1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23 /*
24 * This file implements VFS file and inode operations for regular files, device
25 * nodes and symlinks as well as address space operations.
26 *
27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28 * the page is dirty and is used for optimization purposes - dirty pages are
29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30 * the budget for this page. The @PG_checked flag is set if full budgeting is
31 * required for the page e.g., when it corresponds to a file hole or it is
32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33 * it is OK to fail in this function, and the budget is released in
34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35 * information about how the page was budgeted, to make it possible to release
36 * the budget properly.
37 *
38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39 * implement. However, this is not true for 'ubifs_writepage()', which may be
40 * called with @i_mutex unlocked. For example, when flusher thread is doing
41 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
42 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
43 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
44 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
45 *
46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49 * set as well. However, UBIFS disables readahead.
50 */
51
52 #include "ubifs.h"
53 #include <linux/aio.h>
54 #include <linux/mount.h>
55 #include <linux/namei.h>
56 #include <linux/slab.h>
57 #include <linux/migrate.h>
58
read_block(struct inode * inode,void * addr,unsigned int block,struct ubifs_data_node * dn)59 static int read_block(struct inode *inode, void *addr, unsigned int block,
60 struct ubifs_data_node *dn)
61 {
62 struct ubifs_info *c = inode->i_sb->s_fs_info;
63 int err, len, out_len;
64 union ubifs_key key;
65 unsigned int dlen;
66
67 data_key_init(c, &key, inode->i_ino, block);
68 err = ubifs_tnc_lookup(c, &key, dn);
69 if (err) {
70 if (err == -ENOENT)
71 /* Not found, so it must be a hole */
72 memset(addr, 0, UBIFS_BLOCK_SIZE);
73 return err;
74 }
75
76 ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
77 ubifs_inode(inode)->creat_sqnum);
78 len = le32_to_cpu(dn->size);
79 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
80 goto dump;
81
82 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
83 out_len = UBIFS_BLOCK_SIZE;
84 err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
85 le16_to_cpu(dn->compr_type));
86 if (err || len != out_len)
87 goto dump;
88
89 /*
90 * Data length can be less than a full block, even for blocks that are
91 * not the last in the file (e.g., as a result of making a hole and
92 * appending data). Ensure that the remainder is zeroed out.
93 */
94 if (len < UBIFS_BLOCK_SIZE)
95 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
96
97 return 0;
98
99 dump:
100 ubifs_err("bad data node (block %u, inode %lu)",
101 block, inode->i_ino);
102 ubifs_dump_node(c, dn);
103 return -EINVAL;
104 }
105
do_readpage(struct page * page)106 static int do_readpage(struct page *page)
107 {
108 void *addr;
109 int err = 0, i;
110 unsigned int block, beyond;
111 struct ubifs_data_node *dn;
112 struct inode *inode = page->mapping->host;
113 loff_t i_size = i_size_read(inode);
114
115 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
116 inode->i_ino, page->index, i_size, page->flags);
117 ubifs_assert(!PageChecked(page));
118 ubifs_assert(!PagePrivate(page));
119
120 addr = kmap(page);
121
122 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
123 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
124 if (block >= beyond) {
125 /* Reading beyond inode */
126 SetPageChecked(page);
127 memset(addr, 0, PAGE_CACHE_SIZE);
128 goto out;
129 }
130
131 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
132 if (!dn) {
133 err = -ENOMEM;
134 goto error;
135 }
136
137 i = 0;
138 while (1) {
139 int ret;
140
141 if (block >= beyond) {
142 /* Reading beyond inode */
143 err = -ENOENT;
144 memset(addr, 0, UBIFS_BLOCK_SIZE);
145 } else {
146 ret = read_block(inode, addr, block, dn);
147 if (ret) {
148 err = ret;
149 if (err != -ENOENT)
150 break;
151 } else if (block + 1 == beyond) {
152 int dlen = le32_to_cpu(dn->size);
153 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
154
155 if (ilen && ilen < dlen)
156 memset(addr + ilen, 0, dlen - ilen);
157 }
158 }
159 if (++i >= UBIFS_BLOCKS_PER_PAGE)
160 break;
161 block += 1;
162 addr += UBIFS_BLOCK_SIZE;
163 }
164 if (err) {
165 if (err == -ENOENT) {
166 /* Not found, so it must be a hole */
167 SetPageChecked(page);
168 dbg_gen("hole");
169 goto out_free;
170 }
171 ubifs_err("cannot read page %lu of inode %lu, error %d",
172 page->index, inode->i_ino, err);
173 goto error;
174 }
175
176 out_free:
177 kfree(dn);
178 out:
179 SetPageUptodate(page);
180 ClearPageError(page);
181 flush_dcache_page(page);
182 kunmap(page);
183 return 0;
184
185 error:
186 kfree(dn);
187 ClearPageUptodate(page);
188 SetPageError(page);
189 flush_dcache_page(page);
190 kunmap(page);
191 return err;
192 }
193
194 /**
195 * release_new_page_budget - release budget of a new page.
196 * @c: UBIFS file-system description object
197 *
198 * This is a helper function which releases budget corresponding to the budget
199 * of one new page of data.
200 */
release_new_page_budget(struct ubifs_info * c)201 static void release_new_page_budget(struct ubifs_info *c)
202 {
203 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
204
205 ubifs_release_budget(c, &req);
206 }
207
208 /**
209 * release_existing_page_budget - release budget of an existing page.
210 * @c: UBIFS file-system description object
211 *
212 * This is a helper function which releases budget corresponding to the budget
213 * of changing one one page of data which already exists on the flash media.
214 */
release_existing_page_budget(struct ubifs_info * c)215 static void release_existing_page_budget(struct ubifs_info *c)
216 {
217 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
218
219 ubifs_release_budget(c, &req);
220 }
221
write_begin_slow(struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,unsigned flags)222 static int write_begin_slow(struct address_space *mapping,
223 loff_t pos, unsigned len, struct page **pagep,
224 unsigned flags)
225 {
226 struct inode *inode = mapping->host;
227 struct ubifs_info *c = inode->i_sb->s_fs_info;
228 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
229 struct ubifs_budget_req req = { .new_page = 1 };
230 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
231 struct page *page;
232
233 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
234 inode->i_ino, pos, len, inode->i_size);
235
236 /*
237 * At the slow path we have to budget before locking the page, because
238 * budgeting may force write-back, which would wait on locked pages and
239 * deadlock if we had the page locked. At this point we do not know
240 * anything about the page, so assume that this is a new page which is
241 * written to a hole. This corresponds to largest budget. Later the
242 * budget will be amended if this is not true.
243 */
244 if (appending)
245 /* We are appending data, budget for inode change */
246 req.dirtied_ino = 1;
247
248 err = ubifs_budget_space(c, &req);
249 if (unlikely(err))
250 return err;
251
252 page = grab_cache_page_write_begin(mapping, index, flags);
253 if (unlikely(!page)) {
254 ubifs_release_budget(c, &req);
255 return -ENOMEM;
256 }
257
258 if (!PageUptodate(page)) {
259 if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
260 SetPageChecked(page);
261 else {
262 err = do_readpage(page);
263 if (err) {
264 unlock_page(page);
265 page_cache_release(page);
266 return err;
267 }
268 }
269
270 SetPageUptodate(page);
271 ClearPageError(page);
272 }
273
274 if (PagePrivate(page))
275 /*
276 * The page is dirty, which means it was budgeted twice:
277 * o first time the budget was allocated by the task which
278 * made the page dirty and set the PG_private flag;
279 * o and then we budgeted for it for the second time at the
280 * very beginning of this function.
281 *
282 * So what we have to do is to release the page budget we
283 * allocated.
284 */
285 release_new_page_budget(c);
286 else if (!PageChecked(page))
287 /*
288 * We are changing a page which already exists on the media.
289 * This means that changing the page does not make the amount
290 * of indexing information larger, and this part of the budget
291 * which we have already acquired may be released.
292 */
293 ubifs_convert_page_budget(c);
294
295 if (appending) {
296 struct ubifs_inode *ui = ubifs_inode(inode);
297
298 /*
299 * 'ubifs_write_end()' is optimized from the fast-path part of
300 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
301 * if data is appended.
302 */
303 mutex_lock(&ui->ui_mutex);
304 if (ui->dirty)
305 /*
306 * The inode is dirty already, so we may free the
307 * budget we allocated.
308 */
309 ubifs_release_dirty_inode_budget(c, ui);
310 }
311
312 *pagep = page;
313 return 0;
314 }
315
316 /**
317 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
318 * @c: UBIFS file-system description object
319 * @page: page to allocate budget for
320 * @ui: UBIFS inode object the page belongs to
321 * @appending: non-zero if the page is appended
322 *
323 * This is a helper function for 'ubifs_write_begin()' which allocates budget
324 * for the operation. The budget is allocated differently depending on whether
325 * this is appending, whether the page is dirty or not, and so on. This
326 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
327 * in case of success and %-ENOSPC in case of failure.
328 */
allocate_budget(struct ubifs_info * c,struct page * page,struct ubifs_inode * ui,int appending)329 static int allocate_budget(struct ubifs_info *c, struct page *page,
330 struct ubifs_inode *ui, int appending)
331 {
332 struct ubifs_budget_req req = { .fast = 1 };
333
334 if (PagePrivate(page)) {
335 if (!appending)
336 /*
337 * The page is dirty and we are not appending, which
338 * means no budget is needed at all.
339 */
340 return 0;
341
342 mutex_lock(&ui->ui_mutex);
343 if (ui->dirty)
344 /*
345 * The page is dirty and we are appending, so the inode
346 * has to be marked as dirty. However, it is already
347 * dirty, so we do not need any budget. We may return,
348 * but @ui->ui_mutex hast to be left locked because we
349 * should prevent write-back from flushing the inode
350 * and freeing the budget. The lock will be released in
351 * 'ubifs_write_end()'.
352 */
353 return 0;
354
355 /*
356 * The page is dirty, we are appending, the inode is clean, so
357 * we need to budget the inode change.
358 */
359 req.dirtied_ino = 1;
360 } else {
361 if (PageChecked(page))
362 /*
363 * The page corresponds to a hole and does not
364 * exist on the media. So changing it makes
365 * make the amount of indexing information
366 * larger, and we have to budget for a new
367 * page.
368 */
369 req.new_page = 1;
370 else
371 /*
372 * Not a hole, the change will not add any new
373 * indexing information, budget for page
374 * change.
375 */
376 req.dirtied_page = 1;
377
378 if (appending) {
379 mutex_lock(&ui->ui_mutex);
380 if (!ui->dirty)
381 /*
382 * The inode is clean but we will have to mark
383 * it as dirty because we are appending. This
384 * needs a budget.
385 */
386 req.dirtied_ino = 1;
387 }
388 }
389
390 return ubifs_budget_space(c, &req);
391 }
392
393 /*
394 * This function is called when a page of data is going to be written. Since
395 * the page of data will not necessarily go to the flash straight away, UBIFS
396 * has to reserve space on the media for it, which is done by means of
397 * budgeting.
398 *
399 * This is the hot-path of the file-system and we are trying to optimize it as
400 * much as possible. For this reasons it is split on 2 parts - slow and fast.
401 *
402 * There many budgeting cases:
403 * o a new page is appended - we have to budget for a new page and for
404 * changing the inode; however, if the inode is already dirty, there is
405 * no need to budget for it;
406 * o an existing clean page is changed - we have budget for it; if the page
407 * does not exist on the media (a hole), we have to budget for a new
408 * page; otherwise, we may budget for changing an existing page; the
409 * difference between these cases is that changing an existing page does
410 * not introduce anything new to the FS indexing information, so it does
411 * not grow, and smaller budget is acquired in this case;
412 * o an existing dirty page is changed - no need to budget at all, because
413 * the page budget has been acquired by earlier, when the page has been
414 * marked dirty.
415 *
416 * UBIFS budgeting sub-system may force write-back if it thinks there is no
417 * space to reserve. This imposes some locking restrictions and makes it
418 * impossible to take into account the above cases, and makes it impossible to
419 * optimize budgeting.
420 *
421 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
422 * there is a plenty of flash space and the budget will be acquired quickly,
423 * without forcing write-back. The slow path does not make this assumption.
424 */
ubifs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)425 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
426 loff_t pos, unsigned len, unsigned flags,
427 struct page **pagep, void **fsdata)
428 {
429 struct inode *inode = mapping->host;
430 struct ubifs_info *c = inode->i_sb->s_fs_info;
431 struct ubifs_inode *ui = ubifs_inode(inode);
432 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
433 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
434 int skipped_read = 0;
435 struct page *page;
436
437 ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
438 ubifs_assert(!c->ro_media && !c->ro_mount);
439
440 if (unlikely(c->ro_error))
441 return -EROFS;
442
443 /* Try out the fast-path part first */
444 page = grab_cache_page_write_begin(mapping, index, flags);
445 if (unlikely(!page))
446 return -ENOMEM;
447
448 if (!PageUptodate(page)) {
449 /* The page is not loaded from the flash */
450 if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) {
451 /*
452 * We change whole page so no need to load it. But we
453 * do not know whether this page exists on the media or
454 * not, so we assume the latter because it requires
455 * larger budget. The assumption is that it is better
456 * to budget a bit more than to read the page from the
457 * media. Thus, we are setting the @PG_checked flag
458 * here.
459 */
460 SetPageChecked(page);
461 skipped_read = 1;
462 } else {
463 err = do_readpage(page);
464 if (err) {
465 unlock_page(page);
466 page_cache_release(page);
467 return err;
468 }
469 }
470
471 SetPageUptodate(page);
472 ClearPageError(page);
473 }
474
475 err = allocate_budget(c, page, ui, appending);
476 if (unlikely(err)) {
477 ubifs_assert(err == -ENOSPC);
478 /*
479 * If we skipped reading the page because we were going to
480 * write all of it, then it is not up to date.
481 */
482 if (skipped_read) {
483 ClearPageChecked(page);
484 ClearPageUptodate(page);
485 }
486 /*
487 * Budgeting failed which means it would have to force
488 * write-back but didn't, because we set the @fast flag in the
489 * request. Write-back cannot be done now, while we have the
490 * page locked, because it would deadlock. Unlock and free
491 * everything and fall-back to slow-path.
492 */
493 if (appending) {
494 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
495 mutex_unlock(&ui->ui_mutex);
496 }
497 unlock_page(page);
498 page_cache_release(page);
499
500 return write_begin_slow(mapping, pos, len, pagep, flags);
501 }
502
503 /*
504 * Whee, we acquired budgeting quickly - without involving
505 * garbage-collection, committing or forcing write-back. We return
506 * with @ui->ui_mutex locked if we are appending pages, and unlocked
507 * otherwise. This is an optimization (slightly hacky though).
508 */
509 *pagep = page;
510 return 0;
511
512 }
513
514 /**
515 * cancel_budget - cancel budget.
516 * @c: UBIFS file-system description object
517 * @page: page to cancel budget for
518 * @ui: UBIFS inode object the page belongs to
519 * @appending: non-zero if the page is appended
520 *
521 * This is a helper function for a page write operation. It unlocks the
522 * @ui->ui_mutex in case of appending.
523 */
cancel_budget(struct ubifs_info * c,struct page * page,struct ubifs_inode * ui,int appending)524 static void cancel_budget(struct ubifs_info *c, struct page *page,
525 struct ubifs_inode *ui, int appending)
526 {
527 if (appending) {
528 if (!ui->dirty)
529 ubifs_release_dirty_inode_budget(c, ui);
530 mutex_unlock(&ui->ui_mutex);
531 }
532 if (!PagePrivate(page)) {
533 if (PageChecked(page))
534 release_new_page_budget(c);
535 else
536 release_existing_page_budget(c);
537 }
538 }
539
ubifs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)540 static int ubifs_write_end(struct file *file, struct address_space *mapping,
541 loff_t pos, unsigned len, unsigned copied,
542 struct page *page, void *fsdata)
543 {
544 struct inode *inode = mapping->host;
545 struct ubifs_inode *ui = ubifs_inode(inode);
546 struct ubifs_info *c = inode->i_sb->s_fs_info;
547 loff_t end_pos = pos + len;
548 int appending = !!(end_pos > inode->i_size);
549
550 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
551 inode->i_ino, pos, page->index, len, copied, inode->i_size);
552
553 if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
554 /*
555 * VFS copied less data to the page that it intended and
556 * declared in its '->write_begin()' call via the @len
557 * argument. If the page was not up-to-date, and @len was
558 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
559 * not load it from the media (for optimization reasons). This
560 * means that part of the page contains garbage. So read the
561 * page now.
562 */
563 dbg_gen("copied %d instead of %d, read page and repeat",
564 copied, len);
565 cancel_budget(c, page, ui, appending);
566 ClearPageChecked(page);
567
568 /*
569 * Return 0 to force VFS to repeat the whole operation, or the
570 * error code if 'do_readpage()' fails.
571 */
572 copied = do_readpage(page);
573 goto out;
574 }
575
576 if (!PagePrivate(page)) {
577 SetPagePrivate(page);
578 atomic_long_inc(&c->dirty_pg_cnt);
579 __set_page_dirty_nobuffers(page);
580 }
581
582 if (appending) {
583 i_size_write(inode, end_pos);
584 ui->ui_size = end_pos;
585 /*
586 * Note, we do not set @I_DIRTY_PAGES (which means that the
587 * inode has dirty pages), this has been done in
588 * '__set_page_dirty_nobuffers()'.
589 */
590 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
591 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
592 mutex_unlock(&ui->ui_mutex);
593 }
594
595 out:
596 unlock_page(page);
597 page_cache_release(page);
598 return copied;
599 }
600
601 /**
602 * populate_page - copy data nodes into a page for bulk-read.
603 * @c: UBIFS file-system description object
604 * @page: page
605 * @bu: bulk-read information
606 * @n: next zbranch slot
607 *
608 * This function returns %0 on success and a negative error code on failure.
609 */
populate_page(struct ubifs_info * c,struct page * page,struct bu_info * bu,int * n)610 static int populate_page(struct ubifs_info *c, struct page *page,
611 struct bu_info *bu, int *n)
612 {
613 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
614 struct inode *inode = page->mapping->host;
615 loff_t i_size = i_size_read(inode);
616 unsigned int page_block;
617 void *addr, *zaddr;
618 pgoff_t end_index;
619
620 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
621 inode->i_ino, page->index, i_size, page->flags);
622
623 addr = zaddr = kmap(page);
624
625 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
626 if (!i_size || page->index > end_index) {
627 hole = 1;
628 memset(addr, 0, PAGE_CACHE_SIZE);
629 goto out_hole;
630 }
631
632 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
633 while (1) {
634 int err, len, out_len, dlen;
635
636 if (nn >= bu->cnt) {
637 hole = 1;
638 memset(addr, 0, UBIFS_BLOCK_SIZE);
639 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
640 struct ubifs_data_node *dn;
641
642 dn = bu->buf + (bu->zbranch[nn].offs - offs);
643
644 ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
645 ubifs_inode(inode)->creat_sqnum);
646
647 len = le32_to_cpu(dn->size);
648 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
649 goto out_err;
650
651 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
652 out_len = UBIFS_BLOCK_SIZE;
653 err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
654 le16_to_cpu(dn->compr_type));
655 if (err || len != out_len)
656 goto out_err;
657
658 if (len < UBIFS_BLOCK_SIZE)
659 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
660
661 nn += 1;
662 read = (i << UBIFS_BLOCK_SHIFT) + len;
663 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
664 nn += 1;
665 continue;
666 } else {
667 hole = 1;
668 memset(addr, 0, UBIFS_BLOCK_SIZE);
669 }
670 if (++i >= UBIFS_BLOCKS_PER_PAGE)
671 break;
672 addr += UBIFS_BLOCK_SIZE;
673 page_block += 1;
674 }
675
676 if (end_index == page->index) {
677 int len = i_size & (PAGE_CACHE_SIZE - 1);
678
679 if (len && len < read)
680 memset(zaddr + len, 0, read - len);
681 }
682
683 out_hole:
684 if (hole) {
685 SetPageChecked(page);
686 dbg_gen("hole");
687 }
688
689 SetPageUptodate(page);
690 ClearPageError(page);
691 flush_dcache_page(page);
692 kunmap(page);
693 *n = nn;
694 return 0;
695
696 out_err:
697 ClearPageUptodate(page);
698 SetPageError(page);
699 flush_dcache_page(page);
700 kunmap(page);
701 ubifs_err("bad data node (block %u, inode %lu)",
702 page_block, inode->i_ino);
703 return -EINVAL;
704 }
705
706 /**
707 * ubifs_do_bulk_read - do bulk-read.
708 * @c: UBIFS file-system description object
709 * @bu: bulk-read information
710 * @page1: first page to read
711 *
712 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
713 */
ubifs_do_bulk_read(struct ubifs_info * c,struct bu_info * bu,struct page * page1)714 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
715 struct page *page1)
716 {
717 pgoff_t offset = page1->index, end_index;
718 struct address_space *mapping = page1->mapping;
719 struct inode *inode = mapping->host;
720 struct ubifs_inode *ui = ubifs_inode(inode);
721 int err, page_idx, page_cnt, ret = 0, n = 0;
722 int allocate = bu->buf ? 0 : 1;
723 loff_t isize;
724
725 err = ubifs_tnc_get_bu_keys(c, bu);
726 if (err)
727 goto out_warn;
728
729 if (bu->eof) {
730 /* Turn off bulk-read at the end of the file */
731 ui->read_in_a_row = 1;
732 ui->bulk_read = 0;
733 }
734
735 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
736 if (!page_cnt) {
737 /*
738 * This happens when there are multiple blocks per page and the
739 * blocks for the first page we are looking for, are not
740 * together. If all the pages were like this, bulk-read would
741 * reduce performance, so we turn it off for a while.
742 */
743 goto out_bu_off;
744 }
745
746 if (bu->cnt) {
747 if (allocate) {
748 /*
749 * Allocate bulk-read buffer depending on how many data
750 * nodes we are going to read.
751 */
752 bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
753 bu->zbranch[bu->cnt - 1].len -
754 bu->zbranch[0].offs;
755 ubifs_assert(bu->buf_len > 0);
756 ubifs_assert(bu->buf_len <= c->leb_size);
757 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
758 if (!bu->buf)
759 goto out_bu_off;
760 }
761
762 err = ubifs_tnc_bulk_read(c, bu);
763 if (err)
764 goto out_warn;
765 }
766
767 err = populate_page(c, page1, bu, &n);
768 if (err)
769 goto out_warn;
770
771 unlock_page(page1);
772 ret = 1;
773
774 isize = i_size_read(inode);
775 if (isize == 0)
776 goto out_free;
777 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
778
779 for (page_idx = 1; page_idx < page_cnt; page_idx++) {
780 pgoff_t page_offset = offset + page_idx;
781 struct page *page;
782
783 if (page_offset > end_index)
784 break;
785 page = find_or_create_page(mapping, page_offset,
786 GFP_NOFS | __GFP_COLD);
787 if (!page)
788 break;
789 if (!PageUptodate(page))
790 err = populate_page(c, page, bu, &n);
791 unlock_page(page);
792 page_cache_release(page);
793 if (err)
794 break;
795 }
796
797 ui->last_page_read = offset + page_idx - 1;
798
799 out_free:
800 if (allocate)
801 kfree(bu->buf);
802 return ret;
803
804 out_warn:
805 ubifs_warn("ignoring error %d and skipping bulk-read", err);
806 goto out_free;
807
808 out_bu_off:
809 ui->read_in_a_row = ui->bulk_read = 0;
810 goto out_free;
811 }
812
813 /**
814 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
815 * @page: page from which to start bulk-read.
816 *
817 * Some flash media are capable of reading sequentially at faster rates. UBIFS
818 * bulk-read facility is designed to take advantage of that, by reading in one
819 * go consecutive data nodes that are also located consecutively in the same
820 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
821 */
ubifs_bulk_read(struct page * page)822 static int ubifs_bulk_read(struct page *page)
823 {
824 struct inode *inode = page->mapping->host;
825 struct ubifs_info *c = inode->i_sb->s_fs_info;
826 struct ubifs_inode *ui = ubifs_inode(inode);
827 pgoff_t index = page->index, last_page_read = ui->last_page_read;
828 struct bu_info *bu;
829 int err = 0, allocated = 0;
830
831 ui->last_page_read = index;
832 if (!c->bulk_read)
833 return 0;
834
835 /*
836 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
837 * so don't bother if we cannot lock the mutex.
838 */
839 if (!mutex_trylock(&ui->ui_mutex))
840 return 0;
841
842 if (index != last_page_read + 1) {
843 /* Turn off bulk-read if we stop reading sequentially */
844 ui->read_in_a_row = 1;
845 if (ui->bulk_read)
846 ui->bulk_read = 0;
847 goto out_unlock;
848 }
849
850 if (!ui->bulk_read) {
851 ui->read_in_a_row += 1;
852 if (ui->read_in_a_row < 3)
853 goto out_unlock;
854 /* Three reads in a row, so switch on bulk-read */
855 ui->bulk_read = 1;
856 }
857
858 /*
859 * If possible, try to use pre-allocated bulk-read information, which
860 * is protected by @c->bu_mutex.
861 */
862 if (mutex_trylock(&c->bu_mutex))
863 bu = &c->bu;
864 else {
865 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
866 if (!bu)
867 goto out_unlock;
868
869 bu->buf = NULL;
870 allocated = 1;
871 }
872
873 bu->buf_len = c->max_bu_buf_len;
874 data_key_init(c, &bu->key, inode->i_ino,
875 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
876 err = ubifs_do_bulk_read(c, bu, page);
877
878 if (!allocated)
879 mutex_unlock(&c->bu_mutex);
880 else
881 kfree(bu);
882
883 out_unlock:
884 mutex_unlock(&ui->ui_mutex);
885 return err;
886 }
887
ubifs_readpage(struct file * file,struct page * page)888 static int ubifs_readpage(struct file *file, struct page *page)
889 {
890 if (ubifs_bulk_read(page))
891 return 0;
892 do_readpage(page);
893 unlock_page(page);
894 return 0;
895 }
896
do_writepage(struct page * page,int len)897 static int do_writepage(struct page *page, int len)
898 {
899 int err = 0, i, blen;
900 unsigned int block;
901 void *addr;
902 union ubifs_key key;
903 struct inode *inode = page->mapping->host;
904 struct ubifs_info *c = inode->i_sb->s_fs_info;
905
906 #ifdef UBIFS_DEBUG
907 struct ubifs_inode *ui = ubifs_inode(inode);
908 spin_lock(&ui->ui_lock);
909 ubifs_assert(page->index <= ui->synced_i_size >> PAGE_CACHE_SHIFT);
910 spin_unlock(&ui->ui_lock);
911 #endif
912
913 /* Update radix tree tags */
914 set_page_writeback(page);
915
916 addr = kmap(page);
917 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
918 i = 0;
919 while (len) {
920 blen = min_t(int, len, UBIFS_BLOCK_SIZE);
921 data_key_init(c, &key, inode->i_ino, block);
922 err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
923 if (err)
924 break;
925 if (++i >= UBIFS_BLOCKS_PER_PAGE)
926 break;
927 block += 1;
928 addr += blen;
929 len -= blen;
930 }
931 if (err) {
932 SetPageError(page);
933 ubifs_err("cannot write page %lu of inode %lu, error %d",
934 page->index, inode->i_ino, err);
935 ubifs_ro_mode(c, err);
936 }
937
938 ubifs_assert(PagePrivate(page));
939 if (PageChecked(page))
940 release_new_page_budget(c);
941 else
942 release_existing_page_budget(c);
943
944 atomic_long_dec(&c->dirty_pg_cnt);
945 ClearPagePrivate(page);
946 ClearPageChecked(page);
947
948 kunmap(page);
949 unlock_page(page);
950 end_page_writeback(page);
951 return err;
952 }
953
954 /*
955 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
956 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
957 * situation when a we have an inode with size 0, then a megabyte of data is
958 * appended to the inode, then write-back starts and flushes some amount of the
959 * dirty pages, the journal becomes full, commit happens and finishes, and then
960 * an unclean reboot happens. When the file system is mounted next time, the
961 * inode size would still be 0, but there would be many pages which are beyond
962 * the inode size, they would be indexed and consume flash space. Because the
963 * journal has been committed, the replay would not be able to detect this
964 * situation and correct the inode size. This means UBIFS would have to scan
965 * whole index and correct all inode sizes, which is long an unacceptable.
966 *
967 * To prevent situations like this, UBIFS writes pages back only if they are
968 * within the last synchronized inode size, i.e. the size which has been
969 * written to the flash media last time. Otherwise, UBIFS forces inode
970 * write-back, thus making sure the on-flash inode contains current inode size,
971 * and then keeps writing pages back.
972 *
973 * Some locking issues explanation. 'ubifs_writepage()' first is called with
974 * the page locked, and it locks @ui_mutex. However, write-back does take inode
975 * @i_mutex, which means other VFS operations may be run on this inode at the
976 * same time. And the problematic one is truncation to smaller size, from where
977 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
978 * then drops the truncated pages. And while dropping the pages, it takes the
979 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
980 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
981 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
982 *
983 * XXX(truncate): with the new truncate sequence this is not true anymore,
984 * and the calls to truncate_setsize can be move around freely. They should
985 * be moved to the very end of the truncate sequence.
986 *
987 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
988 * inode size. How do we do this if @inode->i_size may became smaller while we
989 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
990 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
991 * internally and updates it under @ui_mutex.
992 *
993 * Q: why we do not worry that if we race with truncation, we may end up with a
994 * situation when the inode is truncated while we are in the middle of
995 * 'do_writepage()', so we do write beyond inode size?
996 * A: If we are in the middle of 'do_writepage()', truncation would be locked
997 * on the page lock and it would not write the truncated inode node to the
998 * journal before we have finished.
999 */
ubifs_writepage(struct page * page,struct writeback_control * wbc)1000 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1001 {
1002 struct inode *inode = page->mapping->host;
1003 struct ubifs_inode *ui = ubifs_inode(inode);
1004 loff_t i_size = i_size_read(inode), synced_i_size;
1005 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
1006 int err, len = i_size & (PAGE_CACHE_SIZE - 1);
1007 void *kaddr;
1008
1009 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1010 inode->i_ino, page->index, page->flags);
1011 ubifs_assert(PagePrivate(page));
1012
1013 /* Is the page fully outside @i_size? (truncate in progress) */
1014 if (page->index > end_index || (page->index == end_index && !len)) {
1015 err = 0;
1016 goto out_unlock;
1017 }
1018
1019 spin_lock(&ui->ui_lock);
1020 synced_i_size = ui->synced_i_size;
1021 spin_unlock(&ui->ui_lock);
1022
1023 /* Is the page fully inside @i_size? */
1024 if (page->index < end_index) {
1025 if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
1026 err = inode->i_sb->s_op->write_inode(inode, NULL);
1027 if (err)
1028 goto out_unlock;
1029 /*
1030 * The inode has been written, but the write-buffer has
1031 * not been synchronized, so in case of an unclean
1032 * reboot we may end up with some pages beyond inode
1033 * size, but they would be in the journal (because
1034 * commit flushes write buffers) and recovery would deal
1035 * with this.
1036 */
1037 }
1038 return do_writepage(page, PAGE_CACHE_SIZE);
1039 }
1040
1041 /*
1042 * The page straddles @i_size. It must be zeroed out on each and every
1043 * writepage invocation because it may be mmapped. "A file is mapped
1044 * in multiples of the page size. For a file that is not a multiple of
1045 * the page size, the remaining memory is zeroed when mapped, and
1046 * writes to that region are not written out to the file."
1047 */
1048 kaddr = kmap_atomic(page);
1049 memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
1050 flush_dcache_page(page);
1051 kunmap_atomic(kaddr);
1052
1053 if (i_size > synced_i_size) {
1054 err = inode->i_sb->s_op->write_inode(inode, NULL);
1055 if (err)
1056 goto out_unlock;
1057 }
1058
1059 return do_writepage(page, len);
1060
1061 out_unlock:
1062 unlock_page(page);
1063 return err;
1064 }
1065
1066 /**
1067 * do_attr_changes - change inode attributes.
1068 * @inode: inode to change attributes for
1069 * @attr: describes attributes to change
1070 */
do_attr_changes(struct inode * inode,const struct iattr * attr)1071 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1072 {
1073 if (attr->ia_valid & ATTR_UID)
1074 inode->i_uid = attr->ia_uid;
1075 if (attr->ia_valid & ATTR_GID)
1076 inode->i_gid = attr->ia_gid;
1077 if (attr->ia_valid & ATTR_ATIME)
1078 inode->i_atime = timespec_trunc(attr->ia_atime,
1079 inode->i_sb->s_time_gran);
1080 if (attr->ia_valid & ATTR_MTIME)
1081 inode->i_mtime = timespec_trunc(attr->ia_mtime,
1082 inode->i_sb->s_time_gran);
1083 if (attr->ia_valid & ATTR_CTIME)
1084 inode->i_ctime = timespec_trunc(attr->ia_ctime,
1085 inode->i_sb->s_time_gran);
1086 if (attr->ia_valid & ATTR_MODE) {
1087 umode_t mode = attr->ia_mode;
1088
1089 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1090 mode &= ~S_ISGID;
1091 inode->i_mode = mode;
1092 }
1093 }
1094
1095 /**
1096 * do_truncation - truncate an inode.
1097 * @c: UBIFS file-system description object
1098 * @inode: inode to truncate
1099 * @attr: inode attribute changes description
1100 *
1101 * This function implements VFS '->setattr()' call when the inode is truncated
1102 * to a smaller size. Returns zero in case of success and a negative error code
1103 * in case of failure.
1104 */
do_truncation(struct ubifs_info * c,struct inode * inode,const struct iattr * attr)1105 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1106 const struct iattr *attr)
1107 {
1108 int err;
1109 struct ubifs_budget_req req;
1110 loff_t old_size = inode->i_size, new_size = attr->ia_size;
1111 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1112 struct ubifs_inode *ui = ubifs_inode(inode);
1113
1114 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1115 memset(&req, 0, sizeof(struct ubifs_budget_req));
1116
1117 /*
1118 * If this is truncation to a smaller size, and we do not truncate on a
1119 * block boundary, budget for changing one data block, because the last
1120 * block will be re-written.
1121 */
1122 if (new_size & (UBIFS_BLOCK_SIZE - 1))
1123 req.dirtied_page = 1;
1124
1125 req.dirtied_ino = 1;
1126 /* A funny way to budget for truncation node */
1127 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1128 err = ubifs_budget_space(c, &req);
1129 if (err) {
1130 /*
1131 * Treat truncations to zero as deletion and always allow them,
1132 * just like we do for '->unlink()'.
1133 */
1134 if (new_size || err != -ENOSPC)
1135 return err;
1136 budgeted = 0;
1137 }
1138
1139 truncate_setsize(inode, new_size);
1140
1141 if (offset) {
1142 pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
1143 struct page *page;
1144
1145 page = find_lock_page(inode->i_mapping, index);
1146 if (page) {
1147 if (PageDirty(page)) {
1148 /*
1149 * 'ubifs_jnl_truncate()' will try to truncate
1150 * the last data node, but it contains
1151 * out-of-date data because the page is dirty.
1152 * Write the page now, so that
1153 * 'ubifs_jnl_truncate()' will see an already
1154 * truncated (and up to date) data node.
1155 */
1156 ubifs_assert(PagePrivate(page));
1157
1158 clear_page_dirty_for_io(page);
1159 if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1160 offset = new_size &
1161 (PAGE_CACHE_SIZE - 1);
1162 err = do_writepage(page, offset);
1163 page_cache_release(page);
1164 if (err)
1165 goto out_budg;
1166 /*
1167 * We could now tell 'ubifs_jnl_truncate()' not
1168 * to read the last block.
1169 */
1170 } else {
1171 /*
1172 * We could 'kmap()' the page and pass the data
1173 * to 'ubifs_jnl_truncate()' to save it from
1174 * having to read it.
1175 */
1176 unlock_page(page);
1177 page_cache_release(page);
1178 }
1179 }
1180 }
1181
1182 mutex_lock(&ui->ui_mutex);
1183 ui->ui_size = inode->i_size;
1184 /* Truncation changes inode [mc]time */
1185 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1186 /* Other attributes may be changed at the same time as well */
1187 do_attr_changes(inode, attr);
1188 err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1189 mutex_unlock(&ui->ui_mutex);
1190
1191 out_budg:
1192 if (budgeted)
1193 ubifs_release_budget(c, &req);
1194 else {
1195 c->bi.nospace = c->bi.nospace_rp = 0;
1196 smp_wmb();
1197 }
1198 return err;
1199 }
1200
1201 /**
1202 * do_setattr - change inode attributes.
1203 * @c: UBIFS file-system description object
1204 * @inode: inode to change attributes for
1205 * @attr: inode attribute changes description
1206 *
1207 * This function implements VFS '->setattr()' call for all cases except
1208 * truncations to smaller size. Returns zero in case of success and a negative
1209 * error code in case of failure.
1210 */
do_setattr(struct ubifs_info * c,struct inode * inode,const struct iattr * attr)1211 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1212 const struct iattr *attr)
1213 {
1214 int err, release;
1215 loff_t new_size = attr->ia_size;
1216 struct ubifs_inode *ui = ubifs_inode(inode);
1217 struct ubifs_budget_req req = { .dirtied_ino = 1,
1218 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1219
1220 err = ubifs_budget_space(c, &req);
1221 if (err)
1222 return err;
1223
1224 if (attr->ia_valid & ATTR_SIZE) {
1225 dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1226 truncate_setsize(inode, new_size);
1227 }
1228
1229 mutex_lock(&ui->ui_mutex);
1230 if (attr->ia_valid & ATTR_SIZE) {
1231 /* Truncation changes inode [mc]time */
1232 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1233 /* 'truncate_setsize()' changed @i_size, update @ui_size */
1234 ui->ui_size = inode->i_size;
1235 }
1236
1237 do_attr_changes(inode, attr);
1238
1239 release = ui->dirty;
1240 if (attr->ia_valid & ATTR_SIZE)
1241 /*
1242 * Inode length changed, so we have to make sure
1243 * @I_DIRTY_DATASYNC is set.
1244 */
1245 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1246 else
1247 mark_inode_dirty_sync(inode);
1248 mutex_unlock(&ui->ui_mutex);
1249
1250 if (release)
1251 ubifs_release_budget(c, &req);
1252 if (IS_SYNC(inode))
1253 err = inode->i_sb->s_op->write_inode(inode, NULL);
1254 return err;
1255 }
1256
ubifs_setattr(struct dentry * dentry,struct iattr * attr)1257 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1258 {
1259 int err;
1260 struct inode *inode = dentry->d_inode;
1261 struct ubifs_info *c = inode->i_sb->s_fs_info;
1262
1263 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1264 inode->i_ino, inode->i_mode, attr->ia_valid);
1265 err = inode_change_ok(inode, attr);
1266 if (err)
1267 return err;
1268
1269 err = dbg_check_synced_i_size(c, inode);
1270 if (err)
1271 return err;
1272
1273 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1274 /* Truncation to a smaller size */
1275 err = do_truncation(c, inode, attr);
1276 else
1277 err = do_setattr(c, inode, attr);
1278
1279 return err;
1280 }
1281
ubifs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)1282 static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1283 unsigned int length)
1284 {
1285 struct inode *inode = page->mapping->host;
1286 struct ubifs_info *c = inode->i_sb->s_fs_info;
1287
1288 ubifs_assert(PagePrivate(page));
1289 if (offset || length < PAGE_CACHE_SIZE)
1290 /* Partial page remains dirty */
1291 return;
1292
1293 if (PageChecked(page))
1294 release_new_page_budget(c);
1295 else
1296 release_existing_page_budget(c);
1297
1298 atomic_long_dec(&c->dirty_pg_cnt);
1299 ClearPagePrivate(page);
1300 ClearPageChecked(page);
1301 }
1302
ubifs_follow_link(struct dentry * dentry,struct nameidata * nd)1303 static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
1304 {
1305 struct ubifs_inode *ui = ubifs_inode(dentry->d_inode);
1306
1307 nd_set_link(nd, ui->data);
1308 return NULL;
1309 }
1310
ubifs_fsync(struct file * file,loff_t start,loff_t end,int datasync)1311 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1312 {
1313 struct inode *inode = file->f_mapping->host;
1314 struct ubifs_info *c = inode->i_sb->s_fs_info;
1315 int err;
1316
1317 dbg_gen("syncing inode %lu", inode->i_ino);
1318
1319 if (c->ro_mount)
1320 /*
1321 * For some really strange reasons VFS does not filter out
1322 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1323 */
1324 return 0;
1325
1326 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
1327 if (err)
1328 return err;
1329 mutex_lock(&inode->i_mutex);
1330
1331 /* Synchronize the inode unless this is a 'datasync()' call. */
1332 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1333 err = inode->i_sb->s_op->write_inode(inode, NULL);
1334 if (err)
1335 goto out;
1336 }
1337
1338 /*
1339 * Nodes related to this inode may still sit in a write-buffer. Flush
1340 * them.
1341 */
1342 err = ubifs_sync_wbufs_by_inode(c, inode);
1343 out:
1344 mutex_unlock(&inode->i_mutex);
1345 return err;
1346 }
1347
1348 /**
1349 * mctime_update_needed - check if mtime or ctime update is needed.
1350 * @inode: the inode to do the check for
1351 * @now: current time
1352 *
1353 * This helper function checks if the inode mtime/ctime should be updated or
1354 * not. If current values of the time-stamps are within the UBIFS inode time
1355 * granularity, they are not updated. This is an optimization.
1356 */
mctime_update_needed(const struct inode * inode,const struct timespec * now)1357 static inline int mctime_update_needed(const struct inode *inode,
1358 const struct timespec *now)
1359 {
1360 if (!timespec_equal(&inode->i_mtime, now) ||
1361 !timespec_equal(&inode->i_ctime, now))
1362 return 1;
1363 return 0;
1364 }
1365
1366 /**
1367 * update_ctime - update mtime and ctime of an inode.
1368 * @inode: inode to update
1369 *
1370 * This function updates mtime and ctime of the inode if it is not equivalent to
1371 * current time. Returns zero in case of success and a negative error code in
1372 * case of failure.
1373 */
update_mctime(struct inode * inode)1374 static int update_mctime(struct inode *inode)
1375 {
1376 struct timespec now = ubifs_current_time(inode);
1377 struct ubifs_inode *ui = ubifs_inode(inode);
1378 struct ubifs_info *c = inode->i_sb->s_fs_info;
1379
1380 if (mctime_update_needed(inode, &now)) {
1381 int err, release;
1382 struct ubifs_budget_req req = { .dirtied_ino = 1,
1383 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1384
1385 err = ubifs_budget_space(c, &req);
1386 if (err)
1387 return err;
1388
1389 mutex_lock(&ui->ui_mutex);
1390 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1391 release = ui->dirty;
1392 mark_inode_dirty_sync(inode);
1393 mutex_unlock(&ui->ui_mutex);
1394 if (release)
1395 ubifs_release_budget(c, &req);
1396 }
1397
1398 return 0;
1399 }
1400
ubifs_write_iter(struct kiocb * iocb,struct iov_iter * from)1401 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1402 {
1403 int err = update_mctime(file_inode(iocb->ki_filp));
1404 if (err)
1405 return err;
1406
1407 return generic_file_write_iter(iocb, from);
1408 }
1409
ubifs_set_page_dirty(struct page * page)1410 static int ubifs_set_page_dirty(struct page *page)
1411 {
1412 int ret;
1413
1414 ret = __set_page_dirty_nobuffers(page);
1415 /*
1416 * An attempt to dirty a page without budgeting for it - should not
1417 * happen.
1418 */
1419 ubifs_assert(ret == 0);
1420 return ret;
1421 }
1422
1423 #ifdef CONFIG_MIGRATION
ubifs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)1424 static int ubifs_migrate_page(struct address_space *mapping,
1425 struct page *newpage, struct page *page, enum migrate_mode mode)
1426 {
1427 int rc;
1428
1429 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
1430 if (rc != MIGRATEPAGE_SUCCESS)
1431 return rc;
1432
1433 if (PagePrivate(page)) {
1434 ClearPagePrivate(page);
1435 SetPagePrivate(newpage);
1436 }
1437
1438 migrate_page_copy(newpage, page);
1439 return MIGRATEPAGE_SUCCESS;
1440 }
1441 #endif
1442
ubifs_releasepage(struct page * page,gfp_t unused_gfp_flags)1443 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1444 {
1445 /*
1446 * An attempt to release a dirty page without budgeting for it - should
1447 * not happen.
1448 */
1449 if (PageWriteback(page))
1450 return 0;
1451 ubifs_assert(PagePrivate(page));
1452 ubifs_assert(0);
1453 ClearPagePrivate(page);
1454 ClearPageChecked(page);
1455 return 1;
1456 }
1457
1458 /*
1459 * mmap()d file has taken write protection fault and is being made writable.
1460 * UBIFS must ensure page is budgeted for.
1461 */
ubifs_vm_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)1462 static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma,
1463 struct vm_fault *vmf)
1464 {
1465 struct page *page = vmf->page;
1466 struct inode *inode = file_inode(vma->vm_file);
1467 struct ubifs_info *c = inode->i_sb->s_fs_info;
1468 struct timespec now = ubifs_current_time(inode);
1469 struct ubifs_budget_req req = { .new_page = 1 };
1470 int err, update_time;
1471
1472 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1473 i_size_read(inode));
1474 ubifs_assert(!c->ro_media && !c->ro_mount);
1475
1476 if (unlikely(c->ro_error))
1477 return VM_FAULT_SIGBUS; /* -EROFS */
1478
1479 /*
1480 * We have not locked @page so far so we may budget for changing the
1481 * page. Note, we cannot do this after we locked the page, because
1482 * budgeting may cause write-back which would cause deadlock.
1483 *
1484 * At the moment we do not know whether the page is dirty or not, so we
1485 * assume that it is not and budget for a new page. We could look at
1486 * the @PG_private flag and figure this out, but we may race with write
1487 * back and the page state may change by the time we lock it, so this
1488 * would need additional care. We do not bother with this at the
1489 * moment, although it might be good idea to do. Instead, we allocate
1490 * budget for a new page and amend it later on if the page was in fact
1491 * dirty.
1492 *
1493 * The budgeting-related logic of this function is similar to what we
1494 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1495 * for more comments.
1496 */
1497 update_time = mctime_update_needed(inode, &now);
1498 if (update_time)
1499 /*
1500 * We have to change inode time stamp which requires extra
1501 * budgeting.
1502 */
1503 req.dirtied_ino = 1;
1504
1505 err = ubifs_budget_space(c, &req);
1506 if (unlikely(err)) {
1507 if (err == -ENOSPC)
1508 ubifs_warn("out of space for mmapped file (inode number %lu)",
1509 inode->i_ino);
1510 return VM_FAULT_SIGBUS;
1511 }
1512
1513 lock_page(page);
1514 if (unlikely(page->mapping != inode->i_mapping ||
1515 page_offset(page) > i_size_read(inode))) {
1516 /* Page got truncated out from underneath us */
1517 err = -EINVAL;
1518 goto out_unlock;
1519 }
1520
1521 if (PagePrivate(page))
1522 release_new_page_budget(c);
1523 else {
1524 if (!PageChecked(page))
1525 ubifs_convert_page_budget(c);
1526 SetPagePrivate(page);
1527 atomic_long_inc(&c->dirty_pg_cnt);
1528 __set_page_dirty_nobuffers(page);
1529 }
1530
1531 if (update_time) {
1532 int release;
1533 struct ubifs_inode *ui = ubifs_inode(inode);
1534
1535 mutex_lock(&ui->ui_mutex);
1536 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1537 release = ui->dirty;
1538 mark_inode_dirty_sync(inode);
1539 mutex_unlock(&ui->ui_mutex);
1540 if (release)
1541 ubifs_release_dirty_inode_budget(c, ui);
1542 }
1543
1544 wait_for_stable_page(page);
1545 return VM_FAULT_LOCKED;
1546
1547 out_unlock:
1548 unlock_page(page);
1549 ubifs_release_budget(c, &req);
1550 if (err)
1551 err = VM_FAULT_SIGBUS;
1552 return err;
1553 }
1554
1555 static const struct vm_operations_struct ubifs_file_vm_ops = {
1556 .fault = filemap_fault,
1557 .map_pages = filemap_map_pages,
1558 .page_mkwrite = ubifs_vm_page_mkwrite,
1559 .remap_pages = generic_file_remap_pages,
1560 };
1561
ubifs_file_mmap(struct file * file,struct vm_area_struct * vma)1562 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1563 {
1564 int err;
1565
1566 err = generic_file_mmap(file, vma);
1567 if (err)
1568 return err;
1569 vma->vm_ops = &ubifs_file_vm_ops;
1570 return 0;
1571 }
1572
1573 const struct address_space_operations ubifs_file_address_operations = {
1574 .readpage = ubifs_readpage,
1575 .writepage = ubifs_writepage,
1576 .write_begin = ubifs_write_begin,
1577 .write_end = ubifs_write_end,
1578 .invalidatepage = ubifs_invalidatepage,
1579 .set_page_dirty = ubifs_set_page_dirty,
1580 #ifdef CONFIG_MIGRATION
1581 .migratepage = ubifs_migrate_page,
1582 #endif
1583 .releasepage = ubifs_releasepage,
1584 };
1585
1586 const struct inode_operations ubifs_file_inode_operations = {
1587 .setattr = ubifs_setattr,
1588 .getattr = ubifs_getattr,
1589 .setxattr = ubifs_setxattr,
1590 .getxattr = ubifs_getxattr,
1591 .listxattr = ubifs_listxattr,
1592 .removexattr = ubifs_removexattr,
1593 };
1594
1595 const struct inode_operations ubifs_symlink_inode_operations = {
1596 .readlink = generic_readlink,
1597 .follow_link = ubifs_follow_link,
1598 .setattr = ubifs_setattr,
1599 .getattr = ubifs_getattr,
1600 };
1601
1602 const struct file_operations ubifs_file_operations = {
1603 .llseek = generic_file_llseek,
1604 .read = new_sync_read,
1605 .write = new_sync_write,
1606 .read_iter = generic_file_read_iter,
1607 .write_iter = ubifs_write_iter,
1608 .mmap = ubifs_file_mmap,
1609 .fsync = ubifs_fsync,
1610 .unlocked_ioctl = ubifs_ioctl,
1611 .splice_read = generic_file_splice_read,
1612 .splice_write = iter_file_splice_write,
1613 #ifdef CONFIG_COMPAT
1614 .compat_ioctl = ubifs_compat_ioctl,
1615 #endif
1616 };
1617