• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   * (C) Copyright Linus Torvalds 1999
3   * (C) Copyright Johannes Erdfelt 1999-2001
4   * (C) Copyright Andreas Gal 1999
5   * (C) Copyright Gregory P. Smith 1999
6   * (C) Copyright Deti Fliegl 1999
7   * (C) Copyright Randy Dunlap 2000
8   * (C) Copyright David Brownell 2000-2002
9   *
10   * This program is free software; you can redistribute it and/or modify it
11   * under the terms of the GNU General Public License as published by the
12   * Free Software Foundation; either version 2 of the License, or (at your
13   * option) any later version.
14   *
15   * This program is distributed in the hope that it will be useful, but
16   * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17   * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
18   * for more details.
19   *
20   * You should have received a copy of the GNU General Public License
21   * along with this program; if not, write to the Free Software Foundation,
22   * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23   */
24  
25  #include <linux/bcd.h>
26  #include <linux/module.h>
27  #include <linux/version.h>
28  #include <linux/kernel.h>
29  #include <linux/slab.h>
30  #include <linux/completion.h>
31  #include <linux/utsname.h>
32  #include <linux/mm.h>
33  #include <asm/io.h>
34  #include <linux/device.h>
35  #include <linux/dma-mapping.h>
36  #include <linux/mutex.h>
37  #include <asm/irq.h>
38  #include <asm/byteorder.h>
39  #include <asm/unaligned.h>
40  #include <linux/platform_device.h>
41  #include <linux/workqueue.h>
42  #include <linux/pm_runtime.h>
43  #include <linux/types.h>
44  
45  #include <linux/phy/phy.h>
46  #include <linux/usb.h>
47  #include <linux/usb/hcd.h>
48  #include <linux/usb/phy.h>
49  
50  #include "usb.h"
51  
52  
53  /*-------------------------------------------------------------------------*/
54  
55  /*
56   * USB Host Controller Driver framework
57   *
58   * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
59   * HCD-specific behaviors/bugs.
60   *
61   * This does error checks, tracks devices and urbs, and delegates to a
62   * "hc_driver" only for code (and data) that really needs to know about
63   * hardware differences.  That includes root hub registers, i/o queues,
64   * and so on ... but as little else as possible.
65   *
66   * Shared code includes most of the "root hub" code (these are emulated,
67   * though each HC's hardware works differently) and PCI glue, plus request
68   * tracking overhead.  The HCD code should only block on spinlocks or on
69   * hardware handshaking; blocking on software events (such as other kernel
70   * threads releasing resources, or completing actions) is all generic.
71   *
72   * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
73   * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
74   * only by the hub driver ... and that neither should be seen or used by
75   * usb client device drivers.
76   *
77   * Contributors of ideas or unattributed patches include: David Brownell,
78   * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
79   *
80   * HISTORY:
81   * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
82   *		associated cleanup.  "usb_hcd" still != "usb_bus".
83   * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
84   */
85  
86  /*-------------------------------------------------------------------------*/
87  
88  /* Keep track of which host controller drivers are loaded */
89  unsigned long usb_hcds_loaded;
90  EXPORT_SYMBOL_GPL(usb_hcds_loaded);
91  
92  /* host controllers we manage */
93  LIST_HEAD (usb_bus_list);
94  EXPORT_SYMBOL_GPL (usb_bus_list);
95  
96  /* used when allocating bus numbers */
97  #define USB_MAXBUS		64
98  static DECLARE_BITMAP(busmap, USB_MAXBUS);
99  
100  /* used when updating list of hcds */
101  DEFINE_MUTEX(usb_bus_list_lock);	/* exported only for usbfs */
102  EXPORT_SYMBOL_GPL (usb_bus_list_lock);
103  
104  /* used for controlling access to virtual root hubs */
105  static DEFINE_SPINLOCK(hcd_root_hub_lock);
106  
107  /* used when updating an endpoint's URB list */
108  static DEFINE_SPINLOCK(hcd_urb_list_lock);
109  
110  /* used to protect against unlinking URBs after the device is gone */
111  static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112  
113  /* wait queue for synchronous unlinks */
114  DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115  
is_root_hub(struct usb_device * udev)116  static inline int is_root_hub(struct usb_device *udev)
117  {
118  	return (udev->parent == NULL);
119  }
120  
121  /*-------------------------------------------------------------------------*/
122  
123  /*
124   * Sharable chunks of root hub code.
125   */
126  
127  /*-------------------------------------------------------------------------*/
128  #define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129  #define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130  
131  /* usb 3.0 root hub device descriptor */
132  static const u8 usb3_rh_dev_descriptor[18] = {
133  	0x12,       /*  __u8  bLength; */
134  	0x01,       /*  __u8  bDescriptorType; Device */
135  	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
136  
137  	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
138  	0x00,	    /*  __u8  bDeviceSubClass; */
139  	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
140  	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
141  
142  	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
143  	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
144  	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
145  
146  	0x03,       /*  __u8  iManufacturer; */
147  	0x02,       /*  __u8  iProduct; */
148  	0x01,       /*  __u8  iSerialNumber; */
149  	0x01        /*  __u8  bNumConfigurations; */
150  };
151  
152  /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
153  static const u8 usb25_rh_dev_descriptor[18] = {
154  	0x12,       /*  __u8  bLength; */
155  	0x01,       /*  __u8  bDescriptorType; Device */
156  	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
157  
158  	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
159  	0x00,	    /*  __u8  bDeviceSubClass; */
160  	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
161  	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
162  
163  	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
164  	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
165  	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
166  
167  	0x03,       /*  __u8  iManufacturer; */
168  	0x02,       /*  __u8  iProduct; */
169  	0x01,       /*  __u8  iSerialNumber; */
170  	0x01        /*  __u8  bNumConfigurations; */
171  };
172  
173  /* usb 2.0 root hub device descriptor */
174  static const u8 usb2_rh_dev_descriptor[18] = {
175  	0x12,       /*  __u8  bLength; */
176  	0x01,       /*  __u8  bDescriptorType; Device */
177  	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
178  
179  	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
180  	0x00,	    /*  __u8  bDeviceSubClass; */
181  	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
182  	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
183  
184  	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
185  	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
186  	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
187  
188  	0x03,       /*  __u8  iManufacturer; */
189  	0x02,       /*  __u8  iProduct; */
190  	0x01,       /*  __u8  iSerialNumber; */
191  	0x01        /*  __u8  bNumConfigurations; */
192  };
193  
194  /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
195  
196  /* usb 1.1 root hub device descriptor */
197  static const u8 usb11_rh_dev_descriptor[18] = {
198  	0x12,       /*  __u8  bLength; */
199  	0x01,       /*  __u8  bDescriptorType; Device */
200  	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
201  
202  	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
203  	0x00,	    /*  __u8  bDeviceSubClass; */
204  	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
205  	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
206  
207  	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
208  	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
209  	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
210  
211  	0x03,       /*  __u8  iManufacturer; */
212  	0x02,       /*  __u8  iProduct; */
213  	0x01,       /*  __u8  iSerialNumber; */
214  	0x01        /*  __u8  bNumConfigurations; */
215  };
216  
217  
218  /*-------------------------------------------------------------------------*/
219  
220  /* Configuration descriptors for our root hubs */
221  
222  static const u8 fs_rh_config_descriptor[] = {
223  
224  	/* one configuration */
225  	0x09,       /*  __u8  bLength; */
226  	0x02,       /*  __u8  bDescriptorType; Configuration */
227  	0x19, 0x00, /*  __le16 wTotalLength; */
228  	0x01,       /*  __u8  bNumInterfaces; (1) */
229  	0x01,       /*  __u8  bConfigurationValue; */
230  	0x00,       /*  __u8  iConfiguration; */
231  	0xc0,       /*  __u8  bmAttributes;
232  				 Bit 7: must be set,
233  				     6: Self-powered,
234  				     5: Remote wakeup,
235  				     4..0: resvd */
236  	0x00,       /*  __u8  MaxPower; */
237  
238  	/* USB 1.1:
239  	 * USB 2.0, single TT organization (mandatory):
240  	 *	one interface, protocol 0
241  	 *
242  	 * USB 2.0, multiple TT organization (optional):
243  	 *	two interfaces, protocols 1 (like single TT)
244  	 *	and 2 (multiple TT mode) ... config is
245  	 *	sometimes settable
246  	 *	NOT IMPLEMENTED
247  	 */
248  
249  	/* one interface */
250  	0x09,       /*  __u8  if_bLength; */
251  	0x04,       /*  __u8  if_bDescriptorType; Interface */
252  	0x00,       /*  __u8  if_bInterfaceNumber; */
253  	0x00,       /*  __u8  if_bAlternateSetting; */
254  	0x01,       /*  __u8  if_bNumEndpoints; */
255  	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
256  	0x00,       /*  __u8  if_bInterfaceSubClass; */
257  	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
258  	0x00,       /*  __u8  if_iInterface; */
259  
260  	/* one endpoint (status change endpoint) */
261  	0x07,       /*  __u8  ep_bLength; */
262  	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
263  	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
264  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
265  	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
266  	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
267  };
268  
269  static const u8 hs_rh_config_descriptor[] = {
270  
271  	/* one configuration */
272  	0x09,       /*  __u8  bLength; */
273  	0x02,       /*  __u8  bDescriptorType; Configuration */
274  	0x19, 0x00, /*  __le16 wTotalLength; */
275  	0x01,       /*  __u8  bNumInterfaces; (1) */
276  	0x01,       /*  __u8  bConfigurationValue; */
277  	0x00,       /*  __u8  iConfiguration; */
278  	0xc0,       /*  __u8  bmAttributes;
279  				 Bit 7: must be set,
280  				     6: Self-powered,
281  				     5: Remote wakeup,
282  				     4..0: resvd */
283  	0x00,       /*  __u8  MaxPower; */
284  
285  	/* USB 1.1:
286  	 * USB 2.0, single TT organization (mandatory):
287  	 *	one interface, protocol 0
288  	 *
289  	 * USB 2.0, multiple TT organization (optional):
290  	 *	two interfaces, protocols 1 (like single TT)
291  	 *	and 2 (multiple TT mode) ... config is
292  	 *	sometimes settable
293  	 *	NOT IMPLEMENTED
294  	 */
295  
296  	/* one interface */
297  	0x09,       /*  __u8  if_bLength; */
298  	0x04,       /*  __u8  if_bDescriptorType; Interface */
299  	0x00,       /*  __u8  if_bInterfaceNumber; */
300  	0x00,       /*  __u8  if_bAlternateSetting; */
301  	0x01,       /*  __u8  if_bNumEndpoints; */
302  	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
303  	0x00,       /*  __u8  if_bInterfaceSubClass; */
304  	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
305  	0x00,       /*  __u8  if_iInterface; */
306  
307  	/* one endpoint (status change endpoint) */
308  	0x07,       /*  __u8  ep_bLength; */
309  	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
310  	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
311  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
312  		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
313  		     * see hub.c:hub_configure() for details. */
314  	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
315  	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
316  };
317  
318  static const u8 ss_rh_config_descriptor[] = {
319  	/* one configuration */
320  	0x09,       /*  __u8  bLength; */
321  	0x02,       /*  __u8  bDescriptorType; Configuration */
322  	0x1f, 0x00, /*  __le16 wTotalLength; */
323  	0x01,       /*  __u8  bNumInterfaces; (1) */
324  	0x01,       /*  __u8  bConfigurationValue; */
325  	0x00,       /*  __u8  iConfiguration; */
326  	0xc0,       /*  __u8  bmAttributes;
327  				 Bit 7: must be set,
328  				     6: Self-powered,
329  				     5: Remote wakeup,
330  				     4..0: resvd */
331  	0x00,       /*  __u8  MaxPower; */
332  
333  	/* one interface */
334  	0x09,       /*  __u8  if_bLength; */
335  	0x04,       /*  __u8  if_bDescriptorType; Interface */
336  	0x00,       /*  __u8  if_bInterfaceNumber; */
337  	0x00,       /*  __u8  if_bAlternateSetting; */
338  	0x01,       /*  __u8  if_bNumEndpoints; */
339  	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
340  	0x00,       /*  __u8  if_bInterfaceSubClass; */
341  	0x00,       /*  __u8  if_bInterfaceProtocol; */
342  	0x00,       /*  __u8  if_iInterface; */
343  
344  	/* one endpoint (status change endpoint) */
345  	0x07,       /*  __u8  ep_bLength; */
346  	0x05,       /*  __u8  ep_bDescriptorType; Endpoint */
347  	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
348  	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
349  		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
350  		     * see hub.c:hub_configure() for details. */
351  	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
352  	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
353  
354  	/* one SuperSpeed endpoint companion descriptor */
355  	0x06,        /* __u8 ss_bLength */
356  	0x30,        /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
357  	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
358  	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
359  	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
360  };
361  
362  /* authorized_default behaviour:
363   * -1 is authorized for all devices except wireless (old behaviour)
364   * 0 is unauthorized for all devices
365   * 1 is authorized for all devices
366   */
367  static int authorized_default = -1;
368  module_param(authorized_default, int, S_IRUGO|S_IWUSR);
369  MODULE_PARM_DESC(authorized_default,
370  		"Default USB device authorization: 0 is not authorized, 1 is "
371  		"authorized, -1 is authorized except for wireless USB (default, "
372  		"old behaviour");
373  /*-------------------------------------------------------------------------*/
374  
375  /**
376   * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
377   * @s: Null-terminated ASCII (actually ISO-8859-1) string
378   * @buf: Buffer for USB string descriptor (header + UTF-16LE)
379   * @len: Length (in bytes; may be odd) of descriptor buffer.
380   *
381   * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
382   * whichever is less.
383   *
384   * Note:
385   * USB String descriptors can contain at most 126 characters; input
386   * strings longer than that are truncated.
387   */
388  static unsigned
ascii2desc(char const * s,u8 * buf,unsigned len)389  ascii2desc(char const *s, u8 *buf, unsigned len)
390  {
391  	unsigned n, t = 2 + 2*strlen(s);
392  
393  	if (t > 254)
394  		t = 254;	/* Longest possible UTF string descriptor */
395  	if (len > t)
396  		len = t;
397  
398  	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
399  
400  	n = len;
401  	while (n--) {
402  		*buf++ = t;
403  		if (!n--)
404  			break;
405  		*buf++ = t >> 8;
406  		t = (unsigned char)*s++;
407  	}
408  	return len;
409  }
410  
411  /**
412   * rh_string() - provides string descriptors for root hub
413   * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
414   * @hcd: the host controller for this root hub
415   * @data: buffer for output packet
416   * @len: length of the provided buffer
417   *
418   * Produces either a manufacturer, product or serial number string for the
419   * virtual root hub device.
420   *
421   * Return: The number of bytes filled in: the length of the descriptor or
422   * of the provided buffer, whichever is less.
423   */
424  static unsigned
rh_string(int id,struct usb_hcd const * hcd,u8 * data,unsigned len)425  rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
426  {
427  	char buf[100];
428  	char const *s;
429  	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
430  
431  	/* language ids */
432  	switch (id) {
433  	case 0:
434  		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
435  		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
436  		if (len > 4)
437  			len = 4;
438  		memcpy(data, langids, len);
439  		return len;
440  	case 1:
441  		/* Serial number */
442  		s = hcd->self.bus_name;
443  		break;
444  	case 2:
445  		/* Product name */
446  		s = hcd->product_desc;
447  		break;
448  	case 3:
449  		/* Manufacturer */
450  		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
451  			init_utsname()->release, hcd->driver->description);
452  		s = buf;
453  		break;
454  	default:
455  		/* Can't happen; caller guarantees it */
456  		return 0;
457  	}
458  
459  	return ascii2desc(s, data, len);
460  }
461  
462  
463  /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)464  static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
465  {
466  	struct usb_ctrlrequest *cmd;
467  	u16		typeReq, wValue, wIndex, wLength;
468  	u8		*ubuf = urb->transfer_buffer;
469  	unsigned	len = 0;
470  	int		status;
471  	u8		patch_wakeup = 0;
472  	u8		patch_protocol = 0;
473  	u16		tbuf_size;
474  	u8		*tbuf = NULL;
475  	const u8	*bufp;
476  
477  	might_sleep();
478  
479  	spin_lock_irq(&hcd_root_hub_lock);
480  	status = usb_hcd_link_urb_to_ep(hcd, urb);
481  	spin_unlock_irq(&hcd_root_hub_lock);
482  	if (status)
483  		return status;
484  	urb->hcpriv = hcd;	/* Indicate it's queued */
485  
486  	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
487  	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
488  	wValue   = le16_to_cpu (cmd->wValue);
489  	wIndex   = le16_to_cpu (cmd->wIndex);
490  	wLength  = le16_to_cpu (cmd->wLength);
491  
492  	if (wLength > urb->transfer_buffer_length)
493  		goto error;
494  
495  	/*
496  	 * tbuf should be at least as big as the
497  	 * USB hub descriptor.
498  	 */
499  	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
500  	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
501  	if (!tbuf) {
502  		status = -ENOMEM;
503  		goto err_alloc;
504  	}
505  
506  	bufp = tbuf;
507  
508  
509  	urb->actual_length = 0;
510  	switch (typeReq) {
511  
512  	/* DEVICE REQUESTS */
513  
514  	/* The root hub's remote wakeup enable bit is implemented using
515  	 * driver model wakeup flags.  If this system supports wakeup
516  	 * through USB, userspace may change the default "allow wakeup"
517  	 * policy through sysfs or these calls.
518  	 *
519  	 * Most root hubs support wakeup from downstream devices, for
520  	 * runtime power management (disabling USB clocks and reducing
521  	 * VBUS power usage).  However, not all of them do so; silicon,
522  	 * board, and BIOS bugs here are not uncommon, so these can't
523  	 * be treated quite like external hubs.
524  	 *
525  	 * Likewise, not all root hubs will pass wakeup events upstream,
526  	 * to wake up the whole system.  So don't assume root hub and
527  	 * controller capabilities are identical.
528  	 */
529  
530  	case DeviceRequest | USB_REQ_GET_STATUS:
531  		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
532  					<< USB_DEVICE_REMOTE_WAKEUP)
533  				| (1 << USB_DEVICE_SELF_POWERED);
534  		tbuf[1] = 0;
535  		len = 2;
536  		break;
537  	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
538  		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
539  			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
540  		else
541  			goto error;
542  		break;
543  	case DeviceOutRequest | USB_REQ_SET_FEATURE:
544  		if (device_can_wakeup(&hcd->self.root_hub->dev)
545  				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
546  			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
547  		else
548  			goto error;
549  		break;
550  	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
551  		tbuf[0] = 1;
552  		len = 1;
553  			/* FALLTHROUGH */
554  	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
555  		break;
556  	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
557  		switch (wValue & 0xff00) {
558  		case USB_DT_DEVICE << 8:
559  			switch (hcd->speed) {
560  			case HCD_USB3:
561  				bufp = usb3_rh_dev_descriptor;
562  				break;
563  			case HCD_USB25:
564  				bufp = usb25_rh_dev_descriptor;
565  				break;
566  			case HCD_USB2:
567  				bufp = usb2_rh_dev_descriptor;
568  				break;
569  			case HCD_USB11:
570  				bufp = usb11_rh_dev_descriptor;
571  				break;
572  			default:
573  				goto error;
574  			}
575  			len = 18;
576  			if (hcd->has_tt)
577  				patch_protocol = 1;
578  			break;
579  		case USB_DT_CONFIG << 8:
580  			switch (hcd->speed) {
581  			case HCD_USB3:
582  				bufp = ss_rh_config_descriptor;
583  				len = sizeof ss_rh_config_descriptor;
584  				break;
585  			case HCD_USB25:
586  			case HCD_USB2:
587  				bufp = hs_rh_config_descriptor;
588  				len = sizeof hs_rh_config_descriptor;
589  				break;
590  			case HCD_USB11:
591  				bufp = fs_rh_config_descriptor;
592  				len = sizeof fs_rh_config_descriptor;
593  				break;
594  			default:
595  				goto error;
596  			}
597  			if (device_can_wakeup(&hcd->self.root_hub->dev))
598  				patch_wakeup = 1;
599  			break;
600  		case USB_DT_STRING << 8:
601  			if ((wValue & 0xff) < 4)
602  				urb->actual_length = rh_string(wValue & 0xff,
603  						hcd, ubuf, wLength);
604  			else /* unsupported IDs --> "protocol stall" */
605  				goto error;
606  			break;
607  		case USB_DT_BOS << 8:
608  			goto nongeneric;
609  		default:
610  			goto error;
611  		}
612  		break;
613  	case DeviceRequest | USB_REQ_GET_INTERFACE:
614  		tbuf[0] = 0;
615  		len = 1;
616  			/* FALLTHROUGH */
617  	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
618  		break;
619  	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
620  		/* wValue == urb->dev->devaddr */
621  		dev_dbg (hcd->self.controller, "root hub device address %d\n",
622  			wValue);
623  		break;
624  
625  	/* INTERFACE REQUESTS (no defined feature/status flags) */
626  
627  	/* ENDPOINT REQUESTS */
628  
629  	case EndpointRequest | USB_REQ_GET_STATUS:
630  		/* ENDPOINT_HALT flag */
631  		tbuf[0] = 0;
632  		tbuf[1] = 0;
633  		len = 2;
634  			/* FALLTHROUGH */
635  	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
636  	case EndpointOutRequest | USB_REQ_SET_FEATURE:
637  		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
638  		break;
639  
640  	/* CLASS REQUESTS (and errors) */
641  
642  	default:
643  nongeneric:
644  		/* non-generic request */
645  		switch (typeReq) {
646  		case GetHubStatus:
647  		case GetPortStatus:
648  			len = 4;
649  			break;
650  		case GetHubDescriptor:
651  			len = sizeof (struct usb_hub_descriptor);
652  			break;
653  		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
654  			/* len is returned by hub_control */
655  			break;
656  		}
657  		status = hcd->driver->hub_control (hcd,
658  			typeReq, wValue, wIndex,
659  			tbuf, wLength);
660  
661  		if (typeReq == GetHubDescriptor)
662  			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
663  				(struct usb_hub_descriptor *)tbuf);
664  		break;
665  error:
666  		/* "protocol stall" on error */
667  		status = -EPIPE;
668  	}
669  
670  	if (status < 0) {
671  		len = 0;
672  		if (status != -EPIPE) {
673  			dev_dbg (hcd->self.controller,
674  				"CTRL: TypeReq=0x%x val=0x%x "
675  				"idx=0x%x len=%d ==> %d\n",
676  				typeReq, wValue, wIndex,
677  				wLength, status);
678  		}
679  	} else if (status > 0) {
680  		/* hub_control may return the length of data copied. */
681  		len = status;
682  		status = 0;
683  	}
684  	if (len) {
685  		if (urb->transfer_buffer_length < len)
686  			len = urb->transfer_buffer_length;
687  		urb->actual_length = len;
688  		/* always USB_DIR_IN, toward host */
689  		memcpy (ubuf, bufp, len);
690  
691  		/* report whether RH hardware supports remote wakeup */
692  		if (patch_wakeup &&
693  				len > offsetof (struct usb_config_descriptor,
694  						bmAttributes))
695  			((struct usb_config_descriptor *)ubuf)->bmAttributes
696  				|= USB_CONFIG_ATT_WAKEUP;
697  
698  		/* report whether RH hardware has an integrated TT */
699  		if (patch_protocol &&
700  				len > offsetof(struct usb_device_descriptor,
701  						bDeviceProtocol))
702  			((struct usb_device_descriptor *) ubuf)->
703  				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
704  	}
705  
706  	kfree(tbuf);
707   err_alloc:
708  
709  	/* any errors get returned through the urb completion */
710  	spin_lock_irq(&hcd_root_hub_lock);
711  	usb_hcd_unlink_urb_from_ep(hcd, urb);
712  	usb_hcd_giveback_urb(hcd, urb, status);
713  	spin_unlock_irq(&hcd_root_hub_lock);
714  	return 0;
715  }
716  
717  /*-------------------------------------------------------------------------*/
718  
719  /*
720   * Root Hub interrupt transfers are polled using a timer if the
721   * driver requests it; otherwise the driver is responsible for
722   * calling usb_hcd_poll_rh_status() when an event occurs.
723   *
724   * Completions are called in_interrupt(), but they may or may not
725   * be in_irq().
726   */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)727  void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
728  {
729  	struct urb	*urb;
730  	int		length;
731  	unsigned long	flags;
732  	char		buffer[6];	/* Any root hubs with > 31 ports? */
733  
734  	if (unlikely(!hcd->rh_pollable))
735  		return;
736  	if (!hcd->uses_new_polling && !hcd->status_urb)
737  		return;
738  
739  	length = hcd->driver->hub_status_data(hcd, buffer);
740  	if (length > 0) {
741  
742  		/* try to complete the status urb */
743  		spin_lock_irqsave(&hcd_root_hub_lock, flags);
744  		urb = hcd->status_urb;
745  		if (urb) {
746  			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
747  			hcd->status_urb = NULL;
748  			urb->actual_length = length;
749  			memcpy(urb->transfer_buffer, buffer, length);
750  
751  			usb_hcd_unlink_urb_from_ep(hcd, urb);
752  			usb_hcd_giveback_urb(hcd, urb, 0);
753  		} else {
754  			length = 0;
755  			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
756  		}
757  		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
758  	}
759  
760  	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
761  	 * exceed that limit if HZ is 100. The math is more clunky than
762  	 * maybe expected, this is to make sure that all timers for USB devices
763  	 * fire at the same time to give the CPU a break in between */
764  	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
765  			(length == 0 && hcd->status_urb != NULL))
766  		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
767  }
768  EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
769  
770  /* timer callback */
rh_timer_func(unsigned long _hcd)771  static void rh_timer_func (unsigned long _hcd)
772  {
773  	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
774  }
775  
776  /*-------------------------------------------------------------------------*/
777  
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)778  static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
779  {
780  	int		retval;
781  	unsigned long	flags;
782  	unsigned	len = 1 + (urb->dev->maxchild / 8);
783  
784  	spin_lock_irqsave (&hcd_root_hub_lock, flags);
785  	if (hcd->status_urb || urb->transfer_buffer_length < len) {
786  		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
787  		retval = -EINVAL;
788  		goto done;
789  	}
790  
791  	retval = usb_hcd_link_urb_to_ep(hcd, urb);
792  	if (retval)
793  		goto done;
794  
795  	hcd->status_urb = urb;
796  	urb->hcpriv = hcd;	/* indicate it's queued */
797  	if (!hcd->uses_new_polling)
798  		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
799  
800  	/* If a status change has already occurred, report it ASAP */
801  	else if (HCD_POLL_PENDING(hcd))
802  		mod_timer(&hcd->rh_timer, jiffies);
803  	retval = 0;
804   done:
805  	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
806  	return retval;
807  }
808  
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)809  static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
810  {
811  	if (usb_endpoint_xfer_int(&urb->ep->desc))
812  		return rh_queue_status (hcd, urb);
813  	if (usb_endpoint_xfer_control(&urb->ep->desc))
814  		return rh_call_control (hcd, urb);
815  	return -EINVAL;
816  }
817  
818  /*-------------------------------------------------------------------------*/
819  
820  /* Unlinks of root-hub control URBs are legal, but they don't do anything
821   * since these URBs always execute synchronously.
822   */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)823  static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
824  {
825  	unsigned long	flags;
826  	int		rc;
827  
828  	spin_lock_irqsave(&hcd_root_hub_lock, flags);
829  	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
830  	if (rc)
831  		goto done;
832  
833  	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
834  		;	/* Do nothing */
835  
836  	} else {				/* Status URB */
837  		if (!hcd->uses_new_polling)
838  			del_timer (&hcd->rh_timer);
839  		if (urb == hcd->status_urb) {
840  			hcd->status_urb = NULL;
841  			usb_hcd_unlink_urb_from_ep(hcd, urb);
842  			usb_hcd_giveback_urb(hcd, urb, status);
843  		}
844  	}
845   done:
846  	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
847  	return rc;
848  }
849  
850  
851  
852  /*
853   * Show & store the current value of authorized_default
854   */
authorized_default_show(struct device * dev,struct device_attribute * attr,char * buf)855  static ssize_t authorized_default_show(struct device *dev,
856  				       struct device_attribute *attr, char *buf)
857  {
858  	struct usb_device *rh_usb_dev = to_usb_device(dev);
859  	struct usb_bus *usb_bus = rh_usb_dev->bus;
860  	struct usb_hcd *usb_hcd;
861  
862  	usb_hcd = bus_to_hcd(usb_bus);
863  	return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
864  }
865  
authorized_default_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)866  static ssize_t authorized_default_store(struct device *dev,
867  					struct device_attribute *attr,
868  					const char *buf, size_t size)
869  {
870  	ssize_t result;
871  	unsigned val;
872  	struct usb_device *rh_usb_dev = to_usb_device(dev);
873  	struct usb_bus *usb_bus = rh_usb_dev->bus;
874  	struct usb_hcd *usb_hcd;
875  
876  	usb_hcd = bus_to_hcd(usb_bus);
877  	result = sscanf(buf, "%u\n", &val);
878  	if (result == 1) {
879  		usb_hcd->authorized_default = val ? 1 : 0;
880  		result = size;
881  	} else {
882  		result = -EINVAL;
883  	}
884  	return result;
885  }
886  static DEVICE_ATTR_RW(authorized_default);
887  
888  /* Group all the USB bus attributes */
889  static struct attribute *usb_bus_attrs[] = {
890  		&dev_attr_authorized_default.attr,
891  		NULL,
892  };
893  
894  static struct attribute_group usb_bus_attr_group = {
895  	.name = NULL,	/* we want them in the same directory */
896  	.attrs = usb_bus_attrs,
897  };
898  
899  
900  
901  /*-------------------------------------------------------------------------*/
902  
903  /**
904   * usb_bus_init - shared initialization code
905   * @bus: the bus structure being initialized
906   *
907   * This code is used to initialize a usb_bus structure, memory for which is
908   * separately managed.
909   */
usb_bus_init(struct usb_bus * bus)910  static void usb_bus_init (struct usb_bus *bus)
911  {
912  	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
913  
914  	bus->devnum_next = 1;
915  
916  	bus->root_hub = NULL;
917  	bus->busnum = -1;
918  	bus->bandwidth_allocated = 0;
919  	bus->bandwidth_int_reqs  = 0;
920  	bus->bandwidth_isoc_reqs = 0;
921  	mutex_init(&bus->devnum_next_mutex);
922  
923  	INIT_LIST_HEAD (&bus->bus_list);
924  }
925  
926  /*-------------------------------------------------------------------------*/
927  
928  /**
929   * usb_register_bus - registers the USB host controller with the usb core
930   * @bus: pointer to the bus to register
931   * Context: !in_interrupt()
932   *
933   * Assigns a bus number, and links the controller into usbcore data
934   * structures so that it can be seen by scanning the bus list.
935   *
936   * Return: 0 if successful. A negative error code otherwise.
937   */
usb_register_bus(struct usb_bus * bus)938  static int usb_register_bus(struct usb_bus *bus)
939  {
940  	int result = -E2BIG;
941  	int busnum;
942  
943  	mutex_lock(&usb_bus_list_lock);
944  	busnum = find_next_zero_bit(busmap, USB_MAXBUS, 1);
945  	if (busnum >= USB_MAXBUS) {
946  		printk (KERN_ERR "%s: too many buses\n", usbcore_name);
947  		goto error_find_busnum;
948  	}
949  	set_bit(busnum, busmap);
950  	bus->busnum = busnum;
951  
952  	/* Add it to the local list of buses */
953  	list_add (&bus->bus_list, &usb_bus_list);
954  	mutex_unlock(&usb_bus_list_lock);
955  
956  	usb_notify_add_bus(bus);
957  
958  	dev_info (bus->controller, "new USB bus registered, assigned bus "
959  		  "number %d\n", bus->busnum);
960  	return 0;
961  
962  error_find_busnum:
963  	mutex_unlock(&usb_bus_list_lock);
964  	return result;
965  }
966  
967  /**
968   * usb_deregister_bus - deregisters the USB host controller
969   * @bus: pointer to the bus to deregister
970   * Context: !in_interrupt()
971   *
972   * Recycles the bus number, and unlinks the controller from usbcore data
973   * structures so that it won't be seen by scanning the bus list.
974   */
usb_deregister_bus(struct usb_bus * bus)975  static void usb_deregister_bus (struct usb_bus *bus)
976  {
977  	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
978  
979  	/*
980  	 * NOTE: make sure that all the devices are removed by the
981  	 * controller code, as well as having it call this when cleaning
982  	 * itself up
983  	 */
984  	mutex_lock(&usb_bus_list_lock);
985  	list_del (&bus->bus_list);
986  	mutex_unlock(&usb_bus_list_lock);
987  
988  	usb_notify_remove_bus(bus);
989  
990  	clear_bit(bus->busnum, busmap);
991  }
992  
993  /**
994   * register_root_hub - called by usb_add_hcd() to register a root hub
995   * @hcd: host controller for this root hub
996   *
997   * This function registers the root hub with the USB subsystem.  It sets up
998   * the device properly in the device tree and then calls usb_new_device()
999   * to register the usb device.  It also assigns the root hub's USB address
1000   * (always 1).
1001   *
1002   * Return: 0 if successful. A negative error code otherwise.
1003   */
register_root_hub(struct usb_hcd * hcd)1004  static int register_root_hub(struct usb_hcd *hcd)
1005  {
1006  	struct device *parent_dev = hcd->self.controller;
1007  	struct usb_device *usb_dev = hcd->self.root_hub;
1008  	const int devnum = 1;
1009  	int retval;
1010  
1011  	usb_dev->devnum = devnum;
1012  	usb_dev->bus->devnum_next = devnum + 1;
1013  	memset (&usb_dev->bus->devmap.devicemap, 0,
1014  			sizeof usb_dev->bus->devmap.devicemap);
1015  	set_bit (devnum, usb_dev->bus->devmap.devicemap);
1016  	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1017  
1018  	mutex_lock(&usb_bus_list_lock);
1019  
1020  	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1021  	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1022  	if (retval != sizeof usb_dev->descriptor) {
1023  		mutex_unlock(&usb_bus_list_lock);
1024  		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1025  				dev_name(&usb_dev->dev), retval);
1026  		return (retval < 0) ? retval : -EMSGSIZE;
1027  	}
1028  	if (usb_dev->speed == USB_SPEED_SUPER) {
1029  		retval = usb_get_bos_descriptor(usb_dev);
1030  		if (retval < 0) {
1031  			mutex_unlock(&usb_bus_list_lock);
1032  			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1033  					dev_name(&usb_dev->dev), retval);
1034  			return retval;
1035  		}
1036  	}
1037  
1038  	retval = usb_new_device (usb_dev);
1039  	if (retval) {
1040  		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1041  				dev_name(&usb_dev->dev), retval);
1042  	} else {
1043  		spin_lock_irq (&hcd_root_hub_lock);
1044  		hcd->rh_registered = 1;
1045  		spin_unlock_irq (&hcd_root_hub_lock);
1046  
1047  		/* Did the HC die before the root hub was registered? */
1048  		if (HCD_DEAD(hcd))
1049  			usb_hc_died (hcd);	/* This time clean up */
1050  	}
1051  	mutex_unlock(&usb_bus_list_lock);
1052  
1053  	return retval;
1054  }
1055  
1056  /*
1057   * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1058   * @bus: the bus which the root hub belongs to
1059   * @portnum: the port which is being resumed
1060   *
1061   * HCDs should call this function when they know that a resume signal is
1062   * being sent to a root-hub port.  The root hub will be prevented from
1063   * going into autosuspend until usb_hcd_end_port_resume() is called.
1064   *
1065   * The bus's private lock must be held by the caller.
1066   */
usb_hcd_start_port_resume(struct usb_bus * bus,int portnum)1067  void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1068  {
1069  	unsigned bit = 1 << portnum;
1070  
1071  	if (!(bus->resuming_ports & bit)) {
1072  		bus->resuming_ports |= bit;
1073  		pm_runtime_get_noresume(&bus->root_hub->dev);
1074  	}
1075  }
1076  EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1077  
1078  /*
1079   * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1080   * @bus: the bus which the root hub belongs to
1081   * @portnum: the port which is being resumed
1082   *
1083   * HCDs should call this function when they know that a resume signal has
1084   * stopped being sent to a root-hub port.  The root hub will be allowed to
1085   * autosuspend again.
1086   *
1087   * The bus's private lock must be held by the caller.
1088   */
usb_hcd_end_port_resume(struct usb_bus * bus,int portnum)1089  void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1090  {
1091  	unsigned bit = 1 << portnum;
1092  
1093  	if (bus->resuming_ports & bit) {
1094  		bus->resuming_ports &= ~bit;
1095  		pm_runtime_put_noidle(&bus->root_hub->dev);
1096  	}
1097  }
1098  EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1099  
1100  /*-------------------------------------------------------------------------*/
1101  
1102  /**
1103   * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1104   * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1105   * @is_input: true iff the transaction sends data to the host
1106   * @isoc: true for isochronous transactions, false for interrupt ones
1107   * @bytecount: how many bytes in the transaction.
1108   *
1109   * Return: Approximate bus time in nanoseconds for a periodic transaction.
1110   *
1111   * Note:
1112   * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1113   * scheduled in software, this function is only used for such scheduling.
1114   */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)1115  long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1116  {
1117  	unsigned long	tmp;
1118  
1119  	switch (speed) {
1120  	case USB_SPEED_LOW: 	/* INTR only */
1121  		if (is_input) {
1122  			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1123  			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1124  		} else {
1125  			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1126  			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1127  		}
1128  	case USB_SPEED_FULL:	/* ISOC or INTR */
1129  		if (isoc) {
1130  			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1131  			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1132  		} else {
1133  			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1134  			return 9107L + BW_HOST_DELAY + tmp;
1135  		}
1136  	case USB_SPEED_HIGH:	/* ISOC or INTR */
1137  		/* FIXME adjust for input vs output */
1138  		if (isoc)
1139  			tmp = HS_NSECS_ISO (bytecount);
1140  		else
1141  			tmp = HS_NSECS (bytecount);
1142  		return tmp;
1143  	default:
1144  		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1145  		return -1;
1146  	}
1147  }
1148  EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1149  
1150  
1151  /*-------------------------------------------------------------------------*/
1152  
1153  /*
1154   * Generic HC operations.
1155   */
1156  
1157  /*-------------------------------------------------------------------------*/
1158  
1159  /**
1160   * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1161   * @hcd: host controller to which @urb was submitted
1162   * @urb: URB being submitted
1163   *
1164   * Host controller drivers should call this routine in their enqueue()
1165   * method.  The HCD's private spinlock must be held and interrupts must
1166   * be disabled.  The actions carried out here are required for URB
1167   * submission, as well as for endpoint shutdown and for usb_kill_urb.
1168   *
1169   * Return: 0 for no error, otherwise a negative error code (in which case
1170   * the enqueue() method must fail).  If no error occurs but enqueue() fails
1171   * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1172   * the private spinlock and returning.
1173   */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1174  int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1175  {
1176  	int		rc = 0;
1177  
1178  	spin_lock(&hcd_urb_list_lock);
1179  
1180  	/* Check that the URB isn't being killed */
1181  	if (unlikely(atomic_read(&urb->reject))) {
1182  		rc = -EPERM;
1183  		goto done;
1184  	}
1185  
1186  	if (unlikely(!urb->ep->enabled)) {
1187  		rc = -ENOENT;
1188  		goto done;
1189  	}
1190  
1191  	if (unlikely(!urb->dev->can_submit)) {
1192  		rc = -EHOSTUNREACH;
1193  		goto done;
1194  	}
1195  
1196  	/*
1197  	 * Check the host controller's state and add the URB to the
1198  	 * endpoint's queue.
1199  	 */
1200  	if (HCD_RH_RUNNING(hcd)) {
1201  		urb->unlinked = 0;
1202  		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1203  	} else {
1204  		rc = -ESHUTDOWN;
1205  		goto done;
1206  	}
1207   done:
1208  	spin_unlock(&hcd_urb_list_lock);
1209  	return rc;
1210  }
1211  EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1212  
1213  /**
1214   * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1215   * @hcd: host controller to which @urb was submitted
1216   * @urb: URB being checked for unlinkability
1217   * @status: error code to store in @urb if the unlink succeeds
1218   *
1219   * Host controller drivers should call this routine in their dequeue()
1220   * method.  The HCD's private spinlock must be held and interrupts must
1221   * be disabled.  The actions carried out here are required for making
1222   * sure than an unlink is valid.
1223   *
1224   * Return: 0 for no error, otherwise a negative error code (in which case
1225   * the dequeue() method must fail).  The possible error codes are:
1226   *
1227   *	-EIDRM: @urb was not submitted or has already completed.
1228   *		The completion function may not have been called yet.
1229   *
1230   *	-EBUSY: @urb has already been unlinked.
1231   */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1232  int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1233  		int status)
1234  {
1235  	struct list_head	*tmp;
1236  
1237  	/* insist the urb is still queued */
1238  	list_for_each(tmp, &urb->ep->urb_list) {
1239  		if (tmp == &urb->urb_list)
1240  			break;
1241  	}
1242  	if (tmp != &urb->urb_list)
1243  		return -EIDRM;
1244  
1245  	/* Any status except -EINPROGRESS means something already started to
1246  	 * unlink this URB from the hardware.  So there's no more work to do.
1247  	 */
1248  	if (urb->unlinked)
1249  		return -EBUSY;
1250  	urb->unlinked = status;
1251  	return 0;
1252  }
1253  EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1254  
1255  /**
1256   * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1257   * @hcd: host controller to which @urb was submitted
1258   * @urb: URB being unlinked
1259   *
1260   * Host controller drivers should call this routine before calling
1261   * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1262   * interrupts must be disabled.  The actions carried out here are required
1263   * for URB completion.
1264   */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1265  void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1266  {
1267  	/* clear all state linking urb to this dev (and hcd) */
1268  	spin_lock(&hcd_urb_list_lock);
1269  	list_del_init(&urb->urb_list);
1270  	spin_unlock(&hcd_urb_list_lock);
1271  }
1272  EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1273  
1274  /*
1275   * Some usb host controllers can only perform dma using a small SRAM area.
1276   * The usb core itself is however optimized for host controllers that can dma
1277   * using regular system memory - like pci devices doing bus mastering.
1278   *
1279   * To support host controllers with limited dma capabilities we provide dma
1280   * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1281   * For this to work properly the host controller code must first use the
1282   * function dma_declare_coherent_memory() to point out which memory area
1283   * that should be used for dma allocations.
1284   *
1285   * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1286   * dma using dma_alloc_coherent() which in turn allocates from the memory
1287   * area pointed out with dma_declare_coherent_memory().
1288   *
1289   * So, to summarize...
1290   *
1291   * - We need "local" memory, canonical example being
1292   *   a small SRAM on a discrete controller being the
1293   *   only memory that the controller can read ...
1294   *   (a) "normal" kernel memory is no good, and
1295   *   (b) there's not enough to share
1296   *
1297   * - The only *portable* hook for such stuff in the
1298   *   DMA framework is dma_declare_coherent_memory()
1299   *
1300   * - So we use that, even though the primary requirement
1301   *   is that the memory be "local" (hence addressable
1302   *   by that device), not "coherent".
1303   *
1304   */
1305  
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1306  static int hcd_alloc_coherent(struct usb_bus *bus,
1307  			      gfp_t mem_flags, dma_addr_t *dma_handle,
1308  			      void **vaddr_handle, size_t size,
1309  			      enum dma_data_direction dir)
1310  {
1311  	unsigned char *vaddr;
1312  
1313  	if (*vaddr_handle == NULL) {
1314  		WARN_ON_ONCE(1);
1315  		return -EFAULT;
1316  	}
1317  
1318  	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1319  				 mem_flags, dma_handle);
1320  	if (!vaddr)
1321  		return -ENOMEM;
1322  
1323  	/*
1324  	 * Store the virtual address of the buffer at the end
1325  	 * of the allocated dma buffer. The size of the buffer
1326  	 * may be uneven so use unaligned functions instead
1327  	 * of just rounding up. It makes sense to optimize for
1328  	 * memory footprint over access speed since the amount
1329  	 * of memory available for dma may be limited.
1330  	 */
1331  	put_unaligned((unsigned long)*vaddr_handle,
1332  		      (unsigned long *)(vaddr + size));
1333  
1334  	if (dir == DMA_TO_DEVICE)
1335  		memcpy(vaddr, *vaddr_handle, size);
1336  
1337  	*vaddr_handle = vaddr;
1338  	return 0;
1339  }
1340  
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1341  static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1342  			      void **vaddr_handle, size_t size,
1343  			      enum dma_data_direction dir)
1344  {
1345  	unsigned char *vaddr = *vaddr_handle;
1346  
1347  	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1348  
1349  	if (dir == DMA_FROM_DEVICE)
1350  		memcpy(vaddr, *vaddr_handle, size);
1351  
1352  	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1353  
1354  	*vaddr_handle = vaddr;
1355  	*dma_handle = 0;
1356  }
1357  
usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd * hcd,struct urb * urb)1358  void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1359  {
1360  	if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1361  		dma_unmap_single(hcd->self.controller,
1362  				urb->setup_dma,
1363  				sizeof(struct usb_ctrlrequest),
1364  				DMA_TO_DEVICE);
1365  	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1366  		hcd_free_coherent(urb->dev->bus,
1367  				&urb->setup_dma,
1368  				(void **) &urb->setup_packet,
1369  				sizeof(struct usb_ctrlrequest),
1370  				DMA_TO_DEVICE);
1371  
1372  	/* Make it safe to call this routine more than once */
1373  	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1374  }
1375  EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1376  
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1377  static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1378  {
1379  	if (hcd->driver->unmap_urb_for_dma)
1380  		hcd->driver->unmap_urb_for_dma(hcd, urb);
1381  	else
1382  		usb_hcd_unmap_urb_for_dma(hcd, urb);
1383  }
1384  
usb_hcd_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1385  void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1386  {
1387  	enum dma_data_direction dir;
1388  
1389  	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1390  
1391  	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1392  	if (urb->transfer_flags & URB_DMA_MAP_SG)
1393  		dma_unmap_sg(hcd->self.controller,
1394  				urb->sg,
1395  				urb->num_sgs,
1396  				dir);
1397  	else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1398  		dma_unmap_page(hcd->self.controller,
1399  				urb->transfer_dma,
1400  				urb->transfer_buffer_length,
1401  				dir);
1402  	else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1403  		dma_unmap_single(hcd->self.controller,
1404  				urb->transfer_dma,
1405  				urb->transfer_buffer_length,
1406  				dir);
1407  	else if (urb->transfer_flags & URB_MAP_LOCAL)
1408  		hcd_free_coherent(urb->dev->bus,
1409  				&urb->transfer_dma,
1410  				&urb->transfer_buffer,
1411  				urb->transfer_buffer_length,
1412  				dir);
1413  
1414  	/* Make it safe to call this routine more than once */
1415  	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1416  			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1417  }
1418  EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1419  
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1420  static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1421  			   gfp_t mem_flags)
1422  {
1423  	if (hcd->driver->map_urb_for_dma)
1424  		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1425  	else
1426  		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1427  }
1428  
usb_hcd_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1429  int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1430  			    gfp_t mem_flags)
1431  {
1432  	enum dma_data_direction dir;
1433  	int ret = 0;
1434  
1435  	/* Map the URB's buffers for DMA access.
1436  	 * Lower level HCD code should use *_dma exclusively,
1437  	 * unless it uses pio or talks to another transport,
1438  	 * or uses the provided scatter gather list for bulk.
1439  	 */
1440  
1441  	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1442  		if (hcd->self.uses_pio_for_control)
1443  			return ret;
1444  		if (hcd->self.uses_dma) {
1445  			urb->setup_dma = dma_map_single(
1446  					hcd->self.controller,
1447  					urb->setup_packet,
1448  					sizeof(struct usb_ctrlrequest),
1449  					DMA_TO_DEVICE);
1450  			if (dma_mapping_error(hcd->self.controller,
1451  						urb->setup_dma))
1452  				return -EAGAIN;
1453  			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1454  		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1455  			ret = hcd_alloc_coherent(
1456  					urb->dev->bus, mem_flags,
1457  					&urb->setup_dma,
1458  					(void **)&urb->setup_packet,
1459  					sizeof(struct usb_ctrlrequest),
1460  					DMA_TO_DEVICE);
1461  			if (ret)
1462  				return ret;
1463  			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1464  		}
1465  	}
1466  
1467  	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1468  	if (urb->transfer_buffer_length != 0
1469  	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1470  		if (hcd->self.uses_dma) {
1471  			if (urb->num_sgs) {
1472  				int n;
1473  
1474  				/* We don't support sg for isoc transfers ! */
1475  				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1476  					WARN_ON(1);
1477  					return -EINVAL;
1478  				}
1479  
1480  				n = dma_map_sg(
1481  						hcd->self.controller,
1482  						urb->sg,
1483  						urb->num_sgs,
1484  						dir);
1485  				if (n <= 0)
1486  					ret = -EAGAIN;
1487  				else
1488  					urb->transfer_flags |= URB_DMA_MAP_SG;
1489  				urb->num_mapped_sgs = n;
1490  				if (n != urb->num_sgs)
1491  					urb->transfer_flags |=
1492  							URB_DMA_SG_COMBINED;
1493  			} else if (urb->sg) {
1494  				struct scatterlist *sg = urb->sg;
1495  				urb->transfer_dma = dma_map_page(
1496  						hcd->self.controller,
1497  						sg_page(sg),
1498  						sg->offset,
1499  						urb->transfer_buffer_length,
1500  						dir);
1501  				if (dma_mapping_error(hcd->self.controller,
1502  						urb->transfer_dma))
1503  					ret = -EAGAIN;
1504  				else
1505  					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1506  			} else if (is_vmalloc_addr(urb->transfer_buffer)) {
1507  				WARN_ONCE(1, "transfer buffer not dma capable\n");
1508  				ret = -EAGAIN;
1509  			} else {
1510  				urb->transfer_dma = dma_map_single(
1511  						hcd->self.controller,
1512  						urb->transfer_buffer,
1513  						urb->transfer_buffer_length,
1514  						dir);
1515  				if (dma_mapping_error(hcd->self.controller,
1516  						urb->transfer_dma))
1517  					ret = -EAGAIN;
1518  				else
1519  					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1520  			}
1521  		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1522  			ret = hcd_alloc_coherent(
1523  					urb->dev->bus, mem_flags,
1524  					&urb->transfer_dma,
1525  					&urb->transfer_buffer,
1526  					urb->transfer_buffer_length,
1527  					dir);
1528  			if (ret == 0)
1529  				urb->transfer_flags |= URB_MAP_LOCAL;
1530  		}
1531  		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1532  				URB_SETUP_MAP_LOCAL)))
1533  			usb_hcd_unmap_urb_for_dma(hcd, urb);
1534  	}
1535  	return ret;
1536  }
1537  EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1538  
1539  /*-------------------------------------------------------------------------*/
1540  
1541  /* may be called in any context with a valid urb->dev usecount
1542   * caller surrenders "ownership" of urb
1543   * expects usb_submit_urb() to have sanity checked and conditioned all
1544   * inputs in the urb
1545   */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1546  int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1547  {
1548  	int			status;
1549  	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1550  
1551  	/* increment urb's reference count as part of giving it to the HCD
1552  	 * (which will control it).  HCD guarantees that it either returns
1553  	 * an error or calls giveback(), but not both.
1554  	 */
1555  	usb_get_urb(urb);
1556  	atomic_inc(&urb->use_count);
1557  	atomic_inc(&urb->dev->urbnum);
1558  	usbmon_urb_submit(&hcd->self, urb);
1559  
1560  	/* NOTE requirements on root-hub callers (usbfs and the hub
1561  	 * driver, for now):  URBs' urb->transfer_buffer must be
1562  	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1563  	 * they could clobber root hub response data.  Also, control
1564  	 * URBs must be submitted in process context with interrupts
1565  	 * enabled.
1566  	 */
1567  
1568  	if (is_root_hub(urb->dev)) {
1569  		status = rh_urb_enqueue(hcd, urb);
1570  	} else {
1571  		status = map_urb_for_dma(hcd, urb, mem_flags);
1572  		if (likely(status == 0)) {
1573  			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1574  			if (unlikely(status))
1575  				unmap_urb_for_dma(hcd, urb);
1576  		}
1577  	}
1578  
1579  	if (unlikely(status)) {
1580  		usbmon_urb_submit_error(&hcd->self, urb, status);
1581  		urb->hcpriv = NULL;
1582  		INIT_LIST_HEAD(&urb->urb_list);
1583  		atomic_dec(&urb->use_count);
1584  		atomic_dec(&urb->dev->urbnum);
1585  		if (atomic_read(&urb->reject))
1586  			wake_up(&usb_kill_urb_queue);
1587  		usb_put_urb(urb);
1588  	}
1589  	return status;
1590  }
1591  
1592  /*-------------------------------------------------------------------------*/
1593  
1594  /* this makes the hcd giveback() the urb more quickly, by kicking it
1595   * off hardware queues (which may take a while) and returning it as
1596   * soon as practical.  we've already set up the urb's return status,
1597   * but we can't know if the callback completed already.
1598   */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1599  static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1600  {
1601  	int		value;
1602  
1603  	if (is_root_hub(urb->dev))
1604  		value = usb_rh_urb_dequeue(hcd, urb, status);
1605  	else {
1606  
1607  		/* The only reason an HCD might fail this call is if
1608  		 * it has not yet fully queued the urb to begin with.
1609  		 * Such failures should be harmless. */
1610  		value = hcd->driver->urb_dequeue(hcd, urb, status);
1611  	}
1612  	return value;
1613  }
1614  
1615  /*
1616   * called in any context
1617   *
1618   * caller guarantees urb won't be recycled till both unlink()
1619   * and the urb's completion function return
1620   */
usb_hcd_unlink_urb(struct urb * urb,int status)1621  int usb_hcd_unlink_urb (struct urb *urb, int status)
1622  {
1623  	struct usb_hcd		*hcd;
1624  	struct usb_device	*udev = urb->dev;
1625  	int			retval = -EIDRM;
1626  	unsigned long		flags;
1627  
1628  	/* Prevent the device and bus from going away while
1629  	 * the unlink is carried out.  If they are already gone
1630  	 * then urb->use_count must be 0, since disconnected
1631  	 * devices can't have any active URBs.
1632  	 */
1633  	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1634  	if (atomic_read(&urb->use_count) > 0) {
1635  		retval = 0;
1636  		usb_get_dev(udev);
1637  	}
1638  	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1639  	if (retval == 0) {
1640  		hcd = bus_to_hcd(urb->dev->bus);
1641  		retval = unlink1(hcd, urb, status);
1642  		if (retval == 0)
1643  			retval = -EINPROGRESS;
1644  		else if (retval != -EIDRM && retval != -EBUSY)
1645  			dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1646  					urb, retval);
1647  		usb_put_dev(udev);
1648  	}
1649  	return retval;
1650  }
1651  
1652  /*-------------------------------------------------------------------------*/
1653  
__usb_hcd_giveback_urb(struct urb * urb)1654  static void __usb_hcd_giveback_urb(struct urb *urb)
1655  {
1656  	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1657  	struct usb_anchor *anchor = urb->anchor;
1658  	int status = urb->unlinked;
1659  	unsigned long flags;
1660  
1661  	urb->hcpriv = NULL;
1662  	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1663  	    urb->actual_length < urb->transfer_buffer_length &&
1664  	    !status))
1665  		status = -EREMOTEIO;
1666  
1667  	unmap_urb_for_dma(hcd, urb);
1668  	usbmon_urb_complete(&hcd->self, urb, status);
1669  	usb_anchor_suspend_wakeups(anchor);
1670  	usb_unanchor_urb(urb);
1671  	if (likely(status == 0))
1672  		usb_led_activity(USB_LED_EVENT_HOST);
1673  
1674  	/* pass ownership to the completion handler */
1675  	urb->status = status;
1676  
1677  	/*
1678  	 * We disable local IRQs here avoid possible deadlock because
1679  	 * drivers may call spin_lock() to hold lock which might be
1680  	 * acquired in one hard interrupt handler.
1681  	 *
1682  	 * The local_irq_save()/local_irq_restore() around complete()
1683  	 * will be removed if current USB drivers have been cleaned up
1684  	 * and no one may trigger the above deadlock situation when
1685  	 * running complete() in tasklet.
1686  	 */
1687  	local_irq_save(flags);
1688  	urb->complete(urb);
1689  	local_irq_restore(flags);
1690  
1691  	usb_anchor_resume_wakeups(anchor);
1692  	atomic_dec(&urb->use_count);
1693  	if (unlikely(atomic_read(&urb->reject)))
1694  		wake_up(&usb_kill_urb_queue);
1695  	usb_put_urb(urb);
1696  }
1697  
usb_giveback_urb_bh(unsigned long param)1698  static void usb_giveback_urb_bh(unsigned long param)
1699  {
1700  	struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1701  	struct list_head local_list;
1702  
1703  	spin_lock_irq(&bh->lock);
1704  	bh->running = true;
1705   restart:
1706  	list_replace_init(&bh->head, &local_list);
1707  	spin_unlock_irq(&bh->lock);
1708  
1709  	while (!list_empty(&local_list)) {
1710  		struct urb *urb;
1711  
1712  		urb = list_entry(local_list.next, struct urb, urb_list);
1713  		list_del_init(&urb->urb_list);
1714  		bh->completing_ep = urb->ep;
1715  		__usb_hcd_giveback_urb(urb);
1716  		bh->completing_ep = NULL;
1717  	}
1718  
1719  	/* check if there are new URBs to giveback */
1720  	spin_lock_irq(&bh->lock);
1721  	if (!list_empty(&bh->head))
1722  		goto restart;
1723  	bh->running = false;
1724  	spin_unlock_irq(&bh->lock);
1725  }
1726  
1727  /**
1728   * usb_hcd_giveback_urb - return URB from HCD to device driver
1729   * @hcd: host controller returning the URB
1730   * @urb: urb being returned to the USB device driver.
1731   * @status: completion status code for the URB.
1732   * Context: in_interrupt()
1733   *
1734   * This hands the URB from HCD to its USB device driver, using its
1735   * completion function.  The HCD has freed all per-urb resources
1736   * (and is done using urb->hcpriv).  It also released all HCD locks;
1737   * the device driver won't cause problems if it frees, modifies,
1738   * or resubmits this URB.
1739   *
1740   * If @urb was unlinked, the value of @status will be overridden by
1741   * @urb->unlinked.  Erroneous short transfers are detected in case
1742   * the HCD hasn't checked for them.
1743   */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1744  void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1745  {
1746  	struct giveback_urb_bh *bh;
1747  	bool running, high_prio_bh;
1748  
1749  	/* pass status to tasklet via unlinked */
1750  	if (likely(!urb->unlinked))
1751  		urb->unlinked = status;
1752  
1753  	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1754  		__usb_hcd_giveback_urb(urb);
1755  		return;
1756  	}
1757  
1758  	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1759  		bh = &hcd->high_prio_bh;
1760  		high_prio_bh = true;
1761  	} else {
1762  		bh = &hcd->low_prio_bh;
1763  		high_prio_bh = false;
1764  	}
1765  
1766  	spin_lock(&bh->lock);
1767  	list_add_tail(&urb->urb_list, &bh->head);
1768  	running = bh->running;
1769  	spin_unlock(&bh->lock);
1770  
1771  	if (running)
1772  		;
1773  	else if (high_prio_bh)
1774  		tasklet_hi_schedule(&bh->bh);
1775  	else
1776  		tasklet_schedule(&bh->bh);
1777  }
1778  EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1779  
1780  /*-------------------------------------------------------------------------*/
1781  
1782  /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1783   * queue to drain completely.  The caller must first insure that no more
1784   * URBs can be submitted for this endpoint.
1785   */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1786  void usb_hcd_flush_endpoint(struct usb_device *udev,
1787  		struct usb_host_endpoint *ep)
1788  {
1789  	struct usb_hcd		*hcd;
1790  	struct urb		*urb;
1791  
1792  	if (!ep)
1793  		return;
1794  	might_sleep();
1795  	hcd = bus_to_hcd(udev->bus);
1796  
1797  	/* No more submits can occur */
1798  	spin_lock_irq(&hcd_urb_list_lock);
1799  rescan:
1800  	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1801  		int	is_in;
1802  
1803  		if (urb->unlinked)
1804  			continue;
1805  		usb_get_urb (urb);
1806  		is_in = usb_urb_dir_in(urb);
1807  		spin_unlock(&hcd_urb_list_lock);
1808  
1809  		/* kick hcd */
1810  		unlink1(hcd, urb, -ESHUTDOWN);
1811  		dev_dbg (hcd->self.controller,
1812  			"shutdown urb %pK ep%d%s%s\n",
1813  			urb, usb_endpoint_num(&ep->desc),
1814  			is_in ? "in" : "out",
1815  			({	char *s;
1816  
1817  				 switch (usb_endpoint_type(&ep->desc)) {
1818  				 case USB_ENDPOINT_XFER_CONTROL:
1819  					s = ""; break;
1820  				 case USB_ENDPOINT_XFER_BULK:
1821  					s = "-bulk"; break;
1822  				 case USB_ENDPOINT_XFER_INT:
1823  					s = "-intr"; break;
1824  				 default:
1825  					s = "-iso"; break;
1826  				};
1827  				s;
1828  			}));
1829  		usb_put_urb (urb);
1830  
1831  		/* list contents may have changed */
1832  		spin_lock(&hcd_urb_list_lock);
1833  		goto rescan;
1834  	}
1835  	spin_unlock_irq(&hcd_urb_list_lock);
1836  
1837  	/* Wait until the endpoint queue is completely empty */
1838  	while (!list_empty (&ep->urb_list)) {
1839  		spin_lock_irq(&hcd_urb_list_lock);
1840  
1841  		/* The list may have changed while we acquired the spinlock */
1842  		urb = NULL;
1843  		if (!list_empty (&ep->urb_list)) {
1844  			urb = list_entry (ep->urb_list.prev, struct urb,
1845  					urb_list);
1846  			usb_get_urb (urb);
1847  		}
1848  		spin_unlock_irq(&hcd_urb_list_lock);
1849  
1850  		if (urb) {
1851  			usb_kill_urb (urb);
1852  			usb_put_urb (urb);
1853  		}
1854  	}
1855  }
1856  
1857  /**
1858   * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1859   *				the bus bandwidth
1860   * @udev: target &usb_device
1861   * @new_config: new configuration to install
1862   * @cur_alt: the current alternate interface setting
1863   * @new_alt: alternate interface setting that is being installed
1864   *
1865   * To change configurations, pass in the new configuration in new_config,
1866   * and pass NULL for cur_alt and new_alt.
1867   *
1868   * To reset a device's configuration (put the device in the ADDRESSED state),
1869   * pass in NULL for new_config, cur_alt, and new_alt.
1870   *
1871   * To change alternate interface settings, pass in NULL for new_config,
1872   * pass in the current alternate interface setting in cur_alt,
1873   * and pass in the new alternate interface setting in new_alt.
1874   *
1875   * Return: An error if the requested bandwidth change exceeds the
1876   * bus bandwidth or host controller internal resources.
1877   */
usb_hcd_alloc_bandwidth(struct usb_device * udev,struct usb_host_config * new_config,struct usb_host_interface * cur_alt,struct usb_host_interface * new_alt)1878  int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1879  		struct usb_host_config *new_config,
1880  		struct usb_host_interface *cur_alt,
1881  		struct usb_host_interface *new_alt)
1882  {
1883  	int num_intfs, i, j;
1884  	struct usb_host_interface *alt = NULL;
1885  	int ret = 0;
1886  	struct usb_hcd *hcd;
1887  	struct usb_host_endpoint *ep;
1888  
1889  	hcd = bus_to_hcd(udev->bus);
1890  	if (!hcd->driver->check_bandwidth)
1891  		return 0;
1892  
1893  	/* Configuration is being removed - set configuration 0 */
1894  	if (!new_config && !cur_alt) {
1895  		for (i = 1; i < 16; ++i) {
1896  			ep = udev->ep_out[i];
1897  			if (ep)
1898  				hcd->driver->drop_endpoint(hcd, udev, ep);
1899  			ep = udev->ep_in[i];
1900  			if (ep)
1901  				hcd->driver->drop_endpoint(hcd, udev, ep);
1902  		}
1903  		hcd->driver->check_bandwidth(hcd, udev);
1904  		return 0;
1905  	}
1906  	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1907  	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1908  	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1909  	 * ok to exclude it.
1910  	 */
1911  	if (new_config) {
1912  		num_intfs = new_config->desc.bNumInterfaces;
1913  		/* Remove endpoints (except endpoint 0, which is always on the
1914  		 * schedule) from the old config from the schedule
1915  		 */
1916  		for (i = 1; i < 16; ++i) {
1917  			ep = udev->ep_out[i];
1918  			if (ep) {
1919  				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1920  				if (ret < 0)
1921  					goto reset;
1922  			}
1923  			ep = udev->ep_in[i];
1924  			if (ep) {
1925  				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1926  				if (ret < 0)
1927  					goto reset;
1928  			}
1929  		}
1930  		for (i = 0; i < num_intfs; ++i) {
1931  			struct usb_host_interface *first_alt;
1932  			int iface_num;
1933  
1934  			first_alt = &new_config->intf_cache[i]->altsetting[0];
1935  			iface_num = first_alt->desc.bInterfaceNumber;
1936  			/* Set up endpoints for alternate interface setting 0 */
1937  			alt = usb_find_alt_setting(new_config, iface_num, 0);
1938  			if (!alt)
1939  				/* No alt setting 0? Pick the first setting. */
1940  				alt = first_alt;
1941  
1942  			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1943  				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1944  				if (ret < 0)
1945  					goto reset;
1946  			}
1947  		}
1948  	}
1949  	if (cur_alt && new_alt) {
1950  		struct usb_interface *iface = usb_ifnum_to_if(udev,
1951  				cur_alt->desc.bInterfaceNumber);
1952  
1953  		if (!iface)
1954  			return -EINVAL;
1955  		if (iface->resetting_device) {
1956  			/*
1957  			 * The USB core just reset the device, so the xHCI host
1958  			 * and the device will think alt setting 0 is installed.
1959  			 * However, the USB core will pass in the alternate
1960  			 * setting installed before the reset as cur_alt.  Dig
1961  			 * out the alternate setting 0 structure, or the first
1962  			 * alternate setting if a broken device doesn't have alt
1963  			 * setting 0.
1964  			 */
1965  			cur_alt = usb_altnum_to_altsetting(iface, 0);
1966  			if (!cur_alt)
1967  				cur_alt = &iface->altsetting[0];
1968  		}
1969  
1970  		/* Drop all the endpoints in the current alt setting */
1971  		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1972  			ret = hcd->driver->drop_endpoint(hcd, udev,
1973  					&cur_alt->endpoint[i]);
1974  			if (ret < 0)
1975  				goto reset;
1976  		}
1977  		/* Add all the endpoints in the new alt setting */
1978  		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1979  			ret = hcd->driver->add_endpoint(hcd, udev,
1980  					&new_alt->endpoint[i]);
1981  			if (ret < 0)
1982  				goto reset;
1983  		}
1984  	}
1985  	ret = hcd->driver->check_bandwidth(hcd, udev);
1986  reset:
1987  	if (ret < 0)
1988  		hcd->driver->reset_bandwidth(hcd, udev);
1989  	return ret;
1990  }
1991  
1992  /* Disables the endpoint: synchronizes with the hcd to make sure all
1993   * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1994   * have been called previously.  Use for set_configuration, set_interface,
1995   * driver removal, physical disconnect.
1996   *
1997   * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1998   * type, maxpacket size, toggle, halt status, and scheduling.
1999   */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)2000  void usb_hcd_disable_endpoint(struct usb_device *udev,
2001  		struct usb_host_endpoint *ep)
2002  {
2003  	struct usb_hcd		*hcd;
2004  
2005  	might_sleep();
2006  	hcd = bus_to_hcd(udev->bus);
2007  	if (hcd->driver->endpoint_disable)
2008  		hcd->driver->endpoint_disable(hcd, ep);
2009  }
2010  
2011  /**
2012   * usb_hcd_reset_endpoint - reset host endpoint state
2013   * @udev: USB device.
2014   * @ep:   the endpoint to reset.
2015   *
2016   * Resets any host endpoint state such as the toggle bit, sequence
2017   * number and current window.
2018   */
usb_hcd_reset_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)2019  void usb_hcd_reset_endpoint(struct usb_device *udev,
2020  			    struct usb_host_endpoint *ep)
2021  {
2022  	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2023  
2024  	if (hcd->driver->endpoint_reset)
2025  		hcd->driver->endpoint_reset(hcd, ep);
2026  	else {
2027  		int epnum = usb_endpoint_num(&ep->desc);
2028  		int is_out = usb_endpoint_dir_out(&ep->desc);
2029  		int is_control = usb_endpoint_xfer_control(&ep->desc);
2030  
2031  		usb_settoggle(udev, epnum, is_out, 0);
2032  		if (is_control)
2033  			usb_settoggle(udev, epnum, !is_out, 0);
2034  	}
2035  }
2036  
2037  /**
2038   * usb_alloc_streams - allocate bulk endpoint stream IDs.
2039   * @interface:		alternate setting that includes all endpoints.
2040   * @eps:		array of endpoints that need streams.
2041   * @num_eps:		number of endpoints in the array.
2042   * @num_streams:	number of streams to allocate.
2043   * @mem_flags:		flags hcd should use to allocate memory.
2044   *
2045   * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2046   * Drivers may queue multiple transfers to different stream IDs, which may
2047   * complete in a different order than they were queued.
2048   *
2049   * Return: On success, the number of allocated streams. On failure, a negative
2050   * error code.
2051   */
usb_alloc_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)2052  int usb_alloc_streams(struct usb_interface *interface,
2053  		struct usb_host_endpoint **eps, unsigned int num_eps,
2054  		unsigned int num_streams, gfp_t mem_flags)
2055  {
2056  	struct usb_hcd *hcd;
2057  	struct usb_device *dev;
2058  	int i, ret;
2059  
2060  	dev = interface_to_usbdev(interface);
2061  	hcd = bus_to_hcd(dev->bus);
2062  	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2063  		return -EINVAL;
2064  	if (dev->speed != USB_SPEED_SUPER)
2065  		return -EINVAL;
2066  	if (dev->state < USB_STATE_CONFIGURED)
2067  		return -ENODEV;
2068  
2069  	for (i = 0; i < num_eps; i++) {
2070  		/* Streams only apply to bulk endpoints. */
2071  		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2072  			return -EINVAL;
2073  		/* Re-alloc is not allowed */
2074  		if (eps[i]->streams)
2075  			return -EINVAL;
2076  	}
2077  
2078  	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2079  			num_streams, mem_flags);
2080  	if (ret < 0)
2081  		return ret;
2082  
2083  	for (i = 0; i < num_eps; i++)
2084  		eps[i]->streams = ret;
2085  
2086  	return ret;
2087  }
2088  EXPORT_SYMBOL_GPL(usb_alloc_streams);
2089  
2090  /**
2091   * usb_free_streams - free bulk endpoint stream IDs.
2092   * @interface:	alternate setting that includes all endpoints.
2093   * @eps:	array of endpoints to remove streams from.
2094   * @num_eps:	number of endpoints in the array.
2095   * @mem_flags:	flags hcd should use to allocate memory.
2096   *
2097   * Reverts a group of bulk endpoints back to not using stream IDs.
2098   * Can fail if we are given bad arguments, or HCD is broken.
2099   *
2100   * Return: 0 on success. On failure, a negative error code.
2101   */
usb_free_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)2102  int usb_free_streams(struct usb_interface *interface,
2103  		struct usb_host_endpoint **eps, unsigned int num_eps,
2104  		gfp_t mem_flags)
2105  {
2106  	struct usb_hcd *hcd;
2107  	struct usb_device *dev;
2108  	int i, ret;
2109  
2110  	dev = interface_to_usbdev(interface);
2111  	hcd = bus_to_hcd(dev->bus);
2112  	if (dev->speed != USB_SPEED_SUPER)
2113  		return -EINVAL;
2114  
2115  	/* Double-free is not allowed */
2116  	for (i = 0; i < num_eps; i++)
2117  		if (!eps[i] || !eps[i]->streams)
2118  			return -EINVAL;
2119  
2120  	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2121  	if (ret < 0)
2122  		return ret;
2123  
2124  	for (i = 0; i < num_eps; i++)
2125  		eps[i]->streams = 0;
2126  
2127  	return ret;
2128  }
2129  EXPORT_SYMBOL_GPL(usb_free_streams);
2130  
2131  /* Protect against drivers that try to unlink URBs after the device
2132   * is gone, by waiting until all unlinks for @udev are finished.
2133   * Since we don't currently track URBs by device, simply wait until
2134   * nothing is running in the locked region of usb_hcd_unlink_urb().
2135   */
usb_hcd_synchronize_unlinks(struct usb_device * udev)2136  void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2137  {
2138  	spin_lock_irq(&hcd_urb_unlink_lock);
2139  	spin_unlock_irq(&hcd_urb_unlink_lock);
2140  }
2141  
2142  /*-------------------------------------------------------------------------*/
2143  
2144  /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)2145  int usb_hcd_get_frame_number (struct usb_device *udev)
2146  {
2147  	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2148  
2149  	if (!HCD_RH_RUNNING(hcd))
2150  		return -ESHUTDOWN;
2151  	return hcd->driver->get_frame_number (hcd);
2152  }
2153  
2154  /*-------------------------------------------------------------------------*/
2155  
2156  #ifdef	CONFIG_PM
2157  
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)2158  int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2159  {
2160  	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
2161  	int		status;
2162  	int		old_state = hcd->state;
2163  
2164  	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2165  			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2166  			rhdev->do_remote_wakeup);
2167  	if (HCD_DEAD(hcd)) {
2168  		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2169  		return 0;
2170  	}
2171  
2172  	if (!hcd->driver->bus_suspend) {
2173  		status = -ENOENT;
2174  	} else {
2175  		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2176  		hcd->state = HC_STATE_QUIESCING;
2177  		status = hcd->driver->bus_suspend(hcd);
2178  	}
2179  	if (status == 0) {
2180  		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2181  		hcd->state = HC_STATE_SUSPENDED;
2182  
2183  		/* Did we race with a root-hub wakeup event? */
2184  		if (rhdev->do_remote_wakeup) {
2185  			char	buffer[6];
2186  
2187  			status = hcd->driver->hub_status_data(hcd, buffer);
2188  			if (status != 0) {
2189  				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2190  				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2191  				status = -EBUSY;
2192  			}
2193  		}
2194  	} else {
2195  		spin_lock_irq(&hcd_root_hub_lock);
2196  		if (!HCD_DEAD(hcd)) {
2197  			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2198  			hcd->state = old_state;
2199  		}
2200  		spin_unlock_irq(&hcd_root_hub_lock);
2201  		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2202  				"suspend", status);
2203  	}
2204  	return status;
2205  }
2206  
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)2207  int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2208  {
2209  	struct usb_hcd	*hcd = container_of(rhdev->bus, struct usb_hcd, self);
2210  	int		status;
2211  	int		old_state = hcd->state;
2212  
2213  	dev_dbg(&rhdev->dev, "usb %sresume\n",
2214  			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2215  	if (HCD_DEAD(hcd)) {
2216  		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2217  		return 0;
2218  	}
2219  	if (!hcd->driver->bus_resume)
2220  		return -ENOENT;
2221  	if (HCD_RH_RUNNING(hcd))
2222  		return 0;
2223  
2224  	hcd->state = HC_STATE_RESUMING;
2225  	status = hcd->driver->bus_resume(hcd);
2226  	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2227  	if (status == 0) {
2228  		struct usb_device *udev;
2229  		int port1;
2230  
2231  		spin_lock_irq(&hcd_root_hub_lock);
2232  		if (!HCD_DEAD(hcd)) {
2233  			usb_set_device_state(rhdev, rhdev->actconfig
2234  					? USB_STATE_CONFIGURED
2235  					: USB_STATE_ADDRESS);
2236  			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2237  			hcd->state = HC_STATE_RUNNING;
2238  		}
2239  		spin_unlock_irq(&hcd_root_hub_lock);
2240  
2241  		/*
2242  		 * Check whether any of the enabled ports on the root hub are
2243  		 * unsuspended.  If they are then a TRSMRCY delay is needed
2244  		 * (this is what the USB-2 spec calls a "global resume").
2245  		 * Otherwise we can skip the delay.
2246  		 */
2247  		usb_hub_for_each_child(rhdev, port1, udev) {
2248  			if (udev->state != USB_STATE_NOTATTACHED &&
2249  					!udev->port_is_suspended) {
2250  				usleep_range(10000, 11000);	/* TRSMRCY */
2251  				break;
2252  			}
2253  		}
2254  	} else {
2255  		hcd->state = old_state;
2256  		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2257  				"resume", status);
2258  		if (status != -ESHUTDOWN)
2259  			usb_hc_died(hcd);
2260  	}
2261  	return status;
2262  }
2263  
2264  #endif	/* CONFIG_PM */
2265  
2266  #ifdef	CONFIG_PM_RUNTIME
2267  
2268  /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)2269  static void hcd_resume_work(struct work_struct *work)
2270  {
2271  	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2272  	struct usb_device *udev = hcd->self.root_hub;
2273  
2274  	usb_remote_wakeup(udev);
2275  }
2276  
2277  /**
2278   * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2279   * @hcd: host controller for this root hub
2280   *
2281   * The USB host controller calls this function when its root hub is
2282   * suspended (with the remote wakeup feature enabled) and a remote
2283   * wakeup request is received.  The routine submits a workqueue request
2284   * to resume the root hub (that is, manage its downstream ports again).
2285   */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)2286  void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2287  {
2288  	unsigned long flags;
2289  
2290  	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2291  	if (hcd->rh_registered) {
2292  		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2293  		queue_work(pm_wq, &hcd->wakeup_work);
2294  	}
2295  	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2296  }
2297  EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2298  
2299  #endif	/* CONFIG_PM_RUNTIME */
2300  
2301  /*-------------------------------------------------------------------------*/
2302  
2303  #ifdef	CONFIG_USB_OTG
2304  
2305  /**
2306   * usb_bus_start_enum - start immediate enumeration (for OTG)
2307   * @bus: the bus (must use hcd framework)
2308   * @port_num: 1-based number of port; usually bus->otg_port
2309   * Context: in_interrupt()
2310   *
2311   * Starts enumeration, with an immediate reset followed later by
2312   * hub_wq identifying and possibly configuring the device.
2313   * This is needed by OTG controller drivers, where it helps meet
2314   * HNP protocol timing requirements for starting a port reset.
2315   *
2316   * Return: 0 if successful.
2317   */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)2318  int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2319  {
2320  	struct usb_hcd		*hcd;
2321  	int			status = -EOPNOTSUPP;
2322  
2323  	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2324  	 * boards with root hubs hooked up to internal devices (instead of
2325  	 * just the OTG port) may need more attention to resetting...
2326  	 */
2327  	hcd = container_of (bus, struct usb_hcd, self);
2328  	if (port_num && hcd->driver->start_port_reset)
2329  		status = hcd->driver->start_port_reset(hcd, port_num);
2330  
2331  	/* allocate hub_wq shortly after (first) root port reset finishes;
2332  	 * it may issue others, until at least 50 msecs have passed.
2333  	 */
2334  	if (status == 0)
2335  		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2336  	return status;
2337  }
2338  EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2339  
2340  #endif
2341  
2342  /*-------------------------------------------------------------------------*/
2343  
2344  /**
2345   * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2346   * @irq: the IRQ being raised
2347   * @__hcd: pointer to the HCD whose IRQ is being signaled
2348   *
2349   * If the controller isn't HALTed, calls the driver's irq handler.
2350   * Checks whether the controller is now dead.
2351   *
2352   * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2353   */
usb_hcd_irq(int irq,void * __hcd)2354  irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2355  {
2356  	struct usb_hcd		*hcd = __hcd;
2357  	irqreturn_t		rc;
2358  
2359  	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2360  		rc = IRQ_NONE;
2361  	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2362  		rc = IRQ_NONE;
2363  	else
2364  		rc = IRQ_HANDLED;
2365  
2366  	return rc;
2367  }
2368  EXPORT_SYMBOL_GPL(usb_hcd_irq);
2369  
2370  /*-------------------------------------------------------------------------*/
2371  
2372  /**
2373   * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2374   * @hcd: pointer to the HCD representing the controller
2375   *
2376   * This is called by bus glue to report a USB host controller that died
2377   * while operations may still have been pending.  It's called automatically
2378   * by the PCI glue, so only glue for non-PCI busses should need to call it.
2379   *
2380   * Only call this function with the primary HCD.
2381   */
usb_hc_died(struct usb_hcd * hcd)2382  void usb_hc_died (struct usb_hcd *hcd)
2383  {
2384  	unsigned long flags;
2385  
2386  	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2387  
2388  	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2389  	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2390  	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2391  	if (hcd->rh_registered) {
2392  		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2393  
2394  		/* make hub_wq clean up old urbs and devices */
2395  		usb_set_device_state (hcd->self.root_hub,
2396  				USB_STATE_NOTATTACHED);
2397  		usb_kick_hub_wq(hcd->self.root_hub);
2398  	}
2399  	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2400  		hcd = hcd->shared_hcd;
2401  		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2402  		set_bit(HCD_FLAG_DEAD, &hcd->flags);
2403  		if (hcd->rh_registered) {
2404  			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2405  
2406  			/* make hub_wq clean up old urbs and devices */
2407  			usb_set_device_state(hcd->self.root_hub,
2408  					USB_STATE_NOTATTACHED);
2409  			usb_kick_hub_wq(hcd->self.root_hub);
2410  		}
2411  	}
2412  	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2413  	/* Make sure that the other roothub is also deallocated. */
2414  }
2415  EXPORT_SYMBOL_GPL (usb_hc_died);
2416  
2417  /*-------------------------------------------------------------------------*/
2418  
init_giveback_urb_bh(struct giveback_urb_bh * bh)2419  static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2420  {
2421  
2422  	spin_lock_init(&bh->lock);
2423  	INIT_LIST_HEAD(&bh->head);
2424  	tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2425  }
2426  
2427  /**
2428   * usb_create_shared_hcd - create and initialize an HCD structure
2429   * @driver: HC driver that will use this hcd
2430   * @dev: device for this HC, stored in hcd->self.controller
2431   * @bus_name: value to store in hcd->self.bus_name
2432   * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2433   *              PCI device.  Only allocate certain resources for the primary HCD
2434   * Context: !in_interrupt()
2435   *
2436   * Allocate a struct usb_hcd, with extra space at the end for the
2437   * HC driver's private data.  Initialize the generic members of the
2438   * hcd structure.
2439   *
2440   * Return: On success, a pointer to the created and initialized HCD structure.
2441   * On failure (e.g. if memory is unavailable), %NULL.
2442   */
usb_create_shared_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2443  struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2444  		struct device *dev, const char *bus_name,
2445  		struct usb_hcd *primary_hcd)
2446  {
2447  	struct usb_hcd *hcd;
2448  
2449  	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2450  	if (!hcd) {
2451  		dev_dbg (dev, "hcd alloc failed\n");
2452  		return NULL;
2453  	}
2454  	if (primary_hcd == NULL) {
2455  		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2456  				GFP_KERNEL);
2457  		if (!hcd->address0_mutex) {
2458  			kfree(hcd);
2459  			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2460  			return NULL;
2461  		}
2462  		mutex_init(hcd->address0_mutex);
2463  		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2464  				GFP_KERNEL);
2465  		if (!hcd->bandwidth_mutex) {
2466  			kfree(hcd->address0_mutex);
2467  			kfree(hcd);
2468  			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2469  			return NULL;
2470  		}
2471  		mutex_init(hcd->bandwidth_mutex);
2472  		dev_set_drvdata(dev, hcd);
2473  	} else {
2474  		mutex_lock(&usb_port_peer_mutex);
2475  		hcd->address0_mutex = primary_hcd->address0_mutex;
2476  		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2477  		hcd->primary_hcd = primary_hcd;
2478  		primary_hcd->primary_hcd = primary_hcd;
2479  		hcd->shared_hcd = primary_hcd;
2480  		primary_hcd->shared_hcd = hcd;
2481  		mutex_unlock(&usb_port_peer_mutex);
2482  	}
2483  
2484  	kref_init(&hcd->kref);
2485  
2486  	usb_bus_init(&hcd->self);
2487  	hcd->self.controller = dev;
2488  	hcd->self.bus_name = bus_name;
2489  	hcd->self.uses_dma = (dev->dma_mask != NULL);
2490  
2491  	init_timer(&hcd->rh_timer);
2492  	hcd->rh_timer.function = rh_timer_func;
2493  	hcd->rh_timer.data = (unsigned long) hcd;
2494  #ifdef CONFIG_PM_RUNTIME
2495  	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2496  #endif
2497  
2498  	hcd->driver = driver;
2499  	hcd->speed = driver->flags & HCD_MASK;
2500  	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2501  			"USB Host Controller";
2502  	return hcd;
2503  }
2504  EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2505  
2506  /**
2507   * usb_create_hcd - create and initialize an HCD structure
2508   * @driver: HC driver that will use this hcd
2509   * @dev: device for this HC, stored in hcd->self.controller
2510   * @bus_name: value to store in hcd->self.bus_name
2511   * Context: !in_interrupt()
2512   *
2513   * Allocate a struct usb_hcd, with extra space at the end for the
2514   * HC driver's private data.  Initialize the generic members of the
2515   * hcd structure.
2516   *
2517   * Return: On success, a pointer to the created and initialized HCD
2518   * structure. On failure (e.g. if memory is unavailable), %NULL.
2519   */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)2520  struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2521  		struct device *dev, const char *bus_name)
2522  {
2523  	return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2524  }
2525  EXPORT_SYMBOL_GPL(usb_create_hcd);
2526  
2527  /*
2528   * Roothubs that share one PCI device must also share the bandwidth mutex.
2529   * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2530   * deallocated.
2531   *
2532   * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2533   * freed.  When hcd_release() is called for either hcd in a peer set,
2534   * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2535   */
hcd_release(struct kref * kref)2536  static void hcd_release(struct kref *kref)
2537  {
2538  	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2539  
2540  	mutex_lock(&usb_port_peer_mutex);
2541  	if (hcd->shared_hcd) {
2542  		struct usb_hcd *peer = hcd->shared_hcd;
2543  
2544  		peer->shared_hcd = NULL;
2545  		peer->primary_hcd = NULL;
2546  	} else {
2547  		kfree(hcd->address0_mutex);
2548  		kfree(hcd->bandwidth_mutex);
2549  	}
2550  	mutex_unlock(&usb_port_peer_mutex);
2551  	kfree(hcd);
2552  }
2553  
usb_get_hcd(struct usb_hcd * hcd)2554  struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2555  {
2556  	if (hcd)
2557  		kref_get (&hcd->kref);
2558  	return hcd;
2559  }
2560  EXPORT_SYMBOL_GPL(usb_get_hcd);
2561  
usb_put_hcd(struct usb_hcd * hcd)2562  void usb_put_hcd (struct usb_hcd *hcd)
2563  {
2564  	if (hcd)
2565  		kref_put (&hcd->kref, hcd_release);
2566  }
2567  EXPORT_SYMBOL_GPL(usb_put_hcd);
2568  
usb_hcd_is_primary_hcd(struct usb_hcd * hcd)2569  int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2570  {
2571  	if (!hcd->primary_hcd)
2572  		return 1;
2573  	return hcd == hcd->primary_hcd;
2574  }
2575  EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2576  
usb_hcd_find_raw_port_number(struct usb_hcd * hcd,int port1)2577  int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2578  {
2579  	if (!hcd->driver->find_raw_port_number)
2580  		return port1;
2581  
2582  	return hcd->driver->find_raw_port_number(hcd, port1);
2583  }
2584  
usb_hcd_request_irqs(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2585  static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2586  		unsigned int irqnum, unsigned long irqflags)
2587  {
2588  	int retval;
2589  
2590  	if (hcd->driver->irq) {
2591  
2592  		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2593  				hcd->driver->description, hcd->self.busnum);
2594  		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2595  				hcd->irq_descr, hcd);
2596  		if (retval != 0) {
2597  			dev_err(hcd->self.controller,
2598  					"request interrupt %d failed\n",
2599  					irqnum);
2600  			return retval;
2601  		}
2602  		hcd->irq = irqnum;
2603  		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2604  				(hcd->driver->flags & HCD_MEMORY) ?
2605  					"io mem" : "io base",
2606  					(unsigned long long)hcd->rsrc_start);
2607  	} else {
2608  		hcd->irq = 0;
2609  		if (hcd->rsrc_start)
2610  			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2611  					(hcd->driver->flags & HCD_MEMORY) ?
2612  					"io mem" : "io base",
2613  					(unsigned long long)hcd->rsrc_start);
2614  	}
2615  	return 0;
2616  }
2617  
2618  /*
2619   * Before we free this root hub, flush in-flight peering attempts
2620   * and disable peer lookups
2621   */
usb_put_invalidate_rhdev(struct usb_hcd * hcd)2622  static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2623  {
2624  	struct usb_device *rhdev;
2625  
2626  	mutex_lock(&usb_port_peer_mutex);
2627  	rhdev = hcd->self.root_hub;
2628  	hcd->self.root_hub = NULL;
2629  	mutex_unlock(&usb_port_peer_mutex);
2630  	usb_put_dev(rhdev);
2631  }
2632  
2633  /**
2634   * usb_add_hcd - finish generic HCD structure initialization and register
2635   * @hcd: the usb_hcd structure to initialize
2636   * @irqnum: Interrupt line to allocate
2637   * @irqflags: Interrupt type flags
2638   *
2639   * Finish the remaining parts of generic HCD initialization: allocate the
2640   * buffers of consistent memory, register the bus, request the IRQ line,
2641   * and call the driver's reset() and start() routines.
2642   */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2643  int usb_add_hcd(struct usb_hcd *hcd,
2644  		unsigned int irqnum, unsigned long irqflags)
2645  {
2646  	int retval;
2647  	struct usb_device *rhdev;
2648  
2649  	if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2650  		struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2651  
2652  		if (IS_ERR(phy)) {
2653  			retval = PTR_ERR(phy);
2654  			if (retval == -EPROBE_DEFER)
2655  				return retval;
2656  		} else {
2657  			retval = usb_phy_init(phy);
2658  			if (retval) {
2659  				usb_put_phy(phy);
2660  				return retval;
2661  			}
2662  			hcd->usb_phy = phy;
2663  			hcd->remove_phy = 1;
2664  		}
2665  	}
2666  
2667  	if (IS_ENABLED(CONFIG_GENERIC_PHY)) {
2668  		struct phy *phy = phy_get(hcd->self.controller, "usb");
2669  
2670  		if (IS_ERR(phy)) {
2671  			retval = PTR_ERR(phy);
2672  			if (retval == -EPROBE_DEFER)
2673  				goto err_phy;
2674  		} else {
2675  			retval = phy_init(phy);
2676  			if (retval) {
2677  				phy_put(phy);
2678  				goto err_phy;
2679  			}
2680  			retval = phy_power_on(phy);
2681  			if (retval) {
2682  				phy_exit(phy);
2683  				phy_put(phy);
2684  				goto err_phy;
2685  			}
2686  			hcd->phy = phy;
2687  		}
2688  	}
2689  
2690  	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2691  
2692  	/* Keep old behaviour if authorized_default is not in [0, 1]. */
2693  	if (authorized_default < 0 || authorized_default > 1)
2694  		hcd->authorized_default = hcd->wireless ? 0 : 1;
2695  	else
2696  		hcd->authorized_default = authorized_default;
2697  	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2698  
2699  	/* HC is in reset state, but accessible.  Now do the one-time init,
2700  	 * bottom up so that hcds can customize the root hubs before hub_wq
2701  	 * starts talking to them.  (Note, bus id is assigned early too.)
2702  	 */
2703  	if ((retval = hcd_buffer_create(hcd)) != 0) {
2704  		dev_dbg(hcd->self.controller, "pool alloc failed\n");
2705  		goto err_create_buf;
2706  	}
2707  
2708  	if ((retval = usb_register_bus(&hcd->self)) < 0)
2709  		goto err_register_bus;
2710  
2711  	if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2712  		dev_err(hcd->self.controller, "unable to allocate root hub\n");
2713  		retval = -ENOMEM;
2714  		goto err_allocate_root_hub;
2715  	}
2716  	mutex_lock(&usb_port_peer_mutex);
2717  	hcd->self.root_hub = rhdev;
2718  	mutex_unlock(&usb_port_peer_mutex);
2719  
2720  	switch (hcd->speed) {
2721  	case HCD_USB11:
2722  		rhdev->speed = USB_SPEED_FULL;
2723  		break;
2724  	case HCD_USB2:
2725  		rhdev->speed = USB_SPEED_HIGH;
2726  		break;
2727  	case HCD_USB25:
2728  		rhdev->speed = USB_SPEED_WIRELESS;
2729  		break;
2730  	case HCD_USB3:
2731  		rhdev->speed = USB_SPEED_SUPER;
2732  		break;
2733  	default:
2734  		retval = -EINVAL;
2735  		goto err_set_rh_speed;
2736  	}
2737  
2738  	/* wakeup flag init defaults to "everything works" for root hubs,
2739  	 * but drivers can override it in reset() if needed, along with
2740  	 * recording the overall controller's system wakeup capability.
2741  	 */
2742  	device_set_wakeup_capable(&rhdev->dev, 1);
2743  
2744  	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2745  	 * registered.  But since the controller can die at any time,
2746  	 * let's initialize the flag before touching the hardware.
2747  	 */
2748  	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2749  
2750  	/* "reset" is misnamed; its role is now one-time init. the controller
2751  	 * should already have been reset (and boot firmware kicked off etc).
2752  	 */
2753  	if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2754  		dev_err(hcd->self.controller, "can't setup: %d\n", retval);
2755  		goto err_hcd_driver_setup;
2756  	}
2757  	hcd->rh_pollable = 1;
2758  
2759  	/* NOTE: root hub and controller capabilities may not be the same */
2760  	if (device_can_wakeup(hcd->self.controller)
2761  			&& device_can_wakeup(&hcd->self.root_hub->dev))
2762  		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2763  
2764  	/* initialize tasklets */
2765  	init_giveback_urb_bh(&hcd->high_prio_bh);
2766  	init_giveback_urb_bh(&hcd->low_prio_bh);
2767  
2768  	/* enable irqs just before we start the controller,
2769  	 * if the BIOS provides legacy PCI irqs.
2770  	 */
2771  	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2772  		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2773  		if (retval)
2774  			goto err_request_irq;
2775  	}
2776  
2777  	hcd->state = HC_STATE_RUNNING;
2778  	retval = hcd->driver->start(hcd);
2779  	if (retval < 0) {
2780  		dev_err(hcd->self.controller, "startup error %d\n", retval);
2781  		goto err_hcd_driver_start;
2782  	}
2783  
2784  	/* starting here, usbcore will pay attention to this root hub */
2785  	if ((retval = register_root_hub(hcd)) != 0)
2786  		goto err_register_root_hub;
2787  
2788  	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2789  	if (retval < 0) {
2790  		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2791  		       retval);
2792  		goto error_create_attr_group;
2793  	}
2794  	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2795  		usb_hcd_poll_rh_status(hcd);
2796  
2797  	return retval;
2798  
2799  error_create_attr_group:
2800  	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2801  	if (HC_IS_RUNNING(hcd->state))
2802  		hcd->state = HC_STATE_QUIESCING;
2803  	spin_lock_irq(&hcd_root_hub_lock);
2804  	hcd->rh_registered = 0;
2805  	spin_unlock_irq(&hcd_root_hub_lock);
2806  
2807  #ifdef CONFIG_PM_RUNTIME
2808  	cancel_work_sync(&hcd->wakeup_work);
2809  #endif
2810  	mutex_lock(&usb_bus_list_lock);
2811  	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2812  	mutex_unlock(&usb_bus_list_lock);
2813  err_register_root_hub:
2814  	hcd->rh_pollable = 0;
2815  	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2816  	del_timer_sync(&hcd->rh_timer);
2817  	hcd->driver->stop(hcd);
2818  	hcd->state = HC_STATE_HALT;
2819  	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2820  	del_timer_sync(&hcd->rh_timer);
2821  err_hcd_driver_start:
2822  	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2823  		free_irq(irqnum, hcd);
2824  err_request_irq:
2825  err_hcd_driver_setup:
2826  err_set_rh_speed:
2827  	usb_put_invalidate_rhdev(hcd);
2828  err_allocate_root_hub:
2829  	usb_deregister_bus(&hcd->self);
2830  err_register_bus:
2831  	hcd_buffer_destroy(hcd);
2832  err_create_buf:
2833  	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->phy) {
2834  		phy_power_off(hcd->phy);
2835  		phy_exit(hcd->phy);
2836  		phy_put(hcd->phy);
2837  		hcd->phy = NULL;
2838  	}
2839  err_phy:
2840  	if (hcd->remove_phy && hcd->usb_phy) {
2841  		usb_phy_shutdown(hcd->usb_phy);
2842  		usb_put_phy(hcd->usb_phy);
2843  		hcd->usb_phy = NULL;
2844  	}
2845  	return retval;
2846  }
2847  EXPORT_SYMBOL_GPL(usb_add_hcd);
2848  
2849  /**
2850   * usb_remove_hcd - shutdown processing for generic HCDs
2851   * @hcd: the usb_hcd structure to remove
2852   * Context: !in_interrupt()
2853   *
2854   * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2855   * invoking the HCD's stop() method.
2856   */
usb_remove_hcd(struct usb_hcd * hcd)2857  void usb_remove_hcd(struct usb_hcd *hcd)
2858  {
2859  	struct usb_device *rhdev = hcd->self.root_hub;
2860  
2861  	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2862  
2863  	usb_get_dev(rhdev);
2864  	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2865  
2866  	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2867  	if (HC_IS_RUNNING (hcd->state))
2868  		hcd->state = HC_STATE_QUIESCING;
2869  
2870  	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2871  	spin_lock_irq (&hcd_root_hub_lock);
2872  	hcd->rh_registered = 0;
2873  	spin_unlock_irq (&hcd_root_hub_lock);
2874  
2875  #ifdef CONFIG_PM_RUNTIME
2876  	cancel_work_sync(&hcd->wakeup_work);
2877  #endif
2878  
2879  	mutex_lock(&usb_bus_list_lock);
2880  	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2881  	mutex_unlock(&usb_bus_list_lock);
2882  
2883  	/*
2884  	 * tasklet_kill() isn't needed here because:
2885  	 * - driver's disconnect() called from usb_disconnect() should
2886  	 *   make sure its URBs are completed during the disconnect()
2887  	 *   callback
2888  	 *
2889  	 * - it is too late to run complete() here since driver may have
2890  	 *   been removed already now
2891  	 */
2892  
2893  	/* Prevent any more root-hub status calls from the timer.
2894  	 * The HCD might still restart the timer (if a port status change
2895  	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2896  	 * the hub_status_data() callback.
2897  	 */
2898  	hcd->rh_pollable = 0;
2899  	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2900  	del_timer_sync(&hcd->rh_timer);
2901  
2902  	hcd->driver->stop(hcd);
2903  	hcd->state = HC_STATE_HALT;
2904  
2905  	/* In case the HCD restarted the timer, stop it again. */
2906  	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2907  	del_timer_sync(&hcd->rh_timer);
2908  
2909  	if (usb_hcd_is_primary_hcd(hcd)) {
2910  		if (hcd->irq > 0)
2911  			free_irq(hcd->irq, hcd);
2912  	}
2913  
2914  	usb_deregister_bus(&hcd->self);
2915  	hcd_buffer_destroy(hcd);
2916  
2917  	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->phy) {
2918  		phy_power_off(hcd->phy);
2919  		phy_exit(hcd->phy);
2920  		phy_put(hcd->phy);
2921  		hcd->phy = NULL;
2922  	}
2923  	if (hcd->remove_phy && hcd->usb_phy) {
2924  		usb_phy_shutdown(hcd->usb_phy);
2925  		usb_put_phy(hcd->usb_phy);
2926  		hcd->usb_phy = NULL;
2927  	}
2928  
2929  	usb_put_invalidate_rhdev(hcd);
2930  	hcd->flags = 0;
2931  }
2932  EXPORT_SYMBOL_GPL(usb_remove_hcd);
2933  
2934  void
usb_hcd_platform_shutdown(struct platform_device * dev)2935  usb_hcd_platform_shutdown(struct platform_device *dev)
2936  {
2937  	struct usb_hcd *hcd = platform_get_drvdata(dev);
2938  
2939  	if (hcd->driver->shutdown)
2940  		hcd->driver->shutdown(hcd);
2941  }
2942  EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2943  
2944  /*-------------------------------------------------------------------------*/
2945  
2946  #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2947  
2948  struct usb_mon_operations *mon_ops;
2949  
2950  /*
2951   * The registration is unlocked.
2952   * We do it this way because we do not want to lock in hot paths.
2953   *
2954   * Notice that the code is minimally error-proof. Because usbmon needs
2955   * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2956   */
2957  
usb_mon_register(struct usb_mon_operations * ops)2958  int usb_mon_register (struct usb_mon_operations *ops)
2959  {
2960  
2961  	if (mon_ops)
2962  		return -EBUSY;
2963  
2964  	mon_ops = ops;
2965  	mb();
2966  	return 0;
2967  }
2968  EXPORT_SYMBOL_GPL (usb_mon_register);
2969  
usb_mon_deregister(void)2970  void usb_mon_deregister (void)
2971  {
2972  
2973  	if (mon_ops == NULL) {
2974  		printk(KERN_ERR "USB: monitor was not registered\n");
2975  		return;
2976  	}
2977  	mon_ops = NULL;
2978  	mb();
2979  }
2980  EXPORT_SYMBOL_GPL (usb_mon_deregister);
2981  
2982  #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
2983