1 /*
2 * message.c - synchronous message handling
3 */
4
5 #include <linux/pci.h> /* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/mm.h>
10 #include <linux/timer.h>
11 #include <linux/ctype.h>
12 #include <linux/nls.h>
13 #include <linux/device.h>
14 #include <linux/scatterlist.h>
15 #include <linux/usb/quirks.h>
16 #include <linux/usb/hcd.h> /* for usbcore internals */
17 #include <asm/byteorder.h>
18
19 #include "usb.h"
20
21 static void cancel_async_set_config(struct usb_device *udev);
22
23 struct api_context {
24 struct completion done;
25 int status;
26 };
27
usb_api_blocking_completion(struct urb * urb)28 static void usb_api_blocking_completion(struct urb *urb)
29 {
30 struct api_context *ctx = urb->context;
31
32 ctx->status = urb->status;
33 complete(&ctx->done);
34 }
35
36
37 /*
38 * Starts urb and waits for completion or timeout. Note that this call
39 * is NOT interruptible. Many device driver i/o requests should be
40 * interruptible and therefore these drivers should implement their
41 * own interruptible routines.
42 */
usb_start_wait_urb(struct urb * urb,int timeout,int * actual_length)43 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
44 {
45 struct api_context ctx;
46 unsigned long expire;
47 int retval;
48
49 init_completion(&ctx.done);
50 urb->context = &ctx;
51 urb->actual_length = 0;
52 retval = usb_submit_urb(urb, GFP_NOIO);
53 if (unlikely(retval))
54 goto out;
55
56 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
57 if (!wait_for_completion_timeout(&ctx.done, expire)) {
58 usb_kill_urb(urb);
59 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
60
61 dev_dbg(&urb->dev->dev,
62 "%s timed out on ep%d%s len=%u/%u\n",
63 current->comm,
64 usb_endpoint_num(&urb->ep->desc),
65 usb_urb_dir_in(urb) ? "in" : "out",
66 urb->actual_length,
67 urb->transfer_buffer_length);
68 } else
69 retval = ctx.status;
70 out:
71 if (actual_length)
72 *actual_length = urb->actual_length;
73
74 usb_free_urb(urb);
75 return retval;
76 }
77
78 /*-------------------------------------------------------------------*/
79 /* returns status (negative) or length (positive) */
usb_internal_control_msg(struct usb_device * usb_dev,unsigned int pipe,struct usb_ctrlrequest * cmd,void * data,int len,int timeout)80 static int usb_internal_control_msg(struct usb_device *usb_dev,
81 unsigned int pipe,
82 struct usb_ctrlrequest *cmd,
83 void *data, int len, int timeout)
84 {
85 struct urb *urb;
86 int retv;
87 int length;
88
89 urb = usb_alloc_urb(0, GFP_NOIO);
90 if (!urb)
91 return -ENOMEM;
92
93 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
94 len, usb_api_blocking_completion, NULL);
95
96 retv = usb_start_wait_urb(urb, timeout, &length);
97 if (retv < 0)
98 return retv;
99 else
100 return length;
101 }
102
103 /**
104 * usb_control_msg - Builds a control urb, sends it off and waits for completion
105 * @dev: pointer to the usb device to send the message to
106 * @pipe: endpoint "pipe" to send the message to
107 * @request: USB message request value
108 * @requesttype: USB message request type value
109 * @value: USB message value
110 * @index: USB message index value
111 * @data: pointer to the data to send
112 * @size: length in bytes of the data to send
113 * @timeout: time in msecs to wait for the message to complete before timing
114 * out (if 0 the wait is forever)
115 *
116 * Context: !in_interrupt ()
117 *
118 * This function sends a simple control message to a specified endpoint and
119 * waits for the message to complete, or timeout.
120 *
121 * Don't use this function from within an interrupt context, like a bottom half
122 * handler. If you need an asynchronous message, or need to send a message
123 * from within interrupt context, use usb_submit_urb().
124 * If a thread in your driver uses this call, make sure your disconnect()
125 * method can wait for it to complete. Since you don't have a handle on the
126 * URB used, you can't cancel the request.
127 *
128 * Return: If successful, the number of bytes transferred. Otherwise, a negative
129 * error number.
130 */
usb_control_msg(struct usb_device * dev,unsigned int pipe,__u8 request,__u8 requesttype,__u16 value,__u16 index,void * data,__u16 size,int timeout)131 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
132 __u8 requesttype, __u16 value, __u16 index, void *data,
133 __u16 size, int timeout)
134 {
135 struct usb_ctrlrequest *dr;
136 int ret;
137
138 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
139 if (!dr)
140 return -ENOMEM;
141
142 dr->bRequestType = requesttype;
143 dr->bRequest = request;
144 dr->wValue = cpu_to_le16(value);
145 dr->wIndex = cpu_to_le16(index);
146 dr->wLength = cpu_to_le16(size);
147
148 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
149
150 kfree(dr);
151
152 return ret;
153 }
154 EXPORT_SYMBOL_GPL(usb_control_msg);
155
156 /**
157 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
158 * @usb_dev: pointer to the usb device to send the message to
159 * @pipe: endpoint "pipe" to send the message to
160 * @data: pointer to the data to send
161 * @len: length in bytes of the data to send
162 * @actual_length: pointer to a location to put the actual length transferred
163 * in bytes
164 * @timeout: time in msecs to wait for the message to complete before
165 * timing out (if 0 the wait is forever)
166 *
167 * Context: !in_interrupt ()
168 *
169 * This function sends a simple interrupt message to a specified endpoint and
170 * waits for the message to complete, or timeout.
171 *
172 * Don't use this function from within an interrupt context, like a bottom half
173 * handler. If you need an asynchronous message, or need to send a message
174 * from within interrupt context, use usb_submit_urb() If a thread in your
175 * driver uses this call, make sure your disconnect() method can wait for it to
176 * complete. Since you don't have a handle on the URB used, you can't cancel
177 * the request.
178 *
179 * Return:
180 * If successful, 0. Otherwise a negative error number. The number of actual
181 * bytes transferred will be stored in the @actual_length parameter.
182 */
usb_interrupt_msg(struct usb_device * usb_dev,unsigned int pipe,void * data,int len,int * actual_length,int timeout)183 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
184 void *data, int len, int *actual_length, int timeout)
185 {
186 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
187 }
188 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
189
190 /**
191 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
192 * @usb_dev: pointer to the usb device to send the message to
193 * @pipe: endpoint "pipe" to send the message to
194 * @data: pointer to the data to send
195 * @len: length in bytes of the data to send
196 * @actual_length: pointer to a location to put the actual length transferred
197 * in bytes
198 * @timeout: time in msecs to wait for the message to complete before
199 * timing out (if 0 the wait is forever)
200 *
201 * Context: !in_interrupt ()
202 *
203 * This function sends a simple bulk message to a specified endpoint
204 * and waits for the message to complete, or timeout.
205 *
206 * Don't use this function from within an interrupt context, like a bottom half
207 * handler. If you need an asynchronous message, or need to send a message
208 * from within interrupt context, use usb_submit_urb() If a thread in your
209 * driver uses this call, make sure your disconnect() method can wait for it to
210 * complete. Since you don't have a handle on the URB used, you can't cancel
211 * the request.
212 *
213 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
214 * users are forced to abuse this routine by using it to submit URBs for
215 * interrupt endpoints. We will take the liberty of creating an interrupt URB
216 * (with the default interval) if the target is an interrupt endpoint.
217 *
218 * Return:
219 * If successful, 0. Otherwise a negative error number. The number of actual
220 * bytes transferred will be stored in the @actual_length parameter.
221 *
222 */
usb_bulk_msg(struct usb_device * usb_dev,unsigned int pipe,void * data,int len,int * actual_length,int timeout)223 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
224 void *data, int len, int *actual_length, int timeout)
225 {
226 struct urb *urb;
227 struct usb_host_endpoint *ep;
228
229 ep = usb_pipe_endpoint(usb_dev, pipe);
230 if (!ep || len < 0)
231 return -EINVAL;
232
233 urb = usb_alloc_urb(0, GFP_KERNEL);
234 if (!urb)
235 return -ENOMEM;
236
237 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
238 USB_ENDPOINT_XFER_INT) {
239 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
240 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
241 usb_api_blocking_completion, NULL,
242 ep->desc.bInterval);
243 } else
244 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
245 usb_api_blocking_completion, NULL);
246
247 return usb_start_wait_urb(urb, timeout, actual_length);
248 }
249 EXPORT_SYMBOL_GPL(usb_bulk_msg);
250
251 /*-------------------------------------------------------------------*/
252
sg_clean(struct usb_sg_request * io)253 static void sg_clean(struct usb_sg_request *io)
254 {
255 if (io->urbs) {
256 while (io->entries--)
257 usb_free_urb(io->urbs[io->entries]);
258 kfree(io->urbs);
259 io->urbs = NULL;
260 }
261 io->dev = NULL;
262 }
263
sg_complete(struct urb * urb)264 static void sg_complete(struct urb *urb)
265 {
266 struct usb_sg_request *io = urb->context;
267 int status = urb->status;
268
269 spin_lock(&io->lock);
270
271 /* In 2.5 we require hcds' endpoint queues not to progress after fault
272 * reports, until the completion callback (this!) returns. That lets
273 * device driver code (like this routine) unlink queued urbs first,
274 * if it needs to, since the HC won't work on them at all. So it's
275 * not possible for page N+1 to overwrite page N, and so on.
276 *
277 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
278 * complete before the HCD can get requests away from hardware,
279 * though never during cleanup after a hard fault.
280 */
281 if (io->status
282 && (io->status != -ECONNRESET
283 || status != -ECONNRESET)
284 && urb->actual_length) {
285 dev_err(io->dev->bus->controller,
286 "dev %s ep%d%s scatterlist error %d/%d\n",
287 io->dev->devpath,
288 usb_endpoint_num(&urb->ep->desc),
289 usb_urb_dir_in(urb) ? "in" : "out",
290 status, io->status);
291 /* BUG (); */
292 }
293
294 if (io->status == 0 && status && status != -ECONNRESET) {
295 int i, found, retval;
296
297 io->status = status;
298
299 /* the previous urbs, and this one, completed already.
300 * unlink pending urbs so they won't rx/tx bad data.
301 * careful: unlink can sometimes be synchronous...
302 */
303 spin_unlock(&io->lock);
304 for (i = 0, found = 0; i < io->entries; i++) {
305 if (!io->urbs[i] || !io->urbs[i]->dev)
306 continue;
307 if (found) {
308 retval = usb_unlink_urb(io->urbs[i]);
309 if (retval != -EINPROGRESS &&
310 retval != -ENODEV &&
311 retval != -EBUSY &&
312 retval != -EIDRM)
313 dev_err(&io->dev->dev,
314 "%s, unlink --> %d\n",
315 __func__, retval);
316 } else if (urb == io->urbs[i])
317 found = 1;
318 }
319 spin_lock(&io->lock);
320 }
321
322 /* on the last completion, signal usb_sg_wait() */
323 io->bytes += urb->actual_length;
324 io->count--;
325 if (!io->count)
326 complete(&io->complete);
327
328 spin_unlock(&io->lock);
329 }
330
331
332 /**
333 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
334 * @io: request block being initialized. until usb_sg_wait() returns,
335 * treat this as a pointer to an opaque block of memory,
336 * @dev: the usb device that will send or receive the data
337 * @pipe: endpoint "pipe" used to transfer the data
338 * @period: polling rate for interrupt endpoints, in frames or
339 * (for high speed endpoints) microframes; ignored for bulk
340 * @sg: scatterlist entries
341 * @nents: how many entries in the scatterlist
342 * @length: how many bytes to send from the scatterlist, or zero to
343 * send every byte identified in the list.
344 * @mem_flags: SLAB_* flags affecting memory allocations in this call
345 *
346 * This initializes a scatter/gather request, allocating resources such as
347 * I/O mappings and urb memory (except maybe memory used by USB controller
348 * drivers).
349 *
350 * The request must be issued using usb_sg_wait(), which waits for the I/O to
351 * complete (or to be canceled) and then cleans up all resources allocated by
352 * usb_sg_init().
353 *
354 * The request may be canceled with usb_sg_cancel(), either before or after
355 * usb_sg_wait() is called.
356 *
357 * Return: Zero for success, else a negative errno value.
358 */
usb_sg_init(struct usb_sg_request * io,struct usb_device * dev,unsigned pipe,unsigned period,struct scatterlist * sg,int nents,size_t length,gfp_t mem_flags)359 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
360 unsigned pipe, unsigned period, struct scatterlist *sg,
361 int nents, size_t length, gfp_t mem_flags)
362 {
363 int i;
364 int urb_flags;
365 int use_sg;
366
367 if (!io || !dev || !sg
368 || usb_pipecontrol(pipe)
369 || usb_pipeisoc(pipe)
370 || nents <= 0)
371 return -EINVAL;
372
373 spin_lock_init(&io->lock);
374 io->dev = dev;
375 io->pipe = pipe;
376
377 if (dev->bus->sg_tablesize > 0) {
378 use_sg = true;
379 io->entries = 1;
380 } else {
381 use_sg = false;
382 io->entries = nents;
383 }
384
385 /* initialize all the urbs we'll use */
386 io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
387 if (!io->urbs)
388 goto nomem;
389
390 urb_flags = URB_NO_INTERRUPT;
391 if (usb_pipein(pipe))
392 urb_flags |= URB_SHORT_NOT_OK;
393
394 for_each_sg(sg, sg, io->entries, i) {
395 struct urb *urb;
396 unsigned len;
397
398 urb = usb_alloc_urb(0, mem_flags);
399 if (!urb) {
400 io->entries = i;
401 goto nomem;
402 }
403 io->urbs[i] = urb;
404
405 urb->dev = NULL;
406 urb->pipe = pipe;
407 urb->interval = period;
408 urb->transfer_flags = urb_flags;
409 urb->complete = sg_complete;
410 urb->context = io;
411 urb->sg = sg;
412
413 if (use_sg) {
414 /* There is no single transfer buffer */
415 urb->transfer_buffer = NULL;
416 urb->num_sgs = nents;
417
418 /* A length of zero means transfer the whole sg list */
419 len = length;
420 if (len == 0) {
421 struct scatterlist *sg2;
422 int j;
423
424 for_each_sg(sg, sg2, nents, j)
425 len += sg2->length;
426 }
427 } else {
428 /*
429 * Some systems can't use DMA; they use PIO instead.
430 * For their sakes, transfer_buffer is set whenever
431 * possible.
432 */
433 if (!PageHighMem(sg_page(sg)))
434 urb->transfer_buffer = sg_virt(sg);
435 else
436 urb->transfer_buffer = NULL;
437
438 len = sg->length;
439 if (length) {
440 len = min_t(size_t, len, length);
441 length -= len;
442 if (length == 0)
443 io->entries = i + 1;
444 }
445 }
446 urb->transfer_buffer_length = len;
447 }
448 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
449
450 /* transaction state */
451 io->count = io->entries;
452 io->status = 0;
453 io->bytes = 0;
454 init_completion(&io->complete);
455 return 0;
456
457 nomem:
458 sg_clean(io);
459 return -ENOMEM;
460 }
461 EXPORT_SYMBOL_GPL(usb_sg_init);
462
463 /**
464 * usb_sg_wait - synchronously execute scatter/gather request
465 * @io: request block handle, as initialized with usb_sg_init().
466 * some fields become accessible when this call returns.
467 * Context: !in_interrupt ()
468 *
469 * This function blocks until the specified I/O operation completes. It
470 * leverages the grouping of the related I/O requests to get good transfer
471 * rates, by queueing the requests. At higher speeds, such queuing can
472 * significantly improve USB throughput.
473 *
474 * There are three kinds of completion for this function.
475 * (1) success, where io->status is zero. The number of io->bytes
476 * transferred is as requested.
477 * (2) error, where io->status is a negative errno value. The number
478 * of io->bytes transferred before the error is usually less
479 * than requested, and can be nonzero.
480 * (3) cancellation, a type of error with status -ECONNRESET that
481 * is initiated by usb_sg_cancel().
482 *
483 * When this function returns, all memory allocated through usb_sg_init() or
484 * this call will have been freed. The request block parameter may still be
485 * passed to usb_sg_cancel(), or it may be freed. It could also be
486 * reinitialized and then reused.
487 *
488 * Data Transfer Rates:
489 *
490 * Bulk transfers are valid for full or high speed endpoints.
491 * The best full speed data rate is 19 packets of 64 bytes each
492 * per frame, or 1216 bytes per millisecond.
493 * The best high speed data rate is 13 packets of 512 bytes each
494 * per microframe, or 52 KBytes per millisecond.
495 *
496 * The reason to use interrupt transfers through this API would most likely
497 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
498 * could be transferred. That capability is less useful for low or full
499 * speed interrupt endpoints, which allow at most one packet per millisecond,
500 * of at most 8 or 64 bytes (respectively).
501 *
502 * It is not necessary to call this function to reserve bandwidth for devices
503 * under an xHCI host controller, as the bandwidth is reserved when the
504 * configuration or interface alt setting is selected.
505 */
usb_sg_wait(struct usb_sg_request * io)506 void usb_sg_wait(struct usb_sg_request *io)
507 {
508 int i;
509 int entries = io->entries;
510
511 /* queue the urbs. */
512 spin_lock_irq(&io->lock);
513 i = 0;
514 while (i < entries && !io->status) {
515 int retval;
516
517 io->urbs[i]->dev = io->dev;
518 retval = usb_submit_urb(io->urbs[i], GFP_ATOMIC);
519
520 /* after we submit, let completions or cancellations fire;
521 * we handshake using io->status.
522 */
523 spin_unlock_irq(&io->lock);
524 switch (retval) {
525 /* maybe we retrying will recover */
526 case -ENXIO: /* hc didn't queue this one */
527 case -EAGAIN:
528 case -ENOMEM:
529 retval = 0;
530 yield();
531 break;
532
533 /* no error? continue immediately.
534 *
535 * NOTE: to work better with UHCI (4K I/O buffer may
536 * need 3K of TDs) it may be good to limit how many
537 * URBs are queued at once; N milliseconds?
538 */
539 case 0:
540 ++i;
541 cpu_relax();
542 break;
543
544 /* fail any uncompleted urbs */
545 default:
546 io->urbs[i]->status = retval;
547 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
548 __func__, retval);
549 usb_sg_cancel(io);
550 }
551 spin_lock_irq(&io->lock);
552 if (retval && (io->status == 0 || io->status == -ECONNRESET))
553 io->status = retval;
554 }
555 io->count -= entries - i;
556 if (io->count == 0)
557 complete(&io->complete);
558 spin_unlock_irq(&io->lock);
559
560 /* OK, yes, this could be packaged as non-blocking.
561 * So could the submit loop above ... but it's easier to
562 * solve neither problem than to solve both!
563 */
564 wait_for_completion(&io->complete);
565
566 sg_clean(io);
567 }
568 EXPORT_SYMBOL_GPL(usb_sg_wait);
569
570 /**
571 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
572 * @io: request block, initialized with usb_sg_init()
573 *
574 * This stops a request after it has been started by usb_sg_wait().
575 * It can also prevents one initialized by usb_sg_init() from starting,
576 * so that call just frees resources allocated to the request.
577 */
usb_sg_cancel(struct usb_sg_request * io)578 void usb_sg_cancel(struct usb_sg_request *io)
579 {
580 unsigned long flags;
581
582 spin_lock_irqsave(&io->lock, flags);
583
584 /* shut everything down, if it didn't already */
585 if (!io->status) {
586 int i;
587
588 io->status = -ECONNRESET;
589 spin_unlock(&io->lock);
590 for (i = 0; i < io->entries; i++) {
591 int retval;
592
593 if (!io->urbs[i]->dev)
594 continue;
595 retval = usb_unlink_urb(io->urbs[i]);
596 if (retval != -EINPROGRESS
597 && retval != -ENODEV
598 && retval != -EBUSY
599 && retval != -EIDRM)
600 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
601 __func__, retval);
602 }
603 spin_lock(&io->lock);
604 }
605 spin_unlock_irqrestore(&io->lock, flags);
606 }
607 EXPORT_SYMBOL_GPL(usb_sg_cancel);
608
609 /*-------------------------------------------------------------------*/
610
611 /**
612 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
613 * @dev: the device whose descriptor is being retrieved
614 * @type: the descriptor type (USB_DT_*)
615 * @index: the number of the descriptor
616 * @buf: where to put the descriptor
617 * @size: how big is "buf"?
618 * Context: !in_interrupt ()
619 *
620 * Gets a USB descriptor. Convenience functions exist to simplify
621 * getting some types of descriptors. Use
622 * usb_get_string() or usb_string() for USB_DT_STRING.
623 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
624 * are part of the device structure.
625 * In addition to a number of USB-standard descriptors, some
626 * devices also use class-specific or vendor-specific descriptors.
627 *
628 * This call is synchronous, and may not be used in an interrupt context.
629 *
630 * Return: The number of bytes received on success, or else the status code
631 * returned by the underlying usb_control_msg() call.
632 */
usb_get_descriptor(struct usb_device * dev,unsigned char type,unsigned char index,void * buf,int size)633 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
634 unsigned char index, void *buf, int size)
635 {
636 int i;
637 int result;
638
639 memset(buf, 0, size); /* Make sure we parse really received data */
640
641 for (i = 0; i < 3; ++i) {
642 /* retry on length 0 or error; some devices are flakey */
643 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
644 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
645 (type << 8) + index, 0, buf, size,
646 USB_CTRL_GET_TIMEOUT);
647 if (result <= 0 && result != -ETIMEDOUT)
648 continue;
649 if (result > 1 && ((u8 *)buf)[1] != type) {
650 result = -ENODATA;
651 continue;
652 }
653 break;
654 }
655 return result;
656 }
657 EXPORT_SYMBOL_GPL(usb_get_descriptor);
658
659 /**
660 * usb_get_string - gets a string descriptor
661 * @dev: the device whose string descriptor is being retrieved
662 * @langid: code for language chosen (from string descriptor zero)
663 * @index: the number of the descriptor
664 * @buf: where to put the string
665 * @size: how big is "buf"?
666 * Context: !in_interrupt ()
667 *
668 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
669 * in little-endian byte order).
670 * The usb_string() function will often be a convenient way to turn
671 * these strings into kernel-printable form.
672 *
673 * Strings may be referenced in device, configuration, interface, or other
674 * descriptors, and could also be used in vendor-specific ways.
675 *
676 * This call is synchronous, and may not be used in an interrupt context.
677 *
678 * Return: The number of bytes received on success, or else the status code
679 * returned by the underlying usb_control_msg() call.
680 */
usb_get_string(struct usb_device * dev,unsigned short langid,unsigned char index,void * buf,int size)681 static int usb_get_string(struct usb_device *dev, unsigned short langid,
682 unsigned char index, void *buf, int size)
683 {
684 int i;
685 int result;
686
687 for (i = 0; i < 3; ++i) {
688 /* retry on length 0 or stall; some devices are flakey */
689 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
690 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
691 (USB_DT_STRING << 8) + index, langid, buf, size,
692 USB_CTRL_GET_TIMEOUT);
693 if (result == 0 || result == -EPIPE)
694 continue;
695 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
696 result = -ENODATA;
697 continue;
698 }
699 break;
700 }
701 return result;
702 }
703
usb_try_string_workarounds(unsigned char * buf,int * length)704 static void usb_try_string_workarounds(unsigned char *buf, int *length)
705 {
706 int newlength, oldlength = *length;
707
708 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
709 if (!isprint(buf[newlength]) || buf[newlength + 1])
710 break;
711
712 if (newlength > 2) {
713 buf[0] = newlength;
714 *length = newlength;
715 }
716 }
717
usb_string_sub(struct usb_device * dev,unsigned int langid,unsigned int index,unsigned char * buf)718 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
719 unsigned int index, unsigned char *buf)
720 {
721 int rc;
722
723 /* Try to read the string descriptor by asking for the maximum
724 * possible number of bytes */
725 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
726 rc = -EIO;
727 else
728 rc = usb_get_string(dev, langid, index, buf, 255);
729
730 /* If that failed try to read the descriptor length, then
731 * ask for just that many bytes */
732 if (rc < 2) {
733 rc = usb_get_string(dev, langid, index, buf, 2);
734 if (rc == 2)
735 rc = usb_get_string(dev, langid, index, buf, buf[0]);
736 }
737
738 if (rc >= 2) {
739 if (!buf[0] && !buf[1])
740 usb_try_string_workarounds(buf, &rc);
741
742 /* There might be extra junk at the end of the descriptor */
743 if (buf[0] < rc)
744 rc = buf[0];
745
746 rc = rc - (rc & 1); /* force a multiple of two */
747 }
748
749 if (rc < 2)
750 rc = (rc < 0 ? rc : -EINVAL);
751
752 return rc;
753 }
754
usb_get_langid(struct usb_device * dev,unsigned char * tbuf)755 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
756 {
757 int err;
758
759 if (dev->have_langid)
760 return 0;
761
762 if (dev->string_langid < 0)
763 return -EPIPE;
764
765 err = usb_string_sub(dev, 0, 0, tbuf);
766
767 /* If the string was reported but is malformed, default to english
768 * (0x0409) */
769 if (err == -ENODATA || (err > 0 && err < 4)) {
770 dev->string_langid = 0x0409;
771 dev->have_langid = 1;
772 dev_err(&dev->dev,
773 "language id specifier not provided by device, defaulting to English\n");
774 return 0;
775 }
776
777 /* In case of all other errors, we assume the device is not able to
778 * deal with strings at all. Set string_langid to -1 in order to
779 * prevent any string to be retrieved from the device */
780 if (err < 0) {
781 dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
782 err);
783 dev->string_langid = -1;
784 return -EPIPE;
785 }
786
787 /* always use the first langid listed */
788 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
789 dev->have_langid = 1;
790 dev_dbg(&dev->dev, "default language 0x%04x\n",
791 dev->string_langid);
792 return 0;
793 }
794
795 /**
796 * usb_string - returns UTF-8 version of a string descriptor
797 * @dev: the device whose string descriptor is being retrieved
798 * @index: the number of the descriptor
799 * @buf: where to put the string
800 * @size: how big is "buf"?
801 * Context: !in_interrupt ()
802 *
803 * This converts the UTF-16LE encoded strings returned by devices, from
804 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
805 * that are more usable in most kernel contexts. Note that this function
806 * chooses strings in the first language supported by the device.
807 *
808 * This call is synchronous, and may not be used in an interrupt context.
809 *
810 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
811 */
usb_string(struct usb_device * dev,int index,char * buf,size_t size)812 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
813 {
814 unsigned char *tbuf;
815 int err;
816
817 if (dev->state == USB_STATE_SUSPENDED)
818 return -EHOSTUNREACH;
819 if (size <= 0 || !buf || !index)
820 return -EINVAL;
821 buf[0] = 0;
822 tbuf = kmalloc(256, GFP_NOIO);
823 if (!tbuf)
824 return -ENOMEM;
825
826 err = usb_get_langid(dev, tbuf);
827 if (err < 0)
828 goto errout;
829
830 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
831 if (err < 0)
832 goto errout;
833
834 size--; /* leave room for trailing NULL char in output buffer */
835 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
836 UTF16_LITTLE_ENDIAN, buf, size);
837 buf[err] = 0;
838
839 if (tbuf[1] != USB_DT_STRING)
840 dev_dbg(&dev->dev,
841 "wrong descriptor type %02x for string %d (\"%s\")\n",
842 tbuf[1], index, buf);
843
844 errout:
845 kfree(tbuf);
846 return err;
847 }
848 EXPORT_SYMBOL_GPL(usb_string);
849
850 /* one UTF-8-encoded 16-bit character has at most three bytes */
851 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
852
853 /**
854 * usb_cache_string - read a string descriptor and cache it for later use
855 * @udev: the device whose string descriptor is being read
856 * @index: the descriptor index
857 *
858 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
859 * or %NULL if the index is 0 or the string could not be read.
860 */
usb_cache_string(struct usb_device * udev,int index)861 char *usb_cache_string(struct usb_device *udev, int index)
862 {
863 char *buf;
864 char *smallbuf = NULL;
865 int len;
866
867 if (index <= 0)
868 return NULL;
869
870 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
871 if (buf) {
872 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
873 if (len > 0) {
874 smallbuf = kmalloc(++len, GFP_NOIO);
875 if (!smallbuf)
876 return buf;
877 memcpy(smallbuf, buf, len);
878 }
879 kfree(buf);
880 }
881 return smallbuf;
882 }
883
884 /*
885 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
886 * @dev: the device whose device descriptor is being updated
887 * @size: how much of the descriptor to read
888 * Context: !in_interrupt ()
889 *
890 * Updates the copy of the device descriptor stored in the device structure,
891 * which dedicates space for this purpose.
892 *
893 * Not exported, only for use by the core. If drivers really want to read
894 * the device descriptor directly, they can call usb_get_descriptor() with
895 * type = USB_DT_DEVICE and index = 0.
896 *
897 * This call is synchronous, and may not be used in an interrupt context.
898 *
899 * Return: The number of bytes received on success, or else the status code
900 * returned by the underlying usb_control_msg() call.
901 */
usb_get_device_descriptor(struct usb_device * dev,unsigned int size)902 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
903 {
904 struct usb_device_descriptor *desc;
905 int ret;
906
907 if (size > sizeof(*desc))
908 return -EINVAL;
909 desc = kmalloc(sizeof(*desc), GFP_NOIO);
910 if (!desc)
911 return -ENOMEM;
912
913 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
914 if (ret >= 0)
915 memcpy(&dev->descriptor, desc, size);
916 kfree(desc);
917 return ret;
918 }
919
920 /**
921 * usb_get_status - issues a GET_STATUS call
922 * @dev: the device whose status is being checked
923 * @type: USB_RECIP_*; for device, interface, or endpoint
924 * @target: zero (for device), else interface or endpoint number
925 * @data: pointer to two bytes of bitmap data
926 * Context: !in_interrupt ()
927 *
928 * Returns device, interface, or endpoint status. Normally only of
929 * interest to see if the device is self powered, or has enabled the
930 * remote wakeup facility; or whether a bulk or interrupt endpoint
931 * is halted ("stalled").
932 *
933 * Bits in these status bitmaps are set using the SET_FEATURE request,
934 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
935 * function should be used to clear halt ("stall") status.
936 *
937 * This call is synchronous, and may not be used in an interrupt context.
938 *
939 * Returns 0 and the status value in *@data (in host byte order) on success,
940 * or else the status code from the underlying usb_control_msg() call.
941 */
usb_get_status(struct usb_device * dev,int type,int target,void * data)942 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
943 {
944 int ret;
945 __le16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
946
947 if (!status)
948 return -ENOMEM;
949
950 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
951 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
952 sizeof(*status), USB_CTRL_GET_TIMEOUT);
953
954 if (ret == 2) {
955 *(u16 *) data = le16_to_cpu(*status);
956 ret = 0;
957 } else if (ret >= 0) {
958 ret = -EIO;
959 }
960 kfree(status);
961 return ret;
962 }
963 EXPORT_SYMBOL_GPL(usb_get_status);
964
965 /**
966 * usb_clear_halt - tells device to clear endpoint halt/stall condition
967 * @dev: device whose endpoint is halted
968 * @pipe: endpoint "pipe" being cleared
969 * Context: !in_interrupt ()
970 *
971 * This is used to clear halt conditions for bulk and interrupt endpoints,
972 * as reported by URB completion status. Endpoints that are halted are
973 * sometimes referred to as being "stalled". Such endpoints are unable
974 * to transmit or receive data until the halt status is cleared. Any URBs
975 * queued for such an endpoint should normally be unlinked by the driver
976 * before clearing the halt condition, as described in sections 5.7.5
977 * and 5.8.5 of the USB 2.0 spec.
978 *
979 * Note that control and isochronous endpoints don't halt, although control
980 * endpoints report "protocol stall" (for unsupported requests) using the
981 * same status code used to report a true stall.
982 *
983 * This call is synchronous, and may not be used in an interrupt context.
984 *
985 * Return: Zero on success, or else the status code returned by the
986 * underlying usb_control_msg() call.
987 */
usb_clear_halt(struct usb_device * dev,int pipe)988 int usb_clear_halt(struct usb_device *dev, int pipe)
989 {
990 int result;
991 int endp = usb_pipeendpoint(pipe);
992
993 if (usb_pipein(pipe))
994 endp |= USB_DIR_IN;
995
996 /* we don't care if it wasn't halted first. in fact some devices
997 * (like some ibmcam model 1 units) seem to expect hosts to make
998 * this request for iso endpoints, which can't halt!
999 */
1000 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1001 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1002 USB_ENDPOINT_HALT, endp, NULL, 0,
1003 USB_CTRL_SET_TIMEOUT);
1004
1005 /* don't un-halt or force to DATA0 except on success */
1006 if (result < 0)
1007 return result;
1008
1009 /* NOTE: seems like Microsoft and Apple don't bother verifying
1010 * the clear "took", so some devices could lock up if you check...
1011 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1012 *
1013 * NOTE: make sure the logic here doesn't diverge much from
1014 * the copy in usb-storage, for as long as we need two copies.
1015 */
1016
1017 usb_reset_endpoint(dev, endp);
1018
1019 return 0;
1020 }
1021 EXPORT_SYMBOL_GPL(usb_clear_halt);
1022
create_intf_ep_devs(struct usb_interface * intf)1023 static int create_intf_ep_devs(struct usb_interface *intf)
1024 {
1025 struct usb_device *udev = interface_to_usbdev(intf);
1026 struct usb_host_interface *alt = intf->cur_altsetting;
1027 int i;
1028
1029 if (intf->ep_devs_created || intf->unregistering)
1030 return 0;
1031
1032 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1033 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1034 intf->ep_devs_created = 1;
1035 return 0;
1036 }
1037
remove_intf_ep_devs(struct usb_interface * intf)1038 static void remove_intf_ep_devs(struct usb_interface *intf)
1039 {
1040 struct usb_host_interface *alt = intf->cur_altsetting;
1041 int i;
1042
1043 if (!intf->ep_devs_created)
1044 return;
1045
1046 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1047 usb_remove_ep_devs(&alt->endpoint[i]);
1048 intf->ep_devs_created = 0;
1049 }
1050
1051 /**
1052 * usb_disable_endpoint -- Disable an endpoint by address
1053 * @dev: the device whose endpoint is being disabled
1054 * @epaddr: the endpoint's address. Endpoint number for output,
1055 * endpoint number + USB_DIR_IN for input
1056 * @reset_hardware: flag to erase any endpoint state stored in the
1057 * controller hardware
1058 *
1059 * Disables the endpoint for URB submission and nukes all pending URBs.
1060 * If @reset_hardware is set then also deallocates hcd/hardware state
1061 * for the endpoint.
1062 */
usb_disable_endpoint(struct usb_device * dev,unsigned int epaddr,bool reset_hardware)1063 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1064 bool reset_hardware)
1065 {
1066 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1067 struct usb_host_endpoint *ep;
1068
1069 if (!dev)
1070 return;
1071
1072 if (usb_endpoint_out(epaddr)) {
1073 ep = dev->ep_out[epnum];
1074 if (reset_hardware)
1075 dev->ep_out[epnum] = NULL;
1076 } else {
1077 ep = dev->ep_in[epnum];
1078 if (reset_hardware)
1079 dev->ep_in[epnum] = NULL;
1080 }
1081 if (ep) {
1082 ep->enabled = 0;
1083 usb_hcd_flush_endpoint(dev, ep);
1084 if (reset_hardware)
1085 usb_hcd_disable_endpoint(dev, ep);
1086 }
1087 }
1088
1089 /**
1090 * usb_reset_endpoint - Reset an endpoint's state.
1091 * @dev: the device whose endpoint is to be reset
1092 * @epaddr: the endpoint's address. Endpoint number for output,
1093 * endpoint number + USB_DIR_IN for input
1094 *
1095 * Resets any host-side endpoint state such as the toggle bit,
1096 * sequence number or current window.
1097 */
usb_reset_endpoint(struct usb_device * dev,unsigned int epaddr)1098 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1099 {
1100 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1101 struct usb_host_endpoint *ep;
1102
1103 if (usb_endpoint_out(epaddr))
1104 ep = dev->ep_out[epnum];
1105 else
1106 ep = dev->ep_in[epnum];
1107 if (ep)
1108 usb_hcd_reset_endpoint(dev, ep);
1109 }
1110 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1111
1112
1113 /**
1114 * usb_disable_interface -- Disable all endpoints for an interface
1115 * @dev: the device whose interface is being disabled
1116 * @intf: pointer to the interface descriptor
1117 * @reset_hardware: flag to erase any endpoint state stored in the
1118 * controller hardware
1119 *
1120 * Disables all the endpoints for the interface's current altsetting.
1121 */
usb_disable_interface(struct usb_device * dev,struct usb_interface * intf,bool reset_hardware)1122 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1123 bool reset_hardware)
1124 {
1125 struct usb_host_interface *alt = intf->cur_altsetting;
1126 int i;
1127
1128 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1129 usb_disable_endpoint(dev,
1130 alt->endpoint[i].desc.bEndpointAddress,
1131 reset_hardware);
1132 }
1133 }
1134
1135 /**
1136 * usb_disable_device - Disable all the endpoints for a USB device
1137 * @dev: the device whose endpoints are being disabled
1138 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1139 *
1140 * Disables all the device's endpoints, potentially including endpoint 0.
1141 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1142 * pending urbs) and usbcore state for the interfaces, so that usbcore
1143 * must usb_set_configuration() before any interfaces could be used.
1144 */
usb_disable_device(struct usb_device * dev,int skip_ep0)1145 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1146 {
1147 int i;
1148 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1149
1150 /* getting rid of interfaces will disconnect
1151 * any drivers bound to them (a key side effect)
1152 */
1153 if (dev->actconfig) {
1154 /*
1155 * FIXME: In order to avoid self-deadlock involving the
1156 * bandwidth_mutex, we have to mark all the interfaces
1157 * before unregistering any of them.
1158 */
1159 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1160 dev->actconfig->interface[i]->unregistering = 1;
1161
1162 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1163 struct usb_interface *interface;
1164
1165 /* remove this interface if it has been registered */
1166 interface = dev->actconfig->interface[i];
1167 if (!device_is_registered(&interface->dev))
1168 continue;
1169 dev_dbg(&dev->dev, "unregistering interface %s\n",
1170 dev_name(&interface->dev));
1171 remove_intf_ep_devs(interface);
1172 device_del(&interface->dev);
1173 }
1174
1175 /* Now that the interfaces are unbound, nobody should
1176 * try to access them.
1177 */
1178 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1179 put_device(&dev->actconfig->interface[i]->dev);
1180 dev->actconfig->interface[i] = NULL;
1181 }
1182
1183 if (dev->usb2_hw_lpm_enabled == 1)
1184 usb_set_usb2_hardware_lpm(dev, 0);
1185 usb_unlocked_disable_lpm(dev);
1186 usb_disable_ltm(dev);
1187
1188 dev->actconfig = NULL;
1189 if (dev->state == USB_STATE_CONFIGURED)
1190 usb_set_device_state(dev, USB_STATE_ADDRESS);
1191 }
1192
1193 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1194 skip_ep0 ? "non-ep0" : "all");
1195 if (hcd->driver->check_bandwidth) {
1196 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1197 for (i = skip_ep0; i < 16; ++i) {
1198 usb_disable_endpoint(dev, i, false);
1199 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1200 }
1201 /* Remove endpoints from the host controller internal state */
1202 mutex_lock(hcd->bandwidth_mutex);
1203 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1204 mutex_unlock(hcd->bandwidth_mutex);
1205 /* Second pass: remove endpoint pointers */
1206 }
1207 for (i = skip_ep0; i < 16; ++i) {
1208 usb_disable_endpoint(dev, i, true);
1209 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1210 }
1211 }
1212
1213 /**
1214 * usb_enable_endpoint - Enable an endpoint for USB communications
1215 * @dev: the device whose interface is being enabled
1216 * @ep: the endpoint
1217 * @reset_ep: flag to reset the endpoint state
1218 *
1219 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1220 * For control endpoints, both the input and output sides are handled.
1221 */
usb_enable_endpoint(struct usb_device * dev,struct usb_host_endpoint * ep,bool reset_ep)1222 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1223 bool reset_ep)
1224 {
1225 int epnum = usb_endpoint_num(&ep->desc);
1226 int is_out = usb_endpoint_dir_out(&ep->desc);
1227 int is_control = usb_endpoint_xfer_control(&ep->desc);
1228
1229 if (reset_ep)
1230 usb_hcd_reset_endpoint(dev, ep);
1231 if (is_out || is_control)
1232 dev->ep_out[epnum] = ep;
1233 if (!is_out || is_control)
1234 dev->ep_in[epnum] = ep;
1235 ep->enabled = 1;
1236 }
1237
1238 /**
1239 * usb_enable_interface - Enable all the endpoints for an interface
1240 * @dev: the device whose interface is being enabled
1241 * @intf: pointer to the interface descriptor
1242 * @reset_eps: flag to reset the endpoints' state
1243 *
1244 * Enables all the endpoints for the interface's current altsetting.
1245 */
usb_enable_interface(struct usb_device * dev,struct usb_interface * intf,bool reset_eps)1246 void usb_enable_interface(struct usb_device *dev,
1247 struct usb_interface *intf, bool reset_eps)
1248 {
1249 struct usb_host_interface *alt = intf->cur_altsetting;
1250 int i;
1251
1252 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1253 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1254 }
1255
1256 /**
1257 * usb_set_interface - Makes a particular alternate setting be current
1258 * @dev: the device whose interface is being updated
1259 * @interface: the interface being updated
1260 * @alternate: the setting being chosen.
1261 * Context: !in_interrupt ()
1262 *
1263 * This is used to enable data transfers on interfaces that may not
1264 * be enabled by default. Not all devices support such configurability.
1265 * Only the driver bound to an interface may change its setting.
1266 *
1267 * Within any given configuration, each interface may have several
1268 * alternative settings. These are often used to control levels of
1269 * bandwidth consumption. For example, the default setting for a high
1270 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1271 * while interrupt transfers of up to 3KBytes per microframe are legal.
1272 * Also, isochronous endpoints may never be part of an
1273 * interface's default setting. To access such bandwidth, alternate
1274 * interface settings must be made current.
1275 *
1276 * Note that in the Linux USB subsystem, bandwidth associated with
1277 * an endpoint in a given alternate setting is not reserved until an URB
1278 * is submitted that needs that bandwidth. Some other operating systems
1279 * allocate bandwidth early, when a configuration is chosen.
1280 *
1281 * This call is synchronous, and may not be used in an interrupt context.
1282 * Also, drivers must not change altsettings while urbs are scheduled for
1283 * endpoints in that interface; all such urbs must first be completed
1284 * (perhaps forced by unlinking).
1285 *
1286 * Return: Zero on success, or else the status code returned by the
1287 * underlying usb_control_msg() call.
1288 */
usb_set_interface(struct usb_device * dev,int interface,int alternate)1289 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1290 {
1291 struct usb_interface *iface;
1292 struct usb_host_interface *alt;
1293 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1294 int i, ret, manual = 0;
1295 unsigned int epaddr;
1296 unsigned int pipe;
1297
1298 if (dev->state == USB_STATE_SUSPENDED)
1299 return -EHOSTUNREACH;
1300
1301 iface = usb_ifnum_to_if(dev, interface);
1302 if (!iface) {
1303 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1304 interface);
1305 return -EINVAL;
1306 }
1307 if (iface->unregistering)
1308 return -ENODEV;
1309
1310 alt = usb_altnum_to_altsetting(iface, alternate);
1311 if (!alt) {
1312 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1313 alternate);
1314 return -EINVAL;
1315 }
1316
1317 /* Make sure we have enough bandwidth for this alternate interface.
1318 * Remove the current alt setting and add the new alt setting.
1319 */
1320 mutex_lock(hcd->bandwidth_mutex);
1321 /* Disable LPM, and re-enable it once the new alt setting is installed,
1322 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1323 */
1324 if (usb_disable_lpm(dev)) {
1325 dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1326 mutex_unlock(hcd->bandwidth_mutex);
1327 return -ENOMEM;
1328 }
1329 /* Changing alt-setting also frees any allocated streams */
1330 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1331 iface->cur_altsetting->endpoint[i].streams = 0;
1332
1333 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1334 if (ret < 0) {
1335 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1336 alternate);
1337 usb_enable_lpm(dev);
1338 mutex_unlock(hcd->bandwidth_mutex);
1339 return ret;
1340 }
1341
1342 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1343 ret = -EPIPE;
1344 else
1345 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1346 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1347 alternate, interface, NULL, 0, 5000);
1348
1349 /* 9.4.10 says devices don't need this and are free to STALL the
1350 * request if the interface only has one alternate setting.
1351 */
1352 if (ret == -EPIPE && iface->num_altsetting == 1) {
1353 dev_dbg(&dev->dev,
1354 "manual set_interface for iface %d, alt %d\n",
1355 interface, alternate);
1356 manual = 1;
1357 } else if (ret < 0) {
1358 /* Re-instate the old alt setting */
1359 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1360 usb_enable_lpm(dev);
1361 mutex_unlock(hcd->bandwidth_mutex);
1362 return ret;
1363 }
1364 mutex_unlock(hcd->bandwidth_mutex);
1365
1366 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1367 * when they implement async or easily-killable versions of this or
1368 * other "should-be-internal" functions (like clear_halt).
1369 * should hcd+usbcore postprocess control requests?
1370 */
1371
1372 /* prevent submissions using previous endpoint settings */
1373 if (iface->cur_altsetting != alt) {
1374 remove_intf_ep_devs(iface);
1375 usb_remove_sysfs_intf_files(iface);
1376 }
1377 usb_disable_interface(dev, iface, true);
1378
1379 iface->cur_altsetting = alt;
1380
1381 /* Now that the interface is installed, re-enable LPM. */
1382 usb_unlocked_enable_lpm(dev);
1383
1384 /* If the interface only has one altsetting and the device didn't
1385 * accept the request, we attempt to carry out the equivalent action
1386 * by manually clearing the HALT feature for each endpoint in the
1387 * new altsetting.
1388 */
1389 if (manual) {
1390 int i;
1391
1392 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1393 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1394 pipe = __create_pipe(dev,
1395 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1396 (usb_endpoint_out(epaddr) ?
1397 USB_DIR_OUT : USB_DIR_IN);
1398
1399 usb_clear_halt(dev, pipe);
1400 }
1401 }
1402
1403 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1404 *
1405 * Note:
1406 * Despite EP0 is always present in all interfaces/AS, the list of
1407 * endpoints from the descriptor does not contain EP0. Due to its
1408 * omnipresence one might expect EP0 being considered "affected" by
1409 * any SetInterface request and hence assume toggles need to be reset.
1410 * However, EP0 toggles are re-synced for every individual transfer
1411 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1412 * (Likewise, EP0 never "halts" on well designed devices.)
1413 */
1414 usb_enable_interface(dev, iface, true);
1415 if (device_is_registered(&iface->dev)) {
1416 usb_create_sysfs_intf_files(iface);
1417 create_intf_ep_devs(iface);
1418 }
1419 return 0;
1420 }
1421 EXPORT_SYMBOL_GPL(usb_set_interface);
1422
1423 /**
1424 * usb_reset_configuration - lightweight device reset
1425 * @dev: the device whose configuration is being reset
1426 *
1427 * This issues a standard SET_CONFIGURATION request to the device using
1428 * the current configuration. The effect is to reset most USB-related
1429 * state in the device, including interface altsettings (reset to zero),
1430 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1431 * endpoints). Other usbcore state is unchanged, including bindings of
1432 * usb device drivers to interfaces.
1433 *
1434 * Because this affects multiple interfaces, avoid using this with composite
1435 * (multi-interface) devices. Instead, the driver for each interface may
1436 * use usb_set_interface() on the interfaces it claims. Be careful though;
1437 * some devices don't support the SET_INTERFACE request, and others won't
1438 * reset all the interface state (notably endpoint state). Resetting the whole
1439 * configuration would affect other drivers' interfaces.
1440 *
1441 * The caller must own the device lock.
1442 *
1443 * Return: Zero on success, else a negative error code.
1444 */
usb_reset_configuration(struct usb_device * dev)1445 int usb_reset_configuration(struct usb_device *dev)
1446 {
1447 int i, retval;
1448 struct usb_host_config *config;
1449 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1450
1451 if (dev->state == USB_STATE_SUSPENDED)
1452 return -EHOSTUNREACH;
1453
1454 /* caller must have locked the device and must own
1455 * the usb bus readlock (so driver bindings are stable);
1456 * calls during probe() are fine
1457 */
1458
1459 for (i = 1; i < 16; ++i) {
1460 usb_disable_endpoint(dev, i, true);
1461 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1462 }
1463
1464 config = dev->actconfig;
1465 retval = 0;
1466 mutex_lock(hcd->bandwidth_mutex);
1467 /* Disable LPM, and re-enable it once the configuration is reset, so
1468 * that the xHCI driver can recalculate the U1/U2 timeouts.
1469 */
1470 if (usb_disable_lpm(dev)) {
1471 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1472 mutex_unlock(hcd->bandwidth_mutex);
1473 return -ENOMEM;
1474 }
1475 /* Make sure we have enough bandwidth for each alternate setting 0 */
1476 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1477 struct usb_interface *intf = config->interface[i];
1478 struct usb_host_interface *alt;
1479
1480 alt = usb_altnum_to_altsetting(intf, 0);
1481 if (!alt)
1482 alt = &intf->altsetting[0];
1483 if (alt != intf->cur_altsetting)
1484 retval = usb_hcd_alloc_bandwidth(dev, NULL,
1485 intf->cur_altsetting, alt);
1486 if (retval < 0)
1487 break;
1488 }
1489 /* If not, reinstate the old alternate settings */
1490 if (retval < 0) {
1491 reset_old_alts:
1492 for (i--; i >= 0; i--) {
1493 struct usb_interface *intf = config->interface[i];
1494 struct usb_host_interface *alt;
1495
1496 alt = usb_altnum_to_altsetting(intf, 0);
1497 if (!alt)
1498 alt = &intf->altsetting[0];
1499 if (alt != intf->cur_altsetting)
1500 usb_hcd_alloc_bandwidth(dev, NULL,
1501 alt, intf->cur_altsetting);
1502 }
1503 usb_enable_lpm(dev);
1504 mutex_unlock(hcd->bandwidth_mutex);
1505 return retval;
1506 }
1507 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1508 USB_REQ_SET_CONFIGURATION, 0,
1509 config->desc.bConfigurationValue, 0,
1510 NULL, 0, USB_CTRL_SET_TIMEOUT);
1511 if (retval < 0)
1512 goto reset_old_alts;
1513 mutex_unlock(hcd->bandwidth_mutex);
1514
1515 /* re-init hc/hcd interface/endpoint state */
1516 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1517 struct usb_interface *intf = config->interface[i];
1518 struct usb_host_interface *alt;
1519
1520 alt = usb_altnum_to_altsetting(intf, 0);
1521
1522 /* No altsetting 0? We'll assume the first altsetting.
1523 * We could use a GetInterface call, but if a device is
1524 * so non-compliant that it doesn't have altsetting 0
1525 * then I wouldn't trust its reply anyway.
1526 */
1527 if (!alt)
1528 alt = &intf->altsetting[0];
1529
1530 if (alt != intf->cur_altsetting) {
1531 remove_intf_ep_devs(intf);
1532 usb_remove_sysfs_intf_files(intf);
1533 }
1534 intf->cur_altsetting = alt;
1535 usb_enable_interface(dev, intf, true);
1536 if (device_is_registered(&intf->dev)) {
1537 usb_create_sysfs_intf_files(intf);
1538 create_intf_ep_devs(intf);
1539 }
1540 }
1541 /* Now that the interfaces are installed, re-enable LPM. */
1542 usb_unlocked_enable_lpm(dev);
1543 return 0;
1544 }
1545 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1546
usb_release_interface(struct device * dev)1547 static void usb_release_interface(struct device *dev)
1548 {
1549 struct usb_interface *intf = to_usb_interface(dev);
1550 struct usb_interface_cache *intfc =
1551 altsetting_to_usb_interface_cache(intf->altsetting);
1552
1553 kref_put(&intfc->ref, usb_release_interface_cache);
1554 usb_put_dev(interface_to_usbdev(intf));
1555 kfree(intf);
1556 }
1557
usb_if_uevent(struct device * dev,struct kobj_uevent_env * env)1558 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1559 {
1560 struct usb_device *usb_dev;
1561 struct usb_interface *intf;
1562 struct usb_host_interface *alt;
1563
1564 intf = to_usb_interface(dev);
1565 usb_dev = interface_to_usbdev(intf);
1566 alt = intf->cur_altsetting;
1567
1568 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1569 alt->desc.bInterfaceClass,
1570 alt->desc.bInterfaceSubClass,
1571 alt->desc.bInterfaceProtocol))
1572 return -ENOMEM;
1573
1574 if (add_uevent_var(env,
1575 "MODALIAS=usb:"
1576 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1577 le16_to_cpu(usb_dev->descriptor.idVendor),
1578 le16_to_cpu(usb_dev->descriptor.idProduct),
1579 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1580 usb_dev->descriptor.bDeviceClass,
1581 usb_dev->descriptor.bDeviceSubClass,
1582 usb_dev->descriptor.bDeviceProtocol,
1583 alt->desc.bInterfaceClass,
1584 alt->desc.bInterfaceSubClass,
1585 alt->desc.bInterfaceProtocol,
1586 alt->desc.bInterfaceNumber))
1587 return -ENOMEM;
1588
1589 return 0;
1590 }
1591
1592 struct device_type usb_if_device_type = {
1593 .name = "usb_interface",
1594 .release = usb_release_interface,
1595 .uevent = usb_if_uevent,
1596 };
1597
find_iad(struct usb_device * dev,struct usb_host_config * config,u8 inum)1598 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1599 struct usb_host_config *config,
1600 u8 inum)
1601 {
1602 struct usb_interface_assoc_descriptor *retval = NULL;
1603 struct usb_interface_assoc_descriptor *intf_assoc;
1604 int first_intf;
1605 int last_intf;
1606 int i;
1607
1608 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1609 intf_assoc = config->intf_assoc[i];
1610 if (intf_assoc->bInterfaceCount == 0)
1611 continue;
1612
1613 first_intf = intf_assoc->bFirstInterface;
1614 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1615 if (inum >= first_intf && inum <= last_intf) {
1616 if (!retval)
1617 retval = intf_assoc;
1618 else
1619 dev_err(&dev->dev, "Interface #%d referenced"
1620 " by multiple IADs\n", inum);
1621 }
1622 }
1623
1624 return retval;
1625 }
1626
1627
1628 /*
1629 * Internal function to queue a device reset
1630 * See usb_queue_reset_device() for more details
1631 */
__usb_queue_reset_device(struct work_struct * ws)1632 static void __usb_queue_reset_device(struct work_struct *ws)
1633 {
1634 int rc;
1635 struct usb_interface *iface =
1636 container_of(ws, struct usb_interface, reset_ws);
1637 struct usb_device *udev = interface_to_usbdev(iface);
1638
1639 rc = usb_lock_device_for_reset(udev, iface);
1640 if (rc >= 0) {
1641 usb_reset_device(udev);
1642 usb_unlock_device(udev);
1643 }
1644 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */
1645 }
1646
1647
1648 /*
1649 * usb_set_configuration - Makes a particular device setting be current
1650 * @dev: the device whose configuration is being updated
1651 * @configuration: the configuration being chosen.
1652 * Context: !in_interrupt(), caller owns the device lock
1653 *
1654 * This is used to enable non-default device modes. Not all devices
1655 * use this kind of configurability; many devices only have one
1656 * configuration.
1657 *
1658 * @configuration is the value of the configuration to be installed.
1659 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1660 * must be non-zero; a value of zero indicates that the device in
1661 * unconfigured. However some devices erroneously use 0 as one of their
1662 * configuration values. To help manage such devices, this routine will
1663 * accept @configuration = -1 as indicating the device should be put in
1664 * an unconfigured state.
1665 *
1666 * USB device configurations may affect Linux interoperability,
1667 * power consumption and the functionality available. For example,
1668 * the default configuration is limited to using 100mA of bus power,
1669 * so that when certain device functionality requires more power,
1670 * and the device is bus powered, that functionality should be in some
1671 * non-default device configuration. Other device modes may also be
1672 * reflected as configuration options, such as whether two ISDN
1673 * channels are available independently; and choosing between open
1674 * standard device protocols (like CDC) or proprietary ones.
1675 *
1676 * Note that a non-authorized device (dev->authorized == 0) will only
1677 * be put in unconfigured mode.
1678 *
1679 * Note that USB has an additional level of device configurability,
1680 * associated with interfaces. That configurability is accessed using
1681 * usb_set_interface().
1682 *
1683 * This call is synchronous. The calling context must be able to sleep,
1684 * must own the device lock, and must not hold the driver model's USB
1685 * bus mutex; usb interface driver probe() methods cannot use this routine.
1686 *
1687 * Returns zero on success, or else the status code returned by the
1688 * underlying call that failed. On successful completion, each interface
1689 * in the original device configuration has been destroyed, and each one
1690 * in the new configuration has been probed by all relevant usb device
1691 * drivers currently known to the kernel.
1692 */
usb_set_configuration(struct usb_device * dev,int configuration)1693 int usb_set_configuration(struct usb_device *dev, int configuration)
1694 {
1695 int i, ret;
1696 struct usb_host_config *cp = NULL;
1697 struct usb_interface **new_interfaces = NULL;
1698 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1699 int n, nintf;
1700
1701 if (dev->authorized == 0 || configuration == -1)
1702 configuration = 0;
1703 else {
1704 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1705 if (dev->config[i].desc.bConfigurationValue ==
1706 configuration) {
1707 cp = &dev->config[i];
1708 break;
1709 }
1710 }
1711 }
1712 if ((!cp && configuration != 0))
1713 return -EINVAL;
1714
1715 /* The USB spec says configuration 0 means unconfigured.
1716 * But if a device includes a configuration numbered 0,
1717 * we will accept it as a correctly configured state.
1718 * Use -1 if you really want to unconfigure the device.
1719 */
1720 if (cp && configuration == 0)
1721 dev_warn(&dev->dev, "config 0 descriptor??\n");
1722
1723 /* Allocate memory for new interfaces before doing anything else,
1724 * so that if we run out then nothing will have changed. */
1725 n = nintf = 0;
1726 if (cp) {
1727 nintf = cp->desc.bNumInterfaces;
1728 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1729 GFP_NOIO);
1730 if (!new_interfaces) {
1731 dev_err(&dev->dev, "Out of memory\n");
1732 return -ENOMEM;
1733 }
1734
1735 for (; n < nintf; ++n) {
1736 new_interfaces[n] = kzalloc(
1737 sizeof(struct usb_interface),
1738 GFP_NOIO);
1739 if (!new_interfaces[n]) {
1740 dev_err(&dev->dev, "Out of memory\n");
1741 ret = -ENOMEM;
1742 free_interfaces:
1743 while (--n >= 0)
1744 kfree(new_interfaces[n]);
1745 kfree(new_interfaces);
1746 return ret;
1747 }
1748 }
1749
1750 i = dev->bus_mA - usb_get_max_power(dev, cp);
1751 if (i < 0)
1752 dev_warn(&dev->dev, "new config #%d exceeds power "
1753 "limit by %dmA\n",
1754 configuration, -i);
1755 }
1756
1757 /* Wake up the device so we can send it the Set-Config request */
1758 ret = usb_autoresume_device(dev);
1759 if (ret)
1760 goto free_interfaces;
1761
1762 /* if it's already configured, clear out old state first.
1763 * getting rid of old interfaces means unbinding their drivers.
1764 */
1765 if (dev->state != USB_STATE_ADDRESS)
1766 usb_disable_device(dev, 1); /* Skip ep0 */
1767
1768 /* Get rid of pending async Set-Config requests for this device */
1769 cancel_async_set_config(dev);
1770
1771 /* Make sure we have bandwidth (and available HCD resources) for this
1772 * configuration. Remove endpoints from the schedule if we're dropping
1773 * this configuration to set configuration 0. After this point, the
1774 * host controller will not allow submissions to dropped endpoints. If
1775 * this call fails, the device state is unchanged.
1776 */
1777 mutex_lock(hcd->bandwidth_mutex);
1778 /* Disable LPM, and re-enable it once the new configuration is
1779 * installed, so that the xHCI driver can recalculate the U1/U2
1780 * timeouts.
1781 */
1782 if (dev->actconfig && usb_disable_lpm(dev)) {
1783 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1784 mutex_unlock(hcd->bandwidth_mutex);
1785 ret = -ENOMEM;
1786 goto free_interfaces;
1787 }
1788 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1789 if (ret < 0) {
1790 if (dev->actconfig)
1791 usb_enable_lpm(dev);
1792 mutex_unlock(hcd->bandwidth_mutex);
1793 usb_autosuspend_device(dev);
1794 goto free_interfaces;
1795 }
1796
1797 /*
1798 * Initialize the new interface structures and the
1799 * hc/hcd/usbcore interface/endpoint state.
1800 */
1801 for (i = 0; i < nintf; ++i) {
1802 struct usb_interface_cache *intfc;
1803 struct usb_interface *intf;
1804 struct usb_host_interface *alt;
1805
1806 cp->interface[i] = intf = new_interfaces[i];
1807 intfc = cp->intf_cache[i];
1808 intf->altsetting = intfc->altsetting;
1809 intf->num_altsetting = intfc->num_altsetting;
1810 kref_get(&intfc->ref);
1811
1812 alt = usb_altnum_to_altsetting(intf, 0);
1813
1814 /* No altsetting 0? We'll assume the first altsetting.
1815 * We could use a GetInterface call, but if a device is
1816 * so non-compliant that it doesn't have altsetting 0
1817 * then I wouldn't trust its reply anyway.
1818 */
1819 if (!alt)
1820 alt = &intf->altsetting[0];
1821
1822 intf->intf_assoc =
1823 find_iad(dev, cp, alt->desc.bInterfaceNumber);
1824 intf->cur_altsetting = alt;
1825 usb_enable_interface(dev, intf, true);
1826 intf->dev.parent = &dev->dev;
1827 intf->dev.driver = NULL;
1828 intf->dev.bus = &usb_bus_type;
1829 intf->dev.type = &usb_if_device_type;
1830 intf->dev.groups = usb_interface_groups;
1831 intf->dev.dma_mask = dev->dev.dma_mask;
1832 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1833 intf->minor = -1;
1834 device_initialize(&intf->dev);
1835 pm_runtime_no_callbacks(&intf->dev);
1836 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1837 dev->bus->busnum, dev->devpath,
1838 configuration, alt->desc.bInterfaceNumber);
1839 usb_get_dev(dev);
1840 }
1841 kfree(new_interfaces);
1842
1843 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1844 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1845 NULL, 0, USB_CTRL_SET_TIMEOUT);
1846 if (ret < 0 && cp) {
1847 /*
1848 * All the old state is gone, so what else can we do?
1849 * The device is probably useless now anyway.
1850 */
1851 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1852 for (i = 0; i < nintf; ++i) {
1853 usb_disable_interface(dev, cp->interface[i], true);
1854 put_device(&cp->interface[i]->dev);
1855 cp->interface[i] = NULL;
1856 }
1857 cp = NULL;
1858 }
1859
1860 dev->actconfig = cp;
1861 mutex_unlock(hcd->bandwidth_mutex);
1862
1863 if (!cp) {
1864 usb_set_device_state(dev, USB_STATE_ADDRESS);
1865
1866 /* Leave LPM disabled while the device is unconfigured. */
1867 usb_autosuspend_device(dev);
1868 return ret;
1869 }
1870 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1871
1872 if (cp->string == NULL &&
1873 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1874 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1875
1876 /* Now that the interfaces are installed, re-enable LPM. */
1877 usb_unlocked_enable_lpm(dev);
1878 /* Enable LTM if it was turned off by usb_disable_device. */
1879 usb_enable_ltm(dev);
1880
1881 /* Now that all the interfaces are set up, register them
1882 * to trigger binding of drivers to interfaces. probe()
1883 * routines may install different altsettings and may
1884 * claim() any interfaces not yet bound. Many class drivers
1885 * need that: CDC, audio, video, etc.
1886 */
1887 for (i = 0; i < nintf; ++i) {
1888 struct usb_interface *intf = cp->interface[i];
1889
1890 dev_dbg(&dev->dev,
1891 "adding %s (config #%d, interface %d)\n",
1892 dev_name(&intf->dev), configuration,
1893 intf->cur_altsetting->desc.bInterfaceNumber);
1894 device_enable_async_suspend(&intf->dev);
1895 ret = device_add(&intf->dev);
1896 if (ret != 0) {
1897 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1898 dev_name(&intf->dev), ret);
1899 continue;
1900 }
1901 create_intf_ep_devs(intf);
1902 }
1903
1904 usb_autosuspend_device(dev);
1905 return 0;
1906 }
1907 EXPORT_SYMBOL_GPL(usb_set_configuration);
1908
1909 static LIST_HEAD(set_config_list);
1910 static DEFINE_SPINLOCK(set_config_lock);
1911
1912 struct set_config_request {
1913 struct usb_device *udev;
1914 int config;
1915 struct work_struct work;
1916 struct list_head node;
1917 };
1918
1919 /* Worker routine for usb_driver_set_configuration() */
driver_set_config_work(struct work_struct * work)1920 static void driver_set_config_work(struct work_struct *work)
1921 {
1922 struct set_config_request *req =
1923 container_of(work, struct set_config_request, work);
1924 struct usb_device *udev = req->udev;
1925
1926 usb_lock_device(udev);
1927 spin_lock(&set_config_lock);
1928 list_del(&req->node);
1929 spin_unlock(&set_config_lock);
1930
1931 if (req->config >= -1) /* Is req still valid? */
1932 usb_set_configuration(udev, req->config);
1933 usb_unlock_device(udev);
1934 usb_put_dev(udev);
1935 kfree(req);
1936 }
1937
1938 /* Cancel pending Set-Config requests for a device whose configuration
1939 * was just changed
1940 */
cancel_async_set_config(struct usb_device * udev)1941 static void cancel_async_set_config(struct usb_device *udev)
1942 {
1943 struct set_config_request *req;
1944
1945 spin_lock(&set_config_lock);
1946 list_for_each_entry(req, &set_config_list, node) {
1947 if (req->udev == udev)
1948 req->config = -999; /* Mark as cancelled */
1949 }
1950 spin_unlock(&set_config_lock);
1951 }
1952
1953 /**
1954 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1955 * @udev: the device whose configuration is being updated
1956 * @config: the configuration being chosen.
1957 * Context: In process context, must be able to sleep
1958 *
1959 * Device interface drivers are not allowed to change device configurations.
1960 * This is because changing configurations will destroy the interface the
1961 * driver is bound to and create new ones; it would be like a floppy-disk
1962 * driver telling the computer to replace the floppy-disk drive with a
1963 * tape drive!
1964 *
1965 * Still, in certain specialized circumstances the need may arise. This
1966 * routine gets around the normal restrictions by using a work thread to
1967 * submit the change-config request.
1968 *
1969 * Return: 0 if the request was successfully queued, error code otherwise.
1970 * The caller has no way to know whether the queued request will eventually
1971 * succeed.
1972 */
usb_driver_set_configuration(struct usb_device * udev,int config)1973 int usb_driver_set_configuration(struct usb_device *udev, int config)
1974 {
1975 struct set_config_request *req;
1976
1977 req = kmalloc(sizeof(*req), GFP_KERNEL);
1978 if (!req)
1979 return -ENOMEM;
1980 req->udev = udev;
1981 req->config = config;
1982 INIT_WORK(&req->work, driver_set_config_work);
1983
1984 spin_lock(&set_config_lock);
1985 list_add(&req->node, &set_config_list);
1986 spin_unlock(&set_config_lock);
1987
1988 usb_get_dev(udev);
1989 schedule_work(&req->work);
1990 return 0;
1991 }
1992 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1993