• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * drivers/usb/core/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>  /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/usb.h>
35 #include <linux/usb/hcd.h>
36 #include <linux/mutex.h>
37 #include <linux/workqueue.h>
38 #include <linux/debugfs.h>
39 
40 #include <asm/io.h>
41 #include <linux/scatterlist.h>
42 #include <linux/mm.h>
43 #include <linux/dma-mapping.h>
44 
45 #include "usb.h"
46 
47 
48 const char *usbcore_name = "usbcore";
49 
50 static bool nousb;	/* Disable USB when built into kernel image */
51 
52 #ifdef	CONFIG_PM_RUNTIME
53 static int usb_autosuspend_delay = 2;		/* Default delay value,
54 						 * in seconds */
55 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
56 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
57 
58 #else
59 #define usb_autosuspend_delay		0
60 #endif
61 
62 
63 /**
64  * usb_find_alt_setting() - Given a configuration, find the alternate setting
65  * for the given interface.
66  * @config: the configuration to search (not necessarily the current config).
67  * @iface_num: interface number to search in
68  * @alt_num: alternate interface setting number to search for.
69  *
70  * Search the configuration's interface cache for the given alt setting.
71  *
72  * Return: The alternate setting, if found. %NULL otherwise.
73  */
usb_find_alt_setting(struct usb_host_config * config,unsigned int iface_num,unsigned int alt_num)74 struct usb_host_interface *usb_find_alt_setting(
75 		struct usb_host_config *config,
76 		unsigned int iface_num,
77 		unsigned int alt_num)
78 {
79 	struct usb_interface_cache *intf_cache = NULL;
80 	int i;
81 
82 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
83 		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
84 				== iface_num) {
85 			intf_cache = config->intf_cache[i];
86 			break;
87 		}
88 	}
89 	if (!intf_cache)
90 		return NULL;
91 	for (i = 0; i < intf_cache->num_altsetting; i++)
92 		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
93 			return &intf_cache->altsetting[i];
94 
95 	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
96 			"config %u\n", alt_num, iface_num,
97 			config->desc.bConfigurationValue);
98 	return NULL;
99 }
100 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
101 
102 /**
103  * usb_ifnum_to_if - get the interface object with a given interface number
104  * @dev: the device whose current configuration is considered
105  * @ifnum: the desired interface
106  *
107  * This walks the device descriptor for the currently active configuration
108  * to find the interface object with the particular interface number.
109  *
110  * Note that configuration descriptors are not required to assign interface
111  * numbers sequentially, so that it would be incorrect to assume that
112  * the first interface in that descriptor corresponds to interface zero.
113  * This routine helps device drivers avoid such mistakes.
114  * However, you should make sure that you do the right thing with any
115  * alternate settings available for this interfaces.
116  *
117  * Don't call this function unless you are bound to one of the interfaces
118  * on this device or you have locked the device!
119  *
120  * Return: A pointer to the interface that has @ifnum as interface number,
121  * if found. %NULL otherwise.
122  */
usb_ifnum_to_if(const struct usb_device * dev,unsigned ifnum)123 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
124 				      unsigned ifnum)
125 {
126 	struct usb_host_config *config = dev->actconfig;
127 	int i;
128 
129 	if (!config)
130 		return NULL;
131 	for (i = 0; i < config->desc.bNumInterfaces; i++)
132 		if (config->interface[i]->altsetting[0]
133 				.desc.bInterfaceNumber == ifnum)
134 			return config->interface[i];
135 
136 	return NULL;
137 }
138 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
139 
140 /**
141  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
142  * @intf: the interface containing the altsetting in question
143  * @altnum: the desired alternate setting number
144  *
145  * This searches the altsetting array of the specified interface for
146  * an entry with the correct bAlternateSetting value.
147  *
148  * Note that altsettings need not be stored sequentially by number, so
149  * it would be incorrect to assume that the first altsetting entry in
150  * the array corresponds to altsetting zero.  This routine helps device
151  * drivers avoid such mistakes.
152  *
153  * Don't call this function unless you are bound to the intf interface
154  * or you have locked the device!
155  *
156  * Return: A pointer to the entry of the altsetting array of @intf that
157  * has @altnum as the alternate setting number. %NULL if not found.
158  */
usb_altnum_to_altsetting(const struct usb_interface * intf,unsigned int altnum)159 struct usb_host_interface *usb_altnum_to_altsetting(
160 					const struct usb_interface *intf,
161 					unsigned int altnum)
162 {
163 	int i;
164 
165 	for (i = 0; i < intf->num_altsetting; i++) {
166 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
167 			return &intf->altsetting[i];
168 	}
169 	return NULL;
170 }
171 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
172 
173 struct find_interface_arg {
174 	int minor;
175 	struct device_driver *drv;
176 };
177 
__find_interface(struct device * dev,void * data)178 static int __find_interface(struct device *dev, void *data)
179 {
180 	struct find_interface_arg *arg = data;
181 	struct usb_interface *intf;
182 
183 	if (!is_usb_interface(dev))
184 		return 0;
185 
186 	if (dev->driver != arg->drv)
187 		return 0;
188 	intf = to_usb_interface(dev);
189 	return intf->minor == arg->minor;
190 }
191 
192 /**
193  * usb_find_interface - find usb_interface pointer for driver and device
194  * @drv: the driver whose current configuration is considered
195  * @minor: the minor number of the desired device
196  *
197  * This walks the bus device list and returns a pointer to the interface
198  * with the matching minor and driver.  Note, this only works for devices
199  * that share the USB major number.
200  *
201  * Return: A pointer to the interface with the matching major and @minor.
202  */
usb_find_interface(struct usb_driver * drv,int minor)203 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
204 {
205 	struct find_interface_arg argb;
206 	struct device *dev;
207 
208 	argb.minor = minor;
209 	argb.drv = &drv->drvwrap.driver;
210 
211 	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
212 
213 	/* Drop reference count from bus_find_device */
214 	put_device(dev);
215 
216 	return dev ? to_usb_interface(dev) : NULL;
217 }
218 EXPORT_SYMBOL_GPL(usb_find_interface);
219 
220 struct each_dev_arg {
221 	void *data;
222 	int (*fn)(struct usb_device *, void *);
223 };
224 
__each_dev(struct device * dev,void * data)225 static int __each_dev(struct device *dev, void *data)
226 {
227 	struct each_dev_arg *arg = (struct each_dev_arg *)data;
228 
229 	/* There are struct usb_interface on the same bus, filter them out */
230 	if (!is_usb_device(dev))
231 		return 0;
232 
233 	return arg->fn(container_of(dev, struct usb_device, dev), arg->data);
234 }
235 
236 /**
237  * usb_for_each_dev - iterate over all USB devices in the system
238  * @data: data pointer that will be handed to the callback function
239  * @fn: callback function to be called for each USB device
240  *
241  * Iterate over all USB devices and call @fn for each, passing it @data. If it
242  * returns anything other than 0, we break the iteration prematurely and return
243  * that value.
244  */
usb_for_each_dev(void * data,int (* fn)(struct usb_device *,void *))245 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
246 {
247 	struct each_dev_arg arg = {data, fn};
248 
249 	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
250 }
251 EXPORT_SYMBOL_GPL(usb_for_each_dev);
252 
253 /**
254  * usb_release_dev - free a usb device structure when all users of it are finished.
255  * @dev: device that's been disconnected
256  *
257  * Will be called only by the device core when all users of this usb device are
258  * done.
259  */
usb_release_dev(struct device * dev)260 static void usb_release_dev(struct device *dev)
261 {
262 	struct usb_device *udev;
263 	struct usb_hcd *hcd;
264 
265 	udev = to_usb_device(dev);
266 	hcd = bus_to_hcd(udev->bus);
267 
268 	usb_destroy_configuration(udev);
269 	usb_release_bos_descriptor(udev);
270 	usb_put_hcd(hcd);
271 	kfree(udev->product);
272 	kfree(udev->manufacturer);
273 	kfree(udev->serial);
274 	kfree(udev);
275 }
276 
usb_dev_uevent(struct device * dev,struct kobj_uevent_env * env)277 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
278 {
279 	struct usb_device *usb_dev;
280 
281 	usb_dev = to_usb_device(dev);
282 
283 	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
284 		return -ENOMEM;
285 
286 	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
287 		return -ENOMEM;
288 
289 	return 0;
290 }
291 
292 #ifdef	CONFIG_PM
293 
294 /* USB device Power-Management thunks.
295  * There's no need to distinguish here between quiescing a USB device
296  * and powering it down; the generic_suspend() routine takes care of
297  * it by skipping the usb_port_suspend() call for a quiesce.  And for
298  * USB interfaces there's no difference at all.
299  */
300 
usb_dev_prepare(struct device * dev)301 static int usb_dev_prepare(struct device *dev)
302 {
303 	return 0;		/* Implement eventually? */
304 }
305 
usb_dev_complete(struct device * dev)306 static void usb_dev_complete(struct device *dev)
307 {
308 	/* Currently used only for rebinding interfaces */
309 	usb_resume_complete(dev);
310 }
311 
usb_dev_suspend(struct device * dev)312 static int usb_dev_suspend(struct device *dev)
313 {
314 	return usb_suspend(dev, PMSG_SUSPEND);
315 }
316 
usb_dev_resume(struct device * dev)317 static int usb_dev_resume(struct device *dev)
318 {
319 	return usb_resume(dev, PMSG_RESUME);
320 }
321 
usb_dev_freeze(struct device * dev)322 static int usb_dev_freeze(struct device *dev)
323 {
324 	return usb_suspend(dev, PMSG_FREEZE);
325 }
326 
usb_dev_thaw(struct device * dev)327 static int usb_dev_thaw(struct device *dev)
328 {
329 	return usb_resume(dev, PMSG_THAW);
330 }
331 
usb_dev_poweroff(struct device * dev)332 static int usb_dev_poweroff(struct device *dev)
333 {
334 	return usb_suspend(dev, PMSG_HIBERNATE);
335 }
336 
usb_dev_restore(struct device * dev)337 static int usb_dev_restore(struct device *dev)
338 {
339 	return usb_resume(dev, PMSG_RESTORE);
340 }
341 
342 static const struct dev_pm_ops usb_device_pm_ops = {
343 	.prepare =	usb_dev_prepare,
344 	.complete =	usb_dev_complete,
345 	.suspend =	usb_dev_suspend,
346 	.resume =	usb_dev_resume,
347 	.freeze =	usb_dev_freeze,
348 	.thaw =		usb_dev_thaw,
349 	.poweroff =	usb_dev_poweroff,
350 	.restore =	usb_dev_restore,
351 #ifdef CONFIG_PM_RUNTIME
352 	.runtime_suspend =	usb_runtime_suspend,
353 	.runtime_resume =	usb_runtime_resume,
354 	.runtime_idle =		usb_runtime_idle,
355 #endif
356 };
357 
358 #endif	/* CONFIG_PM */
359 
360 
usb_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid)361 static char *usb_devnode(struct device *dev,
362 			 umode_t *mode, kuid_t *uid, kgid_t *gid)
363 {
364 	struct usb_device *usb_dev;
365 
366 	usb_dev = to_usb_device(dev);
367 	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
368 			 usb_dev->bus->busnum, usb_dev->devnum);
369 }
370 
371 struct device_type usb_device_type = {
372 	.name =		"usb_device",
373 	.release =	usb_release_dev,
374 	.uevent =	usb_dev_uevent,
375 	.devnode = 	usb_devnode,
376 #ifdef CONFIG_PM
377 	.pm =		&usb_device_pm_ops,
378 #endif
379 };
380 
381 
382 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
usb_bus_is_wusb(struct usb_bus * bus)383 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
384 {
385 	struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
386 	return hcd->wireless;
387 }
388 
389 
390 /**
391  * usb_alloc_dev - usb device constructor (usbcore-internal)
392  * @parent: hub to which device is connected; null to allocate a root hub
393  * @bus: bus used to access the device
394  * @port1: one-based index of port; ignored for root hubs
395  * Context: !in_interrupt()
396  *
397  * Only hub drivers (including virtual root hub drivers for host
398  * controllers) should ever call this.
399  *
400  * This call may not be used in a non-sleeping context.
401  *
402  * Return: On success, a pointer to the allocated usb device. %NULL on
403  * failure.
404  */
usb_alloc_dev(struct usb_device * parent,struct usb_bus * bus,unsigned port1)405 struct usb_device *usb_alloc_dev(struct usb_device *parent,
406 				 struct usb_bus *bus, unsigned port1)
407 {
408 	struct usb_device *dev;
409 	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
410 	unsigned root_hub = 0;
411 
412 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
413 	if (!dev)
414 		return NULL;
415 
416 	if (!usb_get_hcd(usb_hcd)) {
417 		kfree(dev);
418 		return NULL;
419 	}
420 	/* Root hubs aren't true devices, so don't allocate HCD resources */
421 	if (usb_hcd->driver->alloc_dev && parent &&
422 		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
423 		usb_put_hcd(bus_to_hcd(bus));
424 		kfree(dev);
425 		return NULL;
426 	}
427 
428 	device_initialize(&dev->dev);
429 	dev->dev.bus = &usb_bus_type;
430 	dev->dev.type = &usb_device_type;
431 	dev->dev.groups = usb_device_groups;
432 	dev->dev.dma_mask = bus->controller->dma_mask;
433 	set_dev_node(&dev->dev, dev_to_node(bus->controller));
434 	dev->state = USB_STATE_ATTACHED;
435 	dev->lpm_disable_count = 1;
436 	atomic_set(&dev->urbnum, 0);
437 
438 	INIT_LIST_HEAD(&dev->ep0.urb_list);
439 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
440 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
441 	/* ep0 maxpacket comes later, from device descriptor */
442 	usb_enable_endpoint(dev, &dev->ep0, false);
443 	dev->can_submit = 1;
444 
445 	/* Save readable and stable topology id, distinguishing devices
446 	 * by location for diagnostics, tools, driver model, etc.  The
447 	 * string is a path along hub ports, from the root.  Each device's
448 	 * dev->devpath will be stable until USB is re-cabled, and hubs
449 	 * are often labeled with these port numbers.  The name isn't
450 	 * as stable:  bus->busnum changes easily from modprobe order,
451 	 * cardbus or pci hotplugging, and so on.
452 	 */
453 	if (unlikely(!parent)) {
454 		dev->devpath[0] = '0';
455 		dev->route = 0;
456 
457 		dev->dev.parent = bus->controller;
458 		dev_set_name(&dev->dev, "usb%d", bus->busnum);
459 		root_hub = 1;
460 	} else {
461 		/* match any labeling on the hubs; it's one-based */
462 		if (parent->devpath[0] == '0') {
463 			snprintf(dev->devpath, sizeof dev->devpath,
464 				"%d", port1);
465 			/* Root ports are not counted in route string */
466 			dev->route = 0;
467 		} else {
468 			snprintf(dev->devpath, sizeof dev->devpath,
469 				"%s.%d", parent->devpath, port1);
470 			/* Route string assumes hubs have less than 16 ports */
471 			if (port1 < 15)
472 				dev->route = parent->route +
473 					(port1 << ((parent->level - 1)*4));
474 			else
475 				dev->route = parent->route +
476 					(15 << ((parent->level - 1)*4));
477 		}
478 
479 		dev->dev.parent = &parent->dev;
480 		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
481 
482 		/* hub driver sets up TT records */
483 	}
484 
485 	dev->portnum = port1;
486 	dev->bus = bus;
487 	dev->parent = parent;
488 	INIT_LIST_HEAD(&dev->filelist);
489 
490 #ifdef	CONFIG_PM
491 	pm_runtime_set_autosuspend_delay(&dev->dev,
492 			usb_autosuspend_delay * 1000);
493 	dev->connect_time = jiffies;
494 	dev->active_duration = -jiffies;
495 #endif
496 	if (root_hub)	/* Root hub always ok [and always wired] */
497 		dev->authorized = 1;
498 	else {
499 		dev->authorized = usb_hcd->authorized_default;
500 		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
501 	}
502 	return dev;
503 }
504 EXPORT_SYMBOL_GPL(usb_alloc_dev);
505 
506 /**
507  * usb_get_dev - increments the reference count of the usb device structure
508  * @dev: the device being referenced
509  *
510  * Each live reference to a device should be refcounted.
511  *
512  * Drivers for USB interfaces should normally record such references in
513  * their probe() methods, when they bind to an interface, and release
514  * them by calling usb_put_dev(), in their disconnect() methods.
515  *
516  * Return: A pointer to the device with the incremented reference counter.
517  */
usb_get_dev(struct usb_device * dev)518 struct usb_device *usb_get_dev(struct usb_device *dev)
519 {
520 	if (dev)
521 		get_device(&dev->dev);
522 	return dev;
523 }
524 EXPORT_SYMBOL_GPL(usb_get_dev);
525 
526 /**
527  * usb_put_dev - release a use of the usb device structure
528  * @dev: device that's been disconnected
529  *
530  * Must be called when a user of a device is finished with it.  When the last
531  * user of the device calls this function, the memory of the device is freed.
532  */
usb_put_dev(struct usb_device * dev)533 void usb_put_dev(struct usb_device *dev)
534 {
535 	if (dev)
536 		put_device(&dev->dev);
537 }
538 EXPORT_SYMBOL_GPL(usb_put_dev);
539 
540 /**
541  * usb_get_intf - increments the reference count of the usb interface structure
542  * @intf: the interface being referenced
543  *
544  * Each live reference to a interface must be refcounted.
545  *
546  * Drivers for USB interfaces should normally record such references in
547  * their probe() methods, when they bind to an interface, and release
548  * them by calling usb_put_intf(), in their disconnect() methods.
549  *
550  * Return: A pointer to the interface with the incremented reference counter.
551  */
usb_get_intf(struct usb_interface * intf)552 struct usb_interface *usb_get_intf(struct usb_interface *intf)
553 {
554 	if (intf)
555 		get_device(&intf->dev);
556 	return intf;
557 }
558 EXPORT_SYMBOL_GPL(usb_get_intf);
559 
560 /**
561  * usb_put_intf - release a use of the usb interface structure
562  * @intf: interface that's been decremented
563  *
564  * Must be called when a user of an interface is finished with it.  When the
565  * last user of the interface calls this function, the memory of the interface
566  * is freed.
567  */
usb_put_intf(struct usb_interface * intf)568 void usb_put_intf(struct usb_interface *intf)
569 {
570 	if (intf)
571 		put_device(&intf->dev);
572 }
573 EXPORT_SYMBOL_GPL(usb_put_intf);
574 
575 /*			USB device locking
576  *
577  * USB devices and interfaces are locked using the semaphore in their
578  * embedded struct device.  The hub driver guarantees that whenever a
579  * device is connected or disconnected, drivers are called with the
580  * USB device locked as well as their particular interface.
581  *
582  * Complications arise when several devices are to be locked at the same
583  * time.  Only hub-aware drivers that are part of usbcore ever have to
584  * do this; nobody else needs to worry about it.  The rule for locking
585  * is simple:
586  *
587  *	When locking both a device and its parent, always lock the
588  *	the parent first.
589  */
590 
591 /**
592  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
593  * @udev: device that's being locked
594  * @iface: interface bound to the driver making the request (optional)
595  *
596  * Attempts to acquire the device lock, but fails if the device is
597  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
598  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
599  * lock, the routine polls repeatedly.  This is to prevent deadlock with
600  * disconnect; in some drivers (such as usb-storage) the disconnect()
601  * or suspend() method will block waiting for a device reset to complete.
602  *
603  * Return: A negative error code for failure, otherwise 0.
604  */
usb_lock_device_for_reset(struct usb_device * udev,const struct usb_interface * iface)605 int usb_lock_device_for_reset(struct usb_device *udev,
606 			      const struct usb_interface *iface)
607 {
608 	unsigned long jiffies_expire = jiffies + HZ;
609 
610 	if (udev->state == USB_STATE_NOTATTACHED)
611 		return -ENODEV;
612 	if (udev->state == USB_STATE_SUSPENDED)
613 		return -EHOSTUNREACH;
614 	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
615 			iface->condition == USB_INTERFACE_UNBOUND))
616 		return -EINTR;
617 
618 	while (!usb_trylock_device(udev)) {
619 
620 		/* If we can't acquire the lock after waiting one second,
621 		 * we're probably deadlocked */
622 		if (time_after(jiffies, jiffies_expire))
623 			return -EBUSY;
624 
625 		msleep(15);
626 		if (udev->state == USB_STATE_NOTATTACHED)
627 			return -ENODEV;
628 		if (udev->state == USB_STATE_SUSPENDED)
629 			return -EHOSTUNREACH;
630 		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
631 				iface->condition == USB_INTERFACE_UNBOUND))
632 			return -EINTR;
633 	}
634 	return 0;
635 }
636 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
637 
638 /**
639  * usb_get_current_frame_number - return current bus frame number
640  * @dev: the device whose bus is being queried
641  *
642  * Return: The current frame number for the USB host controller used
643  * with the given USB device. This can be used when scheduling
644  * isochronous requests.
645  *
646  * Note: Different kinds of host controller have different "scheduling
647  * horizons". While one type might support scheduling only 32 frames
648  * into the future, others could support scheduling up to 1024 frames
649  * into the future.
650  *
651  */
usb_get_current_frame_number(struct usb_device * dev)652 int usb_get_current_frame_number(struct usb_device *dev)
653 {
654 	return usb_hcd_get_frame_number(dev);
655 }
656 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
657 
658 /*-------------------------------------------------------------------*/
659 /*
660  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
661  * extra field of the interface and endpoint descriptor structs.
662  */
663 
__usb_get_extra_descriptor(char * buffer,unsigned size,unsigned char type,void ** ptr)664 int __usb_get_extra_descriptor(char *buffer, unsigned size,
665 			       unsigned char type, void **ptr)
666 {
667 	struct usb_descriptor_header *header;
668 
669 	while (size >= sizeof(struct usb_descriptor_header)) {
670 		header = (struct usb_descriptor_header *)buffer;
671 
672 		if (header->bLength < 2) {
673 			printk(KERN_ERR
674 				"%s: bogus descriptor, type %d length %d\n",
675 				usbcore_name,
676 				header->bDescriptorType,
677 				header->bLength);
678 			return -1;
679 		}
680 
681 		if (header->bDescriptorType == type) {
682 			*ptr = header;
683 			return 0;
684 		}
685 
686 		buffer += header->bLength;
687 		size -= header->bLength;
688 	}
689 	return -1;
690 }
691 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
692 
693 /**
694  * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
695  * @dev: device the buffer will be used with
696  * @size: requested buffer size
697  * @mem_flags: affect whether allocation may block
698  * @dma: used to return DMA address of buffer
699  *
700  * Return: Either null (indicating no buffer could be allocated), or the
701  * cpu-space pointer to a buffer that may be used to perform DMA to the
702  * specified device.  Such cpu-space buffers are returned along with the DMA
703  * address (through the pointer provided).
704  *
705  * Note:
706  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
707  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
708  * hardware during URB completion/resubmit.  The implementation varies between
709  * platforms, depending on details of how DMA will work to this device.
710  * Using these buffers also eliminates cacheline sharing problems on
711  * architectures where CPU caches are not DMA-coherent.  On systems without
712  * bus-snooping caches, these buffers are uncached.
713  *
714  * When the buffer is no longer used, free it with usb_free_coherent().
715  */
usb_alloc_coherent(struct usb_device * dev,size_t size,gfp_t mem_flags,dma_addr_t * dma)716 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
717 			 dma_addr_t *dma)
718 {
719 	if (!dev || !dev->bus)
720 		return NULL;
721 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
722 }
723 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
724 
725 /**
726  * usb_free_coherent - free memory allocated with usb_alloc_coherent()
727  * @dev: device the buffer was used with
728  * @size: requested buffer size
729  * @addr: CPU address of buffer
730  * @dma: DMA address of buffer
731  *
732  * This reclaims an I/O buffer, letting it be reused.  The memory must have
733  * been allocated using usb_alloc_coherent(), and the parameters must match
734  * those provided in that allocation request.
735  */
usb_free_coherent(struct usb_device * dev,size_t size,void * addr,dma_addr_t dma)736 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
737 		       dma_addr_t dma)
738 {
739 	if (!dev || !dev->bus)
740 		return;
741 	if (!addr)
742 		return;
743 	hcd_buffer_free(dev->bus, size, addr, dma);
744 }
745 EXPORT_SYMBOL_GPL(usb_free_coherent);
746 
747 /**
748  * usb_buffer_map - create DMA mapping(s) for an urb
749  * @urb: urb whose transfer_buffer/setup_packet will be mapped
750  *
751  * URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation
752  * succeeds. If the device is connected to this system through a non-DMA
753  * controller, this operation always succeeds.
754  *
755  * This call would normally be used for an urb which is reused, perhaps
756  * as the target of a large periodic transfer, with usb_buffer_dmasync()
757  * calls to synchronize memory and dma state.
758  *
759  * Reverse the effect of this call with usb_buffer_unmap().
760  *
761  * Return: Either %NULL (indicating no buffer could be mapped), or @urb.
762  *
763  */
764 #if 0
765 struct urb *usb_buffer_map(struct urb *urb)
766 {
767 	struct usb_bus		*bus;
768 	struct device		*controller;
769 
770 	if (!urb
771 			|| !urb->dev
772 			|| !(bus = urb->dev->bus)
773 			|| !(controller = bus->controller))
774 		return NULL;
775 
776 	if (controller->dma_mask) {
777 		urb->transfer_dma = dma_map_single(controller,
778 			urb->transfer_buffer, urb->transfer_buffer_length,
779 			usb_pipein(urb->pipe)
780 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
781 	/* FIXME generic api broken like pci, can't report errors */
782 	/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
783 	} else
784 		urb->transfer_dma = ~0;
785 	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
786 	return urb;
787 }
788 EXPORT_SYMBOL_GPL(usb_buffer_map);
789 #endif  /*  0  */
790 
791 /* XXX DISABLED, no users currently.  If you wish to re-enable this
792  * XXX please determine whether the sync is to transfer ownership of
793  * XXX the buffer from device to cpu or vice verse, and thusly use the
794  * XXX appropriate _for_{cpu,device}() method.  -DaveM
795  */
796 #if 0
797 
798 /**
799  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
800  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
801  */
802 void usb_buffer_dmasync(struct urb *urb)
803 {
804 	struct usb_bus		*bus;
805 	struct device		*controller;
806 
807 	if (!urb
808 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
809 			|| !urb->dev
810 			|| !(bus = urb->dev->bus)
811 			|| !(controller = bus->controller))
812 		return;
813 
814 	if (controller->dma_mask) {
815 		dma_sync_single_for_cpu(controller,
816 			urb->transfer_dma, urb->transfer_buffer_length,
817 			usb_pipein(urb->pipe)
818 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
819 		if (usb_pipecontrol(urb->pipe))
820 			dma_sync_single_for_cpu(controller,
821 					urb->setup_dma,
822 					sizeof(struct usb_ctrlrequest),
823 					DMA_TO_DEVICE);
824 	}
825 }
826 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
827 #endif
828 
829 /**
830  * usb_buffer_unmap - free DMA mapping(s) for an urb
831  * @urb: urb whose transfer_buffer will be unmapped
832  *
833  * Reverses the effect of usb_buffer_map().
834  */
835 #if 0
836 void usb_buffer_unmap(struct urb *urb)
837 {
838 	struct usb_bus		*bus;
839 	struct device		*controller;
840 
841 	if (!urb
842 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
843 			|| !urb->dev
844 			|| !(bus = urb->dev->bus)
845 			|| !(controller = bus->controller))
846 		return;
847 
848 	if (controller->dma_mask) {
849 		dma_unmap_single(controller,
850 			urb->transfer_dma, urb->transfer_buffer_length,
851 			usb_pipein(urb->pipe)
852 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
853 	}
854 	urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
855 }
856 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
857 #endif  /*  0  */
858 
859 #if 0
860 /**
861  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
862  * @dev: device to which the scatterlist will be mapped
863  * @is_in: mapping transfer direction
864  * @sg: the scatterlist to map
865  * @nents: the number of entries in the scatterlist
866  *
867  * Return: Either < 0 (indicating no buffers could be mapped), or the
868  * number of DMA mapping array entries in the scatterlist.
869  *
870  * Note:
871  * The caller is responsible for placing the resulting DMA addresses from
872  * the scatterlist into URB transfer buffer pointers, and for setting the
873  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
874  *
875  * Top I/O rates come from queuing URBs, instead of waiting for each one
876  * to complete before starting the next I/O.   This is particularly easy
877  * to do with scatterlists.  Just allocate and submit one URB for each DMA
878  * mapping entry returned, stopping on the first error or when all succeed.
879  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
880  *
881  * This call would normally be used when translating scatterlist requests,
882  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
883  * may be able to coalesce mappings for improved I/O efficiency.
884  *
885  * Reverse the effect of this call with usb_buffer_unmap_sg().
886  */
887 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
888 		      struct scatterlist *sg, int nents)
889 {
890 	struct usb_bus		*bus;
891 	struct device		*controller;
892 
893 	if (!dev
894 			|| !(bus = dev->bus)
895 			|| !(controller = bus->controller)
896 			|| !controller->dma_mask)
897 		return -EINVAL;
898 
899 	/* FIXME generic api broken like pci, can't report errors */
900 	return dma_map_sg(controller, sg, nents,
901 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
902 }
903 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
904 #endif
905 
906 /* XXX DISABLED, no users currently.  If you wish to re-enable this
907  * XXX please determine whether the sync is to transfer ownership of
908  * XXX the buffer from device to cpu or vice verse, and thusly use the
909  * XXX appropriate _for_{cpu,device}() method.  -DaveM
910  */
911 #if 0
912 
913 /**
914  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
915  * @dev: device to which the scatterlist will be mapped
916  * @is_in: mapping transfer direction
917  * @sg: the scatterlist to synchronize
918  * @n_hw_ents: the positive return value from usb_buffer_map_sg
919  *
920  * Use this when you are re-using a scatterlist's data buffers for
921  * another USB request.
922  */
923 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
924 			   struct scatterlist *sg, int n_hw_ents)
925 {
926 	struct usb_bus		*bus;
927 	struct device		*controller;
928 
929 	if (!dev
930 			|| !(bus = dev->bus)
931 			|| !(controller = bus->controller)
932 			|| !controller->dma_mask)
933 		return;
934 
935 	dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
936 			    is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
937 }
938 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
939 #endif
940 
941 #if 0
942 /**
943  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
944  * @dev: device to which the scatterlist will be mapped
945  * @is_in: mapping transfer direction
946  * @sg: the scatterlist to unmap
947  * @n_hw_ents: the positive return value from usb_buffer_map_sg
948  *
949  * Reverses the effect of usb_buffer_map_sg().
950  */
951 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
952 			 struct scatterlist *sg, int n_hw_ents)
953 {
954 	struct usb_bus		*bus;
955 	struct device		*controller;
956 
957 	if (!dev
958 			|| !(bus = dev->bus)
959 			|| !(controller = bus->controller)
960 			|| !controller->dma_mask)
961 		return;
962 
963 	dma_unmap_sg(controller, sg, n_hw_ents,
964 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
965 }
966 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
967 #endif
968 
969 /* To disable USB, kernel command line is 'nousb' not 'usbcore.nousb' */
970 #ifdef MODULE
971 module_param(nousb, bool, 0444);
972 #else
973 core_param(nousb, nousb, bool, 0444);
974 #endif
975 
976 /*
977  * for external read access to <nousb>
978  */
usb_disabled(void)979 int usb_disabled(void)
980 {
981 	return nousb;
982 }
983 EXPORT_SYMBOL_GPL(usb_disabled);
984 
985 /*
986  * Notifications of device and interface registration
987  */
usb_bus_notify(struct notifier_block * nb,unsigned long action,void * data)988 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
989 		void *data)
990 {
991 	struct device *dev = data;
992 
993 	switch (action) {
994 	case BUS_NOTIFY_ADD_DEVICE:
995 		if (dev->type == &usb_device_type)
996 			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
997 		else if (dev->type == &usb_if_device_type)
998 			usb_create_sysfs_intf_files(to_usb_interface(dev));
999 		break;
1000 
1001 	case BUS_NOTIFY_DEL_DEVICE:
1002 		if (dev->type == &usb_device_type)
1003 			usb_remove_sysfs_dev_files(to_usb_device(dev));
1004 		else if (dev->type == &usb_if_device_type)
1005 			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1006 		break;
1007 	}
1008 	return 0;
1009 }
1010 
1011 static struct notifier_block usb_bus_nb = {
1012 	.notifier_call = usb_bus_notify,
1013 };
1014 
1015 struct dentry *usb_debug_root;
1016 EXPORT_SYMBOL_GPL(usb_debug_root);
1017 
1018 static struct dentry *usb_debug_devices;
1019 
usb_debugfs_init(void)1020 static int usb_debugfs_init(void)
1021 {
1022 	usb_debug_root = debugfs_create_dir("usb", NULL);
1023 	if (!usb_debug_root)
1024 		return -ENOENT;
1025 
1026 	usb_debug_devices = debugfs_create_file("devices", 0444,
1027 						usb_debug_root, NULL,
1028 						&usbfs_devices_fops);
1029 	if (!usb_debug_devices) {
1030 		debugfs_remove(usb_debug_root);
1031 		usb_debug_root = NULL;
1032 		return -ENOENT;
1033 	}
1034 
1035 	return 0;
1036 }
1037 
usb_debugfs_cleanup(void)1038 static void usb_debugfs_cleanup(void)
1039 {
1040 	debugfs_remove(usb_debug_devices);
1041 	debugfs_remove(usb_debug_root);
1042 }
1043 
1044 /*
1045  * Init
1046  */
usb_init(void)1047 static int __init usb_init(void)
1048 {
1049 	int retval;
1050 	if (nousb) {
1051 		pr_info("%s: USB support disabled\n", usbcore_name);
1052 		return 0;
1053 	}
1054 	usb_init_pool_max();
1055 
1056 	retval = usb_debugfs_init();
1057 	if (retval)
1058 		goto out;
1059 
1060 	usb_acpi_register();
1061 	retval = bus_register(&usb_bus_type);
1062 	if (retval)
1063 		goto bus_register_failed;
1064 	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1065 	if (retval)
1066 		goto bus_notifier_failed;
1067 	retval = usb_major_init();
1068 	if (retval)
1069 		goto major_init_failed;
1070 	retval = usb_register(&usbfs_driver);
1071 	if (retval)
1072 		goto driver_register_failed;
1073 	retval = usb_devio_init();
1074 	if (retval)
1075 		goto usb_devio_init_failed;
1076 	retval = usb_hub_init();
1077 	if (retval)
1078 		goto hub_init_failed;
1079 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1080 	if (!retval)
1081 		goto out;
1082 
1083 	usb_hub_cleanup();
1084 hub_init_failed:
1085 	usb_devio_cleanup();
1086 usb_devio_init_failed:
1087 	usb_deregister(&usbfs_driver);
1088 driver_register_failed:
1089 	usb_major_cleanup();
1090 major_init_failed:
1091 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1092 bus_notifier_failed:
1093 	bus_unregister(&usb_bus_type);
1094 bus_register_failed:
1095 	usb_acpi_unregister();
1096 	usb_debugfs_cleanup();
1097 out:
1098 	return retval;
1099 }
1100 
1101 /*
1102  * Cleanup
1103  */
usb_exit(void)1104 static void __exit usb_exit(void)
1105 {
1106 	/* This will matter if shutdown/reboot does exitcalls. */
1107 	if (nousb)
1108 		return;
1109 
1110 	usb_deregister_device_driver(&usb_generic_driver);
1111 	usb_major_cleanup();
1112 	usb_deregister(&usbfs_driver);
1113 	usb_devio_cleanup();
1114 	usb_hub_cleanup();
1115 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1116 	bus_unregister(&usb_bus_type);
1117 	usb_acpi_unregister();
1118 	usb_debugfs_cleanup();
1119 }
1120 
1121 subsys_initcall(usb_init);
1122 module_exit(usb_exit);
1123 MODULE_LICENSE("GPL");
1124