• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file contains miscelanious TNC-related functions shared betweend
25  * different files. This file does not form any logically separate TNC
26  * sub-system. The file was created because there is a lot of TNC code and
27  * putting it all in one file would make that file too big and unreadable.
28  */
29 
30 #include "ubifs.h"
31 
32 /**
33  * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal.
34  * @zr: root of the subtree to traverse
35  * @znode: previous znode
36  *
37  * This function implements levelorder TNC traversal. The LNC is ignored.
38  * Returns the next element or %NULL if @znode is already the last one.
39  */
ubifs_tnc_levelorder_next(struct ubifs_znode * zr,struct ubifs_znode * znode)40 struct ubifs_znode *ubifs_tnc_levelorder_next(struct ubifs_znode *zr,
41 					      struct ubifs_znode *znode)
42 {
43 	int level, iip, level_search = 0;
44 	struct ubifs_znode *zn;
45 
46 	ubifs_assert(zr);
47 
48 	if (unlikely(!znode))
49 		return zr;
50 
51 	if (unlikely(znode == zr)) {
52 		if (znode->level == 0)
53 			return NULL;
54 		return ubifs_tnc_find_child(zr, 0);
55 	}
56 
57 	level = znode->level;
58 
59 	iip = znode->iip;
60 	while (1) {
61 		ubifs_assert(znode->level <= zr->level);
62 
63 		/*
64 		 * First walk up until there is a znode with next branch to
65 		 * look at.
66 		 */
67 		while (znode->parent != zr && iip >= znode->parent->child_cnt) {
68 			znode = znode->parent;
69 			iip = znode->iip;
70 		}
71 
72 		if (unlikely(znode->parent == zr &&
73 			     iip >= znode->parent->child_cnt)) {
74 			/* This level is done, switch to the lower one */
75 			level -= 1;
76 			if (level_search || level < 0)
77 				/*
78 				 * We were already looking for znode at lower
79 				 * level ('level_search'). As we are here
80 				 * again, it just does not exist. Or all levels
81 				 * were finished ('level < 0').
82 				 */
83 				return NULL;
84 
85 			level_search = 1;
86 			iip = -1;
87 			znode = ubifs_tnc_find_child(zr, 0);
88 			ubifs_assert(znode);
89 		}
90 
91 		/* Switch to the next index */
92 		zn = ubifs_tnc_find_child(znode->parent, iip + 1);
93 		if (!zn) {
94 			/* No more children to look at, we have walk up */
95 			iip = znode->parent->child_cnt;
96 			continue;
97 		}
98 
99 		/* Walk back down to the level we came from ('level') */
100 		while (zn->level != level) {
101 			znode = zn;
102 			zn = ubifs_tnc_find_child(zn, 0);
103 			if (!zn) {
104 				/*
105 				 * This path is not too deep so it does not
106 				 * reach 'level'. Try next path.
107 				 */
108 				iip = znode->iip;
109 				break;
110 			}
111 		}
112 
113 		if (zn) {
114 			ubifs_assert(zn->level >= 0);
115 			return zn;
116 		}
117 	}
118 }
119 
120 /**
121  * ubifs_search_zbranch - search znode branch.
122  * @c: UBIFS file-system description object
123  * @znode: znode to search in
124  * @key: key to search for
125  * @n: znode branch slot number is returned here
126  *
127  * This is a helper function which search branch with key @key in @znode using
128  * binary search. The result of the search may be:
129  *   o exact match, then %1 is returned, and the slot number of the branch is
130  *     stored in @n;
131  *   o no exact match, then %0 is returned and the slot number of the left
132  *     closest branch is returned in @n; the slot if all keys in this znode are
133  *     greater than @key, then %-1 is returned in @n.
134  */
ubifs_search_zbranch(const struct ubifs_info * c,const struct ubifs_znode * znode,const union ubifs_key * key,int * n)135 int ubifs_search_zbranch(const struct ubifs_info *c,
136 			 const struct ubifs_znode *znode,
137 			 const union ubifs_key *key, int *n)
138 {
139 	int beg = 0, end = znode->child_cnt, uninitialized_var(mid);
140 	int uninitialized_var(cmp);
141 	const struct ubifs_zbranch *zbr = &znode->zbranch[0];
142 
143 	ubifs_assert(end > beg);
144 
145 	while (end > beg) {
146 		mid = (beg + end) >> 1;
147 		cmp = keys_cmp(c, key, &zbr[mid].key);
148 		if (cmp > 0)
149 			beg = mid + 1;
150 		else if (cmp < 0)
151 			end = mid;
152 		else {
153 			*n = mid;
154 			return 1;
155 		}
156 	}
157 
158 	*n = end - 1;
159 
160 	/* The insert point is after *n */
161 	ubifs_assert(*n >= -1 && *n < znode->child_cnt);
162 	if (*n == -1)
163 		ubifs_assert(keys_cmp(c, key, &zbr[0].key) < 0);
164 	else
165 		ubifs_assert(keys_cmp(c, key, &zbr[*n].key) > 0);
166 	if (*n + 1 < znode->child_cnt)
167 		ubifs_assert(keys_cmp(c, key, &zbr[*n + 1].key) < 0);
168 
169 	return 0;
170 }
171 
172 /**
173  * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal.
174  * @znode: znode to start at (root of the sub-tree to traverse)
175  *
176  * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is
177  * ignored.
178  */
ubifs_tnc_postorder_first(struct ubifs_znode * znode)179 struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode)
180 {
181 	if (unlikely(!znode))
182 		return NULL;
183 
184 	while (znode->level > 0) {
185 		struct ubifs_znode *child;
186 
187 		child = ubifs_tnc_find_child(znode, 0);
188 		if (!child)
189 			return znode;
190 		znode = child;
191 	}
192 
193 	return znode;
194 }
195 
196 /**
197  * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal.
198  * @znode: previous znode
199  *
200  * This function implements postorder TNC traversal. The LNC is ignored.
201  * Returns the next element or %NULL if @znode is already the last one.
202  */
ubifs_tnc_postorder_next(struct ubifs_znode * znode)203 struct ubifs_znode *ubifs_tnc_postorder_next(struct ubifs_znode *znode)
204 {
205 	struct ubifs_znode *zn;
206 
207 	ubifs_assert(znode);
208 	if (unlikely(!znode->parent))
209 		return NULL;
210 
211 	/* Switch to the next index in the parent */
212 	zn = ubifs_tnc_find_child(znode->parent, znode->iip + 1);
213 	if (!zn)
214 		/* This is in fact the last child, return parent */
215 		return znode->parent;
216 
217 	/* Go to the first znode in this new subtree */
218 	return ubifs_tnc_postorder_first(zn);
219 }
220 
221 /**
222  * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree.
223  * @znode: znode defining subtree to destroy
224  *
225  * This function destroys subtree of the TNC tree. Returns number of clean
226  * znodes in the subtree.
227  */
ubifs_destroy_tnc_subtree(struct ubifs_znode * znode)228 long ubifs_destroy_tnc_subtree(struct ubifs_znode *znode)
229 {
230 	struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode);
231 	long clean_freed = 0;
232 	int n;
233 
234 	ubifs_assert(zn);
235 	while (1) {
236 		for (n = 0; n < zn->child_cnt; n++) {
237 			if (!zn->zbranch[n].znode)
238 				continue;
239 
240 			if (zn->level > 0 &&
241 			    !ubifs_zn_dirty(zn->zbranch[n].znode))
242 				clean_freed += 1;
243 
244 			cond_resched();
245 			kfree(zn->zbranch[n].znode);
246 		}
247 
248 		if (zn == znode) {
249 			if (!ubifs_zn_dirty(zn))
250 				clean_freed += 1;
251 			kfree(zn);
252 			return clean_freed;
253 		}
254 
255 		zn = ubifs_tnc_postorder_next(zn);
256 	}
257 }
258 
259 /**
260  * read_znode - read an indexing node from flash and fill znode.
261  * @c: UBIFS file-system description object
262  * @lnum: LEB of the indexing node to read
263  * @offs: node offset
264  * @len: node length
265  * @znode: znode to read to
266  *
267  * This function reads an indexing node from the flash media and fills znode
268  * with the read data. Returns zero in case of success and a negative error
269  * code in case of failure. The read indexing node is validated and if anything
270  * is wrong with it, this function prints complaint messages and returns
271  * %-EINVAL.
272  */
read_znode(struct ubifs_info * c,int lnum,int offs,int len,struct ubifs_znode * znode)273 static int read_znode(struct ubifs_info *c, int lnum, int offs, int len,
274 		      struct ubifs_znode *znode)
275 {
276 	int i, err, type, cmp;
277 	struct ubifs_idx_node *idx;
278 
279 	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
280 	if (!idx)
281 		return -ENOMEM;
282 
283 	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
284 	if (err < 0) {
285 		kfree(idx);
286 		return err;
287 	}
288 
289 	znode->child_cnt = le16_to_cpu(idx->child_cnt);
290 	znode->level = le16_to_cpu(idx->level);
291 
292 	dbg_tnc("LEB %d:%d, level %d, %d branch",
293 		lnum, offs, znode->level, znode->child_cnt);
294 
295 	if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) {
296 		ubifs_err("current fanout %d, branch count %d",
297 			  c->fanout, znode->child_cnt);
298 		ubifs_err("max levels %d, znode level %d",
299 			  UBIFS_MAX_LEVELS, znode->level);
300 		err = 1;
301 		goto out_dump;
302 	}
303 
304 	for (i = 0; i < znode->child_cnt; i++) {
305 		const struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
306 		struct ubifs_zbranch *zbr = &znode->zbranch[i];
307 
308 		key_read(c, &br->key, &zbr->key);
309 		zbr->lnum = le32_to_cpu(br->lnum);
310 		zbr->offs = le32_to_cpu(br->offs);
311 		zbr->len  = le32_to_cpu(br->len);
312 		zbr->znode = NULL;
313 
314 		/* Validate branch */
315 
316 		if (zbr->lnum < c->main_first ||
317 		    zbr->lnum >= c->leb_cnt || zbr->offs < 0 ||
318 		    zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) {
319 			ubifs_err("bad branch %d", i);
320 			err = 2;
321 			goto out_dump;
322 		}
323 
324 		switch (key_type(c, &zbr->key)) {
325 		case UBIFS_INO_KEY:
326 		case UBIFS_DATA_KEY:
327 		case UBIFS_DENT_KEY:
328 		case UBIFS_XENT_KEY:
329 			break;
330 		default:
331 			ubifs_err("bad key type at slot %d: %d",
332 				  i, key_type(c, &zbr->key));
333 			err = 3;
334 			goto out_dump;
335 		}
336 
337 		if (znode->level)
338 			continue;
339 
340 		type = key_type(c, &zbr->key);
341 		if (c->ranges[type].max_len == 0) {
342 			if (zbr->len != c->ranges[type].len) {
343 				ubifs_err("bad target node (type %d) length (%d)",
344 					  type, zbr->len);
345 				ubifs_err("have to be %d", c->ranges[type].len);
346 				err = 4;
347 				goto out_dump;
348 			}
349 		} else if (zbr->len < c->ranges[type].min_len ||
350 			   zbr->len > c->ranges[type].max_len) {
351 			ubifs_err("bad target node (type %d) length (%d)",
352 				  type, zbr->len);
353 			ubifs_err("have to be in range of %d-%d",
354 				  c->ranges[type].min_len,
355 				  c->ranges[type].max_len);
356 			err = 5;
357 			goto out_dump;
358 		}
359 	}
360 
361 	/*
362 	 * Ensure that the next key is greater or equivalent to the
363 	 * previous one.
364 	 */
365 	for (i = 0; i < znode->child_cnt - 1; i++) {
366 		const union ubifs_key *key1, *key2;
367 
368 		key1 = &znode->zbranch[i].key;
369 		key2 = &znode->zbranch[i + 1].key;
370 
371 		cmp = keys_cmp(c, key1, key2);
372 		if (cmp > 0) {
373 			ubifs_err("bad key order (keys %d and %d)", i, i + 1);
374 			err = 6;
375 			goto out_dump;
376 		} else if (cmp == 0 && !is_hash_key(c, key1)) {
377 			/* These can only be keys with colliding hash */
378 			ubifs_err("keys %d and %d are not hashed but equivalent",
379 				  i, i + 1);
380 			err = 7;
381 			goto out_dump;
382 		}
383 	}
384 
385 	kfree(idx);
386 	return 0;
387 
388 out_dump:
389 	ubifs_err("bad indexing node at LEB %d:%d, error %d", lnum, offs, err);
390 	ubifs_dump_node(c, idx);
391 	kfree(idx);
392 	return -EINVAL;
393 }
394 
395 /**
396  * ubifs_load_znode - load znode to TNC cache.
397  * @c: UBIFS file-system description object
398  * @zbr: znode branch
399  * @parent: znode's parent
400  * @iip: index in parent
401  *
402  * This function loads znode pointed to by @zbr into the TNC cache and
403  * returns pointer to it in case of success and a negative error code in case
404  * of failure.
405  */
ubifs_load_znode(struct ubifs_info * c,struct ubifs_zbranch * zbr,struct ubifs_znode * parent,int iip)406 struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c,
407 				     struct ubifs_zbranch *zbr,
408 				     struct ubifs_znode *parent, int iip)
409 {
410 	int err;
411 	struct ubifs_znode *znode;
412 
413 	ubifs_assert(!zbr->znode);
414 	/*
415 	 * A slab cache is not presently used for znodes because the znode size
416 	 * depends on the fanout which is stored in the superblock.
417 	 */
418 	znode = kzalloc(c->max_znode_sz, GFP_NOFS);
419 	if (!znode)
420 		return ERR_PTR(-ENOMEM);
421 
422 	err = read_znode(c, zbr->lnum, zbr->offs, zbr->len, znode);
423 	if (err)
424 		goto out;
425 
426 	atomic_long_inc(&c->clean_zn_cnt);
427 
428 	/*
429 	 * Increment the global clean znode counter as well. It is OK that
430 	 * global and per-FS clean znode counters may be inconsistent for some
431 	 * short time (because we might be preempted at this point), the global
432 	 * one is only used in shrinker.
433 	 */
434 	atomic_long_inc(&ubifs_clean_zn_cnt);
435 
436 	zbr->znode = znode;
437 	znode->parent = parent;
438 	znode->time = get_seconds();
439 	znode->iip = iip;
440 
441 	return znode;
442 
443 out:
444 	kfree(znode);
445 	return ERR_PTR(err);
446 }
447 
448 /**
449  * ubifs_tnc_read_node - read a leaf node from the flash media.
450  * @c: UBIFS file-system description object
451  * @zbr: key and position of the node
452  * @node: node is returned here
453  *
454  * This function reads a node defined by @zbr from the flash media. Returns
455  * zero in case of success or a negative negative error code in case of
456  * failure.
457  */
ubifs_tnc_read_node(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * node)458 int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
459 			void *node)
460 {
461 	union ubifs_key key1, *key = &zbr->key;
462 	int err, type = key_type(c, key);
463 	struct ubifs_wbuf *wbuf;
464 
465 	/*
466 	 * 'zbr' has to point to on-flash node. The node may sit in a bud and
467 	 * may even be in a write buffer, so we have to take care about this.
468 	 */
469 	wbuf = ubifs_get_wbuf(c, zbr->lnum);
470 	if (wbuf)
471 		err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len,
472 					   zbr->lnum, zbr->offs);
473 	else
474 		err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum,
475 				      zbr->offs);
476 
477 	if (err) {
478 		dbg_tnck(key, "key ");
479 		return err;
480 	}
481 
482 	/* Make sure the key of the read node is correct */
483 	key_read(c, node + UBIFS_KEY_OFFSET, &key1);
484 	if (!keys_eq(c, key, &key1)) {
485 		ubifs_err("bad key in node at LEB %d:%d",
486 			  zbr->lnum, zbr->offs);
487 		dbg_tnck(key, "looked for key ");
488 		dbg_tnck(&key1, "but found node's key ");
489 		ubifs_dump_node(c, node);
490 		return -EINVAL;
491 	}
492 
493 	return 0;
494 }
495