1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
98
99 #include <linux/uaccess.h>
100
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
104
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
107
108 #undef TTY_DEBUG_HANGUP
109
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
112
113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
122 };
123
124 EXPORT_SYMBOL(tty_std_termios);
125
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
129
130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
136
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
139
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159 /**
160 * free_tty_struct - free a disused tty
161 * @tty: tty struct to free
162 *
163 * Free the write buffers, tty queue and tty memory itself.
164 *
165 * Locking: none. Must be called after tty is definitely unused
166 */
167
free_tty_struct(struct tty_struct * tty)168 void free_tty_struct(struct tty_struct *tty)
169 {
170 if (!tty)
171 return;
172 if (tty->dev)
173 put_device(tty->dev);
174 kfree(tty->write_buf);
175 tty->magic = 0xDEADDEAD;
176 kfree(tty);
177 }
178
file_tty(struct file * file)179 static inline struct tty_struct *file_tty(struct file *file)
180 {
181 return ((struct tty_file_private *)file->private_data)->tty;
182 }
183
tty_alloc_file(struct file * file)184 int tty_alloc_file(struct file *file)
185 {
186 struct tty_file_private *priv;
187
188 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
189 if (!priv)
190 return -ENOMEM;
191
192 file->private_data = priv;
193
194 return 0;
195 }
196
197 /* Associate a new file with the tty structure */
tty_add_file(struct tty_struct * tty,struct file * file)198 void tty_add_file(struct tty_struct *tty, struct file *file)
199 {
200 struct tty_file_private *priv = file->private_data;
201
202 priv->tty = tty;
203 priv->file = file;
204
205 spin_lock(&tty_files_lock);
206 list_add(&priv->list, &tty->tty_files);
207 spin_unlock(&tty_files_lock);
208 }
209
210 /**
211 * tty_free_file - free file->private_data
212 *
213 * This shall be used only for fail path handling when tty_add_file was not
214 * called yet.
215 */
tty_free_file(struct file * file)216 void tty_free_file(struct file *file)
217 {
218 struct tty_file_private *priv = file->private_data;
219
220 file->private_data = NULL;
221 kfree(priv);
222 }
223
224 /* Delete file from its tty */
tty_del_file(struct file * file)225 static void tty_del_file(struct file *file)
226 {
227 struct tty_file_private *priv = file->private_data;
228
229 spin_lock(&tty_files_lock);
230 list_del(&priv->list);
231 spin_unlock(&tty_files_lock);
232 tty_free_file(file);
233 }
234
235
236 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
237
238 /**
239 * tty_name - return tty naming
240 * @tty: tty structure
241 * @buf: buffer for output
242 *
243 * Convert a tty structure into a name. The name reflects the kernel
244 * naming policy and if udev is in use may not reflect user space
245 *
246 * Locking: none
247 */
248
tty_name(struct tty_struct * tty,char * buf)249 char *tty_name(struct tty_struct *tty, char *buf)
250 {
251 if (!tty) /* Hmm. NULL pointer. That's fun. */
252 strcpy(buf, "NULL tty");
253 else
254 strcpy(buf, tty->name);
255 return buf;
256 }
257
258 EXPORT_SYMBOL(tty_name);
259
tty_paranoia_check(struct tty_struct * tty,struct inode * inode,const char * routine)260 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
261 const char *routine)
262 {
263 #ifdef TTY_PARANOIA_CHECK
264 if (!tty) {
265 printk(KERN_WARNING
266 "null TTY for (%d:%d) in %s\n",
267 imajor(inode), iminor(inode), routine);
268 return 1;
269 }
270 if (tty->magic != TTY_MAGIC) {
271 printk(KERN_WARNING
272 "bad magic number for tty struct (%d:%d) in %s\n",
273 imajor(inode), iminor(inode), routine);
274 return 1;
275 }
276 #endif
277 return 0;
278 }
279
check_tty_count(struct tty_struct * tty,const char * routine)280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283 struct list_head *p;
284 int count = 0;
285
286 spin_lock(&tty_files_lock);
287 list_for_each(p, &tty->tty_files) {
288 count++;
289 }
290 spin_unlock(&tty_files_lock);
291 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 tty->driver->subtype == PTY_TYPE_SLAVE &&
293 tty->link && tty->link->count)
294 count++;
295 if (tty->count != count) {
296 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
297 "!= #fd's(%d) in %s\n",
298 tty->name, tty->count, count, routine);
299 return count;
300 }
301 #endif
302 return 0;
303 }
304
305 /**
306 * get_tty_driver - find device of a tty
307 * @dev_t: device identifier
308 * @index: returns the index of the tty
309 *
310 * This routine returns a tty driver structure, given a device number
311 * and also passes back the index number.
312 *
313 * Locking: caller must hold tty_mutex
314 */
315
get_tty_driver(dev_t device,int * index)316 static struct tty_driver *get_tty_driver(dev_t device, int *index)
317 {
318 struct tty_driver *p;
319
320 list_for_each_entry(p, &tty_drivers, tty_drivers) {
321 dev_t base = MKDEV(p->major, p->minor_start);
322 if (device < base || device >= base + p->num)
323 continue;
324 *index = device - base;
325 return tty_driver_kref_get(p);
326 }
327 return NULL;
328 }
329
330 #ifdef CONFIG_CONSOLE_POLL
331
332 /**
333 * tty_find_polling_driver - find device of a polled tty
334 * @name: name string to match
335 * @line: pointer to resulting tty line nr
336 *
337 * This routine returns a tty driver structure, given a name
338 * and the condition that the tty driver is capable of polled
339 * operation.
340 */
tty_find_polling_driver(char * name,int * line)341 struct tty_driver *tty_find_polling_driver(char *name, int *line)
342 {
343 struct tty_driver *p, *res = NULL;
344 int tty_line = 0;
345 int len;
346 char *str, *stp;
347
348 for (str = name; *str; str++)
349 if ((*str >= '0' && *str <= '9') || *str == ',')
350 break;
351 if (!*str)
352 return NULL;
353
354 len = str - name;
355 tty_line = simple_strtoul(str, &str, 10);
356
357 mutex_lock(&tty_mutex);
358 /* Search through the tty devices to look for a match */
359 list_for_each_entry(p, &tty_drivers, tty_drivers) {
360 if (strncmp(name, p->name, len) != 0)
361 continue;
362 stp = str;
363 if (*stp == ',')
364 stp++;
365 if (*stp == '\0')
366 stp = NULL;
367
368 if (tty_line >= 0 && tty_line < p->num && p->ops &&
369 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
370 res = tty_driver_kref_get(p);
371 *line = tty_line;
372 break;
373 }
374 }
375 mutex_unlock(&tty_mutex);
376
377 return res;
378 }
379 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
380 #endif
381
382 /**
383 * tty_check_change - check for POSIX terminal changes
384 * @tty: tty to check
385 *
386 * If we try to write to, or set the state of, a terminal and we're
387 * not in the foreground, send a SIGTTOU. If the signal is blocked or
388 * ignored, go ahead and perform the operation. (POSIX 7.2)
389 *
390 * Locking: ctrl_lock
391 */
392
tty_check_change(struct tty_struct * tty)393 int tty_check_change(struct tty_struct *tty)
394 {
395 unsigned long flags;
396 int ret = 0;
397
398 if (current->signal->tty != tty)
399 return 0;
400
401 spin_lock_irqsave(&tty->ctrl_lock, flags);
402
403 if (!tty->pgrp) {
404 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
405 goto out_unlock;
406 }
407 if (task_pgrp(current) == tty->pgrp)
408 goto out_unlock;
409 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
410 if (is_ignored(SIGTTOU))
411 goto out;
412 if (is_current_pgrp_orphaned()) {
413 ret = -EIO;
414 goto out;
415 }
416 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
417 set_thread_flag(TIF_SIGPENDING);
418 ret = -ERESTARTSYS;
419 out:
420 return ret;
421 out_unlock:
422 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
423 return ret;
424 }
425
426 EXPORT_SYMBOL(tty_check_change);
427
hung_up_tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)428 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
429 size_t count, loff_t *ppos)
430 {
431 return 0;
432 }
433
hung_up_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)434 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
435 size_t count, loff_t *ppos)
436 {
437 return -EIO;
438 }
439
440 /* No kernel lock held - none needed ;) */
hung_up_tty_poll(struct file * filp,poll_table * wait)441 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
442 {
443 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
444 }
445
hung_up_tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)446 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
447 unsigned long arg)
448 {
449 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
450 }
451
hung_up_tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)452 static long hung_up_tty_compat_ioctl(struct file *file,
453 unsigned int cmd, unsigned long arg)
454 {
455 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
456 }
457
458 static const struct file_operations tty_fops = {
459 .llseek = no_llseek,
460 .read = tty_read,
461 .write = tty_write,
462 .poll = tty_poll,
463 .unlocked_ioctl = tty_ioctl,
464 .compat_ioctl = tty_compat_ioctl,
465 .open = tty_open,
466 .release = tty_release,
467 .fasync = tty_fasync,
468 };
469
470 static const struct file_operations console_fops = {
471 .llseek = no_llseek,
472 .read = tty_read,
473 .write = redirected_tty_write,
474 .poll = tty_poll,
475 .unlocked_ioctl = tty_ioctl,
476 .compat_ioctl = tty_compat_ioctl,
477 .open = tty_open,
478 .release = tty_release,
479 .fasync = tty_fasync,
480 };
481
482 static const struct file_operations hung_up_tty_fops = {
483 .llseek = no_llseek,
484 .read = hung_up_tty_read,
485 .write = hung_up_tty_write,
486 .poll = hung_up_tty_poll,
487 .unlocked_ioctl = hung_up_tty_ioctl,
488 .compat_ioctl = hung_up_tty_compat_ioctl,
489 .release = tty_release,
490 };
491
492 static DEFINE_SPINLOCK(redirect_lock);
493 static struct file *redirect;
494
495 /**
496 * tty_wakeup - request more data
497 * @tty: terminal
498 *
499 * Internal and external helper for wakeups of tty. This function
500 * informs the line discipline if present that the driver is ready
501 * to receive more output data.
502 */
503
tty_wakeup(struct tty_struct * tty)504 void tty_wakeup(struct tty_struct *tty)
505 {
506 struct tty_ldisc *ld;
507
508 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
509 ld = tty_ldisc_ref(tty);
510 if (ld) {
511 if (ld->ops->write_wakeup)
512 ld->ops->write_wakeup(tty);
513 tty_ldisc_deref(ld);
514 }
515 }
516 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
517 }
518
519 EXPORT_SYMBOL_GPL(tty_wakeup);
520
521 /**
522 * tty_signal_session_leader - sends SIGHUP to session leader
523 * @tty controlling tty
524 * @exit_session if non-zero, signal all foreground group processes
525 *
526 * Send SIGHUP and SIGCONT to the session leader and its process group.
527 * Optionally, signal all processes in the foreground process group.
528 *
529 * Returns the number of processes in the session with this tty
530 * as their controlling terminal. This value is used to drop
531 * tty references for those processes.
532 */
tty_signal_session_leader(struct tty_struct * tty,int exit_session)533 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
534 {
535 struct task_struct *p;
536 int refs = 0;
537 struct pid *tty_pgrp = NULL;
538
539 read_lock(&tasklist_lock);
540 if (tty->session) {
541 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
542 spin_lock_irq(&p->sighand->siglock);
543 if (p->signal->tty == tty) {
544 p->signal->tty = NULL;
545 /* We defer the dereferences outside fo
546 the tasklist lock */
547 refs++;
548 }
549 if (!p->signal->leader) {
550 spin_unlock_irq(&p->sighand->siglock);
551 continue;
552 }
553 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
554 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
555 put_pid(p->signal->tty_old_pgrp); /* A noop */
556 spin_lock(&tty->ctrl_lock);
557 tty_pgrp = get_pid(tty->pgrp);
558 if (tty->pgrp)
559 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
560 spin_unlock(&tty->ctrl_lock);
561 spin_unlock_irq(&p->sighand->siglock);
562 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
563 }
564 read_unlock(&tasklist_lock);
565
566 if (tty_pgrp) {
567 if (exit_session)
568 kill_pgrp(tty_pgrp, SIGHUP, exit_session);
569 put_pid(tty_pgrp);
570 }
571
572 return refs;
573 }
574
575 /**
576 * __tty_hangup - actual handler for hangup events
577 * @work: tty device
578 *
579 * This can be called by a "kworker" kernel thread. That is process
580 * synchronous but doesn't hold any locks, so we need to make sure we
581 * have the appropriate locks for what we're doing.
582 *
583 * The hangup event clears any pending redirections onto the hung up
584 * device. It ensures future writes will error and it does the needed
585 * line discipline hangup and signal delivery. The tty object itself
586 * remains intact.
587 *
588 * Locking:
589 * BTM
590 * redirect lock for undoing redirection
591 * file list lock for manipulating list of ttys
592 * tty_ldiscs_lock from called functions
593 * termios_rwsem resetting termios data
594 * tasklist_lock to walk task list for hangup event
595 * ->siglock to protect ->signal/->sighand
596 */
__tty_hangup(struct tty_struct * tty,int exit_session)597 static void __tty_hangup(struct tty_struct *tty, int exit_session)
598 {
599 struct file *cons_filp = NULL;
600 struct file *filp, *f = NULL;
601 struct tty_file_private *priv;
602 int closecount = 0, n;
603 int refs;
604
605 if (!tty)
606 return;
607
608
609 spin_lock(&redirect_lock);
610 if (redirect && file_tty(redirect) == tty) {
611 f = redirect;
612 redirect = NULL;
613 }
614 spin_unlock(&redirect_lock);
615
616 tty_lock(tty);
617
618 if (test_bit(TTY_HUPPED, &tty->flags)) {
619 tty_unlock(tty);
620 return;
621 }
622
623 /* some functions below drop BTM, so we need this bit */
624 set_bit(TTY_HUPPING, &tty->flags);
625
626 /* inuse_filps is protected by the single tty lock,
627 this really needs to change if we want to flush the
628 workqueue with the lock held */
629 check_tty_count(tty, "tty_hangup");
630
631 spin_lock(&tty_files_lock);
632 /* This breaks for file handles being sent over AF_UNIX sockets ? */
633 list_for_each_entry(priv, &tty->tty_files, list) {
634 filp = priv->file;
635 if (filp->f_op->write == redirected_tty_write)
636 cons_filp = filp;
637 if (filp->f_op->write != tty_write)
638 continue;
639 closecount++;
640 __tty_fasync(-1, filp, 0); /* can't block */
641 filp->f_op = &hung_up_tty_fops;
642 }
643 spin_unlock(&tty_files_lock);
644
645 refs = tty_signal_session_leader(tty, exit_session);
646 /* Account for the p->signal references we killed */
647 while (refs--)
648 tty_kref_put(tty);
649
650 /*
651 * it drops BTM and thus races with reopen
652 * we protect the race by TTY_HUPPING
653 */
654 tty_ldisc_hangup(tty);
655
656 spin_lock_irq(&tty->ctrl_lock);
657 clear_bit(TTY_THROTTLED, &tty->flags);
658 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
659 put_pid(tty->session);
660 put_pid(tty->pgrp);
661 tty->session = NULL;
662 tty->pgrp = NULL;
663 tty->ctrl_status = 0;
664 spin_unlock_irq(&tty->ctrl_lock);
665
666 /*
667 * If one of the devices matches a console pointer, we
668 * cannot just call hangup() because that will cause
669 * tty->count and state->count to go out of sync.
670 * So we just call close() the right number of times.
671 */
672 if (cons_filp) {
673 if (tty->ops->close)
674 for (n = 0; n < closecount; n++)
675 tty->ops->close(tty, cons_filp);
676 } else if (tty->ops->hangup)
677 tty->ops->hangup(tty);
678 /*
679 * We don't want to have driver/ldisc interactions beyond
680 * the ones we did here. The driver layer expects no
681 * calls after ->hangup() from the ldisc side. However we
682 * can't yet guarantee all that.
683 */
684 set_bit(TTY_HUPPED, &tty->flags);
685 clear_bit(TTY_HUPPING, &tty->flags);
686
687 tty_unlock(tty);
688
689 if (f)
690 fput(f);
691 }
692
do_tty_hangup(struct work_struct * work)693 static void do_tty_hangup(struct work_struct *work)
694 {
695 struct tty_struct *tty =
696 container_of(work, struct tty_struct, hangup_work);
697
698 __tty_hangup(tty, 0);
699 }
700
701 /**
702 * tty_hangup - trigger a hangup event
703 * @tty: tty to hangup
704 *
705 * A carrier loss (virtual or otherwise) has occurred on this like
706 * schedule a hangup sequence to run after this event.
707 */
708
tty_hangup(struct tty_struct * tty)709 void tty_hangup(struct tty_struct *tty)
710 {
711 #ifdef TTY_DEBUG_HANGUP
712 char buf[64];
713 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
714 #endif
715 schedule_work(&tty->hangup_work);
716 }
717
718 EXPORT_SYMBOL(tty_hangup);
719
720 /**
721 * tty_vhangup - process vhangup
722 * @tty: tty to hangup
723 *
724 * The user has asked via system call for the terminal to be hung up.
725 * We do this synchronously so that when the syscall returns the process
726 * is complete. That guarantee is necessary for security reasons.
727 */
728
tty_vhangup(struct tty_struct * tty)729 void tty_vhangup(struct tty_struct *tty)
730 {
731 #ifdef TTY_DEBUG_HANGUP
732 char buf[64];
733
734 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
735 #endif
736 __tty_hangup(tty, 0);
737 }
738
739 EXPORT_SYMBOL(tty_vhangup);
740
741
742 /**
743 * tty_vhangup_self - process vhangup for own ctty
744 *
745 * Perform a vhangup on the current controlling tty
746 */
747
tty_vhangup_self(void)748 void tty_vhangup_self(void)
749 {
750 struct tty_struct *tty;
751
752 tty = get_current_tty();
753 if (tty) {
754 tty_vhangup(tty);
755 tty_kref_put(tty);
756 }
757 }
758
759 /**
760 * tty_vhangup_session - hangup session leader exit
761 * @tty: tty to hangup
762 *
763 * The session leader is exiting and hanging up its controlling terminal.
764 * Every process in the foreground process group is signalled SIGHUP.
765 *
766 * We do this synchronously so that when the syscall returns the process
767 * is complete. That guarantee is necessary for security reasons.
768 */
769
tty_vhangup_session(struct tty_struct * tty)770 static void tty_vhangup_session(struct tty_struct *tty)
771 {
772 #ifdef TTY_DEBUG_HANGUP
773 char buf[64];
774
775 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
776 #endif
777 __tty_hangup(tty, 1);
778 }
779
780 /**
781 * tty_hung_up_p - was tty hung up
782 * @filp: file pointer of tty
783 *
784 * Return true if the tty has been subject to a vhangup or a carrier
785 * loss
786 */
787
tty_hung_up_p(struct file * filp)788 int tty_hung_up_p(struct file *filp)
789 {
790 return (filp->f_op == &hung_up_tty_fops);
791 }
792
793 EXPORT_SYMBOL(tty_hung_up_p);
794
session_clear_tty(struct pid * session)795 static void session_clear_tty(struct pid *session)
796 {
797 struct task_struct *p;
798 do_each_pid_task(session, PIDTYPE_SID, p) {
799 proc_clear_tty(p);
800 } while_each_pid_task(session, PIDTYPE_SID, p);
801 }
802
803 /**
804 * disassociate_ctty - disconnect controlling tty
805 * @on_exit: true if exiting so need to "hang up" the session
806 *
807 * This function is typically called only by the session leader, when
808 * it wants to disassociate itself from its controlling tty.
809 *
810 * It performs the following functions:
811 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
812 * (2) Clears the tty from being controlling the session
813 * (3) Clears the controlling tty for all processes in the
814 * session group.
815 *
816 * The argument on_exit is set to 1 if called when a process is
817 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
818 *
819 * Locking:
820 * BTM is taken for hysterical raisins, and held when
821 * called from no_tty().
822 * tty_mutex is taken to protect tty
823 * ->siglock is taken to protect ->signal/->sighand
824 * tasklist_lock is taken to walk process list for sessions
825 * ->siglock is taken to protect ->signal/->sighand
826 */
827
disassociate_ctty(int on_exit)828 void disassociate_ctty(int on_exit)
829 {
830 struct tty_struct *tty;
831
832 if (!current->signal->leader)
833 return;
834
835 tty = get_current_tty();
836 if (tty) {
837 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
838 tty_vhangup_session(tty);
839 } else {
840 struct pid *tty_pgrp = tty_get_pgrp(tty);
841 if (tty_pgrp) {
842 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
843 if (!on_exit)
844 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
845 put_pid(tty_pgrp);
846 }
847 }
848 tty_kref_put(tty);
849
850 } else if (on_exit) {
851 struct pid *old_pgrp;
852 spin_lock_irq(¤t->sighand->siglock);
853 old_pgrp = current->signal->tty_old_pgrp;
854 current->signal->tty_old_pgrp = NULL;
855 spin_unlock_irq(¤t->sighand->siglock);
856 if (old_pgrp) {
857 kill_pgrp(old_pgrp, SIGHUP, on_exit);
858 kill_pgrp(old_pgrp, SIGCONT, on_exit);
859 put_pid(old_pgrp);
860 }
861 return;
862 }
863
864 spin_lock_irq(¤t->sighand->siglock);
865 put_pid(current->signal->tty_old_pgrp);
866 current->signal->tty_old_pgrp = NULL;
867
868 tty = tty_kref_get(current->signal->tty);
869 if (tty) {
870 unsigned long flags;
871 spin_lock_irqsave(&tty->ctrl_lock, flags);
872 put_pid(tty->session);
873 put_pid(tty->pgrp);
874 tty->session = NULL;
875 tty->pgrp = NULL;
876 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
877 tty_kref_put(tty);
878 } else {
879 #ifdef TTY_DEBUG_HANGUP
880 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
881 " = NULL", tty);
882 #endif
883 }
884
885 spin_unlock_irq(¤t->sighand->siglock);
886 /* Now clear signal->tty under the lock */
887 read_lock(&tasklist_lock);
888 session_clear_tty(task_session(current));
889 read_unlock(&tasklist_lock);
890 }
891
892 /**
893 *
894 * no_tty - Ensure the current process does not have a controlling tty
895 */
no_tty(void)896 void no_tty(void)
897 {
898 /* FIXME: Review locking here. The tty_lock never covered any race
899 between a new association and proc_clear_tty but possible we need
900 to protect against this anyway */
901 struct task_struct *tsk = current;
902 disassociate_ctty(0);
903 proc_clear_tty(tsk);
904 }
905
906
907 /**
908 * stop_tty - propagate flow control
909 * @tty: tty to stop
910 *
911 * Perform flow control to the driver. May be called
912 * on an already stopped device and will not re-call the driver
913 * method.
914 *
915 * This functionality is used by both the line disciplines for
916 * halting incoming flow and by the driver. It may therefore be
917 * called from any context, may be under the tty atomic_write_lock
918 * but not always.
919 *
920 * Locking:
921 * flow_lock
922 */
923
__stop_tty(struct tty_struct * tty)924 void __stop_tty(struct tty_struct *tty)
925 {
926 if (tty->stopped)
927 return;
928 tty->stopped = 1;
929 if (tty->ops->stop)
930 (tty->ops->stop)(tty);
931 }
932
stop_tty(struct tty_struct * tty)933 void stop_tty(struct tty_struct *tty)
934 {
935 unsigned long flags;
936
937 spin_lock_irqsave(&tty->flow_lock, flags);
938 __stop_tty(tty);
939 spin_unlock_irqrestore(&tty->flow_lock, flags);
940 }
941 EXPORT_SYMBOL(stop_tty);
942
943 /**
944 * start_tty - propagate flow control
945 * @tty: tty to start
946 *
947 * Start a tty that has been stopped if at all possible. If this
948 * tty was previous stopped and is now being started, the driver
949 * start method is invoked and the line discipline woken.
950 *
951 * Locking:
952 * flow_lock
953 */
954
__start_tty(struct tty_struct * tty)955 void __start_tty(struct tty_struct *tty)
956 {
957 if (!tty->stopped || tty->flow_stopped)
958 return;
959 tty->stopped = 0;
960 if (tty->ops->start)
961 (tty->ops->start)(tty);
962 tty_wakeup(tty);
963 }
964
start_tty(struct tty_struct * tty)965 void start_tty(struct tty_struct *tty)
966 {
967 unsigned long flags;
968
969 spin_lock_irqsave(&tty->flow_lock, flags);
970 __start_tty(tty);
971 spin_unlock_irqrestore(&tty->flow_lock, flags);
972 }
973 EXPORT_SYMBOL(start_tty);
974
975 /* We limit tty time update visibility to every 8 seconds or so. */
tty_update_time(struct timespec * time)976 static void tty_update_time(struct timespec *time)
977 {
978 unsigned long sec = get_seconds();
979 if (abs(sec - time->tv_sec) & ~7)
980 time->tv_sec = sec;
981 }
982
983 /**
984 * tty_read - read method for tty device files
985 * @file: pointer to tty file
986 * @buf: user buffer
987 * @count: size of user buffer
988 * @ppos: unused
989 *
990 * Perform the read system call function on this terminal device. Checks
991 * for hung up devices before calling the line discipline method.
992 *
993 * Locking:
994 * Locks the line discipline internally while needed. Multiple
995 * read calls may be outstanding in parallel.
996 */
997
tty_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)998 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
999 loff_t *ppos)
1000 {
1001 int i;
1002 struct inode *inode = file_inode(file);
1003 struct tty_struct *tty = file_tty(file);
1004 struct tty_ldisc *ld;
1005
1006 if (tty_paranoia_check(tty, inode, "tty_read"))
1007 return -EIO;
1008 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1009 return -EIO;
1010
1011 /* We want to wait for the line discipline to sort out in this
1012 situation */
1013 ld = tty_ldisc_ref_wait(tty);
1014 if (ld->ops->read)
1015 i = (ld->ops->read)(tty, file, buf, count);
1016 else
1017 i = -EIO;
1018 tty_ldisc_deref(ld);
1019
1020 if (i > 0)
1021 tty_update_time(&inode->i_atime);
1022
1023 return i;
1024 }
1025
tty_write_unlock(struct tty_struct * tty)1026 static void tty_write_unlock(struct tty_struct *tty)
1027 __releases(&tty->atomic_write_lock)
1028 {
1029 mutex_unlock(&tty->atomic_write_lock);
1030 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1031 }
1032
tty_write_lock(struct tty_struct * tty,int ndelay)1033 static int tty_write_lock(struct tty_struct *tty, int ndelay)
1034 __acquires(&tty->atomic_write_lock)
1035 {
1036 if (!mutex_trylock(&tty->atomic_write_lock)) {
1037 if (ndelay)
1038 return -EAGAIN;
1039 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1040 return -ERESTARTSYS;
1041 }
1042 return 0;
1043 }
1044
1045 /*
1046 * Split writes up in sane blocksizes to avoid
1047 * denial-of-service type attacks
1048 */
do_tty_write(ssize_t (* write)(struct tty_struct *,struct file *,const unsigned char *,size_t),struct tty_struct * tty,struct file * file,const char __user * buf,size_t count)1049 static inline ssize_t do_tty_write(
1050 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1051 struct tty_struct *tty,
1052 struct file *file,
1053 const char __user *buf,
1054 size_t count)
1055 {
1056 ssize_t ret, written = 0;
1057 unsigned int chunk;
1058
1059 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1060 if (ret < 0)
1061 return ret;
1062
1063 /*
1064 * We chunk up writes into a temporary buffer. This
1065 * simplifies low-level drivers immensely, since they
1066 * don't have locking issues and user mode accesses.
1067 *
1068 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1069 * big chunk-size..
1070 *
1071 * The default chunk-size is 2kB, because the NTTY
1072 * layer has problems with bigger chunks. It will
1073 * claim to be able to handle more characters than
1074 * it actually does.
1075 *
1076 * FIXME: This can probably go away now except that 64K chunks
1077 * are too likely to fail unless switched to vmalloc...
1078 */
1079 chunk = 2048;
1080 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1081 chunk = 65536;
1082 if (count < chunk)
1083 chunk = count;
1084
1085 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1086 if (tty->write_cnt < chunk) {
1087 unsigned char *buf_chunk;
1088
1089 if (chunk < 1024)
1090 chunk = 1024;
1091
1092 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1093 if (!buf_chunk) {
1094 ret = -ENOMEM;
1095 goto out;
1096 }
1097 kfree(tty->write_buf);
1098 tty->write_cnt = chunk;
1099 tty->write_buf = buf_chunk;
1100 }
1101
1102 /* Do the write .. */
1103 for (;;) {
1104 size_t size = count;
1105 if (size > chunk)
1106 size = chunk;
1107 ret = -EFAULT;
1108 if (copy_from_user(tty->write_buf, buf, size))
1109 break;
1110 ret = write(tty, file, tty->write_buf, size);
1111 if (ret <= 0)
1112 break;
1113 written += ret;
1114 buf += ret;
1115 count -= ret;
1116 if (!count)
1117 break;
1118 ret = -ERESTARTSYS;
1119 if (signal_pending(current))
1120 break;
1121 cond_resched();
1122 }
1123 if (written) {
1124 tty_update_time(&file_inode(file)->i_mtime);
1125 ret = written;
1126 }
1127 out:
1128 tty_write_unlock(tty);
1129 return ret;
1130 }
1131
1132 /**
1133 * tty_write_message - write a message to a certain tty, not just the console.
1134 * @tty: the destination tty_struct
1135 * @msg: the message to write
1136 *
1137 * This is used for messages that need to be redirected to a specific tty.
1138 * We don't put it into the syslog queue right now maybe in the future if
1139 * really needed.
1140 *
1141 * We must still hold the BTM and test the CLOSING flag for the moment.
1142 */
1143
tty_write_message(struct tty_struct * tty,char * msg)1144 void tty_write_message(struct tty_struct *tty, char *msg)
1145 {
1146 if (tty) {
1147 mutex_lock(&tty->atomic_write_lock);
1148 tty_lock(tty);
1149 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1150 tty_unlock(tty);
1151 tty->ops->write(tty, msg, strlen(msg));
1152 } else
1153 tty_unlock(tty);
1154 tty_write_unlock(tty);
1155 }
1156 return;
1157 }
1158
1159
1160 /**
1161 * tty_write - write method for tty device file
1162 * @file: tty file pointer
1163 * @buf: user data to write
1164 * @count: bytes to write
1165 * @ppos: unused
1166 *
1167 * Write data to a tty device via the line discipline.
1168 *
1169 * Locking:
1170 * Locks the line discipline as required
1171 * Writes to the tty driver are serialized by the atomic_write_lock
1172 * and are then processed in chunks to the device. The line discipline
1173 * write method will not be invoked in parallel for each device.
1174 */
1175
tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1176 static ssize_t tty_write(struct file *file, const char __user *buf,
1177 size_t count, loff_t *ppos)
1178 {
1179 struct tty_struct *tty = file_tty(file);
1180 struct tty_ldisc *ld;
1181 ssize_t ret;
1182
1183 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1184 return -EIO;
1185 if (!tty || !tty->ops->write ||
1186 (test_bit(TTY_IO_ERROR, &tty->flags)))
1187 return -EIO;
1188 /* Short term debug to catch buggy drivers */
1189 if (tty->ops->write_room == NULL)
1190 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1191 tty->driver->name);
1192 ld = tty_ldisc_ref_wait(tty);
1193 if (!ld->ops->write)
1194 ret = -EIO;
1195 else
1196 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1197 tty_ldisc_deref(ld);
1198 return ret;
1199 }
1200
redirected_tty_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1201 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1202 size_t count, loff_t *ppos)
1203 {
1204 struct file *p = NULL;
1205
1206 spin_lock(&redirect_lock);
1207 if (redirect)
1208 p = get_file(redirect);
1209 spin_unlock(&redirect_lock);
1210
1211 if (p) {
1212 ssize_t res;
1213 res = vfs_write(p, buf, count, &p->f_pos);
1214 fput(p);
1215 return res;
1216 }
1217 return tty_write(file, buf, count, ppos);
1218 }
1219
1220 /**
1221 * tty_send_xchar - send priority character
1222 *
1223 * Send a high priority character to the tty even if stopped
1224 *
1225 * Locking: none for xchar method, write ordering for write method.
1226 */
1227
tty_send_xchar(struct tty_struct * tty,char ch)1228 int tty_send_xchar(struct tty_struct *tty, char ch)
1229 {
1230 int was_stopped = tty->stopped;
1231
1232 if (tty->ops->send_xchar) {
1233 tty->ops->send_xchar(tty, ch);
1234 return 0;
1235 }
1236
1237 if (tty_write_lock(tty, 0) < 0)
1238 return -ERESTARTSYS;
1239
1240 if (was_stopped)
1241 start_tty(tty);
1242 tty->ops->write(tty, &ch, 1);
1243 if (was_stopped)
1244 stop_tty(tty);
1245 tty_write_unlock(tty);
1246 return 0;
1247 }
1248
1249 static char ptychar[] = "pqrstuvwxyzabcde";
1250
1251 /**
1252 * pty_line_name - generate name for a pty
1253 * @driver: the tty driver in use
1254 * @index: the minor number
1255 * @p: output buffer of at least 6 bytes
1256 *
1257 * Generate a name from a driver reference and write it to the output
1258 * buffer.
1259 *
1260 * Locking: None
1261 */
pty_line_name(struct tty_driver * driver,int index,char * p)1262 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1263 {
1264 int i = index + driver->name_base;
1265 /* ->name is initialized to "ttyp", but "tty" is expected */
1266 sprintf(p, "%s%c%x",
1267 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1268 ptychar[i >> 4 & 0xf], i & 0xf);
1269 }
1270
1271 /**
1272 * tty_line_name - generate name for a tty
1273 * @driver: the tty driver in use
1274 * @index: the minor number
1275 * @p: output buffer of at least 7 bytes
1276 *
1277 * Generate a name from a driver reference and write it to the output
1278 * buffer.
1279 *
1280 * Locking: None
1281 */
tty_line_name(struct tty_driver * driver,int index,char * p)1282 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1283 {
1284 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1285 return sprintf(p, "%s", driver->name);
1286 else
1287 return sprintf(p, "%s%d", driver->name,
1288 index + driver->name_base);
1289 }
1290
1291 /**
1292 * tty_driver_lookup_tty() - find an existing tty, if any
1293 * @driver: the driver for the tty
1294 * @idx: the minor number
1295 *
1296 * Return the tty, if found or ERR_PTR() otherwise.
1297 *
1298 * Locking: tty_mutex must be held. If tty is found, the mutex must
1299 * be held until the 'fast-open' is also done. Will change once we
1300 * have refcounting in the driver and per driver locking
1301 */
tty_driver_lookup_tty(struct tty_driver * driver,struct inode * inode,int idx)1302 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1303 struct inode *inode, int idx)
1304 {
1305 if (driver->ops->lookup)
1306 return driver->ops->lookup(driver, inode, idx);
1307
1308 return driver->ttys[idx];
1309 }
1310
1311 /**
1312 * tty_init_termios - helper for termios setup
1313 * @tty: the tty to set up
1314 *
1315 * Initialise the termios structures for this tty. Thus runs under
1316 * the tty_mutex currently so we can be relaxed about ordering.
1317 */
1318
tty_init_termios(struct tty_struct * tty)1319 int tty_init_termios(struct tty_struct *tty)
1320 {
1321 struct ktermios *tp;
1322 int idx = tty->index;
1323
1324 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1325 tty->termios = tty->driver->init_termios;
1326 else {
1327 /* Check for lazy saved data */
1328 tp = tty->driver->termios[idx];
1329 if (tp != NULL)
1330 tty->termios = *tp;
1331 else
1332 tty->termios = tty->driver->init_termios;
1333 }
1334 /* Compatibility until drivers always set this */
1335 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1336 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1337 return 0;
1338 }
1339 EXPORT_SYMBOL_GPL(tty_init_termios);
1340
tty_standard_install(struct tty_driver * driver,struct tty_struct * tty)1341 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1342 {
1343 int ret = tty_init_termios(tty);
1344 if (ret)
1345 return ret;
1346
1347 tty_driver_kref_get(driver);
1348 tty->count++;
1349 driver->ttys[tty->index] = tty;
1350 return 0;
1351 }
1352 EXPORT_SYMBOL_GPL(tty_standard_install);
1353
1354 /**
1355 * tty_driver_install_tty() - install a tty entry in the driver
1356 * @driver: the driver for the tty
1357 * @tty: the tty
1358 *
1359 * Install a tty object into the driver tables. The tty->index field
1360 * will be set by the time this is called. This method is responsible
1361 * for ensuring any need additional structures are allocated and
1362 * configured.
1363 *
1364 * Locking: tty_mutex for now
1365 */
tty_driver_install_tty(struct tty_driver * driver,struct tty_struct * tty)1366 static int tty_driver_install_tty(struct tty_driver *driver,
1367 struct tty_struct *tty)
1368 {
1369 return driver->ops->install ? driver->ops->install(driver, tty) :
1370 tty_standard_install(driver, tty);
1371 }
1372
1373 /**
1374 * tty_driver_remove_tty() - remove a tty from the driver tables
1375 * @driver: the driver for the tty
1376 * @idx: the minor number
1377 *
1378 * Remvoe a tty object from the driver tables. The tty->index field
1379 * will be set by the time this is called.
1380 *
1381 * Locking: tty_mutex for now
1382 */
tty_driver_remove_tty(struct tty_driver * driver,struct tty_struct * tty)1383 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1384 {
1385 if (driver->ops->remove)
1386 driver->ops->remove(driver, tty);
1387 else
1388 driver->ttys[tty->index] = NULL;
1389 }
1390
1391 /*
1392 * tty_reopen() - fast re-open of an open tty
1393 * @tty - the tty to open
1394 *
1395 * Return 0 on success, -errno on error.
1396 *
1397 * Locking: tty_mutex must be held from the time the tty was found
1398 * till this open completes.
1399 */
tty_reopen(struct tty_struct * tty)1400 static int tty_reopen(struct tty_struct *tty)
1401 {
1402 struct tty_driver *driver = tty->driver;
1403
1404 if (test_bit(TTY_CLOSING, &tty->flags) ||
1405 test_bit(TTY_HUPPING, &tty->flags))
1406 return -EIO;
1407
1408 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1409 driver->subtype == PTY_TYPE_MASTER) {
1410 /*
1411 * special case for PTY masters: only one open permitted,
1412 * and the slave side open count is incremented as well.
1413 */
1414 if (tty->count)
1415 return -EIO;
1416
1417 tty->link->count++;
1418 }
1419 tty->count++;
1420
1421 WARN_ON(!tty->ldisc);
1422
1423 return 0;
1424 }
1425
1426 /**
1427 * tty_init_dev - initialise a tty device
1428 * @driver: tty driver we are opening a device on
1429 * @idx: device index
1430 * @ret_tty: returned tty structure
1431 *
1432 * Prepare a tty device. This may not be a "new" clean device but
1433 * could also be an active device. The pty drivers require special
1434 * handling because of this.
1435 *
1436 * Locking:
1437 * The function is called under the tty_mutex, which
1438 * protects us from the tty struct or driver itself going away.
1439 *
1440 * On exit the tty device has the line discipline attached and
1441 * a reference count of 1. If a pair was created for pty/tty use
1442 * and the other was a pty master then it too has a reference count of 1.
1443 *
1444 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1445 * failed open. The new code protects the open with a mutex, so it's
1446 * really quite straightforward. The mutex locking can probably be
1447 * relaxed for the (most common) case of reopening a tty.
1448 */
1449
tty_init_dev(struct tty_driver * driver,int idx)1450 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1451 {
1452 struct tty_struct *tty;
1453 int retval;
1454
1455 /*
1456 * First time open is complex, especially for PTY devices.
1457 * This code guarantees that either everything succeeds and the
1458 * TTY is ready for operation, or else the table slots are vacated
1459 * and the allocated memory released. (Except that the termios
1460 * and locked termios may be retained.)
1461 */
1462
1463 if (!try_module_get(driver->owner))
1464 return ERR_PTR(-ENODEV);
1465
1466 tty = alloc_tty_struct(driver, idx);
1467 if (!tty) {
1468 retval = -ENOMEM;
1469 goto err_module_put;
1470 }
1471
1472 tty_lock(tty);
1473 retval = tty_driver_install_tty(driver, tty);
1474 if (retval < 0)
1475 goto err_deinit_tty;
1476
1477 if (!tty->port)
1478 tty->port = driver->ports[idx];
1479
1480 WARN_RATELIMIT(!tty->port,
1481 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1482 __func__, tty->driver->name);
1483
1484 tty->port->itty = tty;
1485
1486 /*
1487 * Structures all installed ... call the ldisc open routines.
1488 * If we fail here just call release_tty to clean up. No need
1489 * to decrement the use counts, as release_tty doesn't care.
1490 */
1491 retval = tty_ldisc_setup(tty, tty->link);
1492 if (retval)
1493 goto err_release_tty;
1494 /* Return the tty locked so that it cannot vanish under the caller */
1495 return tty;
1496
1497 err_deinit_tty:
1498 tty_unlock(tty);
1499 deinitialize_tty_struct(tty);
1500 free_tty_struct(tty);
1501 err_module_put:
1502 module_put(driver->owner);
1503 return ERR_PTR(retval);
1504
1505 /* call the tty release_tty routine to clean out this slot */
1506 err_release_tty:
1507 tty_unlock(tty);
1508 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1509 "clearing slot %d\n", idx);
1510 release_tty(tty, idx);
1511 return ERR_PTR(retval);
1512 }
1513
tty_free_termios(struct tty_struct * tty)1514 void tty_free_termios(struct tty_struct *tty)
1515 {
1516 struct ktermios *tp;
1517 int idx = tty->index;
1518
1519 /* If the port is going to reset then it has no termios to save */
1520 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1521 return;
1522
1523 /* Stash the termios data */
1524 tp = tty->driver->termios[idx];
1525 if (tp == NULL) {
1526 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1527 if (tp == NULL) {
1528 pr_warn("tty: no memory to save termios state.\n");
1529 return;
1530 }
1531 tty->driver->termios[idx] = tp;
1532 }
1533 *tp = tty->termios;
1534 }
1535 EXPORT_SYMBOL(tty_free_termios);
1536
1537 /**
1538 * tty_flush_works - flush all works of a tty
1539 * @tty: tty device to flush works for
1540 *
1541 * Sync flush all works belonging to @tty.
1542 */
tty_flush_works(struct tty_struct * tty)1543 static void tty_flush_works(struct tty_struct *tty)
1544 {
1545 flush_work(&tty->SAK_work);
1546 flush_work(&tty->hangup_work);
1547 }
1548
1549 /**
1550 * release_one_tty - release tty structure memory
1551 * @kref: kref of tty we are obliterating
1552 *
1553 * Releases memory associated with a tty structure, and clears out the
1554 * driver table slots. This function is called when a device is no longer
1555 * in use. It also gets called when setup of a device fails.
1556 *
1557 * Locking:
1558 * takes the file list lock internally when working on the list
1559 * of ttys that the driver keeps.
1560 *
1561 * This method gets called from a work queue so that the driver private
1562 * cleanup ops can sleep (needed for USB at least)
1563 */
release_one_tty(struct work_struct * work)1564 static void release_one_tty(struct work_struct *work)
1565 {
1566 struct tty_struct *tty =
1567 container_of(work, struct tty_struct, hangup_work);
1568 struct tty_driver *driver = tty->driver;
1569 struct module *owner = driver->owner;
1570
1571 if (tty->ops->cleanup)
1572 tty->ops->cleanup(tty);
1573
1574 tty->magic = 0;
1575 tty_driver_kref_put(driver);
1576 module_put(owner);
1577
1578 spin_lock(&tty_files_lock);
1579 list_del_init(&tty->tty_files);
1580 spin_unlock(&tty_files_lock);
1581
1582 put_pid(tty->pgrp);
1583 put_pid(tty->session);
1584 free_tty_struct(tty);
1585 }
1586
queue_release_one_tty(struct kref * kref)1587 static void queue_release_one_tty(struct kref *kref)
1588 {
1589 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1590
1591 /* The hangup queue is now free so we can reuse it rather than
1592 waste a chunk of memory for each port */
1593 INIT_WORK(&tty->hangup_work, release_one_tty);
1594 schedule_work(&tty->hangup_work);
1595 }
1596
1597 /**
1598 * tty_kref_put - release a tty kref
1599 * @tty: tty device
1600 *
1601 * Release a reference to a tty device and if need be let the kref
1602 * layer destruct the object for us
1603 */
1604
tty_kref_put(struct tty_struct * tty)1605 void tty_kref_put(struct tty_struct *tty)
1606 {
1607 if (tty)
1608 kref_put(&tty->kref, queue_release_one_tty);
1609 }
1610 EXPORT_SYMBOL(tty_kref_put);
1611
1612 /**
1613 * release_tty - release tty structure memory
1614 *
1615 * Release both @tty and a possible linked partner (think pty pair),
1616 * and decrement the refcount of the backing module.
1617 *
1618 * Locking:
1619 * tty_mutex
1620 * takes the file list lock internally when working on the list
1621 * of ttys that the driver keeps.
1622 *
1623 */
release_tty(struct tty_struct * tty,int idx)1624 static void release_tty(struct tty_struct *tty, int idx)
1625 {
1626 /* This should always be true but check for the moment */
1627 WARN_ON(tty->index != idx);
1628 WARN_ON(!mutex_is_locked(&tty_mutex));
1629 if (tty->ops->shutdown)
1630 tty->ops->shutdown(tty);
1631 tty_free_termios(tty);
1632 tty_driver_remove_tty(tty->driver, tty);
1633 tty->port->itty = NULL;
1634 if (tty->link)
1635 tty->link->port->itty = NULL;
1636 cancel_work_sync(&tty->port->buf.work);
1637
1638 if (tty->link)
1639 tty_kref_put(tty->link);
1640 tty_kref_put(tty);
1641 }
1642
1643 /**
1644 * tty_release_checks - check a tty before real release
1645 * @tty: tty to check
1646 * @o_tty: link of @tty (if any)
1647 * @idx: index of the tty
1648 *
1649 * Performs some paranoid checking before true release of the @tty.
1650 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1651 */
tty_release_checks(struct tty_struct * tty,struct tty_struct * o_tty,int idx)1652 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1653 int idx)
1654 {
1655 #ifdef TTY_PARANOIA_CHECK
1656 if (idx < 0 || idx >= tty->driver->num) {
1657 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1658 __func__, tty->name);
1659 return -1;
1660 }
1661
1662 /* not much to check for devpts */
1663 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1664 return 0;
1665
1666 if (tty != tty->driver->ttys[idx]) {
1667 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1668 __func__, idx, tty->name);
1669 return -1;
1670 }
1671 if (tty->driver->other) {
1672 if (o_tty != tty->driver->other->ttys[idx]) {
1673 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1674 __func__, idx, tty->name);
1675 return -1;
1676 }
1677 if (o_tty->link != tty) {
1678 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1679 return -1;
1680 }
1681 }
1682 #endif
1683 return 0;
1684 }
1685
1686 /**
1687 * tty_release - vfs callback for close
1688 * @inode: inode of tty
1689 * @filp: file pointer for handle to tty
1690 *
1691 * Called the last time each file handle is closed that references
1692 * this tty. There may however be several such references.
1693 *
1694 * Locking:
1695 * Takes bkl. See tty_release_dev
1696 *
1697 * Even releasing the tty structures is a tricky business.. We have
1698 * to be very careful that the structures are all released at the
1699 * same time, as interrupts might otherwise get the wrong pointers.
1700 *
1701 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1702 * lead to double frees or releasing memory still in use.
1703 */
1704
tty_release(struct inode * inode,struct file * filp)1705 int tty_release(struct inode *inode, struct file *filp)
1706 {
1707 struct tty_struct *tty = file_tty(filp);
1708 struct tty_struct *o_tty;
1709 int pty_master, tty_closing, o_tty_closing, do_sleep;
1710 int idx;
1711 char buf[64];
1712 long timeout = 0;
1713 int once = 1;
1714
1715 if (tty_paranoia_check(tty, inode, __func__))
1716 return 0;
1717
1718 tty_lock(tty);
1719 check_tty_count(tty, __func__);
1720
1721 __tty_fasync(-1, filp, 0);
1722
1723 idx = tty->index;
1724 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1725 tty->driver->subtype == PTY_TYPE_MASTER);
1726 /* Review: parallel close */
1727 o_tty = tty->link;
1728
1729 if (tty_release_checks(tty, o_tty, idx)) {
1730 tty_unlock(tty);
1731 return 0;
1732 }
1733
1734 #ifdef TTY_DEBUG_HANGUP
1735 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1736 tty_name(tty, buf), tty->count);
1737 #endif
1738
1739 if (tty->ops->close)
1740 tty->ops->close(tty, filp);
1741
1742 tty_unlock(tty);
1743 /*
1744 * Sanity check: if tty->count is going to zero, there shouldn't be
1745 * any waiters on tty->read_wait or tty->write_wait. We test the
1746 * wait queues and kick everyone out _before_ actually starting to
1747 * close. This ensures that we won't block while releasing the tty
1748 * structure.
1749 *
1750 * The test for the o_tty closing is necessary, since the master and
1751 * slave sides may close in any order. If the slave side closes out
1752 * first, its count will be one, since the master side holds an open.
1753 * Thus this test wouldn't be triggered at the time the slave closes,
1754 * so we do it now.
1755 *
1756 * Note that it's possible for the tty to be opened again while we're
1757 * flushing out waiters. By recalculating the closing flags before
1758 * each iteration we avoid any problems.
1759 */
1760 while (1) {
1761 /* Guard against races with tty->count changes elsewhere and
1762 opens on /dev/tty */
1763
1764 mutex_lock(&tty_mutex);
1765 tty_lock_pair(tty, o_tty);
1766 tty_closing = tty->count <= 1;
1767 o_tty_closing = o_tty &&
1768 (o_tty->count <= (pty_master ? 1 : 0));
1769 do_sleep = 0;
1770
1771 if (tty_closing) {
1772 if (waitqueue_active(&tty->read_wait)) {
1773 wake_up_poll(&tty->read_wait, POLLIN);
1774 do_sleep++;
1775 }
1776 if (waitqueue_active(&tty->write_wait)) {
1777 wake_up_poll(&tty->write_wait, POLLOUT);
1778 do_sleep++;
1779 }
1780 }
1781 if (o_tty_closing) {
1782 if (waitqueue_active(&o_tty->read_wait)) {
1783 wake_up_poll(&o_tty->read_wait, POLLIN);
1784 do_sleep++;
1785 }
1786 if (waitqueue_active(&o_tty->write_wait)) {
1787 wake_up_poll(&o_tty->write_wait, POLLOUT);
1788 do_sleep++;
1789 }
1790 }
1791 if (!do_sleep)
1792 break;
1793
1794 if (once) {
1795 once = 0;
1796 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1797 __func__, tty_name(tty, buf));
1798 }
1799 tty_unlock_pair(tty, o_tty);
1800 mutex_unlock(&tty_mutex);
1801 schedule_timeout_killable(timeout);
1802 if (timeout < 120 * HZ)
1803 timeout = 2 * timeout + 1;
1804 else
1805 timeout = MAX_SCHEDULE_TIMEOUT;
1806 }
1807
1808 /*
1809 * The closing flags are now consistent with the open counts on
1810 * both sides, and we've completed the last operation that could
1811 * block, so it's safe to proceed with closing.
1812 *
1813 * We must *not* drop the tty_mutex until we ensure that a further
1814 * entry into tty_open can not pick up this tty.
1815 */
1816 if (pty_master) {
1817 if (--o_tty->count < 0) {
1818 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1819 __func__, o_tty->count, tty_name(o_tty, buf));
1820 o_tty->count = 0;
1821 }
1822 }
1823 if (--tty->count < 0) {
1824 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1825 __func__, tty->count, tty_name(tty, buf));
1826 tty->count = 0;
1827 }
1828
1829 /*
1830 * We've decremented tty->count, so we need to remove this file
1831 * descriptor off the tty->tty_files list; this serves two
1832 * purposes:
1833 * - check_tty_count sees the correct number of file descriptors
1834 * associated with this tty.
1835 * - do_tty_hangup no longer sees this file descriptor as
1836 * something that needs to be handled for hangups.
1837 */
1838 tty_del_file(filp);
1839
1840 /*
1841 * Perform some housekeeping before deciding whether to return.
1842 *
1843 * Set the TTY_CLOSING flag if this was the last open. In the
1844 * case of a pty we may have to wait around for the other side
1845 * to close, and TTY_CLOSING makes sure we can't be reopened.
1846 */
1847 if (tty_closing)
1848 set_bit(TTY_CLOSING, &tty->flags);
1849 if (o_tty_closing)
1850 set_bit(TTY_CLOSING, &o_tty->flags);
1851
1852 /*
1853 * If _either_ side is closing, make sure there aren't any
1854 * processes that still think tty or o_tty is their controlling
1855 * tty.
1856 */
1857 if (tty_closing || o_tty_closing) {
1858 read_lock(&tasklist_lock);
1859 session_clear_tty(tty->session);
1860 if (o_tty)
1861 session_clear_tty(o_tty->session);
1862 read_unlock(&tasklist_lock);
1863 }
1864
1865 mutex_unlock(&tty_mutex);
1866 tty_unlock_pair(tty, o_tty);
1867 /* At this point the TTY_CLOSING flag should ensure a dead tty
1868 cannot be re-opened by a racing opener */
1869
1870 /* check whether both sides are closing ... */
1871 if (!tty_closing || (o_tty && !o_tty_closing))
1872 return 0;
1873
1874 #ifdef TTY_DEBUG_HANGUP
1875 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1876 #endif
1877 /*
1878 * Ask the line discipline code to release its structures
1879 */
1880 tty_ldisc_release(tty, o_tty);
1881
1882 /* Wait for pending work before tty destruction commmences */
1883 tty_flush_works(tty);
1884 if (o_tty)
1885 tty_flush_works(o_tty);
1886
1887 #ifdef TTY_DEBUG_HANGUP
1888 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1889 #endif
1890 /*
1891 * The release_tty function takes care of the details of clearing
1892 * the slots and preserving the termios structure. The tty_unlock_pair
1893 * should be safe as we keep a kref while the tty is locked (so the
1894 * unlock never unlocks a freed tty).
1895 */
1896 mutex_lock(&tty_mutex);
1897 release_tty(tty, idx);
1898 mutex_unlock(&tty_mutex);
1899
1900 return 0;
1901 }
1902
1903 /**
1904 * tty_open_current_tty - get tty of current task for open
1905 * @device: device number
1906 * @filp: file pointer to tty
1907 * @return: tty of the current task iff @device is /dev/tty
1908 *
1909 * We cannot return driver and index like for the other nodes because
1910 * devpts will not work then. It expects inodes to be from devpts FS.
1911 *
1912 * We need to move to returning a refcounted object from all the lookup
1913 * paths including this one.
1914 */
tty_open_current_tty(dev_t device,struct file * filp)1915 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1916 {
1917 struct tty_struct *tty;
1918
1919 if (device != MKDEV(TTYAUX_MAJOR, 0))
1920 return NULL;
1921
1922 tty = get_current_tty();
1923 if (!tty)
1924 return ERR_PTR(-ENXIO);
1925
1926 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1927 /* noctty = 1; */
1928 tty_kref_put(tty);
1929 /* FIXME: we put a reference and return a TTY! */
1930 /* This is only safe because the caller holds tty_mutex */
1931 return tty;
1932 }
1933
1934 /**
1935 * tty_lookup_driver - lookup a tty driver for a given device file
1936 * @device: device number
1937 * @filp: file pointer to tty
1938 * @noctty: set if the device should not become a controlling tty
1939 * @index: index for the device in the @return driver
1940 * @return: driver for this inode (with increased refcount)
1941 *
1942 * If @return is not erroneous, the caller is responsible to decrement the
1943 * refcount by tty_driver_kref_put.
1944 *
1945 * Locking: tty_mutex protects get_tty_driver
1946 */
tty_lookup_driver(dev_t device,struct file * filp,int * noctty,int * index)1947 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1948 int *noctty, int *index)
1949 {
1950 struct tty_driver *driver;
1951
1952 switch (device) {
1953 #ifdef CONFIG_VT
1954 case MKDEV(TTY_MAJOR, 0): {
1955 extern struct tty_driver *console_driver;
1956 driver = tty_driver_kref_get(console_driver);
1957 *index = fg_console;
1958 *noctty = 1;
1959 break;
1960 }
1961 #endif
1962 case MKDEV(TTYAUX_MAJOR, 1): {
1963 struct tty_driver *console_driver = console_device(index);
1964 if (console_driver) {
1965 driver = tty_driver_kref_get(console_driver);
1966 if (driver) {
1967 /* Don't let /dev/console block */
1968 filp->f_flags |= O_NONBLOCK;
1969 *noctty = 1;
1970 break;
1971 }
1972 }
1973 return ERR_PTR(-ENODEV);
1974 }
1975 default:
1976 driver = get_tty_driver(device, index);
1977 if (!driver)
1978 return ERR_PTR(-ENODEV);
1979 break;
1980 }
1981 return driver;
1982 }
1983
1984 /**
1985 * tty_open - open a tty device
1986 * @inode: inode of device file
1987 * @filp: file pointer to tty
1988 *
1989 * tty_open and tty_release keep up the tty count that contains the
1990 * number of opens done on a tty. We cannot use the inode-count, as
1991 * different inodes might point to the same tty.
1992 *
1993 * Open-counting is needed for pty masters, as well as for keeping
1994 * track of serial lines: DTR is dropped when the last close happens.
1995 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1996 *
1997 * The termios state of a pty is reset on first open so that
1998 * settings don't persist across reuse.
1999 *
2000 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2001 * tty->count should protect the rest.
2002 * ->siglock protects ->signal/->sighand
2003 *
2004 * Note: the tty_unlock/lock cases without a ref are only safe due to
2005 * tty_mutex
2006 */
2007
tty_open(struct inode * inode,struct file * filp)2008 static int tty_open(struct inode *inode, struct file *filp)
2009 {
2010 struct tty_struct *tty;
2011 int noctty, retval;
2012 struct tty_driver *driver = NULL;
2013 int index;
2014 dev_t device = inode->i_rdev;
2015 unsigned saved_flags = filp->f_flags;
2016
2017 nonseekable_open(inode, filp);
2018
2019 retry_open:
2020 retval = tty_alloc_file(filp);
2021 if (retval)
2022 return -ENOMEM;
2023
2024 noctty = filp->f_flags & O_NOCTTY;
2025 index = -1;
2026 retval = 0;
2027
2028 mutex_lock(&tty_mutex);
2029 /* This is protected by the tty_mutex */
2030 tty = tty_open_current_tty(device, filp);
2031 if (IS_ERR(tty)) {
2032 retval = PTR_ERR(tty);
2033 goto err_unlock;
2034 } else if (!tty) {
2035 driver = tty_lookup_driver(device, filp, &noctty, &index);
2036 if (IS_ERR(driver)) {
2037 retval = PTR_ERR(driver);
2038 goto err_unlock;
2039 }
2040
2041 /* check whether we're reopening an existing tty */
2042 tty = tty_driver_lookup_tty(driver, inode, index);
2043 if (IS_ERR(tty)) {
2044 retval = PTR_ERR(tty);
2045 goto err_unlock;
2046 }
2047 }
2048
2049 if (tty) {
2050 tty_lock(tty);
2051 retval = tty_reopen(tty);
2052 if (retval < 0) {
2053 tty_unlock(tty);
2054 tty = ERR_PTR(retval);
2055 }
2056 } else /* Returns with the tty_lock held for now */
2057 tty = tty_init_dev(driver, index);
2058
2059 mutex_unlock(&tty_mutex);
2060 if (driver)
2061 tty_driver_kref_put(driver);
2062 if (IS_ERR(tty)) {
2063 retval = PTR_ERR(tty);
2064 goto err_file;
2065 }
2066
2067 tty_add_file(tty, filp);
2068
2069 check_tty_count(tty, __func__);
2070 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2071 tty->driver->subtype == PTY_TYPE_MASTER)
2072 noctty = 1;
2073 #ifdef TTY_DEBUG_HANGUP
2074 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2075 #endif
2076 if (tty->ops->open)
2077 retval = tty->ops->open(tty, filp);
2078 else
2079 retval = -ENODEV;
2080 filp->f_flags = saved_flags;
2081
2082 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2083 !capable(CAP_SYS_ADMIN))
2084 retval = -EBUSY;
2085
2086 if (retval) {
2087 #ifdef TTY_DEBUG_HANGUP
2088 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2089 retval, tty->name);
2090 #endif
2091 tty_unlock(tty); /* need to call tty_release without BTM */
2092 tty_release(inode, filp);
2093 if (retval != -ERESTARTSYS)
2094 return retval;
2095
2096 if (signal_pending(current))
2097 return retval;
2098
2099 schedule();
2100 /*
2101 * Need to reset f_op in case a hangup happened.
2102 */
2103 if (filp->f_op == &hung_up_tty_fops)
2104 filp->f_op = &tty_fops;
2105 goto retry_open;
2106 }
2107 clear_bit(TTY_HUPPED, &tty->flags);
2108 tty_unlock(tty);
2109
2110
2111 mutex_lock(&tty_mutex);
2112 tty_lock(tty);
2113 spin_lock_irq(¤t->sighand->siglock);
2114 if (!noctty &&
2115 current->signal->leader &&
2116 !current->signal->tty &&
2117 tty->session == NULL)
2118 __proc_set_tty(current, tty);
2119 spin_unlock_irq(¤t->sighand->siglock);
2120 tty_unlock(tty);
2121 mutex_unlock(&tty_mutex);
2122 return 0;
2123 err_unlock:
2124 mutex_unlock(&tty_mutex);
2125 /* after locks to avoid deadlock */
2126 if (!IS_ERR_OR_NULL(driver))
2127 tty_driver_kref_put(driver);
2128 err_file:
2129 tty_free_file(filp);
2130 return retval;
2131 }
2132
2133
2134
2135 /**
2136 * tty_poll - check tty status
2137 * @filp: file being polled
2138 * @wait: poll wait structures to update
2139 *
2140 * Call the line discipline polling method to obtain the poll
2141 * status of the device.
2142 *
2143 * Locking: locks called line discipline but ldisc poll method
2144 * may be re-entered freely by other callers.
2145 */
2146
tty_poll(struct file * filp,poll_table * wait)2147 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2148 {
2149 struct tty_struct *tty = file_tty(filp);
2150 struct tty_ldisc *ld;
2151 int ret = 0;
2152
2153 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2154 return 0;
2155
2156 ld = tty_ldisc_ref_wait(tty);
2157 if (ld->ops->poll)
2158 ret = (ld->ops->poll)(tty, filp, wait);
2159 tty_ldisc_deref(ld);
2160 return ret;
2161 }
2162
__tty_fasync(int fd,struct file * filp,int on)2163 static int __tty_fasync(int fd, struct file *filp, int on)
2164 {
2165 struct tty_struct *tty = file_tty(filp);
2166 struct tty_ldisc *ldisc;
2167 unsigned long flags;
2168 int retval = 0;
2169
2170 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2171 goto out;
2172
2173 retval = fasync_helper(fd, filp, on, &tty->fasync);
2174 if (retval <= 0)
2175 goto out;
2176
2177 ldisc = tty_ldisc_ref(tty);
2178 if (ldisc) {
2179 if (ldisc->ops->fasync)
2180 ldisc->ops->fasync(tty, on);
2181 tty_ldisc_deref(ldisc);
2182 }
2183
2184 if (on) {
2185 enum pid_type type;
2186 struct pid *pid;
2187
2188 spin_lock_irqsave(&tty->ctrl_lock, flags);
2189 if (tty->pgrp) {
2190 pid = tty->pgrp;
2191 type = PIDTYPE_PGID;
2192 } else {
2193 pid = task_pid(current);
2194 type = PIDTYPE_PID;
2195 }
2196 get_pid(pid);
2197 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2198 __f_setown(filp, pid, type, 0);
2199 put_pid(pid);
2200 retval = 0;
2201 }
2202 out:
2203 return retval;
2204 }
2205
tty_fasync(int fd,struct file * filp,int on)2206 static int tty_fasync(int fd, struct file *filp, int on)
2207 {
2208 struct tty_struct *tty = file_tty(filp);
2209 int retval;
2210
2211 tty_lock(tty);
2212 retval = __tty_fasync(fd, filp, on);
2213 tty_unlock(tty);
2214
2215 return retval;
2216 }
2217
2218 /**
2219 * tiocsti - fake input character
2220 * @tty: tty to fake input into
2221 * @p: pointer to character
2222 *
2223 * Fake input to a tty device. Does the necessary locking and
2224 * input management.
2225 *
2226 * FIXME: does not honour flow control ??
2227 *
2228 * Locking:
2229 * Called functions take tty_ldiscs_lock
2230 * current->signal->tty check is safe without locks
2231 *
2232 * FIXME: may race normal receive processing
2233 */
2234
tiocsti(struct tty_struct * tty,char __user * p)2235 static int tiocsti(struct tty_struct *tty, char __user *p)
2236 {
2237 char ch, mbz = 0;
2238 struct tty_ldisc *ld;
2239
2240 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2241 return -EPERM;
2242 if (get_user(ch, p))
2243 return -EFAULT;
2244 tty_audit_tiocsti(tty, ch);
2245 ld = tty_ldisc_ref_wait(tty);
2246 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2247 tty_ldisc_deref(ld);
2248 return 0;
2249 }
2250
2251 /**
2252 * tiocgwinsz - implement window query ioctl
2253 * @tty; tty
2254 * @arg: user buffer for result
2255 *
2256 * Copies the kernel idea of the window size into the user buffer.
2257 *
2258 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2259 * is consistent.
2260 */
2261
tiocgwinsz(struct tty_struct * tty,struct winsize __user * arg)2262 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2263 {
2264 int err;
2265
2266 mutex_lock(&tty->winsize_mutex);
2267 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2268 mutex_unlock(&tty->winsize_mutex);
2269
2270 return err ? -EFAULT: 0;
2271 }
2272
2273 /**
2274 * tty_do_resize - resize event
2275 * @tty: tty being resized
2276 * @rows: rows (character)
2277 * @cols: cols (character)
2278 *
2279 * Update the termios variables and send the necessary signals to
2280 * peform a terminal resize correctly
2281 */
2282
tty_do_resize(struct tty_struct * tty,struct winsize * ws)2283 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2284 {
2285 struct pid *pgrp;
2286 unsigned long flags;
2287
2288 /* Lock the tty */
2289 mutex_lock(&tty->winsize_mutex);
2290 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2291 goto done;
2292 /* Get the PID values and reference them so we can
2293 avoid holding the tty ctrl lock while sending signals */
2294 spin_lock_irqsave(&tty->ctrl_lock, flags);
2295 pgrp = get_pid(tty->pgrp);
2296 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2297
2298 if (pgrp)
2299 kill_pgrp(pgrp, SIGWINCH, 1);
2300 put_pid(pgrp);
2301
2302 tty->winsize = *ws;
2303 done:
2304 mutex_unlock(&tty->winsize_mutex);
2305 return 0;
2306 }
2307 EXPORT_SYMBOL(tty_do_resize);
2308
2309 /**
2310 * tiocswinsz - implement window size set ioctl
2311 * @tty; tty side of tty
2312 * @arg: user buffer for result
2313 *
2314 * Copies the user idea of the window size to the kernel. Traditionally
2315 * this is just advisory information but for the Linux console it
2316 * actually has driver level meaning and triggers a VC resize.
2317 *
2318 * Locking:
2319 * Driver dependent. The default do_resize method takes the
2320 * tty termios mutex and ctrl_lock. The console takes its own lock
2321 * then calls into the default method.
2322 */
2323
tiocswinsz(struct tty_struct * tty,struct winsize __user * arg)2324 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2325 {
2326 struct winsize tmp_ws;
2327 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2328 return -EFAULT;
2329
2330 if (tty->ops->resize)
2331 return tty->ops->resize(tty, &tmp_ws);
2332 else
2333 return tty_do_resize(tty, &tmp_ws);
2334 }
2335
2336 /**
2337 * tioccons - allow admin to move logical console
2338 * @file: the file to become console
2339 *
2340 * Allow the administrator to move the redirected console device
2341 *
2342 * Locking: uses redirect_lock to guard the redirect information
2343 */
2344
tioccons(struct file * file)2345 static int tioccons(struct file *file)
2346 {
2347 if (!capable(CAP_SYS_ADMIN))
2348 return -EPERM;
2349 if (file->f_op->write == redirected_tty_write) {
2350 struct file *f;
2351 spin_lock(&redirect_lock);
2352 f = redirect;
2353 redirect = NULL;
2354 spin_unlock(&redirect_lock);
2355 if (f)
2356 fput(f);
2357 return 0;
2358 }
2359 spin_lock(&redirect_lock);
2360 if (redirect) {
2361 spin_unlock(&redirect_lock);
2362 return -EBUSY;
2363 }
2364 redirect = get_file(file);
2365 spin_unlock(&redirect_lock);
2366 return 0;
2367 }
2368
2369 /**
2370 * fionbio - non blocking ioctl
2371 * @file: file to set blocking value
2372 * @p: user parameter
2373 *
2374 * Historical tty interfaces had a blocking control ioctl before
2375 * the generic functionality existed. This piece of history is preserved
2376 * in the expected tty API of posix OS's.
2377 *
2378 * Locking: none, the open file handle ensures it won't go away.
2379 */
2380
fionbio(struct file * file,int __user * p)2381 static int fionbio(struct file *file, int __user *p)
2382 {
2383 int nonblock;
2384
2385 if (get_user(nonblock, p))
2386 return -EFAULT;
2387
2388 spin_lock(&file->f_lock);
2389 if (nonblock)
2390 file->f_flags |= O_NONBLOCK;
2391 else
2392 file->f_flags &= ~O_NONBLOCK;
2393 spin_unlock(&file->f_lock);
2394 return 0;
2395 }
2396
2397 /**
2398 * tiocsctty - set controlling tty
2399 * @tty: tty structure
2400 * @arg: user argument
2401 *
2402 * This ioctl is used to manage job control. It permits a session
2403 * leader to set this tty as the controlling tty for the session.
2404 *
2405 * Locking:
2406 * Takes tty_mutex() to protect tty instance
2407 * Takes tasklist_lock internally to walk sessions
2408 * Takes ->siglock() when updating signal->tty
2409 */
2410
tiocsctty(struct tty_struct * tty,int arg)2411 static int tiocsctty(struct tty_struct *tty, int arg)
2412 {
2413 int ret = 0;
2414 if (current->signal->leader && (task_session(current) == tty->session))
2415 return ret;
2416
2417 mutex_lock(&tty_mutex);
2418 /*
2419 * The process must be a session leader and
2420 * not have a controlling tty already.
2421 */
2422 if (!current->signal->leader || current->signal->tty) {
2423 ret = -EPERM;
2424 goto unlock;
2425 }
2426
2427 if (tty->session) {
2428 /*
2429 * This tty is already the controlling
2430 * tty for another session group!
2431 */
2432 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2433 /*
2434 * Steal it away
2435 */
2436 read_lock(&tasklist_lock);
2437 session_clear_tty(tty->session);
2438 read_unlock(&tasklist_lock);
2439 } else {
2440 ret = -EPERM;
2441 goto unlock;
2442 }
2443 }
2444 proc_set_tty(current, tty);
2445 unlock:
2446 mutex_unlock(&tty_mutex);
2447 return ret;
2448 }
2449
2450 /**
2451 * tty_get_pgrp - return a ref counted pgrp pid
2452 * @tty: tty to read
2453 *
2454 * Returns a refcounted instance of the pid struct for the process
2455 * group controlling the tty.
2456 */
2457
tty_get_pgrp(struct tty_struct * tty)2458 struct pid *tty_get_pgrp(struct tty_struct *tty)
2459 {
2460 unsigned long flags;
2461 struct pid *pgrp;
2462
2463 spin_lock_irqsave(&tty->ctrl_lock, flags);
2464 pgrp = get_pid(tty->pgrp);
2465 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2466
2467 return pgrp;
2468 }
2469 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2470
2471 /**
2472 * tiocgpgrp - get process group
2473 * @tty: tty passed by user
2474 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2475 * @p: returned pid
2476 *
2477 * Obtain the process group of the tty. If there is no process group
2478 * return an error.
2479 *
2480 * Locking: none. Reference to current->signal->tty is safe.
2481 */
2482
tiocgpgrp(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2483 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2484 {
2485 struct pid *pid;
2486 int ret;
2487 /*
2488 * (tty == real_tty) is a cheap way of
2489 * testing if the tty is NOT a master pty.
2490 */
2491 if (tty == real_tty && current->signal->tty != real_tty)
2492 return -ENOTTY;
2493 pid = tty_get_pgrp(real_tty);
2494 ret = put_user(pid_vnr(pid), p);
2495 put_pid(pid);
2496 return ret;
2497 }
2498
2499 /**
2500 * tiocspgrp - attempt to set process group
2501 * @tty: tty passed by user
2502 * @real_tty: tty side device matching tty passed by user
2503 * @p: pid pointer
2504 *
2505 * Set the process group of the tty to the session passed. Only
2506 * permitted where the tty session is our session.
2507 *
2508 * Locking: RCU, ctrl lock
2509 */
2510
tiocspgrp(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2511 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2512 {
2513 struct pid *pgrp;
2514 pid_t pgrp_nr;
2515 int retval = tty_check_change(real_tty);
2516 unsigned long flags;
2517
2518 if (retval == -EIO)
2519 return -ENOTTY;
2520 if (retval)
2521 return retval;
2522 if (!current->signal->tty ||
2523 (current->signal->tty != real_tty) ||
2524 (real_tty->session != task_session(current)))
2525 return -ENOTTY;
2526 if (get_user(pgrp_nr, p))
2527 return -EFAULT;
2528 if (pgrp_nr < 0)
2529 return -EINVAL;
2530 rcu_read_lock();
2531 pgrp = find_vpid(pgrp_nr);
2532 retval = -ESRCH;
2533 if (!pgrp)
2534 goto out_unlock;
2535 retval = -EPERM;
2536 if (session_of_pgrp(pgrp) != task_session(current))
2537 goto out_unlock;
2538 retval = 0;
2539 spin_lock_irqsave(&tty->ctrl_lock, flags);
2540 put_pid(real_tty->pgrp);
2541 real_tty->pgrp = get_pid(pgrp);
2542 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2543 out_unlock:
2544 rcu_read_unlock();
2545 return retval;
2546 }
2547
2548 /**
2549 * tiocgsid - get session id
2550 * @tty: tty passed by user
2551 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2552 * @p: pointer to returned session id
2553 *
2554 * Obtain the session id of the tty. If there is no session
2555 * return an error.
2556 *
2557 * Locking: none. Reference to current->signal->tty is safe.
2558 */
2559
tiocgsid(struct tty_struct * tty,struct tty_struct * real_tty,pid_t __user * p)2560 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2561 {
2562 /*
2563 * (tty == real_tty) is a cheap way of
2564 * testing if the tty is NOT a master pty.
2565 */
2566 if (tty == real_tty && current->signal->tty != real_tty)
2567 return -ENOTTY;
2568 if (!real_tty->session)
2569 return -ENOTTY;
2570 return put_user(pid_vnr(real_tty->session), p);
2571 }
2572
2573 /**
2574 * tiocsetd - set line discipline
2575 * @tty: tty device
2576 * @p: pointer to user data
2577 *
2578 * Set the line discipline according to user request.
2579 *
2580 * Locking: see tty_set_ldisc, this function is just a helper
2581 */
2582
tiocsetd(struct tty_struct * tty,int __user * p)2583 static int tiocsetd(struct tty_struct *tty, int __user *p)
2584 {
2585 int ldisc;
2586 int ret;
2587
2588 if (get_user(ldisc, p))
2589 return -EFAULT;
2590
2591 ret = tty_set_ldisc(tty, ldisc);
2592
2593 return ret;
2594 }
2595
2596 /**
2597 * tiocgetd - get line discipline
2598 * @tty: tty device
2599 * @p: pointer to user data
2600 *
2601 * Retrieves the line discipline id directly from the ldisc.
2602 *
2603 * Locking: waits for ldisc reference (in case the line discipline
2604 * is changing or the tty is being hungup)
2605 */
2606
tiocgetd(struct tty_struct * tty,int __user * p)2607 static int tiocgetd(struct tty_struct *tty, int __user *p)
2608 {
2609 struct tty_ldisc *ld;
2610 int ret;
2611
2612 ld = tty_ldisc_ref_wait(tty);
2613 ret = put_user(ld->ops->num, p);
2614 tty_ldisc_deref(ld);
2615 return ret;
2616 }
2617
2618 /**
2619 * send_break - performed time break
2620 * @tty: device to break on
2621 * @duration: timeout in mS
2622 *
2623 * Perform a timed break on hardware that lacks its own driver level
2624 * timed break functionality.
2625 *
2626 * Locking:
2627 * atomic_write_lock serializes
2628 *
2629 */
2630
send_break(struct tty_struct * tty,unsigned int duration)2631 static int send_break(struct tty_struct *tty, unsigned int duration)
2632 {
2633 int retval;
2634
2635 if (tty->ops->break_ctl == NULL)
2636 return 0;
2637
2638 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2639 retval = tty->ops->break_ctl(tty, duration);
2640 else {
2641 /* Do the work ourselves */
2642 if (tty_write_lock(tty, 0) < 0)
2643 return -EINTR;
2644 retval = tty->ops->break_ctl(tty, -1);
2645 if (retval)
2646 goto out;
2647 if (!signal_pending(current))
2648 msleep_interruptible(duration);
2649 retval = tty->ops->break_ctl(tty, 0);
2650 out:
2651 tty_write_unlock(tty);
2652 if (signal_pending(current))
2653 retval = -EINTR;
2654 }
2655 return retval;
2656 }
2657
2658 /**
2659 * tty_tiocmget - get modem status
2660 * @tty: tty device
2661 * @file: user file pointer
2662 * @p: pointer to result
2663 *
2664 * Obtain the modem status bits from the tty driver if the feature
2665 * is supported. Return -EINVAL if it is not available.
2666 *
2667 * Locking: none (up to the driver)
2668 */
2669
tty_tiocmget(struct tty_struct * tty,int __user * p)2670 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2671 {
2672 int retval = -EINVAL;
2673
2674 if (tty->ops->tiocmget) {
2675 retval = tty->ops->tiocmget(tty);
2676
2677 if (retval >= 0)
2678 retval = put_user(retval, p);
2679 }
2680 return retval;
2681 }
2682
2683 /**
2684 * tty_tiocmset - set modem status
2685 * @tty: tty device
2686 * @cmd: command - clear bits, set bits or set all
2687 * @p: pointer to desired bits
2688 *
2689 * Set the modem status bits from the tty driver if the feature
2690 * is supported. Return -EINVAL if it is not available.
2691 *
2692 * Locking: none (up to the driver)
2693 */
2694
tty_tiocmset(struct tty_struct * tty,unsigned int cmd,unsigned __user * p)2695 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2696 unsigned __user *p)
2697 {
2698 int retval;
2699 unsigned int set, clear, val;
2700
2701 if (tty->ops->tiocmset == NULL)
2702 return -EINVAL;
2703
2704 retval = get_user(val, p);
2705 if (retval)
2706 return retval;
2707 set = clear = 0;
2708 switch (cmd) {
2709 case TIOCMBIS:
2710 set = val;
2711 break;
2712 case TIOCMBIC:
2713 clear = val;
2714 break;
2715 case TIOCMSET:
2716 set = val;
2717 clear = ~val;
2718 break;
2719 }
2720 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2721 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2722 return tty->ops->tiocmset(tty, set, clear);
2723 }
2724
tty_tiocgicount(struct tty_struct * tty,void __user * arg)2725 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2726 {
2727 int retval = -EINVAL;
2728 struct serial_icounter_struct icount;
2729 memset(&icount, 0, sizeof(icount));
2730 if (tty->ops->get_icount)
2731 retval = tty->ops->get_icount(tty, &icount);
2732 if (retval != 0)
2733 return retval;
2734 if (copy_to_user(arg, &icount, sizeof(icount)))
2735 return -EFAULT;
2736 return 0;
2737 }
2738
tty_pair_get_tty(struct tty_struct * tty)2739 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2740 {
2741 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2742 tty->driver->subtype == PTY_TYPE_MASTER)
2743 tty = tty->link;
2744 return tty;
2745 }
2746 EXPORT_SYMBOL(tty_pair_get_tty);
2747
tty_pair_get_pty(struct tty_struct * tty)2748 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2749 {
2750 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2751 tty->driver->subtype == PTY_TYPE_MASTER)
2752 return tty;
2753 return tty->link;
2754 }
2755 EXPORT_SYMBOL(tty_pair_get_pty);
2756
2757 /*
2758 * Split this up, as gcc can choke on it otherwise..
2759 */
tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2760 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2761 {
2762 struct tty_struct *tty = file_tty(file);
2763 struct tty_struct *real_tty;
2764 void __user *p = (void __user *)arg;
2765 int retval;
2766 struct tty_ldisc *ld;
2767
2768 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2769 return -EINVAL;
2770
2771 real_tty = tty_pair_get_tty(tty);
2772
2773 /*
2774 * Factor out some common prep work
2775 */
2776 switch (cmd) {
2777 case TIOCSETD:
2778 case TIOCSBRK:
2779 case TIOCCBRK:
2780 case TCSBRK:
2781 case TCSBRKP:
2782 retval = tty_check_change(tty);
2783 if (retval)
2784 return retval;
2785 if (cmd != TIOCCBRK) {
2786 tty_wait_until_sent(tty, 0);
2787 if (signal_pending(current))
2788 return -EINTR;
2789 }
2790 break;
2791 }
2792
2793 /*
2794 * Now do the stuff.
2795 */
2796 switch (cmd) {
2797 case TIOCSTI:
2798 return tiocsti(tty, p);
2799 case TIOCGWINSZ:
2800 return tiocgwinsz(real_tty, p);
2801 case TIOCSWINSZ:
2802 return tiocswinsz(real_tty, p);
2803 case TIOCCONS:
2804 return real_tty != tty ? -EINVAL : tioccons(file);
2805 case FIONBIO:
2806 return fionbio(file, p);
2807 case TIOCEXCL:
2808 set_bit(TTY_EXCLUSIVE, &tty->flags);
2809 return 0;
2810 case TIOCNXCL:
2811 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2812 return 0;
2813 case TIOCGEXCL:
2814 {
2815 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2816 return put_user(excl, (int __user *)p);
2817 }
2818 case TIOCNOTTY:
2819 if (current->signal->tty != tty)
2820 return -ENOTTY;
2821 no_tty();
2822 return 0;
2823 case TIOCSCTTY:
2824 return tiocsctty(tty, arg);
2825 case TIOCGPGRP:
2826 return tiocgpgrp(tty, real_tty, p);
2827 case TIOCSPGRP:
2828 return tiocspgrp(tty, real_tty, p);
2829 case TIOCGSID:
2830 return tiocgsid(tty, real_tty, p);
2831 case TIOCGETD:
2832 return tiocgetd(tty, p);
2833 case TIOCSETD:
2834 return tiocsetd(tty, p);
2835 case TIOCVHANGUP:
2836 if (!capable(CAP_SYS_ADMIN))
2837 return -EPERM;
2838 tty_vhangup(tty);
2839 return 0;
2840 case TIOCGDEV:
2841 {
2842 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2843 return put_user(ret, (unsigned int __user *)p);
2844 }
2845 /*
2846 * Break handling
2847 */
2848 case TIOCSBRK: /* Turn break on, unconditionally */
2849 if (tty->ops->break_ctl)
2850 return tty->ops->break_ctl(tty, -1);
2851 return 0;
2852 case TIOCCBRK: /* Turn break off, unconditionally */
2853 if (tty->ops->break_ctl)
2854 return tty->ops->break_ctl(tty, 0);
2855 return 0;
2856 case TCSBRK: /* SVID version: non-zero arg --> no break */
2857 /* non-zero arg means wait for all output data
2858 * to be sent (performed above) but don't send break.
2859 * This is used by the tcdrain() termios function.
2860 */
2861 if (!arg)
2862 return send_break(tty, 250);
2863 return 0;
2864 case TCSBRKP: /* support for POSIX tcsendbreak() */
2865 return send_break(tty, arg ? arg*100 : 250);
2866
2867 case TIOCMGET:
2868 return tty_tiocmget(tty, p);
2869 case TIOCMSET:
2870 case TIOCMBIC:
2871 case TIOCMBIS:
2872 return tty_tiocmset(tty, cmd, p);
2873 case TIOCGICOUNT:
2874 retval = tty_tiocgicount(tty, p);
2875 /* For the moment allow fall through to the old method */
2876 if (retval != -EINVAL)
2877 return retval;
2878 break;
2879 case TCFLSH:
2880 switch (arg) {
2881 case TCIFLUSH:
2882 case TCIOFLUSH:
2883 /* flush tty buffer and allow ldisc to process ioctl */
2884 tty_buffer_flush(tty);
2885 break;
2886 }
2887 break;
2888 }
2889 if (tty->ops->ioctl) {
2890 retval = (tty->ops->ioctl)(tty, cmd, arg);
2891 if (retval != -ENOIOCTLCMD)
2892 return retval;
2893 }
2894 ld = tty_ldisc_ref_wait(tty);
2895 retval = -EINVAL;
2896 if (ld->ops->ioctl) {
2897 retval = ld->ops->ioctl(tty, file, cmd, arg);
2898 if (retval == -ENOIOCTLCMD)
2899 retval = -ENOTTY;
2900 }
2901 tty_ldisc_deref(ld);
2902 return retval;
2903 }
2904
2905 #ifdef CONFIG_COMPAT
tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2906 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2907 unsigned long arg)
2908 {
2909 struct tty_struct *tty = file_tty(file);
2910 struct tty_ldisc *ld;
2911 int retval = -ENOIOCTLCMD;
2912
2913 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2914 return -EINVAL;
2915
2916 if (tty->ops->compat_ioctl) {
2917 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2918 if (retval != -ENOIOCTLCMD)
2919 return retval;
2920 }
2921
2922 ld = tty_ldisc_ref_wait(tty);
2923 if (ld->ops->compat_ioctl)
2924 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2925 else
2926 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2927 tty_ldisc_deref(ld);
2928
2929 return retval;
2930 }
2931 #endif
2932
this_tty(const void * t,struct file * file,unsigned fd)2933 static int this_tty(const void *t, struct file *file, unsigned fd)
2934 {
2935 if (likely(file->f_op->read != tty_read))
2936 return 0;
2937 return file_tty(file) != t ? 0 : fd + 1;
2938 }
2939
2940 /*
2941 * This implements the "Secure Attention Key" --- the idea is to
2942 * prevent trojan horses by killing all processes associated with this
2943 * tty when the user hits the "Secure Attention Key". Required for
2944 * super-paranoid applications --- see the Orange Book for more details.
2945 *
2946 * This code could be nicer; ideally it should send a HUP, wait a few
2947 * seconds, then send a INT, and then a KILL signal. But you then
2948 * have to coordinate with the init process, since all processes associated
2949 * with the current tty must be dead before the new getty is allowed
2950 * to spawn.
2951 *
2952 * Now, if it would be correct ;-/ The current code has a nasty hole -
2953 * it doesn't catch files in flight. We may send the descriptor to ourselves
2954 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2955 *
2956 * Nasty bug: do_SAK is being called in interrupt context. This can
2957 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2958 */
__do_SAK(struct tty_struct * tty)2959 void __do_SAK(struct tty_struct *tty)
2960 {
2961 #ifdef TTY_SOFT_SAK
2962 tty_hangup(tty);
2963 #else
2964 struct task_struct *g, *p;
2965 struct pid *session;
2966 int i;
2967
2968 if (!tty)
2969 return;
2970 session = tty->session;
2971
2972 tty_ldisc_flush(tty);
2973
2974 tty_driver_flush_buffer(tty);
2975
2976 read_lock(&tasklist_lock);
2977 /* Kill the entire session */
2978 do_each_pid_task(session, PIDTYPE_SID, p) {
2979 printk(KERN_NOTICE "SAK: killed process %d"
2980 " (%s): task_session(p)==tty->session\n",
2981 task_pid_nr(p), p->comm);
2982 send_sig(SIGKILL, p, 1);
2983 } while_each_pid_task(session, PIDTYPE_SID, p);
2984 /* Now kill any processes that happen to have the
2985 * tty open.
2986 */
2987 do_each_thread(g, p) {
2988 if (p->signal->tty == tty) {
2989 printk(KERN_NOTICE "SAK: killed process %d"
2990 " (%s): task_session(p)==tty->session\n",
2991 task_pid_nr(p), p->comm);
2992 send_sig(SIGKILL, p, 1);
2993 continue;
2994 }
2995 task_lock(p);
2996 i = iterate_fd(p->files, 0, this_tty, tty);
2997 if (i != 0) {
2998 printk(KERN_NOTICE "SAK: killed process %d"
2999 " (%s): fd#%d opened to the tty\n",
3000 task_pid_nr(p), p->comm, i - 1);
3001 force_sig(SIGKILL, p);
3002 }
3003 task_unlock(p);
3004 } while_each_thread(g, p);
3005 read_unlock(&tasklist_lock);
3006 #endif
3007 }
3008
do_SAK_work(struct work_struct * work)3009 static void do_SAK_work(struct work_struct *work)
3010 {
3011 struct tty_struct *tty =
3012 container_of(work, struct tty_struct, SAK_work);
3013 __do_SAK(tty);
3014 }
3015
3016 /*
3017 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3018 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3019 * the values which we write to it will be identical to the values which it
3020 * already has. --akpm
3021 */
do_SAK(struct tty_struct * tty)3022 void do_SAK(struct tty_struct *tty)
3023 {
3024 if (!tty)
3025 return;
3026 schedule_work(&tty->SAK_work);
3027 }
3028
3029 EXPORT_SYMBOL(do_SAK);
3030
dev_match_devt(struct device * dev,const void * data)3031 static int dev_match_devt(struct device *dev, const void *data)
3032 {
3033 const dev_t *devt = data;
3034 return dev->devt == *devt;
3035 }
3036
3037 /* Must put_device() after it's unused! */
tty_get_device(struct tty_struct * tty)3038 static struct device *tty_get_device(struct tty_struct *tty)
3039 {
3040 dev_t devt = tty_devnum(tty);
3041 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3042 }
3043
3044
3045 /**
3046 * alloc_tty_struct
3047 *
3048 * This subroutine allocates and initializes a tty structure.
3049 *
3050 * Locking: none - tty in question is not exposed at this point
3051 */
3052
alloc_tty_struct(struct tty_driver * driver,int idx)3053 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3054 {
3055 struct tty_struct *tty;
3056
3057 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3058 if (!tty)
3059 return NULL;
3060
3061 kref_init(&tty->kref);
3062 tty->magic = TTY_MAGIC;
3063 tty_ldisc_init(tty);
3064 tty->session = NULL;
3065 tty->pgrp = NULL;
3066 mutex_init(&tty->legacy_mutex);
3067 mutex_init(&tty->throttle_mutex);
3068 init_rwsem(&tty->termios_rwsem);
3069 mutex_init(&tty->winsize_mutex);
3070 init_ldsem(&tty->ldisc_sem);
3071 init_waitqueue_head(&tty->write_wait);
3072 init_waitqueue_head(&tty->read_wait);
3073 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3074 mutex_init(&tty->atomic_write_lock);
3075 spin_lock_init(&tty->ctrl_lock);
3076 spin_lock_init(&tty->flow_lock);
3077 INIT_LIST_HEAD(&tty->tty_files);
3078 INIT_WORK(&tty->SAK_work, do_SAK_work);
3079
3080 tty->driver = driver;
3081 tty->ops = driver->ops;
3082 tty->index = idx;
3083 tty_line_name(driver, idx, tty->name);
3084 tty->dev = tty_get_device(tty);
3085
3086 return tty;
3087 }
3088
3089 /**
3090 * deinitialize_tty_struct
3091 * @tty: tty to deinitialize
3092 *
3093 * This subroutine deinitializes a tty structure that has been newly
3094 * allocated but tty_release cannot be called on that yet.
3095 *
3096 * Locking: none - tty in question must not be exposed at this point
3097 */
deinitialize_tty_struct(struct tty_struct * tty)3098 void deinitialize_tty_struct(struct tty_struct *tty)
3099 {
3100 tty_ldisc_deinit(tty);
3101 }
3102
3103 /**
3104 * tty_put_char - write one character to a tty
3105 * @tty: tty
3106 * @ch: character
3107 *
3108 * Write one byte to the tty using the provided put_char method
3109 * if present. Returns the number of characters successfully output.
3110 *
3111 * Note: the specific put_char operation in the driver layer may go
3112 * away soon. Don't call it directly, use this method
3113 */
3114
tty_put_char(struct tty_struct * tty,unsigned char ch)3115 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3116 {
3117 if (tty->ops->put_char)
3118 return tty->ops->put_char(tty, ch);
3119 return tty->ops->write(tty, &ch, 1);
3120 }
3121 EXPORT_SYMBOL_GPL(tty_put_char);
3122
3123 struct class *tty_class;
3124
tty_cdev_add(struct tty_driver * driver,dev_t dev,unsigned int index,unsigned int count)3125 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3126 unsigned int index, unsigned int count)
3127 {
3128 /* init here, since reused cdevs cause crashes */
3129 cdev_init(&driver->cdevs[index], &tty_fops);
3130 driver->cdevs[index].owner = driver->owner;
3131 return cdev_add(&driver->cdevs[index], dev, count);
3132 }
3133
3134 /**
3135 * tty_register_device - register a tty device
3136 * @driver: the tty driver that describes the tty device
3137 * @index: the index in the tty driver for this tty device
3138 * @device: a struct device that is associated with this tty device.
3139 * This field is optional, if there is no known struct device
3140 * for this tty device it can be set to NULL safely.
3141 *
3142 * Returns a pointer to the struct device for this tty device
3143 * (or ERR_PTR(-EFOO) on error).
3144 *
3145 * This call is required to be made to register an individual tty device
3146 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3147 * that bit is not set, this function should not be called by a tty
3148 * driver.
3149 *
3150 * Locking: ??
3151 */
3152
tty_register_device(struct tty_driver * driver,unsigned index,struct device * device)3153 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3154 struct device *device)
3155 {
3156 return tty_register_device_attr(driver, index, device, NULL, NULL);
3157 }
3158 EXPORT_SYMBOL(tty_register_device);
3159
tty_device_create_release(struct device * dev)3160 static void tty_device_create_release(struct device *dev)
3161 {
3162 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3163 kfree(dev);
3164 }
3165
3166 /**
3167 * tty_register_device_attr - register a tty device
3168 * @driver: the tty driver that describes the tty device
3169 * @index: the index in the tty driver for this tty device
3170 * @device: a struct device that is associated with this tty device.
3171 * This field is optional, if there is no known struct device
3172 * for this tty device it can be set to NULL safely.
3173 * @drvdata: Driver data to be set to device.
3174 * @attr_grp: Attribute group to be set on device.
3175 *
3176 * Returns a pointer to the struct device for this tty device
3177 * (or ERR_PTR(-EFOO) on error).
3178 *
3179 * This call is required to be made to register an individual tty device
3180 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3181 * that bit is not set, this function should not be called by a tty
3182 * driver.
3183 *
3184 * Locking: ??
3185 */
tty_register_device_attr(struct tty_driver * driver,unsigned index,struct device * device,void * drvdata,const struct attribute_group ** attr_grp)3186 struct device *tty_register_device_attr(struct tty_driver *driver,
3187 unsigned index, struct device *device,
3188 void *drvdata,
3189 const struct attribute_group **attr_grp)
3190 {
3191 char name[64];
3192 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3193 struct device *dev = NULL;
3194 int retval = -ENODEV;
3195 bool cdev = false;
3196
3197 if (index >= driver->num) {
3198 printk(KERN_ERR "Attempt to register invalid tty line number "
3199 " (%d).\n", index);
3200 return ERR_PTR(-EINVAL);
3201 }
3202
3203 if (driver->type == TTY_DRIVER_TYPE_PTY)
3204 pty_line_name(driver, index, name);
3205 else
3206 tty_line_name(driver, index, name);
3207
3208 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3209 retval = tty_cdev_add(driver, devt, index, 1);
3210 if (retval)
3211 goto error;
3212 cdev = true;
3213 }
3214
3215 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3216 if (!dev) {
3217 retval = -ENOMEM;
3218 goto error;
3219 }
3220
3221 dev->devt = devt;
3222 dev->class = tty_class;
3223 dev->parent = device;
3224 dev->release = tty_device_create_release;
3225 dev_set_name(dev, "%s", name);
3226 dev->groups = attr_grp;
3227 dev_set_drvdata(dev, drvdata);
3228
3229 retval = device_register(dev);
3230 if (retval)
3231 goto error;
3232
3233 return dev;
3234
3235 error:
3236 put_device(dev);
3237 if (cdev)
3238 cdev_del(&driver->cdevs[index]);
3239 return ERR_PTR(retval);
3240 }
3241 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3242
3243 /**
3244 * tty_unregister_device - unregister a tty device
3245 * @driver: the tty driver that describes the tty device
3246 * @index: the index in the tty driver for this tty device
3247 *
3248 * If a tty device is registered with a call to tty_register_device() then
3249 * this function must be called when the tty device is gone.
3250 *
3251 * Locking: ??
3252 */
3253
tty_unregister_device(struct tty_driver * driver,unsigned index)3254 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3255 {
3256 device_destroy(tty_class,
3257 MKDEV(driver->major, driver->minor_start) + index);
3258 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3259 cdev_del(&driver->cdevs[index]);
3260 }
3261 EXPORT_SYMBOL(tty_unregister_device);
3262
3263 /**
3264 * __tty_alloc_driver -- allocate tty driver
3265 * @lines: count of lines this driver can handle at most
3266 * @owner: module which is repsonsible for this driver
3267 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3268 *
3269 * This should not be called directly, some of the provided macros should be
3270 * used instead. Use IS_ERR and friends on @retval.
3271 */
__tty_alloc_driver(unsigned int lines,struct module * owner,unsigned long flags)3272 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3273 unsigned long flags)
3274 {
3275 struct tty_driver *driver;
3276 unsigned int cdevs = 1;
3277 int err;
3278
3279 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3280 return ERR_PTR(-EINVAL);
3281
3282 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3283 if (!driver)
3284 return ERR_PTR(-ENOMEM);
3285
3286 kref_init(&driver->kref);
3287 driver->magic = TTY_DRIVER_MAGIC;
3288 driver->num = lines;
3289 driver->owner = owner;
3290 driver->flags = flags;
3291
3292 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3293 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3294 GFP_KERNEL);
3295 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3296 GFP_KERNEL);
3297 if (!driver->ttys || !driver->termios) {
3298 err = -ENOMEM;
3299 goto err_free_all;
3300 }
3301 }
3302
3303 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3304 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3305 GFP_KERNEL);
3306 if (!driver->ports) {
3307 err = -ENOMEM;
3308 goto err_free_all;
3309 }
3310 cdevs = lines;
3311 }
3312
3313 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3314 if (!driver->cdevs) {
3315 err = -ENOMEM;
3316 goto err_free_all;
3317 }
3318
3319 return driver;
3320 err_free_all:
3321 kfree(driver->ports);
3322 kfree(driver->ttys);
3323 kfree(driver->termios);
3324 kfree(driver);
3325 return ERR_PTR(err);
3326 }
3327 EXPORT_SYMBOL(__tty_alloc_driver);
3328
destruct_tty_driver(struct kref * kref)3329 static void destruct_tty_driver(struct kref *kref)
3330 {
3331 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3332 int i;
3333 struct ktermios *tp;
3334
3335 if (driver->flags & TTY_DRIVER_INSTALLED) {
3336 /*
3337 * Free the termios and termios_locked structures because
3338 * we don't want to get memory leaks when modular tty
3339 * drivers are removed from the kernel.
3340 */
3341 for (i = 0; i < driver->num; i++) {
3342 tp = driver->termios[i];
3343 if (tp) {
3344 driver->termios[i] = NULL;
3345 kfree(tp);
3346 }
3347 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3348 tty_unregister_device(driver, i);
3349 }
3350 proc_tty_unregister_driver(driver);
3351 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3352 cdev_del(&driver->cdevs[0]);
3353 }
3354 kfree(driver->cdevs);
3355 kfree(driver->ports);
3356 kfree(driver->termios);
3357 kfree(driver->ttys);
3358 kfree(driver);
3359 }
3360
tty_driver_kref_put(struct tty_driver * driver)3361 void tty_driver_kref_put(struct tty_driver *driver)
3362 {
3363 kref_put(&driver->kref, destruct_tty_driver);
3364 }
3365 EXPORT_SYMBOL(tty_driver_kref_put);
3366
tty_set_operations(struct tty_driver * driver,const struct tty_operations * op)3367 void tty_set_operations(struct tty_driver *driver,
3368 const struct tty_operations *op)
3369 {
3370 driver->ops = op;
3371 };
3372 EXPORT_SYMBOL(tty_set_operations);
3373
put_tty_driver(struct tty_driver * d)3374 void put_tty_driver(struct tty_driver *d)
3375 {
3376 tty_driver_kref_put(d);
3377 }
3378 EXPORT_SYMBOL(put_tty_driver);
3379
3380 /*
3381 * Called by a tty driver to register itself.
3382 */
tty_register_driver(struct tty_driver * driver)3383 int tty_register_driver(struct tty_driver *driver)
3384 {
3385 int error;
3386 int i;
3387 dev_t dev;
3388 struct device *d;
3389
3390 if (!driver->major) {
3391 error = alloc_chrdev_region(&dev, driver->minor_start,
3392 driver->num, driver->name);
3393 if (!error) {
3394 driver->major = MAJOR(dev);
3395 driver->minor_start = MINOR(dev);
3396 }
3397 } else {
3398 dev = MKDEV(driver->major, driver->minor_start);
3399 error = register_chrdev_region(dev, driver->num, driver->name);
3400 }
3401 if (error < 0)
3402 goto err;
3403
3404 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3405 error = tty_cdev_add(driver, dev, 0, driver->num);
3406 if (error)
3407 goto err_unreg_char;
3408 }
3409
3410 mutex_lock(&tty_mutex);
3411 list_add(&driver->tty_drivers, &tty_drivers);
3412 mutex_unlock(&tty_mutex);
3413
3414 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3415 for (i = 0; i < driver->num; i++) {
3416 d = tty_register_device(driver, i, NULL);
3417 if (IS_ERR(d)) {
3418 error = PTR_ERR(d);
3419 goto err_unreg_devs;
3420 }
3421 }
3422 }
3423 proc_tty_register_driver(driver);
3424 driver->flags |= TTY_DRIVER_INSTALLED;
3425 return 0;
3426
3427 err_unreg_devs:
3428 for (i--; i >= 0; i--)
3429 tty_unregister_device(driver, i);
3430
3431 mutex_lock(&tty_mutex);
3432 list_del(&driver->tty_drivers);
3433 mutex_unlock(&tty_mutex);
3434
3435 err_unreg_char:
3436 unregister_chrdev_region(dev, driver->num);
3437 err:
3438 return error;
3439 }
3440 EXPORT_SYMBOL(tty_register_driver);
3441
3442 /*
3443 * Called by a tty driver to unregister itself.
3444 */
tty_unregister_driver(struct tty_driver * driver)3445 int tty_unregister_driver(struct tty_driver *driver)
3446 {
3447 #if 0
3448 /* FIXME */
3449 if (driver->refcount)
3450 return -EBUSY;
3451 #endif
3452 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3453 driver->num);
3454 mutex_lock(&tty_mutex);
3455 list_del(&driver->tty_drivers);
3456 mutex_unlock(&tty_mutex);
3457 return 0;
3458 }
3459
3460 EXPORT_SYMBOL(tty_unregister_driver);
3461
tty_devnum(struct tty_struct * tty)3462 dev_t tty_devnum(struct tty_struct *tty)
3463 {
3464 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3465 }
3466 EXPORT_SYMBOL(tty_devnum);
3467
proc_clear_tty(struct task_struct * p)3468 void proc_clear_tty(struct task_struct *p)
3469 {
3470 unsigned long flags;
3471 struct tty_struct *tty;
3472 spin_lock_irqsave(&p->sighand->siglock, flags);
3473 tty = p->signal->tty;
3474 p->signal->tty = NULL;
3475 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3476 tty_kref_put(tty);
3477 }
3478
3479 /* Called under the sighand lock */
3480
__proc_set_tty(struct task_struct * tsk,struct tty_struct * tty)3481 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3482 {
3483 if (tty) {
3484 unsigned long flags;
3485 /* We should not have a session or pgrp to put here but.... */
3486 spin_lock_irqsave(&tty->ctrl_lock, flags);
3487 put_pid(tty->session);
3488 put_pid(tty->pgrp);
3489 tty->pgrp = get_pid(task_pgrp(tsk));
3490 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3491 tty->session = get_pid(task_session(tsk));
3492 if (tsk->signal->tty) {
3493 printk(KERN_DEBUG "tty not NULL!!\n");
3494 tty_kref_put(tsk->signal->tty);
3495 }
3496 }
3497 put_pid(tsk->signal->tty_old_pgrp);
3498 tsk->signal->tty = tty_kref_get(tty);
3499 tsk->signal->tty_old_pgrp = NULL;
3500 }
3501
proc_set_tty(struct task_struct * tsk,struct tty_struct * tty)3502 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3503 {
3504 spin_lock_irq(&tsk->sighand->siglock);
3505 __proc_set_tty(tsk, tty);
3506 spin_unlock_irq(&tsk->sighand->siglock);
3507 }
3508
get_current_tty(void)3509 struct tty_struct *get_current_tty(void)
3510 {
3511 struct tty_struct *tty;
3512 unsigned long flags;
3513
3514 spin_lock_irqsave(¤t->sighand->siglock, flags);
3515 tty = tty_kref_get(current->signal->tty);
3516 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
3517 return tty;
3518 }
3519 EXPORT_SYMBOL_GPL(get_current_tty);
3520
tty_default_fops(struct file_operations * fops)3521 void tty_default_fops(struct file_operations *fops)
3522 {
3523 *fops = tty_fops;
3524 }
3525
3526 /*
3527 * Initialize the console device. This is called *early*, so
3528 * we can't necessarily depend on lots of kernel help here.
3529 * Just do some early initializations, and do the complex setup
3530 * later.
3531 */
console_init(void)3532 void __init console_init(void)
3533 {
3534 initcall_t *call;
3535
3536 /* Setup the default TTY line discipline. */
3537 tty_ldisc_begin();
3538
3539 /*
3540 * set up the console device so that later boot sequences can
3541 * inform about problems etc..
3542 */
3543 call = __con_initcall_start;
3544 while (call < __con_initcall_end) {
3545 (*call)();
3546 call++;
3547 }
3548 }
3549
tty_devnode(struct device * dev,umode_t * mode)3550 static char *tty_devnode(struct device *dev, umode_t *mode)
3551 {
3552 if (!mode)
3553 return NULL;
3554 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3555 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3556 *mode = 0666;
3557 return NULL;
3558 }
3559
tty_class_init(void)3560 static int __init tty_class_init(void)
3561 {
3562 tty_class = class_create(THIS_MODULE, "tty");
3563 if (IS_ERR(tty_class))
3564 return PTR_ERR(tty_class);
3565 tty_class->devnode = tty_devnode;
3566 return 0;
3567 }
3568
3569 postcore_initcall(tty_class_init);
3570
3571 /* 3/2004 jmc: why do these devices exist? */
3572 static struct cdev tty_cdev, console_cdev;
3573
show_cons_active(struct device * dev,struct device_attribute * attr,char * buf)3574 static ssize_t show_cons_active(struct device *dev,
3575 struct device_attribute *attr, char *buf)
3576 {
3577 struct console *cs[16];
3578 int i = 0;
3579 struct console *c;
3580 ssize_t count = 0;
3581
3582 console_lock();
3583 for_each_console(c) {
3584 if (!c->device)
3585 continue;
3586 if (!c->write)
3587 continue;
3588 if ((c->flags & CON_ENABLED) == 0)
3589 continue;
3590 cs[i++] = c;
3591 if (i >= ARRAY_SIZE(cs))
3592 break;
3593 }
3594 while (i--) {
3595 int index = cs[i]->index;
3596 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3597
3598 /* don't resolve tty0 as some programs depend on it */
3599 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3600 count += tty_line_name(drv, index, buf + count);
3601 else
3602 count += sprintf(buf + count, "%s%d",
3603 cs[i]->name, cs[i]->index);
3604
3605 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3606 }
3607 console_unlock();
3608
3609 return count;
3610 }
3611 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3612
3613 static struct device *consdev;
3614
console_sysfs_notify(void)3615 void console_sysfs_notify(void)
3616 {
3617 if (consdev)
3618 sysfs_notify(&consdev->kobj, NULL, "active");
3619 }
3620
3621 /*
3622 * Ok, now we can initialize the rest of the tty devices and can count
3623 * on memory allocations, interrupts etc..
3624 */
tty_init(void)3625 int __init tty_init(void)
3626 {
3627 cdev_init(&tty_cdev, &tty_fops);
3628 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3629 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3630 panic("Couldn't register /dev/tty driver\n");
3631 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3632
3633 cdev_init(&console_cdev, &console_fops);
3634 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3635 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3636 panic("Couldn't register /dev/console driver\n");
3637 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3638 "console");
3639 if (IS_ERR(consdev))
3640 consdev = NULL;
3641 else
3642 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3643
3644 #ifdef CONFIG_VT
3645 vty_init(&console_fops);
3646 #endif
3647 return 0;
3648 }
3649
3650