock);
1814 		cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
1815 		spin_unlock_irq(&cmd->t_state_lock);
1816 		return;
1817 	}
1818 
1819 	__target_execute_cmd(cmd);
1820 }
1821 EXPORT_SYMBOL(target_execute_cmd);
1822 
1823 /*
1824  * Process all commands up to the last received ORDERED task attribute which
1825  * requires another blocking boundary
1826  */
target_restart_delayed_cmds(struct se_device * dev)1827 static void target_restart_delayed_cmds(struct se_device *dev)
1828 {
1829 	for (;;) {
1830 		struct se_cmd *cmd;
1831 
1832 		spin_lock(&dev->delayed_cmd_lock);
1833 		if (list_empty(&dev->delayed_cmd_list)) {
1834 			spin_unlock(&dev->delayed_cmd_lock);
1835 			break;
1836 		}
1837 
1838 		cmd = list_entry(dev->delayed_cmd_list.next,
1839 				 struct se_cmd, se_delayed_node);
1840 		list_del(&cmd->se_delayed_node);
1841 		spin_unlock(&dev->delayed_cmd_lock);
1842 
1843 		__target_execute_cmd(cmd);
1844 
1845 		if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1846 			break;
1847 	}
1848 }
1849 
1850 /*
1851  * Called from I/O completion to determine which dormant/delayed
1852  * and ordered cmds need to have their tasks added to the execution queue.
1853  */
transport_complete_task_attr(struct se_cmd * cmd)1854 static void transport_complete_task_attr(struct se_cmd *cmd)
1855 {
1856 	struct se_device *dev = cmd->se_dev;
1857 
1858 	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1859 		return;
1860 
1861 	if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1862 		atomic_dec_mb(&dev->simple_cmds);
1863 		dev->dev_cur_ordered_id++;
1864 		pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1865 			" SIMPLE: %u\n", dev->dev_cur_ordered_id,
1866 			cmd->se_ordered_id);
1867 	} else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1868 		dev->dev_cur_ordered_id++;
1869 		pr_debug("Incremented dev_cur_ordered_id: %u for"
1870 			" HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1871 			cmd->se_ordered_id);
1872 	} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1873 		atomic_dec_mb(&dev->dev_ordered_sync);
1874 
1875 		dev->dev_cur_ordered_id++;
1876 		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1877 			" %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1878 	}
1879 
1880 	target_restart_delayed_cmds(dev);
1881 }
1882 
transport_complete_qf(struct se_cmd * cmd)1883 static void transport_complete_qf(struct se_cmd *cmd)
1884 {
1885 	int ret = 0;
1886 
1887 	transport_complete_task_attr(cmd);
1888 
1889 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1890 		trace_target_cmd_complete(cmd);
1891 		ret = cmd->se_tfo->queue_status(cmd);
1892 		goto out;
1893 	}
1894 
1895 	switch (cmd->data_direction) {
1896 	case DMA_FROM_DEVICE:
1897 		trace_target_cmd_complete(cmd);
1898 		ret = cmd->se_tfo->queue_data_in(cmd);
1899 		break;
1900 	case DMA_TO_DEVICE:
1901 		if (cmd->se_cmd_flags & SCF_BIDI) {
1902 			ret = cmd->se_tfo->queue_data_in(cmd);
1903 			if (ret < 0)
1904 				break;
1905 		}
1906 		/* Fall through for DMA_TO_DEVICE */
1907 	case DMA_NONE:
1908 		trace_target_cmd_complete(cmd);
1909 		ret = cmd->se_tfo->queue_status(cmd);
1910 		break;
1911 	default:
1912 		break;
1913 	}
1914 
1915 out:
1916 	if (ret < 0) {
1917 		transport_handle_queue_full(cmd, cmd->se_dev);
1918 		return;
1919 	}
1920 	transport_lun_remove_cmd(cmd);
1921 	transport_cmd_check_stop_to_fabric(cmd);
1922 }
1923 
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev)1924 static void transport_handle_queue_full(
1925 	struct se_cmd *cmd,
1926 	struct se_device *dev)
1927 {
1928 	spin_lock_irq(&dev->qf_cmd_lock);
1929 	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1930 	atomic_inc_mb(&dev->dev_qf_count);
1931 	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1932 
1933 	schedule_work(&cmd->se_dev->qf_work_queue);
1934 }
1935 
target_check_read_strip(struct se_cmd * cmd)1936 static bool target_check_read_strip(struct se_cmd *cmd)
1937 {
1938 	sense_reason_t rc;
1939 
1940 	if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
1941 		rc = sbc_dif_read_strip(cmd);
1942 		if (rc) {
1943 			cmd->pi_err = rc;
1944 			return true;
1945 		}
1946 	}
1947 
1948 	return false;
1949 }
1950 
target_complete_ok_work(struct work_struct * work)1951 static void target_complete_ok_work(struct work_struct *work)
1952 {
1953 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1954 	int ret;
1955 
1956 	/*
1957 	 * Check if we need to move delayed/dormant tasks from cmds on the
1958 	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1959 	 * Attribute.
1960 	 */
1961 	transport_complete_task_attr(cmd);
1962 
1963 	/*
1964 	 * Check to schedule QUEUE_FULL work, or execute an existing
1965 	 * cmd->transport_qf_callback()
1966 	 */
1967 	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1968 		schedule_work(&cmd->se_dev->qf_work_queue);
1969 
1970 	/*
1971 	 * Check if we need to send a sense buffer from
1972 	 * the struct se_cmd in question.
1973 	 */
1974 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1975 		WARN_ON(!cmd->scsi_status);
1976 		ret = transport_send_check_condition_and_sense(
1977 					cmd, 0, 1);
1978 		if (ret == -EAGAIN || ret == -ENOMEM)
1979 			goto queue_full;
1980 
1981 		transport_lun_remove_cmd(cmd);
1982 		transport_cmd_check_stop_to_fabric(cmd);
1983 		return;
1984 	}
1985 	/*
1986 	 * Check for a callback, used by amongst other things
1987 	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
1988 	 */
1989 	if (cmd->transport_complete_callback) {
1990 		sense_reason_t rc;
1991 		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
1992 		bool zero_dl = !(cmd->data_length);
1993 		int post_ret = 0;
1994 
1995 		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
1996 		if (!rc && !post_ret) {
1997 			if (caw && zero_dl)
1998 				goto queue_rsp;
1999 
2000 			return;
2001 		} else if (rc) {
2002 			ret = transport_send_check_condition_and_sense(cmd,
2003 						rc, 0);
2004 			if (ret == -EAGAIN || ret == -ENOMEM)
2005 				goto queue_full;
2006 
2007 			transport_lun_remove_cmd(cmd);
2008 			transport_cmd_check_stop_to_fabric(cmd);
2009 			return;
2010 		}
2011 	}
2012 
2013 queue_rsp:
2014 	switch (cmd->data_direction) {
2015 	case DMA_FROM_DEVICE:
2016 		spin_lock(&cmd->se_lun->lun_sep_lock);
2017 		if (cmd->se_lun->lun_sep) {
2018 			cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2019 					cmd->data_length;
2020 		}
2021 		spin_unlock(&cmd->se_lun->lun_sep_lock);
2022 		/*
2023 		 * Perform READ_STRIP of PI using software emulation when
2024 		 * backend had PI enabled, if the transport will not be
2025 		 * performing hardware READ_STRIP offload.
2026 		 */
2027 		if (cmd->prot_op == TARGET_PROT_DIN_STRIP &&
2028 		    target_check_read_strip(cmd)) {
2029 			ret = transport_send_check_condition_and_sense(cmd,
2030 						cmd->pi_err, 0);
2031 			if (ret == -EAGAIN || ret == -ENOMEM)
2032 				goto queue_full;
2033 
2034 			transport_lun_remove_cmd(cmd);
2035 			transport_cmd_check_stop_to_fabric(cmd);
2036 			return;
2037 		}
2038 
2039 		trace_target_cmd_complete(cmd);
2040 		ret = cmd->se_tfo->queue_data_in(cmd);
2041 		if (ret == -EAGAIN || ret == -ENOMEM)
2042 			goto queue_full;
2043 		break;
2044 	case DMA_TO_DEVICE:
2045 		spin_lock(&cmd->se_lun->lun_sep_lock);
2046 		if (cmd->se_lun->lun_sep) {
2047 			cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
2048 				cmd->data_length;
2049 		}
2050 		spin_unlock(&cmd->se_lun->lun_sep_lock);
2051 		/*
2052 		 * Check if we need to send READ payload for BIDI-COMMAND
2053 		 */
2054 		if (cmd->se_cmd_flags & SCF_BIDI) {
2055 			spin_lock(&cmd->se_lun->lun_sep_lock);
2056 			if (cmd->se_lun->lun_sep) {
2057 				cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
2058 					cmd->data_length;
2059 			}
2060 			spin_unlock(&cmd->se_lun->lun_sep_lock);
2061 			ret = cmd->se_tfo->queue_data_in(cmd);
2062 			if (ret == -EAGAIN || ret == -ENOMEM)
2063 				goto queue_full;
2064 			break;
2065 		}
2066 		/* Fall through for DMA_TO_DEVICE */
2067 	case DMA_NONE:
2068 		trace_target_cmd_complete(cmd);
2069 		ret = cmd->se_tfo->queue_status(cmd);
2070 		if (ret == -EAGAIN || ret == -ENOMEM)
2071 			goto queue_full;
2072 		break;
2073 	default:
2074 		break;
2075 	}
2076 
2077 	transport_lun_remove_cmd(cmd);
2078 	transport_cmd_check_stop_to_fabric(cmd);
2079 	return;
2080 
2081 queue_full:
2082 	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2083 		" data_direction: %d\n", cmd, cmd->data_direction);
2084 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2085 	transport_handle_queue_full(cmd, cmd->se_dev);
2086 }
2087 
transport_free_sgl(struct scatterlist * sgl,int nents)2088 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2089 {
2090 	struct scatterlist *sg;
2091 	int count;
2092 
2093 	for_each_sg(sgl, sg, nents, count)
2094 		__free_page(sg_page(sg));
2095 
2096 	kfree(sgl);
2097 }
2098 
transport_reset_sgl_orig(struct se_cmd * cmd)2099 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2100 {
2101 	/*
2102 	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2103 	 * emulation, and free + reset pointers if necessary..
2104 	 */
2105 	if (!cmd->t_data_sg_orig)
2106 		return;
2107 
2108 	kfree(cmd->t_data_sg);
2109 	cmd->t_data_sg = cmd->t_data_sg_orig;
2110 	cmd->t_data_sg_orig = NULL;
2111 	cmd->t_data_nents = cmd->t_data_nents_orig;
2112 	cmd->t_data_nents_orig = 0;
2113 }
2114 
transport_free_pages(struct se_cmd * cmd)2115 static inline void transport_free_pages(struct se_cmd *cmd)
2116 {
2117 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2118 		/*
2119 		 * Release special case READ buffer payload required for
2120 		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2121 		 */
2122 		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2123 			transport_free_sgl(cmd->t_bidi_data_sg,
2124 					   cmd->t_bidi_data_nents);
2125 			cmd->t_bidi_data_sg = NULL;
2126 			cmd->t_bidi_data_nents = 0;
2127 		}
2128 		transport_reset_sgl_orig(cmd);
2129 		return;
2130 	}
2131 	transport_reset_sgl_orig(cmd);
2132 
2133 	transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2134 	cmd->t_data_sg = NULL;
2135 	cmd->t_data_nents = 0;
2136 
2137 	transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2138 	cmd->t_bidi_data_sg = NULL;
2139 	cmd->t_bidi_data_nents = 0;
2140 
2141 	transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2142 	cmd->t_prot_sg = NULL;
2143 	cmd->t_prot_nents = 0;
2144 }
2145 
2146 /**
2147  * transport_put_cmd - release a reference to a command
2148  * @cmd:       command to release
2149  *
2150  * This routine releases our reference to the command and frees it if possible.
2151  */
transport_put_cmd(struct se_cmd * cmd)2152 static int transport_put_cmd(struct se_cmd *cmd)
2153 {
2154 	BUG_ON(!cmd->se_tfo);
2155 	/*
2156 	 * If this cmd has been setup with target_get_sess_cmd(), drop
2157 	 * the kref and call ->release_cmd() in kref callback.
2158 	 */
2159 	return target_put_sess_cmd(cmd);
2160 }
2161 
transport_kmap_data_sg(struct se_cmd * cmd)2162 void *transport_kmap_data_sg(struct se_cmd *cmd)
2163 {
2164 	struct scatterlist *sg = cmd->t_data_sg;
2165 	struct page **pages;
2166 	int i;
2167 
2168 	/*
2169 	 * We need to take into account a possible offset here for fabrics like
2170 	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2171 	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2172 	 */
2173 	if (!cmd->t_data_nents)
2174 		return NULL;
2175 
2176 	BUG_ON(!sg);
2177 	if (cmd->t_data_nents == 1)
2178 		return kmap(sg_page(sg)) + sg->offset;
2179 
2180 	/* >1 page. use vmap */
2181 	pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2182 	if (!pages)
2183 		return NULL;
2184 
2185 	/* convert sg[] to pages[] */
2186 	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2187 		pages[i] = sg_page(sg);
2188 	}
2189 
2190 	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2191 	kfree(pages);
2192 	if (!cmd->t_data_vmap)
2193 		return NULL;
2194 
2195 	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2196 }
2197 EXPORT_SYMBOL(transport_kmap_data_sg);
2198 
transport_kunmap_data_sg(struct se_cmd * cmd)2199 void transport_kunmap_data_sg(struct se_cmd *cmd)
2200 {
2201 	if (!cmd->t_data_nents) {
2202 		return;
2203 	} else if (cmd->t_data_nents == 1) {
2204 		kunmap(sg_page(cmd->t_data_sg));
2205 		return;
2206 	}
2207 
2208 	vunmap(cmd->t_data_vmap);
2209 	cmd->t_data_vmap = NULL;
2210 }
2211 EXPORT_SYMBOL(transport_kunmap_data_sg);
2212 
2213 int
target_alloc_sgl(struct scatterlist ** sgl,unsigned int * nents,u32 length,bool zero_page)2214 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2215 		 bool zero_page)
2216 {
2217 	struct scatterlist *sg;
2218 	struct page *page;
2219 	gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2220 	unsigned int nent;
2221 	int i = 0;
2222 
2223 	nent = DIV_ROUND_UP(length, PAGE_SIZE);
2224 	sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2225 	if (!sg)
2226 		return -ENOMEM;
2227 
2228 	sg_init_table(sg, nent);
2229 
2230 	while (length) {
2231 		u32 page_len = min_t(u32, length, PAGE_SIZE);
2232 		page = alloc_page(GFP_KERNEL | zero_flag);
2233 		if (!page)
2234 			goto out;
2235 
2236 		sg_set_page(&sg[i], page, page_len, 0);
2237 		length -= page_len;
2238 		i++;
2239 	}
2240 	*sgl = sg;
2241 	*nents = nent;
2242 	return 0;
2243 
2244 out:
2245 	while (i > 0) {
2246 		i--;
2247 		__free_page(sg_page(&sg[i]));
2248 	}
2249 	kfree(sg);
2250 	return -ENOMEM;
2251 }
2252 
2253 /*
2254  * Allocate any required resources to execute the command.  For writes we
2255  * might not have the payload yet, so notify the fabric via a call to
2256  * ->write_pending instead. Otherwise place it on the execution queue.
2257  */
2258 sense_reason_t
transport_generic_new_cmd(struct se_cmd * cmd)2259 transport_generic_new_cmd(struct se_cmd *cmd)
2260 {
2261 	int ret = 0;
2262 	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2263 
2264 	/*
2265 	 * Determine is the TCM fabric module has already allocated physical
2266 	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2267 	 * beforehand.
2268 	 */
2269 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2270 	    cmd->data_length) {
2271 
2272 		if ((cmd->se_cmd_flags & SCF_BIDI) ||
2273 		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2274 			u32 bidi_length;
2275 
2276 			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2277 				bidi_length = cmd->t_task_nolb *
2278 					      cmd->se_dev->dev_attrib.block_size;
2279 			else
2280 				bidi_length = cmd->data_length;
2281 
2282 			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2283 					       &cmd->t_bidi_data_nents,
2284 					       bidi_length, zero_flag);
2285 			if (ret < 0)
2286 				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2287 		}
2288 
2289 		if (cmd->prot_op != TARGET_PROT_NORMAL) {
2290 			ret = target_alloc_sgl(&cmd->t_prot_sg,
2291 					       &cmd->t_prot_nents,
2292 					       cmd->prot_length, true);
2293 			if (ret < 0)
2294 				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2295 		}
2296 
2297 		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2298 				       cmd->data_length, zero_flag);
2299 		if (ret < 0)
2300 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2301 	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2302 		    cmd->data_length) {
2303 		/*
2304 		 * Special case for COMPARE_AND_WRITE with fabrics
2305 		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2306 		 */
2307 		u32 caw_length = cmd->t_task_nolb *
2308 				 cmd->se_dev->dev_attrib.block_size;
2309 
2310 		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2311 				       &cmd->t_bidi_data_nents,
2312 				       caw_length, zero_flag);
2313 		if (ret < 0)
2314 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2315 	}
2316 	/*
2317 	 * If this command is not a write we can execute it right here,
2318 	 * for write buffers we need to notify the fabric driver first
2319 	 * and let it call back once the write buffers are ready.
2320 	 */
2321 	target_add_to_state_list(cmd);
2322 	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2323 		target_execute_cmd(cmd);
2324 		return 0;
2325 	}
2326 	transport_cmd_check_stop(cmd, false, true);
2327 
2328 	ret = cmd->se_tfo->write_pending(cmd);
2329 	if (ret == -EAGAIN || ret == -ENOMEM)
2330 		goto queue_full;
2331 
2332 	/* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2333 	WARN_ON(ret);
2334 
2335 	return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2336 
2337 queue_full:
2338 	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2339 	cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2340 	transport_handle_queue_full(cmd, cmd->se_dev);
2341 	return 0;
2342 }
2343 EXPORT_SYMBOL(transport_generic_new_cmd);
2344 
transport_write_pending_qf(struct se_cmd * cmd)2345 static void transport_write_pending_qf(struct se_cmd *cmd)
2346 {
2347 	int ret;
2348 
2349 	ret = cmd->se_tfo->write_pending(cmd);
2350 	if (ret == -EAGAIN || ret == -ENOMEM) {
2351 		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2352 			 cmd);
2353 		transport_handle_queue_full(cmd, cmd->se_dev);
2354 	}
2355 }
2356 
2357 static bool
2358 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2359 			   unsigned long *flags);
2360 
target_wait_free_cmd(struct se_cmd * cmd,bool * aborted,bool * tas)2361 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2362 {
2363 	unsigned long flags;
2364 
2365 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2366 	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2367 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2368 }
2369 
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)2370 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2371 {
2372 	int ret = 0;
2373 	bool aborted = false, tas = false;
2374 
2375 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2376 		if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2377 			target_wait_free_cmd(cmd, &aborted, &tas);
2378 
2379 		if (!aborted || tas)
2380 			ret = transport_put_cmd(cmd);
2381 	} else {
2382 		if (wait_for_tasks)
2383 			target_wait_free_cmd(cmd, &aborted, &tas);
2384 		/*
2385 		 * Handle WRITE failure case where transport_generic_new_cmd()
2386 		 * has already added se_cmd to state_list, but fabric has
2387 		 * failed command before I/O submission.
2388 		 */
2389 		if (cmd->state_active)
2390 			target_remove_from_state_list(cmd);
2391 
2392 		if (cmd->se_lun)
2393 			transport_lun_remove_cmd(cmd);
2394 
2395 		if (!aborted || tas)
2396 			ret = transport_put_cmd(cmd);
2397 	}
2398 	/*
2399 	 * If the task has been internally aborted due to TMR ABORT_TASK
2400 	 * or LUN_RESET, target_core_tmr.c is responsible for performing
2401 	 * the remaining calls to target_put_sess_cmd(), and not the
2402 	 * callers of this function.
2403 	 */
2404 	if (aborted) {
2405 		pr_debug("Detected CMD_T_ABORTED for ITT: %u\n",
2406 			cmd->se_tfo->get_task_tag(cmd));
2407 		wait_for_completion(&cmd->cmd_wait_comp);
2408 		cmd->se_tfo->release_cmd(cmd);
2409 		ret = 1;
2410 	}
2411 	return ret;
2412 }
2413 EXPORT_SYMBOL(transport_generic_free_cmd);
2414 
2415 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2416  * @se_cmd:	command descriptor to add
2417  * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2418  */
target_get_sess_cmd(struct se_cmd * se_cmd,bool ack_kref)2419 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2420 {
2421 	struct se_session *se_sess = se_cmd->se_sess;
2422 	unsigned long flags;
2423 	int ret = 0;
2424 
2425 	/*
2426 	 * Add a second kref if the fabric caller is expecting to handle
2427 	 * fabric acknowledgement that requires two target_put_sess_cmd()
2428 	 * invocations before se_cmd descriptor release.
2429 	 */
2430 	if (ack_kref) {
2431 		kref_get(&se_cmd->cmd_kref);
2432 		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2433 	}
2434 
2435 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2436 	if (se_sess->sess_tearing_down) {
2437 		ret = -ESHUTDOWN;
2438 		goto out;
2439 	}
2440 	se_cmd->transport_state |= CMD_T_PRE_EXECUTE;
2441 	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2442 out:
2443 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2444 
2445 	if (ret && ack_kref)
2446 		target_put_sess_cmd(se_cmd);
2447 
2448 	return ret;
2449 }
2450 EXPORT_SYMBOL(target_get_sess_cmd);
2451 
target_free_cmd_mem(struct se_cmd * cmd)2452 static void target_free_cmd_mem(struct se_cmd *cmd)
2453 {
2454 	transport_free_pages(cmd);
2455 
2456 	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2457 		core_tmr_release_req(cmd->se_tmr_req);
2458 	if (cmd->t_task_cdb != cmd->__t_task_cdb)
2459 		kfree(cmd->t_task_cdb);
2460 }
2461 
target_release_cmd_kref(struct kref * kref)2462 static void target_release_cmd_kref(struct kref *kref)
2463 {
2464 	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2465 	struct se_session *se_sess = se_cmd->se_sess;
2466 	bool fabric_stop;
2467 
2468 	spin_lock(&se_cmd->t_state_lock);
2469 	fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2470 		      (se_cmd->transport_state & CMD_T_ABORTED);
2471 	spin_unlock(&se_cmd->t_state_lock);
2472 
2473 	if (se_cmd->cmd_wait_set || fabric_stop) {
2474 		list_del_init(&se_cmd->se_cmd_list);
2475 		spin_unlock(&se_sess->sess_cmd_lock);
2476 		target_free_cmd_mem(se_cmd);
2477 		complete(&se_cmd->cmd_wait_comp);
2478 		return;
2479 	}
2480 	list_del_init(&se_cmd->se_cmd_list);
2481 	spin_unlock(&se_sess->sess_cmd_lock);
2482 
2483 	target_free_cmd_mem(se_cmd);
2484 	se_cmd->se_tfo->release_cmd(se_cmd);
2485 }
2486 
2487 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2488  * @se_cmd:	command descriptor to drop
2489  */
target_put_sess_cmd(struct se_cmd * se_cmd)2490 int target_put_sess_cmd(struct se_cmd *se_cmd)
2491 {
2492 	struct se_session *se_sess = se_cmd->se_sess;
2493 
2494 	if (!se_sess) {
2495 		target_free_cmd_mem(se_cmd);
2496 		se_cmd->se_tfo->release_cmd(se_cmd);
2497 		return 1;
2498 	}
2499 	return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2500 			&se_sess->sess_cmd_lock);
2501 }
2502 EXPORT_SYMBOL(target_put_sess_cmd);
2503 
2504 /* target_sess_cmd_list_set_waiting - Flag all commands in
2505  *         sess_cmd_list to complete cmd_wait_comp.  Set
2506  *         sess_tearing_down so no more commands are queued.
2507  * @se_sess:	session to flag
2508  */
target_sess_cmd_list_set_waiting(struct se_session * se_sess)2509 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2510 {
2511 	struct se_cmd *se_cmd;
2512 	unsigned long flags;
2513 	int rc;
2514 
2515 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2516 	if (se_sess->sess_tearing_down) {
2517 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2518 		return;
2519 	}
2520 	se_sess->sess_tearing_down = 1;
2521 	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2522 
2523 	list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list) {
2524 		rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2525 		if (rc) {
2526 			se_cmd->cmd_wait_set = 1;
2527 			spin_lock(&se_cmd->t_state_lock);
2528 			se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2529 			spin_unlock(&se_cmd->t_state_lock);
2530 		}
2531 	}
2532 
2533 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2534 }
2535 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2536 
2537 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2538  * @se_sess:    session to wait for active I/O
2539  */
target_wait_for_sess_cmds(struct se_session * se_sess)2540 void target_wait_for_sess_cmds(struct se_session *se_sess)
2541 {
2542 	struct se_cmd *se_cmd, *tmp_cmd;
2543 	unsigned long flags;
2544 	bool tas;
2545 
2546 	list_for_each_entry_safe(se_cmd, tmp_cmd,
2547 				&se_sess->sess_wait_list, se_cmd_list) {
2548 		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2549 			" %d\n", se_cmd, se_cmd->t_state,
2550 			se_cmd->se_tfo->get_cmd_state(se_cmd));
2551 
2552 		spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2553 		tas = (se_cmd->transport_state & CMD_T_TAS);
2554 		spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2555 
2556 		if (!target_put_sess_cmd(se_cmd)) {
2557 			if (tas)
2558 				target_put_sess_cmd(se_cmd);
2559 		}
2560 
2561 		wait_for_completion(&se_cmd->cmd_wait_comp);
2562 		pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2563 			" fabric state: %d\n", se_cmd, se_cmd->t_state,
2564 			se_cmd->se_tfo->get_cmd_state(se_cmd));
2565 
2566 		se_cmd->se_tfo->release_cmd(se_cmd);
2567 	}
2568 
2569 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2570 	WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2571 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2572 
2573 }
2574 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2575 
transport_clear_lun_ref_thread(void * p)2576 static int transport_clear_lun_ref_thread(void *p)
2577 {
2578 	struct se_lun *lun = p;
2579 
2580 	percpu_ref_kill(&lun->lun_ref);
2581 
2582 	wait_for_completion(&lun->lun_ref_comp);
2583 	complete(&lun->lun_shutdown_comp);
2584 
2585 	return 0;
2586 }
2587 
transport_clear_lun_ref(struct se_lun * lun)2588 int transport_clear_lun_ref(struct se_lun *lun)
2589 {
2590 	struct task_struct *kt;
2591 
2592 	kt = kthread_run(transport_clear_lun_ref_thread, lun,
2593 			"tcm_cl_%u", lun->unpacked_lun);
2594 	if (IS_ERR(kt)) {
2595 		pr_err("Unable to start clear_lun thread\n");
2596 		return PTR_ERR(kt);
2597 	}
2598 	wait_for_completion(&lun->lun_shutdown_comp);
2599 
2600 	return 0;
2601 }
2602 
2603 static bool
__transport_wait_for_tasks(struct se_cmd * cmd,bool fabric_stop,bool * aborted,bool * tas,unsigned long * flags)2604 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2605 			   bool *aborted, bool *tas, unsigned long *flags)
2606 	__releases(&cmd->t_state_lock)
2607 	__acquires(&cmd->t_state_lock)
2608 {
2609 
2610 	assert_spin_locked(&cmd->t_state_lock);
2611 	WARN_ON_ONCE(!irqs_disabled());
2612 
2613 	if (fabric_stop)
2614 		cmd->transport_state |= CMD_T_FABRIC_STOP;
2615 
2616 	if (cmd->transport_state & CMD_T_ABORTED)
2617 		*aborted = true;
2618 
2619 	if (cmd->transport_state & CMD_T_TAS)
2620 		*tas = true;
2621 
2622 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2623 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2624 		return false;
2625 
2626 	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2627 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2628 		return false;
2629 
2630 	if (!(cmd->transport_state & CMD_T_ACTIVE))
2631 		return false;
2632 
2633 	if (fabric_stop && *aborted)
2634 		return false;
2635 
2636 	cmd->transport_state |= CMD_T_STOP;
2637 
2638 	pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2639 		" i_state: %d, t_state: %d, CMD_T_STOP\n",
2640 		cmd, cmd->se_tfo->get_task_tag(cmd),
2641 		cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2642 
2643 	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2644 
2645 	wait_for_completion(&cmd->t_transport_stop_comp);
2646 
2647 	spin_lock_irqsave(&cmd->t_state_lock, *flags);
2648 	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2649 
2650 	pr_debug("wait_for_tasks: Stopped wait_for_completion("
2651 		"&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2652 		cmd->se_tfo->get_task_tag(cmd));
2653 
2654 	return true;
2655 }
2656 
2657 /**
2658  * transport_wait_for_tasks - wait for completion to occur
2659  * @cmd:	command to wait
2660  *
2661  * Called from frontend fabric context to wait for storage engine
2662  * to pause and/or release frontend generated struct se_cmd.
2663  */
transport_wait_for_tasks(struct se_cmd * cmd)2664 bool transport_wait_for_tasks(struct se_cmd *cmd)
2665 {
2666 	unsigned long flags;
2667 	bool ret, aborted = false, tas = false;
2668 
2669 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2670 	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2671 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2672 
2673 	return ret;
2674 }
2675 EXPORT_SYMBOL(transport_wait_for_tasks);
2676 
transport_get_sense_codes(struct se_cmd * cmd,u8 * asc,u8 * ascq)2677 static int transport_get_sense_codes(
2678 	struct se_cmd *cmd,
2679 	u8 *asc,
2680 	u8 *ascq)
2681 {
2682 	*asc = cmd->scsi_asc;
2683 	*ascq = cmd->scsi_ascq;
2684 
2685 	return 0;
2686 }
2687 
2688 static
transport_err_sector_info(unsigned char * buffer,sector_t bad_sector)2689 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector)
2690 {
2691 	/* Place failed LBA in sense data information descriptor 0. */
2692 	buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc;
2693 	buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */
2694 	buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa;
2695 	buffer[SPC_VALIDITY_OFFSET] = 0x80;
2696 
2697 	/* Descriptor Information: failing sector */
2698 	put_unaligned_be64(bad_sector, &buffer[12]);
2699 }
2700 
2701 int
transport_send_check_condition_and_sense(struct se_cmd * cmd,sense_reason_t reason,int from_transport)2702 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2703 		sense_reason_t reason, int from_transport)
2704 {
2705 	unsigned char *buffer = cmd->sense_buffer;
2706 	unsigned long flags;
2707 	u8 asc = 0, ascq = 0;
2708 
2709 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2710 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2711 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2712 		return 0;
2713 	}
2714 	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2715 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2716 
2717 	if (!reason && from_transport)
2718 		goto after_reason;
2719 
2720 	if (!from_transport)
2721 		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2722 
2723 	/*
2724 	 * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
2725 	 * SENSE KEY values from include/scsi/scsi.h
2726 	 */
2727 	switch (reason) {
2728 	case TCM_NO_SENSE:
2729 		/* CURRENT ERROR */
2730 		buffer[0] = 0x70;
2731 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2732 		/* Not Ready */
2733 		buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2734 		/* NO ADDITIONAL SENSE INFORMATION */
2735 		buffer[SPC_ASC_KEY_OFFSET] = 0;
2736 		buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2737 		break;
2738 	case TCM_NON_EXISTENT_LUN:
2739 		/* CURRENT ERROR */
2740 		buffer[0] = 0x70;
2741 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2742 		/* ILLEGAL REQUEST */
2743 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2744 		/* LOGICAL UNIT NOT SUPPORTED */
2745 		buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2746 		break;
2747 	case TCM_UNSUPPORTED_SCSI_OPCODE:
2748 	case TCM_SECTOR_COUNT_TOO_MANY:
2749 		/* CURRENT ERROR */
2750 		buffer[0] = 0x70;
2751 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2752 		/* ILLEGAL REQUEST */
2753 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2754 		/* INVALID COMMAND OPERATION CODE */
2755 		buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2756 		break;
2757 	case TCM_UNKNOWN_MODE_PAGE:
2758 		/* CURRENT ERROR */
2759 		buffer[0] = 0x70;
2760 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2761 		/* ILLEGAL REQUEST */
2762 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2763 		/* INVALID FIELD IN CDB */
2764 		buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2765 		break;
2766 	case TCM_CHECK_CONDITION_ABORT_CMD:
2767 		/* CURRENT ERROR */
2768 		buffer[0] = 0x70;
2769 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2770 		/* ABORTED COMMAND */
2771 		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2772 		/* BUS DEVICE RESET FUNCTION OCCURRED */
2773 		buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2774 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2775 		break;
2776 	case TCM_INCORRECT_AMOUNT_OF_DATA:
2777 		/* CURRENT ERROR */
2778 		buffer[0] = 0x70;
2779 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2780 		/* ABORTED COMMAND */
2781 		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2782 		/* WRITE ERROR */
2783 		buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2784 		/* NOT ENOUGH UNSOLICITED DATA */
2785 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2786 		break;
2787 	case TCM_INVALID_CDB_FIELD:
2788 		/* CURRENT ERROR */
2789 		buffer[0] = 0x70;
2790 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2791 		/* ILLEGAL REQUEST */
2792 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2793 		/* INVALID FIELD IN CDB */
2794 		buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2795 		break;
2796 	case TCM_INVALID_PARAMETER_LIST:
2797 		/* CURRENT ERROR */
2798 		buffer[0] = 0x70;
2799 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2800 		/* ILLEGAL REQUEST */
2801 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2802 		/* INVALID FIELD IN PARAMETER LIST */
2803 		buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2804 		break;
2805 	case TCM_PARAMETER_LIST_LENGTH_ERROR:
2806 		/* CURRENT ERROR */
2807 		buffer[0] = 0x70;
2808 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2809 		/* ILLEGAL REQUEST */
2810 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2811 		/* PARAMETER LIST LENGTH ERROR */
2812 		buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2813 		break;
2814 	case TCM_UNEXPECTED_UNSOLICITED_DATA:
2815 		/* CURRENT ERROR */
2816 		buffer[0] = 0x70;
2817 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2818 		/* ABORTED COMMAND */
2819 		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2820 		/* WRITE ERROR */
2821 		buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2822 		/* UNEXPECTED_UNSOLICITED_DATA */
2823 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2824 		break;
2825 	case TCM_SERVICE_CRC_ERROR:
2826 		/* CURRENT ERROR */
2827 		buffer[0] = 0x70;
2828 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2829 		/* ABORTED COMMAND */
2830 		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2831 		/* PROTOCOL SERVICE CRC ERROR */
2832 		buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2833 		/* N/A */
2834 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2835 		break;
2836 	case TCM_SNACK_REJECTED:
2837 		/* CURRENT ERROR */
2838 		buffer[0] = 0x70;
2839 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2840 		/* ABORTED COMMAND */
2841 		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2842 		/* READ ERROR */
2843 		buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2844 		/* FAILED RETRANSMISSION REQUEST */
2845 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2846 		break;
2847 	case TCM_WRITE_PROTECTED:
2848 		/* CURRENT ERROR */
2849 		buffer[0] = 0x70;
2850 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2851 		/* DATA PROTECT */
2852 		buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2853 		/* WRITE PROTECTED */
2854 		buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2855 		break;
2856 	case TCM_ADDRESS_OUT_OF_RANGE:
2857 		/* CURRENT ERROR */
2858 		buffer[0] = 0x70;
2859 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2860 		/* ILLEGAL REQUEST */
2861 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2862 		/* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2863 		buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2864 		break;
2865 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2866 		/* CURRENT ERROR */
2867 		buffer[0] = 0x70;
2868 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2869 		/* UNIT ATTENTION */
2870 		buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2871 		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2872 		buffer[SPC_ASC_KEY_OFFSET] = asc;
2873 		buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2874 		break;
2875 	case TCM_CHECK_CONDITION_NOT_READY:
2876 		/* CURRENT ERROR */
2877 		buffer[0] = 0x70;
2878 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2879 		/* Not Ready */
2880 		buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2881 		transport_get_sense_codes(cmd, &asc, &ascq);
2882 		buffer[SPC_ASC_KEY_OFFSET] = asc;
2883 		buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2884 		break;
2885 	case TCM_MISCOMPARE_VERIFY:
2886 		/* CURRENT ERROR */
2887 		buffer[0] = 0x70;
2888 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2889 		buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2890 		/* MISCOMPARE DURING VERIFY OPERATION */
2891 		buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2892 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2893 		break;
2894 	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2895 		/* CURRENT ERROR */
2896 		buffer[0] = 0x70;
2897 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2898 		/* ILLEGAL REQUEST */
2899 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2900 		/* LOGICAL BLOCK GUARD CHECK FAILED */
2901 		buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2902 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x01;
2903 		transport_err_sector_info(buffer, cmd->bad_sector);
2904 		break;
2905 	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2906 		/* CURRENT ERROR */
2907 		buffer[0] = 0x70;
2908 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2909 		/* ILLEGAL REQUEST */
2910 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2911 		/* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2912 		buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2913 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x02;
2914 		transport_err_sector_info(buffer, cmd->bad_sector);
2915 		break;
2916 	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2917 		/* CURRENT ERROR */
2918 		buffer[0] = 0x70;
2919 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2920 		/* ILLEGAL REQUEST */
2921 		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2922 		/* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2923 		buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2924 		buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2925 		transport_err_sector_info(buffer, cmd->bad_sector);
2926 		break;
2927 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2928 	default:
2929 		/* CURRENT ERROR */
2930 		buffer[0] = 0x70;
2931 		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2932 		/*
2933 		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2934 		 * Solaris initiators.  Returning NOT READY instead means the
2935 		 * operations will be retried a finite number of times and we
2936 		 * can survive intermittent errors.
2937 		 */
2938 		buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2939 		/* LOGICAL UNIT COMMUNICATION FAILURE */
2940 		buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2941 		break;
2942 	}
2943 	/*
2944 	 * This code uses linux/include/scsi/scsi.h SAM status codes!
2945 	 */
2946 	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2947 	/*
2948 	 * Automatically padded, this value is encoded in the fabric's
2949 	 * data_length response PDU containing the SCSI defined sense data.
2950 	 */
2951 	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
2952 
2953 after_reason:
2954 	trace_target_cmd_complete(cmd);
2955 	return cmd->se_tfo->queue_status(cmd);
2956 }
2957 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2958 
__transport_check_aborted_status(struct se_cmd * cmd,int send_status)2959 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2960 	__releases(&cmd->t_state_lock)
2961 	__acquires(&cmd->t_state_lock)
2962 {
2963 	assert_spin_locked(&cmd->t_state_lock);
2964 	WARN_ON_ONCE(!irqs_disabled());
2965 
2966 	if (!(cmd->transport_state & CMD_T_ABORTED))
2967 		return 0;
2968 
2969 	/*
2970 	 * If cmd has been aborted but either no status is to be sent or it has
2971 	 * already been sent, just return
2972 	 */
2973 	if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
2974 		if (send_status)
2975 			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2976 		return 1;
2977 	}
2978 
2979 	pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
2980 		" 0x%02x ITT: 0x%08x\n", cmd->t_task_cdb[0],
2981 		cmd->se_tfo->get_task_tag(cmd));
2982 
2983 	cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2984 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2985 	trace_target_cmd_complete(cmd);
2986 
2987 	spin_unlock_irq(&cmd->t_state_lock);
2988 	cmd->se_tfo->queue_status(cmd);
2989 	spin_lock_irq(&cmd->t_state_lock);
2990 
2991 	return 1;
2992 }
2993 
transport_check_aborted_status(struct se_cmd * cmd,int send_status)2994 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2995 {
2996 	int ret;
2997 
2998 	spin_lock_irq(&cmd->t_state_lock);
2999 	ret = __transport_check_aborted_status(cmd, send_status);
3000 	spin_unlock_irq(&cmd->t_state_lock);
3001 
3002 	return ret;
3003 }
3004 EXPORT_SYMBOL(transport_check_aborted_status);
3005 
transport_send_task_abort(struct se_cmd * cmd)3006 void transport_send_task_abort(struct se_cmd *cmd)
3007 {
3008 	unsigned long flags;
3009 
3010 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3011 	if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3012 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3013 		return;
3014 	}
3015 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3016 
3017 	/*
3018 	 * If there are still expected incoming fabric WRITEs, we wait
3019 	 * until until they have completed before sending a TASK_ABORTED
3020 	 * response.  This response with TASK_ABORTED status will be
3021 	 * queued back to fabric module by transport_check_aborted_status().
3022 	 */
3023 	if (cmd->data_direction == DMA_TO_DEVICE) {
3024 		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3025 			spin_lock_irqsave(&cmd->t_state_lock, flags);
3026 			if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3027 				spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3028 				goto send_abort;
3029 			}
3030 			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3031 			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3032 			return;
3033 		}
3034 	}
3035 send_abort:
3036 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3037 
3038 	transport_lun_remove_cmd(cmd);
3039 
3040 	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
3041 		" ITT: 0x%08x\n", cmd->t_task_cdb[0],
3042 		cmd->se_tfo->get_task_tag(cmd));
3043 
3044 	trace_target_cmd_complete(cmd);
3045 	cmd->se_tfo->queue_status(cmd);
3046 }
3047 
target_tmr_work(struct work_struct * work)3048 static void target_tmr_work(struct work_struct *work)
3049 {
3050 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3051 	struct se_device *dev = cmd->se_dev;
3052 	struct se_tmr_req *tmr = cmd->se_tmr_req;
3053 	unsigned long flags;
3054 	int ret;
3055 
3056 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3057 	if (cmd->transport_state & CMD_T_ABORTED) {
3058 		tmr->response = TMR_FUNCTION_REJECTED;
3059 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3060 		goto check_stop;
3061 	}
3062 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3063 
3064 	switch (tmr->function) {
3065 	case TMR_ABORT_TASK:
3066 		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3067 		break;
3068 	case TMR_ABORT_TASK_SET:
3069 	case TMR_CLEAR_ACA:
3070 	case TMR_CLEAR_TASK_SET:
3071 		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3072 		break;
3073 	case TMR_LUN_RESET:
3074 		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3075 		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3076 					 TMR_FUNCTION_REJECTED;
3077 		break;
3078 	case TMR_TARGET_WARM_RESET:
3079 		tmr->response = TMR_FUNCTION_REJECTED;
3080 		break;
3081 	case TMR_TARGET_COLD_RESET:
3082 		tmr->response = TMR_FUNCTION_REJECTED;
3083 		break;
3084 	default:
3085 		pr_err("Uknown TMR function: 0x%02x.\n",
3086 				tmr->function);
3087 		tmr->response = TMR_FUNCTION_REJECTED;
3088 		break;
3089 	}
3090 
3091 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3092 	if (cmd->transport_state & CMD_T_ABORTED) {
3093 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3094 		goto check_stop;
3095 	}
3096 	cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3097 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3098 
3099 	cmd->se_tfo->queue_tm_rsp(cmd);
3100 
3101 check_stop:
3102 	transport_cmd_check_stop_to_fabric(cmd);
3103 }
3104 
transport_generic_handle_tmr(struct se_cmd * cmd)3105 int transport_generic_handle_tmr(
3106 	struct se_cmd *cmd)
3107 {
3108 	unsigned long flags;
3109 
3110 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3111 	cmd->transport_state |= CMD_T_ACTIVE;
3112 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3113 
3114 	INIT_WORK(&cmd->work, target_tmr_work);
3115 	queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3116 	return 0;
3117 }
3118 EXPORT_SYMBOL(transport_generic_handle_tmr);
3119