• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *	Srikar Dronamraju
21  *	Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>	/* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>		/* anon_vma_prepare */
32 #include <linux/mmu_notifier.h>	/* set_pte_at_notify */
33 #include <linux/swap.h>		/* try_to_free_swap */
34 #include <linux/ptrace.h>	/* user_enable_single_step */
35 #include <linux/kdebug.h>	/* notifier mechanism */
36 #include "../../mm/internal.h"	/* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
40 
41 #include <linux/uprobes.h>
42 
43 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
45 
46 static struct rb_root uprobes_tree = RB_ROOT;
47 /*
48  * allows us to skip the uprobe_mmap if there are no uprobe events active
49  * at this time.  Probably a fine grained per inode count is better?
50  */
51 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
52 
53 static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */
54 
55 #define UPROBES_HASH_SZ	13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59 
60 static struct percpu_rw_semaphore dup_mmap_sem;
61 
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN	0
64 
65 struct uprobe {
66 	struct rb_node		rb_node;	/* node in the rb tree */
67 	atomic_t		ref;
68 	struct rw_semaphore	register_rwsem;
69 	struct rw_semaphore	consumer_rwsem;
70 	struct list_head	pending_list;
71 	struct uprobe_consumer	*consumers;
72 	struct inode		*inode;		/* Also hold a ref to inode */
73 	loff_t			offset;
74 	unsigned long		flags;
75 
76 	/*
77 	 * The generic code assumes that it has two members of unknown type
78 	 * owned by the arch-specific code:
79 	 *
80 	 * 	insn -	copy_insn() saves the original instruction here for
81 	 *		arch_uprobe_analyze_insn().
82 	 *
83 	 *	ixol -	potentially modified instruction to execute out of
84 	 *		line, copied to xol_area by xol_get_insn_slot().
85 	 */
86 	struct arch_uprobe	arch;
87 };
88 
89 struct return_instance {
90 	struct uprobe		*uprobe;
91 	unsigned long		func;
92 	unsigned long		orig_ret_vaddr; /* original return address */
93 	bool			chained;	/* true, if instance is nested */
94 
95 	struct return_instance	*next;		/* keep as stack */
96 };
97 
98 /*
99  * Execute out of line area: anonymous executable mapping installed
100  * by the probed task to execute the copy of the original instruction
101  * mangled by set_swbp().
102  *
103  * On a breakpoint hit, thread contests for a slot.  It frees the
104  * slot after singlestep. Currently a fixed number of slots are
105  * allocated.
106  */
107 struct xol_area {
108 	wait_queue_head_t 	wq;		/* if all slots are busy */
109 	atomic_t 		slot_count;	/* number of in-use slots */
110 	unsigned long 		*bitmap;	/* 0 = free slot */
111 	struct page 		*page;
112 
113 	/*
114 	 * We keep the vma's vm_start rather than a pointer to the vma
115 	 * itself.  The probed process or a naughty kernel module could make
116 	 * the vma go away, and we must handle that reasonably gracefully.
117 	 */
118 	unsigned long 		vaddr;		/* Page(s) of instruction slots */
119 };
120 
121 /*
122  * valid_vma: Verify if the specified vma is an executable vma
123  * Relax restrictions while unregistering: vm_flags might have
124  * changed after breakpoint was inserted.
125  *	- is_register: indicates if we are in register context.
126  *	- Return 1 if the specified virtual address is in an
127  *	  executable vma.
128  */
valid_vma(struct vm_area_struct * vma,bool is_register)129 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
130 {
131 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
132 
133 	if (is_register)
134 		flags |= VM_WRITE;
135 
136 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
137 }
138 
offset_to_vaddr(struct vm_area_struct * vma,loff_t offset)139 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
140 {
141 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
142 }
143 
vaddr_to_offset(struct vm_area_struct * vma,unsigned long vaddr)144 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
145 {
146 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
147 }
148 
149 /**
150  * __replace_page - replace page in vma by new page.
151  * based on replace_page in mm/ksm.c
152  *
153  * @vma:      vma that holds the pte pointing to page
154  * @addr:     address the old @page is mapped at
155  * @page:     the cowed page we are replacing by kpage
156  * @kpage:    the modified page we replace page by
157  *
158  * Returns 0 on success, -EFAULT on failure.
159  */
__replace_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,struct page * kpage)160 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
161 				struct page *page, struct page *kpage)
162 {
163 	struct mm_struct *mm = vma->vm_mm;
164 	spinlock_t *ptl;
165 	pte_t *ptep;
166 	int err;
167 	/* For mmu_notifiers */
168 	const unsigned long mmun_start = addr;
169 	const unsigned long mmun_end   = addr + PAGE_SIZE;
170 	struct mem_cgroup *memcg;
171 
172 	err = mem_cgroup_try_charge(kpage, vma->vm_mm, GFP_KERNEL, &memcg);
173 	if (err)
174 		return err;
175 
176 	/* For try_to_free_swap() and munlock_vma_page() below */
177 	lock_page(page);
178 
179 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
180 	err = -EAGAIN;
181 	ptep = page_check_address(page, mm, addr, &ptl, 0);
182 	if (!ptep) {
183 		mem_cgroup_cancel_charge(kpage, memcg);
184 		goto unlock;
185 	}
186 
187 	get_page(kpage);
188 	page_add_new_anon_rmap(kpage, vma, addr);
189 	mem_cgroup_commit_charge(kpage, memcg, false);
190 	lru_cache_add_active_or_unevictable(kpage, vma);
191 
192 	if (!PageAnon(page)) {
193 		dec_mm_counter(mm, MM_FILEPAGES);
194 		inc_mm_counter(mm, MM_ANONPAGES);
195 	}
196 
197 	flush_cache_page(vma, addr, pte_pfn(*ptep));
198 	ptep_clear_flush(vma, addr, ptep);
199 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
200 
201 	page_remove_rmap(page);
202 	if (!page_mapped(page))
203 		try_to_free_swap(page);
204 	pte_unmap_unlock(ptep, ptl);
205 
206 	if (vma->vm_flags & VM_LOCKED)
207 		munlock_vma_page(page);
208 	put_page(page);
209 
210 	err = 0;
211  unlock:
212 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
213 	unlock_page(page);
214 	return err;
215 }
216 
217 /**
218  * is_swbp_insn - check if instruction is breakpoint instruction.
219  * @insn: instruction to be checked.
220  * Default implementation of is_swbp_insn
221  * Returns true if @insn is a breakpoint instruction.
222  */
is_swbp_insn(uprobe_opcode_t * insn)223 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
224 {
225 	return *insn == UPROBE_SWBP_INSN;
226 }
227 
228 /**
229  * is_trap_insn - check if instruction is breakpoint instruction.
230  * @insn: instruction to be checked.
231  * Default implementation of is_trap_insn
232  * Returns true if @insn is a breakpoint instruction.
233  *
234  * This function is needed for the case where an architecture has multiple
235  * trap instructions (like powerpc).
236  */
is_trap_insn(uprobe_opcode_t * insn)237 bool __weak is_trap_insn(uprobe_opcode_t *insn)
238 {
239 	return is_swbp_insn(insn);
240 }
241 
copy_from_page(struct page * page,unsigned long vaddr,void * dst,int len)242 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
243 {
244 	void *kaddr = kmap_atomic(page);
245 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
246 	kunmap_atomic(kaddr);
247 }
248 
copy_to_page(struct page * page,unsigned long vaddr,const void * src,int len)249 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
250 {
251 	void *kaddr = kmap_atomic(page);
252 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
253 	kunmap_atomic(kaddr);
254 }
255 
verify_opcode(struct page * page,unsigned long vaddr,uprobe_opcode_t * new_opcode)256 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
257 {
258 	uprobe_opcode_t old_opcode;
259 	bool is_swbp;
260 
261 	/*
262 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
263 	 * We do not check if it is any other 'trap variant' which could
264 	 * be conditional trap instruction such as the one powerpc supports.
265 	 *
266 	 * The logic is that we do not care if the underlying instruction
267 	 * is a trap variant; uprobes always wins over any other (gdb)
268 	 * breakpoint.
269 	 */
270 	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
271 	is_swbp = is_swbp_insn(&old_opcode);
272 
273 	if (is_swbp_insn(new_opcode)) {
274 		if (is_swbp)		/* register: already installed? */
275 			return 0;
276 	} else {
277 		if (!is_swbp)		/* unregister: was it changed by us? */
278 			return 0;
279 	}
280 
281 	return 1;
282 }
283 
284 /*
285  * NOTE:
286  * Expect the breakpoint instruction to be the smallest size instruction for
287  * the architecture. If an arch has variable length instruction and the
288  * breakpoint instruction is not of the smallest length instruction
289  * supported by that architecture then we need to modify is_trap_at_addr and
290  * uprobe_write_opcode accordingly. This would never be a problem for archs
291  * that have fixed length instructions.
292  *
293  * uprobe_write_opcode - write the opcode at a given virtual address.
294  * @mm: the probed process address space.
295  * @vaddr: the virtual address to store the opcode.
296  * @opcode: opcode to be written at @vaddr.
297  *
298  * Called with mm->mmap_sem held for write.
299  * Return 0 (success) or a negative errno.
300  */
uprobe_write_opcode(struct mm_struct * mm,unsigned long vaddr,uprobe_opcode_t opcode)301 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
302 			uprobe_opcode_t opcode)
303 {
304 	struct page *old_page, *new_page;
305 	struct vm_area_struct *vma;
306 	int ret;
307 
308 retry:
309 	/* Read the page with vaddr into memory */
310 	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
311 	if (ret <= 0)
312 		return ret;
313 
314 	ret = verify_opcode(old_page, vaddr, &opcode);
315 	if (ret <= 0)
316 		goto put_old;
317 
318 	ret = anon_vma_prepare(vma);
319 	if (ret)
320 		goto put_old;
321 
322 	ret = -ENOMEM;
323 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
324 	if (!new_page)
325 		goto put_old;
326 
327 	__SetPageUptodate(new_page);
328 	copy_highpage(new_page, old_page);
329 	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
330 
331 	ret = __replace_page(vma, vaddr, old_page, new_page);
332 	page_cache_release(new_page);
333 put_old:
334 	put_page(old_page);
335 
336 	if (unlikely(ret == -EAGAIN))
337 		goto retry;
338 	return ret;
339 }
340 
341 /**
342  * set_swbp - store breakpoint at a given address.
343  * @auprobe: arch specific probepoint information.
344  * @mm: the probed process address space.
345  * @vaddr: the virtual address to insert the opcode.
346  *
347  * For mm @mm, store the breakpoint instruction at @vaddr.
348  * Return 0 (success) or a negative errno.
349  */
set_swbp(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)350 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
351 {
352 	return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
353 }
354 
355 /**
356  * set_orig_insn - Restore the original instruction.
357  * @mm: the probed process address space.
358  * @auprobe: arch specific probepoint information.
359  * @vaddr: the virtual address to insert the opcode.
360  *
361  * For mm @mm, restore the original opcode (opcode) at @vaddr.
362  * Return 0 (success) or a negative errno.
363  */
364 int __weak
set_orig_insn(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)365 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
366 {
367 	return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
368 }
369 
match_uprobe(struct uprobe * l,struct uprobe * r)370 static int match_uprobe(struct uprobe *l, struct uprobe *r)
371 {
372 	if (l->inode < r->inode)
373 		return -1;
374 
375 	if (l->inode > r->inode)
376 		return 1;
377 
378 	if (l->offset < r->offset)
379 		return -1;
380 
381 	if (l->offset > r->offset)
382 		return 1;
383 
384 	return 0;
385 }
386 
__find_uprobe(struct inode * inode,loff_t offset)387 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
388 {
389 	struct uprobe u = { .inode = inode, .offset = offset };
390 	struct rb_node *n = uprobes_tree.rb_node;
391 	struct uprobe *uprobe;
392 	int match;
393 
394 	while (n) {
395 		uprobe = rb_entry(n, struct uprobe, rb_node);
396 		match = match_uprobe(&u, uprobe);
397 		if (!match) {
398 			atomic_inc(&uprobe->ref);
399 			return uprobe;
400 		}
401 
402 		if (match < 0)
403 			n = n->rb_left;
404 		else
405 			n = n->rb_right;
406 	}
407 	return NULL;
408 }
409 
410 /*
411  * Find a uprobe corresponding to a given inode:offset
412  * Acquires uprobes_treelock
413  */
find_uprobe(struct inode * inode,loff_t offset)414 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
415 {
416 	struct uprobe *uprobe;
417 
418 	spin_lock(&uprobes_treelock);
419 	uprobe = __find_uprobe(inode, offset);
420 	spin_unlock(&uprobes_treelock);
421 
422 	return uprobe;
423 }
424 
__insert_uprobe(struct uprobe * uprobe)425 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
426 {
427 	struct rb_node **p = &uprobes_tree.rb_node;
428 	struct rb_node *parent = NULL;
429 	struct uprobe *u;
430 	int match;
431 
432 	while (*p) {
433 		parent = *p;
434 		u = rb_entry(parent, struct uprobe, rb_node);
435 		match = match_uprobe(uprobe, u);
436 		if (!match) {
437 			atomic_inc(&u->ref);
438 			return u;
439 		}
440 
441 		if (match < 0)
442 			p = &parent->rb_left;
443 		else
444 			p = &parent->rb_right;
445 
446 	}
447 
448 	u = NULL;
449 	rb_link_node(&uprobe->rb_node, parent, p);
450 	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
451 	/* get access + creation ref */
452 	atomic_set(&uprobe->ref, 2);
453 
454 	return u;
455 }
456 
457 /*
458  * Acquire uprobes_treelock.
459  * Matching uprobe already exists in rbtree;
460  *	increment (access refcount) and return the matching uprobe.
461  *
462  * No matching uprobe; insert the uprobe in rb_tree;
463  *	get a double refcount (access + creation) and return NULL.
464  */
insert_uprobe(struct uprobe * uprobe)465 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
466 {
467 	struct uprobe *u;
468 
469 	spin_lock(&uprobes_treelock);
470 	u = __insert_uprobe(uprobe);
471 	spin_unlock(&uprobes_treelock);
472 
473 	return u;
474 }
475 
put_uprobe(struct uprobe * uprobe)476 static void put_uprobe(struct uprobe *uprobe)
477 {
478 	if (atomic_dec_and_test(&uprobe->ref))
479 		kfree(uprobe);
480 }
481 
alloc_uprobe(struct inode * inode,loff_t offset)482 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
483 {
484 	struct uprobe *uprobe, *cur_uprobe;
485 
486 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
487 	if (!uprobe)
488 		return NULL;
489 
490 	uprobe->inode = igrab(inode);
491 	uprobe->offset = offset;
492 	init_rwsem(&uprobe->register_rwsem);
493 	init_rwsem(&uprobe->consumer_rwsem);
494 
495 	/* add to uprobes_tree, sorted on inode:offset */
496 	cur_uprobe = insert_uprobe(uprobe);
497 	/* a uprobe exists for this inode:offset combination */
498 	if (cur_uprobe) {
499 		kfree(uprobe);
500 		uprobe = cur_uprobe;
501 		iput(inode);
502 	}
503 
504 	return uprobe;
505 }
506 
consumer_add(struct uprobe * uprobe,struct uprobe_consumer * uc)507 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
508 {
509 	down_write(&uprobe->consumer_rwsem);
510 	uc->next = uprobe->consumers;
511 	uprobe->consumers = uc;
512 	up_write(&uprobe->consumer_rwsem);
513 }
514 
515 /*
516  * For uprobe @uprobe, delete the consumer @uc.
517  * Return true if the @uc is deleted successfully
518  * or return false.
519  */
consumer_del(struct uprobe * uprobe,struct uprobe_consumer * uc)520 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
521 {
522 	struct uprobe_consumer **con;
523 	bool ret = false;
524 
525 	down_write(&uprobe->consumer_rwsem);
526 	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
527 		if (*con == uc) {
528 			*con = uc->next;
529 			ret = true;
530 			break;
531 		}
532 	}
533 	up_write(&uprobe->consumer_rwsem);
534 
535 	return ret;
536 }
537 
__copy_insn(struct address_space * mapping,struct file * filp,void * insn,int nbytes,loff_t offset)538 static int __copy_insn(struct address_space *mapping, struct file *filp,
539 			void *insn, int nbytes, loff_t offset)
540 {
541 	struct page *page;
542 	/*
543 	 * Ensure that the page that has the original instruction is populated
544 	 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
545 	 * see uprobe_register().
546 	 */
547 	if (mapping->a_ops->readpage)
548 		page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
549 	else
550 		page = shmem_read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT);
551 	if (IS_ERR(page))
552 		return PTR_ERR(page);
553 
554 	copy_from_page(page, offset, insn, nbytes);
555 	page_cache_release(page);
556 
557 	return 0;
558 }
559 
copy_insn(struct uprobe * uprobe,struct file * filp)560 static int copy_insn(struct uprobe *uprobe, struct file *filp)
561 {
562 	struct address_space *mapping = uprobe->inode->i_mapping;
563 	loff_t offs = uprobe->offset;
564 	void *insn = &uprobe->arch.insn;
565 	int size = sizeof(uprobe->arch.insn);
566 	int len, err = -EIO;
567 
568 	/* Copy only available bytes, -EIO if nothing was read */
569 	do {
570 		if (offs >= i_size_read(uprobe->inode))
571 			break;
572 
573 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
574 		err = __copy_insn(mapping, filp, insn, len, offs);
575 		if (err)
576 			break;
577 
578 		insn += len;
579 		offs += len;
580 		size -= len;
581 	} while (size);
582 
583 	return err;
584 }
585 
prepare_uprobe(struct uprobe * uprobe,struct file * file,struct mm_struct * mm,unsigned long vaddr)586 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
587 				struct mm_struct *mm, unsigned long vaddr)
588 {
589 	int ret = 0;
590 
591 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
592 		return ret;
593 
594 	/* TODO: move this into _register, until then we abuse this sem. */
595 	down_write(&uprobe->consumer_rwsem);
596 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
597 		goto out;
598 
599 	ret = copy_insn(uprobe, file);
600 	if (ret)
601 		goto out;
602 
603 	ret = -ENOTSUPP;
604 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
605 		goto out;
606 
607 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
608 	if (ret)
609 		goto out;
610 
611 	/* uprobe_write_opcode() assumes we don't cross page boundary */
612 	BUG_ON((uprobe->offset & ~PAGE_MASK) +
613 			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
614 
615 	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
616 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
617 
618  out:
619 	up_write(&uprobe->consumer_rwsem);
620 
621 	return ret;
622 }
623 
consumer_filter(struct uprobe_consumer * uc,enum uprobe_filter_ctx ctx,struct mm_struct * mm)624 static inline bool consumer_filter(struct uprobe_consumer *uc,
625 				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
626 {
627 	return !uc->filter || uc->filter(uc, ctx, mm);
628 }
629 
filter_chain(struct uprobe * uprobe,enum uprobe_filter_ctx ctx,struct mm_struct * mm)630 static bool filter_chain(struct uprobe *uprobe,
631 			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
632 {
633 	struct uprobe_consumer *uc;
634 	bool ret = false;
635 
636 	down_read(&uprobe->consumer_rwsem);
637 	for (uc = uprobe->consumers; uc; uc = uc->next) {
638 		ret = consumer_filter(uc, ctx, mm);
639 		if (ret)
640 			break;
641 	}
642 	up_read(&uprobe->consumer_rwsem);
643 
644 	return ret;
645 }
646 
647 static int
install_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long vaddr)648 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
649 			struct vm_area_struct *vma, unsigned long vaddr)
650 {
651 	bool first_uprobe;
652 	int ret;
653 
654 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
655 	if (ret)
656 		return ret;
657 
658 	/*
659 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
660 	 * the task can hit this breakpoint right after __replace_page().
661 	 */
662 	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
663 	if (first_uprobe)
664 		set_bit(MMF_HAS_UPROBES, &mm->flags);
665 
666 	ret = set_swbp(&uprobe->arch, mm, vaddr);
667 	if (!ret)
668 		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
669 	else if (first_uprobe)
670 		clear_bit(MMF_HAS_UPROBES, &mm->flags);
671 
672 	return ret;
673 }
674 
675 static int
remove_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,unsigned long vaddr)676 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
677 {
678 	set_bit(MMF_RECALC_UPROBES, &mm->flags);
679 	return set_orig_insn(&uprobe->arch, mm, vaddr);
680 }
681 
uprobe_is_active(struct uprobe * uprobe)682 static inline bool uprobe_is_active(struct uprobe *uprobe)
683 {
684 	return !RB_EMPTY_NODE(&uprobe->rb_node);
685 }
686 /*
687  * There could be threads that have already hit the breakpoint. They
688  * will recheck the current insn and restart if find_uprobe() fails.
689  * See find_active_uprobe().
690  */
delete_uprobe(struct uprobe * uprobe)691 static void delete_uprobe(struct uprobe *uprobe)
692 {
693 	if (WARN_ON(!uprobe_is_active(uprobe)))
694 		return;
695 
696 	spin_lock(&uprobes_treelock);
697 	rb_erase(&uprobe->rb_node, &uprobes_tree);
698 	spin_unlock(&uprobes_treelock);
699 	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
700 	iput(uprobe->inode);
701 	put_uprobe(uprobe);
702 }
703 
704 struct map_info {
705 	struct map_info *next;
706 	struct mm_struct *mm;
707 	unsigned long vaddr;
708 };
709 
free_map_info(struct map_info * info)710 static inline struct map_info *free_map_info(struct map_info *info)
711 {
712 	struct map_info *next = info->next;
713 	kfree(info);
714 	return next;
715 }
716 
717 static struct map_info *
build_map_info(struct address_space * mapping,loff_t offset,bool is_register)718 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
719 {
720 	unsigned long pgoff = offset >> PAGE_SHIFT;
721 	struct vm_area_struct *vma;
722 	struct map_info *curr = NULL;
723 	struct map_info *prev = NULL;
724 	struct map_info *info;
725 	int more = 0;
726 
727  again:
728 	mutex_lock(&mapping->i_mmap_mutex);
729 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
730 		if (!valid_vma(vma, is_register))
731 			continue;
732 
733 		if (!prev && !more) {
734 			/*
735 			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
736 			 * reclaim. This is optimistic, no harm done if it fails.
737 			 */
738 			prev = kmalloc(sizeof(struct map_info),
739 					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
740 			if (prev)
741 				prev->next = NULL;
742 		}
743 		if (!prev) {
744 			more++;
745 			continue;
746 		}
747 
748 		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
749 			continue;
750 
751 		info = prev;
752 		prev = prev->next;
753 		info->next = curr;
754 		curr = info;
755 
756 		info->mm = vma->vm_mm;
757 		info->vaddr = offset_to_vaddr(vma, offset);
758 	}
759 	mutex_unlock(&mapping->i_mmap_mutex);
760 
761 	if (!more)
762 		goto out;
763 
764 	prev = curr;
765 	while (curr) {
766 		mmput(curr->mm);
767 		curr = curr->next;
768 	}
769 
770 	do {
771 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
772 		if (!info) {
773 			curr = ERR_PTR(-ENOMEM);
774 			goto out;
775 		}
776 		info->next = prev;
777 		prev = info;
778 	} while (--more);
779 
780 	goto again;
781  out:
782 	while (prev)
783 		prev = free_map_info(prev);
784 	return curr;
785 }
786 
787 static int
register_for_each_vma(struct uprobe * uprobe,struct uprobe_consumer * new)788 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
789 {
790 	bool is_register = !!new;
791 	struct map_info *info;
792 	int err = 0;
793 
794 	percpu_down_write(&dup_mmap_sem);
795 	info = build_map_info(uprobe->inode->i_mapping,
796 					uprobe->offset, is_register);
797 	if (IS_ERR(info)) {
798 		err = PTR_ERR(info);
799 		goto out;
800 	}
801 
802 	while (info) {
803 		struct mm_struct *mm = info->mm;
804 		struct vm_area_struct *vma;
805 
806 		if (err && is_register)
807 			goto free;
808 
809 		down_write(&mm->mmap_sem);
810 		vma = find_vma(mm, info->vaddr);
811 		if (!vma || !valid_vma(vma, is_register) ||
812 		    file_inode(vma->vm_file) != uprobe->inode)
813 			goto unlock;
814 
815 		if (vma->vm_start > info->vaddr ||
816 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
817 			goto unlock;
818 
819 		if (is_register) {
820 			/* consult only the "caller", new consumer. */
821 			if (consumer_filter(new,
822 					UPROBE_FILTER_REGISTER, mm))
823 				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
824 		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
825 			if (!filter_chain(uprobe,
826 					UPROBE_FILTER_UNREGISTER, mm))
827 				err |= remove_breakpoint(uprobe, mm, info->vaddr);
828 		}
829 
830  unlock:
831 		up_write(&mm->mmap_sem);
832  free:
833 		mmput(mm);
834 		info = free_map_info(info);
835 	}
836  out:
837 	percpu_up_write(&dup_mmap_sem);
838 	return err;
839 }
840 
__uprobe_register(struct uprobe * uprobe,struct uprobe_consumer * uc)841 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
842 {
843 	consumer_add(uprobe, uc);
844 	return register_for_each_vma(uprobe, uc);
845 }
846 
__uprobe_unregister(struct uprobe * uprobe,struct uprobe_consumer * uc)847 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
848 {
849 	int err;
850 
851 	if (WARN_ON(!consumer_del(uprobe, uc)))
852 		return;
853 
854 	err = register_for_each_vma(uprobe, NULL);
855 	/* TODO : cant unregister? schedule a worker thread */
856 	if (!uprobe->consumers && !err)
857 		delete_uprobe(uprobe);
858 }
859 
860 /*
861  * uprobe_register - register a probe
862  * @inode: the file in which the probe has to be placed.
863  * @offset: offset from the start of the file.
864  * @uc: information on howto handle the probe..
865  *
866  * Apart from the access refcount, uprobe_register() takes a creation
867  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
868  * inserted into the rbtree (i.e first consumer for a @inode:@offset
869  * tuple).  Creation refcount stops uprobe_unregister from freeing the
870  * @uprobe even before the register operation is complete. Creation
871  * refcount is released when the last @uc for the @uprobe
872  * unregisters.
873  *
874  * Return errno if it cannot successully install probes
875  * else return 0 (success)
876  */
uprobe_register(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)877 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
878 {
879 	struct uprobe *uprobe;
880 	int ret;
881 
882 	/* Uprobe must have at least one set consumer */
883 	if (!uc->handler && !uc->ret_handler)
884 		return -EINVAL;
885 
886 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
887 	if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
888 		return -EIO;
889 	/* Racy, just to catch the obvious mistakes */
890 	if (offset > i_size_read(inode))
891 		return -EINVAL;
892 
893  retry:
894 	uprobe = alloc_uprobe(inode, offset);
895 	if (!uprobe)
896 		return -ENOMEM;
897 	/*
898 	 * We can race with uprobe_unregister()->delete_uprobe().
899 	 * Check uprobe_is_active() and retry if it is false.
900 	 */
901 	down_write(&uprobe->register_rwsem);
902 	ret = -EAGAIN;
903 	if (likely(uprobe_is_active(uprobe))) {
904 		ret = __uprobe_register(uprobe, uc);
905 		if (ret)
906 			__uprobe_unregister(uprobe, uc);
907 	}
908 	up_write(&uprobe->register_rwsem);
909 	put_uprobe(uprobe);
910 
911 	if (unlikely(ret == -EAGAIN))
912 		goto retry;
913 	return ret;
914 }
915 EXPORT_SYMBOL_GPL(uprobe_register);
916 
917 /*
918  * uprobe_apply - unregister a already registered probe.
919  * @inode: the file in which the probe has to be removed.
920  * @offset: offset from the start of the file.
921  * @uc: consumer which wants to add more or remove some breakpoints
922  * @add: add or remove the breakpoints
923  */
uprobe_apply(struct inode * inode,loff_t offset,struct uprobe_consumer * uc,bool add)924 int uprobe_apply(struct inode *inode, loff_t offset,
925 			struct uprobe_consumer *uc, bool add)
926 {
927 	struct uprobe *uprobe;
928 	struct uprobe_consumer *con;
929 	int ret = -ENOENT;
930 
931 	uprobe = find_uprobe(inode, offset);
932 	if (WARN_ON(!uprobe))
933 		return ret;
934 
935 	down_write(&uprobe->register_rwsem);
936 	for (con = uprobe->consumers; con && con != uc ; con = con->next)
937 		;
938 	if (con)
939 		ret = register_for_each_vma(uprobe, add ? uc : NULL);
940 	up_write(&uprobe->register_rwsem);
941 	put_uprobe(uprobe);
942 
943 	return ret;
944 }
945 
946 /*
947  * uprobe_unregister - unregister a already registered probe.
948  * @inode: the file in which the probe has to be removed.
949  * @offset: offset from the start of the file.
950  * @uc: identify which probe if multiple probes are colocated.
951  */
uprobe_unregister(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)952 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
953 {
954 	struct uprobe *uprobe;
955 
956 	uprobe = find_uprobe(inode, offset);
957 	if (WARN_ON(!uprobe))
958 		return;
959 
960 	down_write(&uprobe->register_rwsem);
961 	__uprobe_unregister(uprobe, uc);
962 	up_write(&uprobe->register_rwsem);
963 	put_uprobe(uprobe);
964 }
965 EXPORT_SYMBOL_GPL(uprobe_unregister);
966 
unapply_uprobe(struct uprobe * uprobe,struct mm_struct * mm)967 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
968 {
969 	struct vm_area_struct *vma;
970 	int err = 0;
971 
972 	down_read(&mm->mmap_sem);
973 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
974 		unsigned long vaddr;
975 		loff_t offset;
976 
977 		if (!valid_vma(vma, false) ||
978 		    file_inode(vma->vm_file) != uprobe->inode)
979 			continue;
980 
981 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
982 		if (uprobe->offset <  offset ||
983 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
984 			continue;
985 
986 		vaddr = offset_to_vaddr(vma, uprobe->offset);
987 		err |= remove_breakpoint(uprobe, mm, vaddr);
988 	}
989 	up_read(&mm->mmap_sem);
990 
991 	return err;
992 }
993 
994 static struct rb_node *
find_node_in_range(struct inode * inode,loff_t min,loff_t max)995 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
996 {
997 	struct rb_node *n = uprobes_tree.rb_node;
998 
999 	while (n) {
1000 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1001 
1002 		if (inode < u->inode) {
1003 			n = n->rb_left;
1004 		} else if (inode > u->inode) {
1005 			n = n->rb_right;
1006 		} else {
1007 			if (max < u->offset)
1008 				n = n->rb_left;
1009 			else if (min > u->offset)
1010 				n = n->rb_right;
1011 			else
1012 				break;
1013 		}
1014 	}
1015 
1016 	return n;
1017 }
1018 
1019 /*
1020  * For a given range in vma, build a list of probes that need to be inserted.
1021  */
build_probe_list(struct inode * inode,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * head)1022 static void build_probe_list(struct inode *inode,
1023 				struct vm_area_struct *vma,
1024 				unsigned long start, unsigned long end,
1025 				struct list_head *head)
1026 {
1027 	loff_t min, max;
1028 	struct rb_node *n, *t;
1029 	struct uprobe *u;
1030 
1031 	INIT_LIST_HEAD(head);
1032 	min = vaddr_to_offset(vma, start);
1033 	max = min + (end - start) - 1;
1034 
1035 	spin_lock(&uprobes_treelock);
1036 	n = find_node_in_range(inode, min, max);
1037 	if (n) {
1038 		for (t = n; t; t = rb_prev(t)) {
1039 			u = rb_entry(t, struct uprobe, rb_node);
1040 			if (u->inode != inode || u->offset < min)
1041 				break;
1042 			list_add(&u->pending_list, head);
1043 			atomic_inc(&u->ref);
1044 		}
1045 		for (t = n; (t = rb_next(t)); ) {
1046 			u = rb_entry(t, struct uprobe, rb_node);
1047 			if (u->inode != inode || u->offset > max)
1048 				break;
1049 			list_add(&u->pending_list, head);
1050 			atomic_inc(&u->ref);
1051 		}
1052 	}
1053 	spin_unlock(&uprobes_treelock);
1054 }
1055 
1056 /*
1057  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1058  *
1059  * Currently we ignore all errors and always return 0, the callers
1060  * can't handle the failure anyway.
1061  */
uprobe_mmap(struct vm_area_struct * vma)1062 int uprobe_mmap(struct vm_area_struct *vma)
1063 {
1064 	struct list_head tmp_list;
1065 	struct uprobe *uprobe, *u;
1066 	struct inode *inode;
1067 
1068 	if (no_uprobe_events() || !valid_vma(vma, true))
1069 		return 0;
1070 
1071 	inode = file_inode(vma->vm_file);
1072 	if (!inode)
1073 		return 0;
1074 
1075 	mutex_lock(uprobes_mmap_hash(inode));
1076 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1077 	/*
1078 	 * We can race with uprobe_unregister(), this uprobe can be already
1079 	 * removed. But in this case filter_chain() must return false, all
1080 	 * consumers have gone away.
1081 	 */
1082 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1083 		if (!fatal_signal_pending(current) &&
1084 		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1085 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1086 			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1087 		}
1088 		put_uprobe(uprobe);
1089 	}
1090 	mutex_unlock(uprobes_mmap_hash(inode));
1091 
1092 	return 0;
1093 }
1094 
1095 static bool
vma_has_uprobes(struct vm_area_struct * vma,unsigned long start,unsigned long end)1096 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1097 {
1098 	loff_t min, max;
1099 	struct inode *inode;
1100 	struct rb_node *n;
1101 
1102 	inode = file_inode(vma->vm_file);
1103 
1104 	min = vaddr_to_offset(vma, start);
1105 	max = min + (end - start) - 1;
1106 
1107 	spin_lock(&uprobes_treelock);
1108 	n = find_node_in_range(inode, min, max);
1109 	spin_unlock(&uprobes_treelock);
1110 
1111 	return !!n;
1112 }
1113 
1114 /*
1115  * Called in context of a munmap of a vma.
1116  */
uprobe_munmap(struct vm_area_struct * vma,unsigned long start,unsigned long end)1117 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1118 {
1119 	if (no_uprobe_events() || !valid_vma(vma, false))
1120 		return;
1121 
1122 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1123 		return;
1124 
1125 	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1126 	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1127 		return;
1128 
1129 	if (vma_has_uprobes(vma, start, end))
1130 		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1131 }
1132 
1133 /* Slot allocation for XOL */
xol_add_vma(struct mm_struct * mm,struct xol_area * area)1134 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1135 {
1136 	int ret = -EALREADY;
1137 
1138 	down_write(&mm->mmap_sem);
1139 	if (mm->uprobes_state.xol_area)
1140 		goto fail;
1141 
1142 	if (!area->vaddr) {
1143 		/* Try to map as high as possible, this is only a hint. */
1144 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1145 						PAGE_SIZE, 0, 0);
1146 		if (area->vaddr & ~PAGE_MASK) {
1147 			ret = area->vaddr;
1148 			goto fail;
1149 		}
1150 	}
1151 
1152 	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1153 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1154 	if (ret)
1155 		goto fail;
1156 
1157 	smp_wmb();	/* pairs with get_xol_area() */
1158 	mm->uprobes_state.xol_area = area;
1159  fail:
1160 	up_write(&mm->mmap_sem);
1161 
1162 	return ret;
1163 }
1164 
__create_xol_area(unsigned long vaddr)1165 static struct xol_area *__create_xol_area(unsigned long vaddr)
1166 {
1167 	struct mm_struct *mm = current->mm;
1168 	uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1169 	struct xol_area *area;
1170 
1171 	area = kmalloc(sizeof(*area), GFP_KERNEL);
1172 	if (unlikely(!area))
1173 		goto out;
1174 
1175 	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1176 	if (!area->bitmap)
1177 		goto free_area;
1178 
1179 	area->page = alloc_page(GFP_HIGHUSER);
1180 	if (!area->page)
1181 		goto free_bitmap;
1182 
1183 	area->vaddr = vaddr;
1184 	init_waitqueue_head(&area->wq);
1185 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1186 	set_bit(0, area->bitmap);
1187 	atomic_set(&area->slot_count, 1);
1188 	copy_to_page(area->page, 0, &insn, UPROBE_SWBP_INSN_SIZE);
1189 
1190 	if (!xol_add_vma(mm, area))
1191 		return area;
1192 
1193 	__free_page(area->page);
1194  free_bitmap:
1195 	kfree(area->bitmap);
1196  free_area:
1197 	kfree(area);
1198  out:
1199 	return NULL;
1200 }
1201 
1202 /*
1203  * get_xol_area - Allocate process's xol_area if necessary.
1204  * This area will be used for storing instructions for execution out of line.
1205  *
1206  * Returns the allocated area or NULL.
1207  */
get_xol_area(void)1208 static struct xol_area *get_xol_area(void)
1209 {
1210 	struct mm_struct *mm = current->mm;
1211 	struct xol_area *area;
1212 
1213 	if (!mm->uprobes_state.xol_area)
1214 		__create_xol_area(0);
1215 
1216 	area = mm->uprobes_state.xol_area;
1217 	smp_read_barrier_depends();	/* pairs with wmb in xol_add_vma() */
1218 	return area;
1219 }
1220 
1221 /*
1222  * uprobe_clear_state - Free the area allocated for slots.
1223  */
uprobe_clear_state(struct mm_struct * mm)1224 void uprobe_clear_state(struct mm_struct *mm)
1225 {
1226 	struct xol_area *area = mm->uprobes_state.xol_area;
1227 
1228 	if (!area)
1229 		return;
1230 
1231 	put_page(area->page);
1232 	kfree(area->bitmap);
1233 	kfree(area);
1234 }
1235 
uprobe_start_dup_mmap(void)1236 void uprobe_start_dup_mmap(void)
1237 {
1238 	percpu_down_read(&dup_mmap_sem);
1239 }
1240 
uprobe_end_dup_mmap(void)1241 void uprobe_end_dup_mmap(void)
1242 {
1243 	percpu_up_read(&dup_mmap_sem);
1244 }
1245 
uprobe_dup_mmap(struct mm_struct * oldmm,struct mm_struct * newmm)1246 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1247 {
1248 	newmm->uprobes_state.xol_area = NULL;
1249 
1250 	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1251 		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1252 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1253 		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1254 	}
1255 }
1256 
1257 /*
1258  *  - search for a free slot.
1259  */
xol_take_insn_slot(struct xol_area * area)1260 static unsigned long xol_take_insn_slot(struct xol_area *area)
1261 {
1262 	unsigned long slot_addr;
1263 	int slot_nr;
1264 
1265 	do {
1266 		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1267 		if (slot_nr < UINSNS_PER_PAGE) {
1268 			if (!test_and_set_bit(slot_nr, area->bitmap))
1269 				break;
1270 
1271 			slot_nr = UINSNS_PER_PAGE;
1272 			continue;
1273 		}
1274 		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1275 	} while (slot_nr >= UINSNS_PER_PAGE);
1276 
1277 	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1278 	atomic_inc(&area->slot_count);
1279 
1280 	return slot_addr;
1281 }
1282 
1283 /*
1284  * xol_get_insn_slot - allocate a slot for xol.
1285  * Returns the allocated slot address or 0.
1286  */
xol_get_insn_slot(struct uprobe * uprobe)1287 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1288 {
1289 	struct xol_area *area;
1290 	unsigned long xol_vaddr;
1291 
1292 	area = get_xol_area();
1293 	if (!area)
1294 		return 0;
1295 
1296 	xol_vaddr = xol_take_insn_slot(area);
1297 	if (unlikely(!xol_vaddr))
1298 		return 0;
1299 
1300 	arch_uprobe_copy_ixol(area->page, xol_vaddr,
1301 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1302 
1303 	return xol_vaddr;
1304 }
1305 
1306 /*
1307  * xol_free_insn_slot - If slot was earlier allocated by
1308  * @xol_get_insn_slot(), make the slot available for
1309  * subsequent requests.
1310  */
xol_free_insn_slot(struct task_struct * tsk)1311 static void xol_free_insn_slot(struct task_struct *tsk)
1312 {
1313 	struct xol_area *area;
1314 	unsigned long vma_end;
1315 	unsigned long slot_addr;
1316 
1317 	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1318 		return;
1319 
1320 	slot_addr = tsk->utask->xol_vaddr;
1321 	if (unlikely(!slot_addr))
1322 		return;
1323 
1324 	area = tsk->mm->uprobes_state.xol_area;
1325 	vma_end = area->vaddr + PAGE_SIZE;
1326 	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1327 		unsigned long offset;
1328 		int slot_nr;
1329 
1330 		offset = slot_addr - area->vaddr;
1331 		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1332 		if (slot_nr >= UINSNS_PER_PAGE)
1333 			return;
1334 
1335 		clear_bit(slot_nr, area->bitmap);
1336 		atomic_dec(&area->slot_count);
1337 		if (waitqueue_active(&area->wq))
1338 			wake_up(&area->wq);
1339 
1340 		tsk->utask->xol_vaddr = 0;
1341 	}
1342 }
1343 
arch_uprobe_copy_ixol(struct page * page,unsigned long vaddr,void * src,unsigned long len)1344 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1345 				  void *src, unsigned long len)
1346 {
1347 	/* Initialize the slot */
1348 	copy_to_page(page, vaddr, src, len);
1349 
1350 	/*
1351 	 * We probably need flush_icache_user_range() but it needs vma.
1352 	 * This should work on most of architectures by default. If
1353 	 * architecture needs to do something different it can define
1354 	 * its own version of the function.
1355 	 */
1356 	flush_dcache_page(page);
1357 }
1358 
1359 /**
1360  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1361  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1362  * instruction.
1363  * Return the address of the breakpoint instruction.
1364  */
uprobe_get_swbp_addr(struct pt_regs * regs)1365 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1366 {
1367 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1368 }
1369 
uprobe_get_trap_addr(struct pt_regs * regs)1370 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1371 {
1372 	struct uprobe_task *utask = current->utask;
1373 
1374 	if (unlikely(utask && utask->active_uprobe))
1375 		return utask->vaddr;
1376 
1377 	return instruction_pointer(regs);
1378 }
1379 
1380 /*
1381  * Called with no locks held.
1382  * Called in context of a exiting or a exec-ing thread.
1383  */
uprobe_free_utask(struct task_struct * t)1384 void uprobe_free_utask(struct task_struct *t)
1385 {
1386 	struct uprobe_task *utask = t->utask;
1387 	struct return_instance *ri, *tmp;
1388 
1389 	if (!utask)
1390 		return;
1391 
1392 	if (utask->active_uprobe)
1393 		put_uprobe(utask->active_uprobe);
1394 
1395 	ri = utask->return_instances;
1396 	while (ri) {
1397 		tmp = ri;
1398 		ri = ri->next;
1399 
1400 		put_uprobe(tmp->uprobe);
1401 		kfree(tmp);
1402 	}
1403 
1404 	xol_free_insn_slot(t);
1405 	kfree(utask);
1406 	t->utask = NULL;
1407 }
1408 
1409 /*
1410  * Allocate a uprobe_task object for the task if if necessary.
1411  * Called when the thread hits a breakpoint.
1412  *
1413  * Returns:
1414  * - pointer to new uprobe_task on success
1415  * - NULL otherwise
1416  */
get_utask(void)1417 static struct uprobe_task *get_utask(void)
1418 {
1419 	if (!current->utask)
1420 		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1421 	return current->utask;
1422 }
1423 
dup_utask(struct task_struct * t,struct uprobe_task * o_utask)1424 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1425 {
1426 	struct uprobe_task *n_utask;
1427 	struct return_instance **p, *o, *n;
1428 
1429 	n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1430 	if (!n_utask)
1431 		return -ENOMEM;
1432 	t->utask = n_utask;
1433 
1434 	p = &n_utask->return_instances;
1435 	for (o = o_utask->return_instances; o; o = o->next) {
1436 		n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1437 		if (!n)
1438 			return -ENOMEM;
1439 
1440 		*n = *o;
1441 		atomic_inc(&n->uprobe->ref);
1442 		n->next = NULL;
1443 
1444 		*p = n;
1445 		p = &n->next;
1446 		n_utask->depth++;
1447 	}
1448 
1449 	return 0;
1450 }
1451 
uprobe_warn(struct task_struct * t,const char * msg)1452 static void uprobe_warn(struct task_struct *t, const char *msg)
1453 {
1454 	pr_warn("uprobe: %s:%d failed to %s\n",
1455 			current->comm, current->pid, msg);
1456 }
1457 
dup_xol_work(struct callback_head * work)1458 static void dup_xol_work(struct callback_head *work)
1459 {
1460 	if (current->flags & PF_EXITING)
1461 		return;
1462 
1463 	if (!__create_xol_area(current->utask->dup_xol_addr))
1464 		uprobe_warn(current, "dup xol area");
1465 }
1466 
1467 /*
1468  * Called in context of a new clone/fork from copy_process.
1469  */
uprobe_copy_process(struct task_struct * t,unsigned long flags)1470 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1471 {
1472 	struct uprobe_task *utask = current->utask;
1473 	struct mm_struct *mm = current->mm;
1474 	struct xol_area *area;
1475 
1476 	t->utask = NULL;
1477 
1478 	if (!utask || !utask->return_instances)
1479 		return;
1480 
1481 	if (mm == t->mm && !(flags & CLONE_VFORK))
1482 		return;
1483 
1484 	if (dup_utask(t, utask))
1485 		return uprobe_warn(t, "dup ret instances");
1486 
1487 	/* The task can fork() after dup_xol_work() fails */
1488 	area = mm->uprobes_state.xol_area;
1489 	if (!area)
1490 		return uprobe_warn(t, "dup xol area");
1491 
1492 	if (mm == t->mm)
1493 		return;
1494 
1495 	t->utask->dup_xol_addr = area->vaddr;
1496 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1497 	task_work_add(t, &t->utask->dup_xol_work, true);
1498 }
1499 
1500 /*
1501  * Current area->vaddr notion assume the trampoline address is always
1502  * equal area->vaddr.
1503  *
1504  * Returns -1 in case the xol_area is not allocated.
1505  */
get_trampoline_vaddr(void)1506 static unsigned long get_trampoline_vaddr(void)
1507 {
1508 	struct xol_area *area;
1509 	unsigned long trampoline_vaddr = -1;
1510 
1511 	area = current->mm->uprobes_state.xol_area;
1512 	smp_read_barrier_depends();
1513 	if (area)
1514 		trampoline_vaddr = area->vaddr;
1515 
1516 	return trampoline_vaddr;
1517 }
1518 
prepare_uretprobe(struct uprobe * uprobe,struct pt_regs * regs)1519 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1520 {
1521 	struct return_instance *ri;
1522 	struct uprobe_task *utask;
1523 	unsigned long orig_ret_vaddr, trampoline_vaddr;
1524 	bool chained = false;
1525 
1526 	if (!get_xol_area())
1527 		return;
1528 
1529 	utask = get_utask();
1530 	if (!utask)
1531 		return;
1532 
1533 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
1534 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1535 				" nestedness limit pid/tgid=%d/%d\n",
1536 				current->pid, current->tgid);
1537 		return;
1538 	}
1539 
1540 	ri = kzalloc(sizeof(struct return_instance), GFP_KERNEL);
1541 	if (!ri)
1542 		goto fail;
1543 
1544 	trampoline_vaddr = get_trampoline_vaddr();
1545 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1546 	if (orig_ret_vaddr == -1)
1547 		goto fail;
1548 
1549 	/*
1550 	 * We don't want to keep trampoline address in stack, rather keep the
1551 	 * original return address of first caller thru all the consequent
1552 	 * instances. This also makes breakpoint unwrapping easier.
1553 	 */
1554 	if (orig_ret_vaddr == trampoline_vaddr) {
1555 		if (!utask->return_instances) {
1556 			/*
1557 			 * This situation is not possible. Likely we have an
1558 			 * attack from user-space.
1559 			 */
1560 			pr_warn("uprobe: unable to set uretprobe pid/tgid=%d/%d\n",
1561 						current->pid, current->tgid);
1562 			goto fail;
1563 		}
1564 
1565 		chained = true;
1566 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1567 	}
1568 
1569 	atomic_inc(&uprobe->ref);
1570 	ri->uprobe = uprobe;
1571 	ri->func = instruction_pointer(regs);
1572 	ri->orig_ret_vaddr = orig_ret_vaddr;
1573 	ri->chained = chained;
1574 
1575 	utask->depth++;
1576 
1577 	/* add instance to the stack */
1578 	ri->next = utask->return_instances;
1579 	utask->return_instances = ri;
1580 
1581 	return;
1582 
1583  fail:
1584 	kfree(ri);
1585 }
1586 
1587 /* Prepare to single-step probed instruction out of line. */
1588 static int
pre_ssout(struct uprobe * uprobe,struct pt_regs * regs,unsigned long bp_vaddr)1589 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1590 {
1591 	struct uprobe_task *utask;
1592 	unsigned long xol_vaddr;
1593 	int err;
1594 
1595 	utask = get_utask();
1596 	if (!utask)
1597 		return -ENOMEM;
1598 
1599 	xol_vaddr = xol_get_insn_slot(uprobe);
1600 	if (!xol_vaddr)
1601 		return -ENOMEM;
1602 
1603 	utask->xol_vaddr = xol_vaddr;
1604 	utask->vaddr = bp_vaddr;
1605 
1606 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1607 	if (unlikely(err)) {
1608 		xol_free_insn_slot(current);
1609 		return err;
1610 	}
1611 
1612 	utask->active_uprobe = uprobe;
1613 	utask->state = UTASK_SSTEP;
1614 	return 0;
1615 }
1616 
1617 /*
1618  * If we are singlestepping, then ensure this thread is not connected to
1619  * non-fatal signals until completion of singlestep.  When xol insn itself
1620  * triggers the signal,  restart the original insn even if the task is
1621  * already SIGKILL'ed (since coredump should report the correct ip).  This
1622  * is even more important if the task has a handler for SIGSEGV/etc, The
1623  * _same_ instruction should be repeated again after return from the signal
1624  * handler, and SSTEP can never finish in this case.
1625  */
uprobe_deny_signal(void)1626 bool uprobe_deny_signal(void)
1627 {
1628 	struct task_struct *t = current;
1629 	struct uprobe_task *utask = t->utask;
1630 
1631 	if (likely(!utask || !utask->active_uprobe))
1632 		return false;
1633 
1634 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1635 
1636 	if (signal_pending(t)) {
1637 		spin_lock_irq(&t->sighand->siglock);
1638 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
1639 		spin_unlock_irq(&t->sighand->siglock);
1640 
1641 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1642 			utask->state = UTASK_SSTEP_TRAPPED;
1643 			set_tsk_thread_flag(t, TIF_UPROBE);
1644 		}
1645 	}
1646 
1647 	return true;
1648 }
1649 
mmf_recalc_uprobes(struct mm_struct * mm)1650 static void mmf_recalc_uprobes(struct mm_struct *mm)
1651 {
1652 	struct vm_area_struct *vma;
1653 
1654 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1655 		if (!valid_vma(vma, false))
1656 			continue;
1657 		/*
1658 		 * This is not strictly accurate, we can race with
1659 		 * uprobe_unregister() and see the already removed
1660 		 * uprobe if delete_uprobe() was not yet called.
1661 		 * Or this uprobe can be filtered out.
1662 		 */
1663 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1664 			return;
1665 	}
1666 
1667 	clear_bit(MMF_HAS_UPROBES, &mm->flags);
1668 }
1669 
is_trap_at_addr(struct mm_struct * mm,unsigned long vaddr)1670 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1671 {
1672 	struct page *page;
1673 	uprobe_opcode_t opcode;
1674 	int result;
1675 
1676 	pagefault_disable();
1677 	result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1678 							sizeof(opcode));
1679 	pagefault_enable();
1680 
1681 	if (likely(result == 0))
1682 		goto out;
1683 
1684 	result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
1685 	if (result < 0)
1686 		return result;
1687 
1688 	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1689 	put_page(page);
1690  out:
1691 	/* This needs to return true for any variant of the trap insn */
1692 	return is_trap_insn(&opcode);
1693 }
1694 
find_active_uprobe(unsigned long bp_vaddr,int * is_swbp)1695 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1696 {
1697 	struct mm_struct *mm = current->mm;
1698 	struct uprobe *uprobe = NULL;
1699 	struct vm_area_struct *vma;
1700 
1701 	down_read(&mm->mmap_sem);
1702 	vma = find_vma(mm, bp_vaddr);
1703 	if (vma && vma->vm_start <= bp_vaddr) {
1704 		if (valid_vma(vma, false)) {
1705 			struct inode *inode = file_inode(vma->vm_file);
1706 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1707 
1708 			uprobe = find_uprobe(inode, offset);
1709 		}
1710 
1711 		if (!uprobe)
1712 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
1713 	} else {
1714 		*is_swbp = -EFAULT;
1715 	}
1716 
1717 	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1718 		mmf_recalc_uprobes(mm);
1719 	up_read(&mm->mmap_sem);
1720 
1721 	return uprobe;
1722 }
1723 
handler_chain(struct uprobe * uprobe,struct pt_regs * regs)1724 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1725 {
1726 	struct uprobe_consumer *uc;
1727 	int remove = UPROBE_HANDLER_REMOVE;
1728 	bool need_prep = false; /* prepare return uprobe, when needed */
1729 
1730 	down_read(&uprobe->register_rwsem);
1731 	for (uc = uprobe->consumers; uc; uc = uc->next) {
1732 		int rc = 0;
1733 
1734 		if (uc->handler) {
1735 			rc = uc->handler(uc, regs);
1736 			WARN(rc & ~UPROBE_HANDLER_MASK,
1737 				"bad rc=0x%x from %pf()\n", rc, uc->handler);
1738 		}
1739 
1740 		if (uc->ret_handler)
1741 			need_prep = true;
1742 
1743 		remove &= rc;
1744 	}
1745 
1746 	if (need_prep && !remove)
1747 		prepare_uretprobe(uprobe, regs); /* put bp at return */
1748 
1749 	if (remove && uprobe->consumers) {
1750 		WARN_ON(!uprobe_is_active(uprobe));
1751 		unapply_uprobe(uprobe, current->mm);
1752 	}
1753 	up_read(&uprobe->register_rwsem);
1754 }
1755 
1756 static void
handle_uretprobe_chain(struct return_instance * ri,struct pt_regs * regs)1757 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1758 {
1759 	struct uprobe *uprobe = ri->uprobe;
1760 	struct uprobe_consumer *uc;
1761 
1762 	down_read(&uprobe->register_rwsem);
1763 	for (uc = uprobe->consumers; uc; uc = uc->next) {
1764 		if (uc->ret_handler)
1765 			uc->ret_handler(uc, ri->func, regs);
1766 	}
1767 	up_read(&uprobe->register_rwsem);
1768 }
1769 
handle_trampoline(struct pt_regs * regs)1770 static bool handle_trampoline(struct pt_regs *regs)
1771 {
1772 	struct uprobe_task *utask;
1773 	struct return_instance *ri, *tmp;
1774 	bool chained;
1775 
1776 	utask = current->utask;
1777 	if (!utask)
1778 		return false;
1779 
1780 	ri = utask->return_instances;
1781 	if (!ri)
1782 		return false;
1783 
1784 	/*
1785 	 * TODO: we should throw out return_instance's invalidated by
1786 	 * longjmp(), currently we assume that the probed function always
1787 	 * returns.
1788 	 */
1789 	instruction_pointer_set(regs, ri->orig_ret_vaddr);
1790 
1791 	for (;;) {
1792 		handle_uretprobe_chain(ri, regs);
1793 
1794 		chained = ri->chained;
1795 		put_uprobe(ri->uprobe);
1796 
1797 		tmp = ri;
1798 		ri = ri->next;
1799 		kfree(tmp);
1800 		utask->depth--;
1801 
1802 		if (!chained)
1803 			break;
1804 		BUG_ON(!ri);
1805 	}
1806 
1807 	utask->return_instances = ri;
1808 
1809 	return true;
1810 }
1811 
arch_uprobe_ignore(struct arch_uprobe * aup,struct pt_regs * regs)1812 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1813 {
1814 	return false;
1815 }
1816 
1817 /*
1818  * Run handler and ask thread to singlestep.
1819  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1820  */
handle_swbp(struct pt_regs * regs)1821 static void handle_swbp(struct pt_regs *regs)
1822 {
1823 	struct uprobe *uprobe;
1824 	unsigned long bp_vaddr;
1825 	int uninitialized_var(is_swbp);
1826 
1827 	bp_vaddr = uprobe_get_swbp_addr(regs);
1828 	if (bp_vaddr == get_trampoline_vaddr()) {
1829 		if (handle_trampoline(regs))
1830 			return;
1831 
1832 		pr_warn("uprobe: unable to handle uretprobe pid/tgid=%d/%d\n",
1833 						current->pid, current->tgid);
1834 	}
1835 
1836 	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1837 	if (!uprobe) {
1838 		if (is_swbp > 0) {
1839 			/* No matching uprobe; signal SIGTRAP. */
1840 			send_sig(SIGTRAP, current, 0);
1841 		} else {
1842 			/*
1843 			 * Either we raced with uprobe_unregister() or we can't
1844 			 * access this memory. The latter is only possible if
1845 			 * another thread plays with our ->mm. In both cases
1846 			 * we can simply restart. If this vma was unmapped we
1847 			 * can pretend this insn was not executed yet and get
1848 			 * the (correct) SIGSEGV after restart.
1849 			 */
1850 			instruction_pointer_set(regs, bp_vaddr);
1851 		}
1852 		return;
1853 	}
1854 
1855 	/* change it in advance for ->handler() and restart */
1856 	instruction_pointer_set(regs, bp_vaddr);
1857 
1858 	/*
1859 	 * TODO: move copy_insn/etc into _register and remove this hack.
1860 	 * After we hit the bp, _unregister + _register can install the
1861 	 * new and not-yet-analyzed uprobe at the same address, restart.
1862 	 */
1863 	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1864 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1865 		goto out;
1866 
1867 	/* Tracing handlers use ->utask to communicate with fetch methods */
1868 	if (!get_utask())
1869 		goto out;
1870 
1871 	if (arch_uprobe_ignore(&uprobe->arch, regs))
1872 		goto out;
1873 
1874 	handler_chain(uprobe, regs);
1875 
1876 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1877 		goto out;
1878 
1879 	if (!pre_ssout(uprobe, regs, bp_vaddr))
1880 		return;
1881 
1882 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1883 out:
1884 	put_uprobe(uprobe);
1885 }
1886 
1887 /*
1888  * Perform required fix-ups and disable singlestep.
1889  * Allow pending signals to take effect.
1890  */
handle_singlestep(struct uprobe_task * utask,struct pt_regs * regs)1891 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1892 {
1893 	struct uprobe *uprobe;
1894 	int err = 0;
1895 
1896 	uprobe = utask->active_uprobe;
1897 	if (utask->state == UTASK_SSTEP_ACK)
1898 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
1899 	else if (utask->state == UTASK_SSTEP_TRAPPED)
1900 		arch_uprobe_abort_xol(&uprobe->arch, regs);
1901 	else
1902 		WARN_ON_ONCE(1);
1903 
1904 	put_uprobe(uprobe);
1905 	utask->active_uprobe = NULL;
1906 	utask->state = UTASK_RUNNING;
1907 	xol_free_insn_slot(current);
1908 
1909 	spin_lock_irq(&current->sighand->siglock);
1910 	recalc_sigpending(); /* see uprobe_deny_signal() */
1911 	spin_unlock_irq(&current->sighand->siglock);
1912 
1913 	if (unlikely(err)) {
1914 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1915 		force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1916 	}
1917 }
1918 
1919 /*
1920  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1921  * allows the thread to return from interrupt. After that handle_swbp()
1922  * sets utask->active_uprobe.
1923  *
1924  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1925  * and allows the thread to return from interrupt.
1926  *
1927  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1928  * uprobe_notify_resume().
1929  */
uprobe_notify_resume(struct pt_regs * regs)1930 void uprobe_notify_resume(struct pt_regs *regs)
1931 {
1932 	struct uprobe_task *utask;
1933 
1934 	clear_thread_flag(TIF_UPROBE);
1935 
1936 	utask = current->utask;
1937 	if (utask && utask->active_uprobe)
1938 		handle_singlestep(utask, regs);
1939 	else
1940 		handle_swbp(regs);
1941 }
1942 
1943 /*
1944  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1945  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1946  */
uprobe_pre_sstep_notifier(struct pt_regs * regs)1947 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1948 {
1949 	if (!current->mm)
1950 		return 0;
1951 
1952 	if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1953 	    (!current->utask || !current->utask->return_instances))
1954 		return 0;
1955 
1956 	set_thread_flag(TIF_UPROBE);
1957 	return 1;
1958 }
1959 
1960 /*
1961  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1962  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1963  */
uprobe_post_sstep_notifier(struct pt_regs * regs)1964 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1965 {
1966 	struct uprobe_task *utask = current->utask;
1967 
1968 	if (!current->mm || !utask || !utask->active_uprobe)
1969 		/* task is currently not uprobed */
1970 		return 0;
1971 
1972 	utask->state = UTASK_SSTEP_ACK;
1973 	set_thread_flag(TIF_UPROBE);
1974 	return 1;
1975 }
1976 
1977 static struct notifier_block uprobe_exception_nb = {
1978 	.notifier_call		= arch_uprobe_exception_notify,
1979 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
1980 };
1981 
init_uprobes(void)1982 static int __init init_uprobes(void)
1983 {
1984 	int i;
1985 
1986 	for (i = 0; i < UPROBES_HASH_SZ; i++)
1987 		mutex_init(&uprobes_mmap_mutex[i]);
1988 
1989 	if (percpu_init_rwsem(&dup_mmap_sem))
1990 		return -ENOMEM;
1991 
1992 	return register_die_notifier(&uprobe_exception_nb);
1993 }
1994 __initcall(init_uprobes);
1995