1 #include <linux/module.h>
2 #include <linux/string.h>
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/log2.h>
6 #include <linux/usb.h>
7 #include <linux/wait.h>
8 #include <linux/usb/hcd.h>
9 #include <linux/scatterlist.h>
10
11 #define to_urb(d) container_of(d, struct urb, kref)
12
13
urb_destroy(struct kref * kref)14 static void urb_destroy(struct kref *kref)
15 {
16 struct urb *urb = to_urb(kref);
17
18 if (urb->transfer_flags & URB_FREE_BUFFER)
19 kfree(urb->transfer_buffer);
20
21 kfree(urb);
22 }
23
24 /**
25 * usb_init_urb - initializes a urb so that it can be used by a USB driver
26 * @urb: pointer to the urb to initialize
27 *
28 * Initializes a urb so that the USB subsystem can use it properly.
29 *
30 * If a urb is created with a call to usb_alloc_urb() it is not
31 * necessary to call this function. Only use this if you allocate the
32 * space for a struct urb on your own. If you call this function, be
33 * careful when freeing the memory for your urb that it is no longer in
34 * use by the USB core.
35 *
36 * Only use this function if you _really_ understand what you are doing.
37 */
usb_init_urb(struct urb * urb)38 void usb_init_urb(struct urb *urb)
39 {
40 if (urb) {
41 memset(urb, 0, sizeof(*urb));
42 kref_init(&urb->kref);
43 INIT_LIST_HEAD(&urb->anchor_list);
44 }
45 }
46 EXPORT_SYMBOL_GPL(usb_init_urb);
47
48 /**
49 * usb_alloc_urb - creates a new urb for a USB driver to use
50 * @iso_packets: number of iso packets for this urb
51 * @mem_flags: the type of memory to allocate, see kmalloc() for a list of
52 * valid options for this.
53 *
54 * Creates an urb for the USB driver to use, initializes a few internal
55 * structures, increments the usage counter, and returns a pointer to it.
56 *
57 * If the driver want to use this urb for interrupt, control, or bulk
58 * endpoints, pass '0' as the number of iso packets.
59 *
60 * The driver must call usb_free_urb() when it is finished with the urb.
61 *
62 * Return: A pointer to the new urb, or %NULL if no memory is available.
63 */
usb_alloc_urb(int iso_packets,gfp_t mem_flags)64 struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags)
65 {
66 struct urb *urb;
67
68 urb = kmalloc(sizeof(struct urb) +
69 iso_packets * sizeof(struct usb_iso_packet_descriptor),
70 mem_flags);
71 if (!urb) {
72 printk(KERN_ERR "alloc_urb: kmalloc failed\n");
73 return NULL;
74 }
75 usb_init_urb(urb);
76 return urb;
77 }
78 EXPORT_SYMBOL_GPL(usb_alloc_urb);
79
80 /**
81 * usb_free_urb - frees the memory used by a urb when all users of it are finished
82 * @urb: pointer to the urb to free, may be NULL
83 *
84 * Must be called when a user of a urb is finished with it. When the last user
85 * of the urb calls this function, the memory of the urb is freed.
86 *
87 * Note: The transfer buffer associated with the urb is not freed unless the
88 * URB_FREE_BUFFER transfer flag is set.
89 */
usb_free_urb(struct urb * urb)90 void usb_free_urb(struct urb *urb)
91 {
92 if (urb)
93 kref_put(&urb->kref, urb_destroy);
94 }
95 EXPORT_SYMBOL_GPL(usb_free_urb);
96
97 /**
98 * usb_get_urb - increments the reference count of the urb
99 * @urb: pointer to the urb to modify, may be NULL
100 *
101 * This must be called whenever a urb is transferred from a device driver to a
102 * host controller driver. This allows proper reference counting to happen
103 * for urbs.
104 *
105 * Return: A pointer to the urb with the incremented reference counter.
106 */
usb_get_urb(struct urb * urb)107 struct urb *usb_get_urb(struct urb *urb)
108 {
109 if (urb)
110 kref_get(&urb->kref);
111 return urb;
112 }
113 EXPORT_SYMBOL_GPL(usb_get_urb);
114
115 /**
116 * usb_anchor_urb - anchors an URB while it is processed
117 * @urb: pointer to the urb to anchor
118 * @anchor: pointer to the anchor
119 *
120 * This can be called to have access to URBs which are to be executed
121 * without bothering to track them
122 */
usb_anchor_urb(struct urb * urb,struct usb_anchor * anchor)123 void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor)
124 {
125 unsigned long flags;
126
127 spin_lock_irqsave(&anchor->lock, flags);
128 usb_get_urb(urb);
129 list_add_tail(&urb->anchor_list, &anchor->urb_list);
130 urb->anchor = anchor;
131
132 if (unlikely(anchor->poisoned)) {
133 atomic_inc(&urb->reject);
134 }
135
136 spin_unlock_irqrestore(&anchor->lock, flags);
137 }
138 EXPORT_SYMBOL_GPL(usb_anchor_urb);
139
usb_anchor_check_wakeup(struct usb_anchor * anchor)140 static int usb_anchor_check_wakeup(struct usb_anchor *anchor)
141 {
142 return atomic_read(&anchor->suspend_wakeups) == 0 &&
143 list_empty(&anchor->urb_list);
144 }
145
146 /* Callers must hold anchor->lock */
__usb_unanchor_urb(struct urb * urb,struct usb_anchor * anchor)147 static void __usb_unanchor_urb(struct urb *urb, struct usb_anchor *anchor)
148 {
149 urb->anchor = NULL;
150 list_del(&urb->anchor_list);
151 usb_put_urb(urb);
152 if (usb_anchor_check_wakeup(anchor))
153 wake_up(&anchor->wait);
154 }
155
156 /**
157 * usb_unanchor_urb - unanchors an URB
158 * @urb: pointer to the urb to anchor
159 *
160 * Call this to stop the system keeping track of this URB
161 */
usb_unanchor_urb(struct urb * urb)162 void usb_unanchor_urb(struct urb *urb)
163 {
164 unsigned long flags;
165 struct usb_anchor *anchor;
166
167 if (!urb)
168 return;
169
170 anchor = urb->anchor;
171 if (!anchor)
172 return;
173
174 spin_lock_irqsave(&anchor->lock, flags);
175 /*
176 * At this point, we could be competing with another thread which
177 * has the same intention. To protect the urb from being unanchored
178 * twice, only the winner of the race gets the job.
179 */
180 if (likely(anchor == urb->anchor))
181 __usb_unanchor_urb(urb, anchor);
182 spin_unlock_irqrestore(&anchor->lock, flags);
183 }
184 EXPORT_SYMBOL_GPL(usb_unanchor_urb);
185
186 /*-------------------------------------------------------------------*/
187
188 /**
189 * usb_submit_urb - issue an asynchronous transfer request for an endpoint
190 * @urb: pointer to the urb describing the request
191 * @mem_flags: the type of memory to allocate, see kmalloc() for a list
192 * of valid options for this.
193 *
194 * This submits a transfer request, and transfers control of the URB
195 * describing that request to the USB subsystem. Request completion will
196 * be indicated later, asynchronously, by calling the completion handler.
197 * The three types of completion are success, error, and unlink
198 * (a software-induced fault, also called "request cancellation").
199 *
200 * URBs may be submitted in interrupt context.
201 *
202 * The caller must have correctly initialized the URB before submitting
203 * it. Functions such as usb_fill_bulk_urb() and usb_fill_control_urb() are
204 * available to ensure that most fields are correctly initialized, for
205 * the particular kind of transfer, although they will not initialize
206 * any transfer flags.
207 *
208 * If the submission is successful, the complete() callback from the URB
209 * will be called exactly once, when the USB core and Host Controller Driver
210 * (HCD) are finished with the URB. When the completion function is called,
211 * control of the URB is returned to the device driver which issued the
212 * request. The completion handler may then immediately free or reuse that
213 * URB.
214 *
215 * With few exceptions, USB device drivers should never access URB fields
216 * provided by usbcore or the HCD until its complete() is called.
217 * The exceptions relate to periodic transfer scheduling. For both
218 * interrupt and isochronous urbs, as part of successful URB submission
219 * urb->interval is modified to reflect the actual transfer period used
220 * (normally some power of two units). And for isochronous urbs,
221 * urb->start_frame is modified to reflect when the URB's transfers were
222 * scheduled to start.
223 *
224 * Not all isochronous transfer scheduling policies will work, but most
225 * host controller drivers should easily handle ISO queues going from now
226 * until 10-200 msec into the future. Drivers should try to keep at
227 * least one or two msec of data in the queue; many controllers require
228 * that new transfers start at least 1 msec in the future when they are
229 * added. If the driver is unable to keep up and the queue empties out,
230 * the behavior for new submissions is governed by the URB_ISO_ASAP flag.
231 * If the flag is set, or if the queue is idle, then the URB is always
232 * assigned to the first available (and not yet expired) slot in the
233 * endpoint's schedule. If the flag is not set and the queue is active
234 * then the URB is always assigned to the next slot in the schedule
235 * following the end of the endpoint's previous URB, even if that slot is
236 * in the past. When a packet is assigned in this way to a slot that has
237 * already expired, the packet is not transmitted and the corresponding
238 * usb_iso_packet_descriptor's status field will return -EXDEV. If this
239 * would happen to all the packets in the URB, submission fails with a
240 * -EXDEV error code.
241 *
242 * For control endpoints, the synchronous usb_control_msg() call is
243 * often used (in non-interrupt context) instead of this call.
244 * That is often used through convenience wrappers, for the requests
245 * that are standardized in the USB 2.0 specification. For bulk
246 * endpoints, a synchronous usb_bulk_msg() call is available.
247 *
248 * Return:
249 * 0 on successful submissions. A negative error number otherwise.
250 *
251 * Request Queuing:
252 *
253 * URBs may be submitted to endpoints before previous ones complete, to
254 * minimize the impact of interrupt latencies and system overhead on data
255 * throughput. With that queuing policy, an endpoint's queue would never
256 * be empty. This is required for continuous isochronous data streams,
257 * and may also be required for some kinds of interrupt transfers. Such
258 * queuing also maximizes bandwidth utilization by letting USB controllers
259 * start work on later requests before driver software has finished the
260 * completion processing for earlier (successful) requests.
261 *
262 * As of Linux 2.6, all USB endpoint transfer queues support depths greater
263 * than one. This was previously a HCD-specific behavior, except for ISO
264 * transfers. Non-isochronous endpoint queues are inactive during cleanup
265 * after faults (transfer errors or cancellation).
266 *
267 * Reserved Bandwidth Transfers:
268 *
269 * Periodic transfers (interrupt or isochronous) are performed repeatedly,
270 * using the interval specified in the urb. Submitting the first urb to
271 * the endpoint reserves the bandwidth necessary to make those transfers.
272 * If the USB subsystem can't allocate sufficient bandwidth to perform
273 * the periodic request, submitting such a periodic request should fail.
274 *
275 * For devices under xHCI, the bandwidth is reserved at configuration time, or
276 * when the alt setting is selected. If there is not enough bus bandwidth, the
277 * configuration/alt setting request will fail. Therefore, submissions to
278 * periodic endpoints on devices under xHCI should never fail due to bandwidth
279 * constraints.
280 *
281 * Device drivers must explicitly request that repetition, by ensuring that
282 * some URB is always on the endpoint's queue (except possibly for short
283 * periods during completion callbacks). When there is no longer an urb
284 * queued, the endpoint's bandwidth reservation is canceled. This means
285 * drivers can use their completion handlers to ensure they keep bandwidth
286 * they need, by reinitializing and resubmitting the just-completed urb
287 * until the driver longer needs that periodic bandwidth.
288 *
289 * Memory Flags:
290 *
291 * The general rules for how to decide which mem_flags to use
292 * are the same as for kmalloc. There are four
293 * different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and
294 * GFP_ATOMIC.
295 *
296 * GFP_NOFS is not ever used, as it has not been implemented yet.
297 *
298 * GFP_ATOMIC is used when
299 * (a) you are inside a completion handler, an interrupt, bottom half,
300 * tasklet or timer, or
301 * (b) you are holding a spinlock or rwlock (does not apply to
302 * semaphores), or
303 * (c) current->state != TASK_RUNNING, this is the case only after
304 * you've changed it.
305 *
306 * GFP_NOIO is used in the block io path and error handling of storage
307 * devices.
308 *
309 * All other situations use GFP_KERNEL.
310 *
311 * Some more specific rules for mem_flags can be inferred, such as
312 * (1) start_xmit, timeout, and receive methods of network drivers must
313 * use GFP_ATOMIC (they are called with a spinlock held);
314 * (2) queuecommand methods of scsi drivers must use GFP_ATOMIC (also
315 * called with a spinlock held);
316 * (3) If you use a kernel thread with a network driver you must use
317 * GFP_NOIO, unless (b) or (c) apply;
318 * (4) after you have done a down() you can use GFP_KERNEL, unless (b) or (c)
319 * apply or your are in a storage driver's block io path;
320 * (5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and
321 * (6) changing firmware on a running storage or net device uses
322 * GFP_NOIO, unless b) or c) apply
323 *
324 */
usb_submit_urb(struct urb * urb,gfp_t mem_flags)325 int usb_submit_urb(struct urb *urb, gfp_t mem_flags)
326 {
327 static int pipetypes[4] = {
328 PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
329 };
330 int xfertype, max;
331 struct usb_device *dev;
332 struct usb_host_endpoint *ep;
333 int is_out;
334 unsigned int allowed;
335
336 if (!urb || !urb->complete)
337 return -EINVAL;
338 if (urb->hcpriv) {
339 WARN_ONCE(1, "URB %pK submitted while active\n", urb);
340 return -EBUSY;
341 }
342
343 dev = urb->dev;
344 if ((!dev) || (dev->state < USB_STATE_UNAUTHENTICATED))
345 return -ENODEV;
346
347 /* For now, get the endpoint from the pipe. Eventually drivers
348 * will be required to set urb->ep directly and we will eliminate
349 * urb->pipe.
350 */
351 ep = usb_pipe_endpoint(dev, urb->pipe);
352 if (!ep)
353 return -ENOENT;
354
355 urb->ep = ep;
356 urb->status = -EINPROGRESS;
357 urb->actual_length = 0;
358
359 /* Lots of sanity checks, so HCDs can rely on clean data
360 * and don't need to duplicate tests
361 */
362 xfertype = usb_endpoint_type(&ep->desc);
363 if (xfertype == USB_ENDPOINT_XFER_CONTROL) {
364 struct usb_ctrlrequest *setup =
365 (struct usb_ctrlrequest *) urb->setup_packet;
366
367 if (!setup)
368 return -ENOEXEC;
369 is_out = !(setup->bRequestType & USB_DIR_IN) ||
370 !setup->wLength;
371 } else {
372 is_out = usb_endpoint_dir_out(&ep->desc);
373 }
374
375 /* Clear the internal flags and cache the direction for later use */
376 urb->transfer_flags &= ~(URB_DIR_MASK | URB_DMA_MAP_SINGLE |
377 URB_DMA_MAP_PAGE | URB_DMA_MAP_SG | URB_MAP_LOCAL |
378 URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL |
379 URB_DMA_SG_COMBINED);
380 urb->transfer_flags |= (is_out ? URB_DIR_OUT : URB_DIR_IN);
381
382 if (xfertype != USB_ENDPOINT_XFER_CONTROL &&
383 dev->state < USB_STATE_CONFIGURED)
384 return -ENODEV;
385
386 max = usb_endpoint_maxp(&ep->desc);
387 if (max <= 0) {
388 dev_dbg(&dev->dev,
389 "bogus endpoint ep%d%s in %s (bad maxpacket %d)\n",
390 usb_endpoint_num(&ep->desc), is_out ? "out" : "in",
391 __func__, max);
392 return -EMSGSIZE;
393 }
394
395 /* periodic transfers limit size per frame/uframe,
396 * but drivers only control those sizes for ISO.
397 * while we're checking, initialize return status.
398 */
399 if (xfertype == USB_ENDPOINT_XFER_ISOC) {
400 int n, len;
401
402 /* SuperSpeed isoc endpoints have up to 16 bursts of up to
403 * 3 packets each
404 */
405 if (dev->speed == USB_SPEED_SUPER) {
406 int burst = 1 + ep->ss_ep_comp.bMaxBurst;
407 int mult = USB_SS_MULT(ep->ss_ep_comp.bmAttributes);
408 max *= burst;
409 max *= mult;
410 }
411
412 /* "high bandwidth" mode, 1-3 packets/uframe? */
413 if (dev->speed == USB_SPEED_HIGH) {
414 int mult = 1 + ((max >> 11) & 0x03);
415 max &= 0x07ff;
416 max *= mult;
417 }
418
419 if (urb->number_of_packets <= 0)
420 return -EINVAL;
421 for (n = 0; n < urb->number_of_packets; n++) {
422 len = urb->iso_frame_desc[n].length;
423 if (len < 0 || len > max)
424 return -EMSGSIZE;
425 urb->iso_frame_desc[n].status = -EXDEV;
426 urb->iso_frame_desc[n].actual_length = 0;
427 }
428 } else if (urb->num_sgs && !urb->dev->bus->no_sg_constraint &&
429 dev->speed != USB_SPEED_WIRELESS) {
430 struct scatterlist *sg;
431 int i;
432
433 for_each_sg(urb->sg, sg, urb->num_sgs - 1, i)
434 if (sg->length % max)
435 return -EINVAL;
436 }
437
438 /* the I/O buffer must be mapped/unmapped, except when length=0 */
439 if (urb->transfer_buffer_length > INT_MAX)
440 return -EMSGSIZE;
441
442 /*
443 * stuff that drivers shouldn't do, but which shouldn't
444 * cause problems in HCDs if they get it wrong.
445 */
446
447 /* Check that the pipe's type matches the endpoint's type */
448 if (usb_pipetype(urb->pipe) != pipetypes[xfertype])
449 dev_WARN(&dev->dev, "BOGUS urb xfer, pipe %x != type %x\n",
450 usb_pipetype(urb->pipe), pipetypes[xfertype]);
451
452 /* Check against a simple/standard policy */
453 allowed = (URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT | URB_DIR_MASK |
454 URB_FREE_BUFFER);
455 switch (xfertype) {
456 case USB_ENDPOINT_XFER_BULK:
457 case USB_ENDPOINT_XFER_INT:
458 if (is_out)
459 allowed |= URB_ZERO_PACKET;
460 /* FALLTHROUGH */
461 case USB_ENDPOINT_XFER_CONTROL:
462 allowed |= URB_NO_FSBR; /* only affects UHCI */
463 /* FALLTHROUGH */
464 default: /* all non-iso endpoints */
465 if (!is_out)
466 allowed |= URB_SHORT_NOT_OK;
467 break;
468 case USB_ENDPOINT_XFER_ISOC:
469 allowed |= URB_ISO_ASAP;
470 break;
471 }
472 allowed &= urb->transfer_flags;
473
474 /* warn if submitter gave bogus flags */
475 if (allowed != urb->transfer_flags)
476 dev_WARN(&dev->dev, "BOGUS urb flags, %x --> %x\n",
477 urb->transfer_flags, allowed);
478
479 /*
480 * Force periodic transfer intervals to be legal values that are
481 * a power of two (so HCDs don't need to).
482 *
483 * FIXME want bus->{intr,iso}_sched_horizon values here. Each HC
484 * supports different values... this uses EHCI/UHCI defaults (and
485 * EHCI can use smaller non-default values).
486 */
487 switch (xfertype) {
488 case USB_ENDPOINT_XFER_ISOC:
489 case USB_ENDPOINT_XFER_INT:
490 /* too small? */
491 switch (dev->speed) {
492 case USB_SPEED_WIRELESS:
493 if ((urb->interval < 6)
494 && (xfertype == USB_ENDPOINT_XFER_INT))
495 return -EINVAL;
496 default:
497 if (urb->interval <= 0)
498 return -EINVAL;
499 break;
500 }
501 /* too big? */
502 switch (dev->speed) {
503 case USB_SPEED_SUPER: /* units are 125us */
504 /* Handle up to 2^(16-1) microframes */
505 if (urb->interval > (1 << 15))
506 return -EINVAL;
507 max = 1 << 15;
508 break;
509 case USB_SPEED_WIRELESS:
510 if (urb->interval > 16)
511 return -EINVAL;
512 break;
513 case USB_SPEED_HIGH: /* units are microframes */
514 /* NOTE usb handles 2^15 */
515 if (urb->interval > (1024 * 8))
516 urb->interval = 1024 * 8;
517 max = 1024 * 8;
518 break;
519 case USB_SPEED_FULL: /* units are frames/msec */
520 case USB_SPEED_LOW:
521 if (xfertype == USB_ENDPOINT_XFER_INT) {
522 if (urb->interval > 255)
523 return -EINVAL;
524 /* NOTE ohci only handles up to 32 */
525 max = 128;
526 } else {
527 if (urb->interval > 1024)
528 urb->interval = 1024;
529 /* NOTE usb and ohci handle up to 2^15 */
530 max = 1024;
531 }
532 break;
533 default:
534 return -EINVAL;
535 }
536 if (dev->speed != USB_SPEED_WIRELESS) {
537 /* Round down to a power of 2, no more than max */
538 urb->interval = min(max, 1 << ilog2(urb->interval));
539 }
540 }
541
542 return usb_hcd_submit_urb(urb, mem_flags);
543 }
544 EXPORT_SYMBOL_GPL(usb_submit_urb);
545
546 /*-------------------------------------------------------------------*/
547
548 /**
549 * usb_unlink_urb - abort/cancel a transfer request for an endpoint
550 * @urb: pointer to urb describing a previously submitted request,
551 * may be NULL
552 *
553 * This routine cancels an in-progress request. URBs complete only once
554 * per submission, and may be canceled only once per submission.
555 * Successful cancellation means termination of @urb will be expedited
556 * and the completion handler will be called with a status code
557 * indicating that the request has been canceled (rather than any other
558 * code).
559 *
560 * Drivers should not call this routine or related routines, such as
561 * usb_kill_urb() or usb_unlink_anchored_urbs(), after their disconnect
562 * method has returned. The disconnect function should synchronize with
563 * a driver's I/O routines to insure that all URB-related activity has
564 * completed before it returns.
565 *
566 * This request is asynchronous, however the HCD might call the ->complete()
567 * callback during unlink. Therefore when drivers call usb_unlink_urb(), they
568 * must not hold any locks that may be taken by the completion function.
569 * Success is indicated by returning -EINPROGRESS, at which time the URB will
570 * probably not yet have been given back to the device driver. When it is
571 * eventually called, the completion function will see @urb->status ==
572 * -ECONNRESET.
573 * Failure is indicated by usb_unlink_urb() returning any other value.
574 * Unlinking will fail when @urb is not currently "linked" (i.e., it was
575 * never submitted, or it was unlinked before, or the hardware is already
576 * finished with it), even if the completion handler has not yet run.
577 *
578 * The URB must not be deallocated while this routine is running. In
579 * particular, when a driver calls this routine, it must insure that the
580 * completion handler cannot deallocate the URB.
581 *
582 * Return: -EINPROGRESS on success. See description for other values on
583 * failure.
584 *
585 * Unlinking and Endpoint Queues:
586 *
587 * [The behaviors and guarantees described below do not apply to virtual
588 * root hubs but only to endpoint queues for physical USB devices.]
589 *
590 * Host Controller Drivers (HCDs) place all the URBs for a particular
591 * endpoint in a queue. Normally the queue advances as the controller
592 * hardware processes each request. But when an URB terminates with an
593 * error its queue generally stops (see below), at least until that URB's
594 * completion routine returns. It is guaranteed that a stopped queue
595 * will not restart until all its unlinked URBs have been fully retired,
596 * with their completion routines run, even if that's not until some time
597 * after the original completion handler returns. The same behavior and
598 * guarantee apply when an URB terminates because it was unlinked.
599 *
600 * Bulk and interrupt endpoint queues are guaranteed to stop whenever an
601 * URB terminates with any sort of error, including -ECONNRESET, -ENOENT,
602 * and -EREMOTEIO. Control endpoint queues behave the same way except
603 * that they are not guaranteed to stop for -EREMOTEIO errors. Queues
604 * for isochronous endpoints are treated differently, because they must
605 * advance at fixed rates. Such queues do not stop when an URB
606 * encounters an error or is unlinked. An unlinked isochronous URB may
607 * leave a gap in the stream of packets; it is undefined whether such
608 * gaps can be filled in.
609 *
610 * Note that early termination of an URB because a short packet was
611 * received will generate a -EREMOTEIO error if and only if the
612 * URB_SHORT_NOT_OK flag is set. By setting this flag, USB device
613 * drivers can build deep queues for large or complex bulk transfers
614 * and clean them up reliably after any sort of aborted transfer by
615 * unlinking all pending URBs at the first fault.
616 *
617 * When a control URB terminates with an error other than -EREMOTEIO, it
618 * is quite likely that the status stage of the transfer will not take
619 * place.
620 */
usb_unlink_urb(struct urb * urb)621 int usb_unlink_urb(struct urb *urb)
622 {
623 if (!urb)
624 return -EINVAL;
625 if (!urb->dev)
626 return -ENODEV;
627 if (!urb->ep)
628 return -EIDRM;
629 return usb_hcd_unlink_urb(urb, -ECONNRESET);
630 }
631 EXPORT_SYMBOL_GPL(usb_unlink_urb);
632
633 /**
634 * usb_kill_urb - cancel a transfer request and wait for it to finish
635 * @urb: pointer to URB describing a previously submitted request,
636 * may be NULL
637 *
638 * This routine cancels an in-progress request. It is guaranteed that
639 * upon return all completion handlers will have finished and the URB
640 * will be totally idle and available for reuse. These features make
641 * this an ideal way to stop I/O in a disconnect() callback or close()
642 * function. If the request has not already finished or been unlinked
643 * the completion handler will see urb->status == -ENOENT.
644 *
645 * While the routine is running, attempts to resubmit the URB will fail
646 * with error -EPERM. Thus even if the URB's completion handler always
647 * tries to resubmit, it will not succeed and the URB will become idle.
648 *
649 * The URB must not be deallocated while this routine is running. In
650 * particular, when a driver calls this routine, it must insure that the
651 * completion handler cannot deallocate the URB.
652 *
653 * This routine may not be used in an interrupt context (such as a bottom
654 * half or a completion handler), or when holding a spinlock, or in other
655 * situations where the caller can't schedule().
656 *
657 * This routine should not be called by a driver after its disconnect
658 * method has returned.
659 */
usb_kill_urb(struct urb * urb)660 void usb_kill_urb(struct urb *urb)
661 {
662 might_sleep();
663 if (!(urb && urb->dev && urb->ep))
664 return;
665 atomic_inc(&urb->reject);
666
667 usb_hcd_unlink_urb(urb, -ENOENT);
668 wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
669
670 atomic_dec(&urb->reject);
671 }
672 EXPORT_SYMBOL_GPL(usb_kill_urb);
673
674 /**
675 * usb_poison_urb - reliably kill a transfer and prevent further use of an URB
676 * @urb: pointer to URB describing a previously submitted request,
677 * may be NULL
678 *
679 * This routine cancels an in-progress request. It is guaranteed that
680 * upon return all completion handlers will have finished and the URB
681 * will be totally idle and cannot be reused. These features make
682 * this an ideal way to stop I/O in a disconnect() callback.
683 * If the request has not already finished or been unlinked
684 * the completion handler will see urb->status == -ENOENT.
685 *
686 * After and while the routine runs, attempts to resubmit the URB will fail
687 * with error -EPERM. Thus even if the URB's completion handler always
688 * tries to resubmit, it will not succeed and the URB will become idle.
689 *
690 * The URB must not be deallocated while this routine is running. In
691 * particular, when a driver calls this routine, it must insure that the
692 * completion handler cannot deallocate the URB.
693 *
694 * This routine may not be used in an interrupt context (such as a bottom
695 * half or a completion handler), or when holding a spinlock, or in other
696 * situations where the caller can't schedule().
697 *
698 * This routine should not be called by a driver after its disconnect
699 * method has returned.
700 */
usb_poison_urb(struct urb * urb)701 void usb_poison_urb(struct urb *urb)
702 {
703 might_sleep();
704 if (!urb)
705 return;
706 atomic_inc(&urb->reject);
707
708 if (!urb->dev || !urb->ep)
709 return;
710
711 usb_hcd_unlink_urb(urb, -ENOENT);
712 wait_event(usb_kill_urb_queue, atomic_read(&urb->use_count) == 0);
713 }
714 EXPORT_SYMBOL_GPL(usb_poison_urb);
715
usb_unpoison_urb(struct urb * urb)716 void usb_unpoison_urb(struct urb *urb)
717 {
718 if (!urb)
719 return;
720
721 atomic_dec(&urb->reject);
722 }
723 EXPORT_SYMBOL_GPL(usb_unpoison_urb);
724
725 /**
726 * usb_block_urb - reliably prevent further use of an URB
727 * @urb: pointer to URB to be blocked, may be NULL
728 *
729 * After the routine has run, attempts to resubmit the URB will fail
730 * with error -EPERM. Thus even if the URB's completion handler always
731 * tries to resubmit, it will not succeed and the URB will become idle.
732 *
733 * The URB must not be deallocated while this routine is running. In
734 * particular, when a driver calls this routine, it must insure that the
735 * completion handler cannot deallocate the URB.
736 */
usb_block_urb(struct urb * urb)737 void usb_block_urb(struct urb *urb)
738 {
739 if (!urb)
740 return;
741
742 atomic_inc(&urb->reject);
743 }
744 EXPORT_SYMBOL_GPL(usb_block_urb);
745
746 /**
747 * usb_kill_anchored_urbs - cancel transfer requests en masse
748 * @anchor: anchor the requests are bound to
749 *
750 * this allows all outstanding URBs to be killed starting
751 * from the back of the queue
752 *
753 * This routine should not be called by a driver after its disconnect
754 * method has returned.
755 */
usb_kill_anchored_urbs(struct usb_anchor * anchor)756 void usb_kill_anchored_urbs(struct usb_anchor *anchor)
757 {
758 struct urb *victim;
759
760 spin_lock_irq(&anchor->lock);
761 while (!list_empty(&anchor->urb_list)) {
762 victim = list_entry(anchor->urb_list.prev, struct urb,
763 anchor_list);
764 /* we must make sure the URB isn't freed before we kill it*/
765 usb_get_urb(victim);
766 spin_unlock_irq(&anchor->lock);
767 /* this will unanchor the URB */
768 usb_kill_urb(victim);
769 usb_put_urb(victim);
770 spin_lock_irq(&anchor->lock);
771 }
772 spin_unlock_irq(&anchor->lock);
773 }
774 EXPORT_SYMBOL_GPL(usb_kill_anchored_urbs);
775
776
777 /**
778 * usb_poison_anchored_urbs - cease all traffic from an anchor
779 * @anchor: anchor the requests are bound to
780 *
781 * this allows all outstanding URBs to be poisoned starting
782 * from the back of the queue. Newly added URBs will also be
783 * poisoned
784 *
785 * This routine should not be called by a driver after its disconnect
786 * method has returned.
787 */
usb_poison_anchored_urbs(struct usb_anchor * anchor)788 void usb_poison_anchored_urbs(struct usb_anchor *anchor)
789 {
790 struct urb *victim;
791
792 spin_lock_irq(&anchor->lock);
793 anchor->poisoned = 1;
794 while (!list_empty(&anchor->urb_list)) {
795 victim = list_entry(anchor->urb_list.prev, struct urb,
796 anchor_list);
797 /* we must make sure the URB isn't freed before we kill it*/
798 usb_get_urb(victim);
799 spin_unlock_irq(&anchor->lock);
800 /* this will unanchor the URB */
801 usb_poison_urb(victim);
802 usb_put_urb(victim);
803 spin_lock_irq(&anchor->lock);
804 }
805 spin_unlock_irq(&anchor->lock);
806 }
807 EXPORT_SYMBOL_GPL(usb_poison_anchored_urbs);
808
809 /**
810 * usb_unpoison_anchored_urbs - let an anchor be used successfully again
811 * @anchor: anchor the requests are bound to
812 *
813 * Reverses the effect of usb_poison_anchored_urbs
814 * the anchor can be used normally after it returns
815 */
usb_unpoison_anchored_urbs(struct usb_anchor * anchor)816 void usb_unpoison_anchored_urbs(struct usb_anchor *anchor)
817 {
818 unsigned long flags;
819 struct urb *lazarus;
820
821 spin_lock_irqsave(&anchor->lock, flags);
822 list_for_each_entry(lazarus, &anchor->urb_list, anchor_list) {
823 usb_unpoison_urb(lazarus);
824 }
825 anchor->poisoned = 0;
826 spin_unlock_irqrestore(&anchor->lock, flags);
827 }
828 EXPORT_SYMBOL_GPL(usb_unpoison_anchored_urbs);
829 /**
830 * usb_unlink_anchored_urbs - asynchronously cancel transfer requests en masse
831 * @anchor: anchor the requests are bound to
832 *
833 * this allows all outstanding URBs to be unlinked starting
834 * from the back of the queue. This function is asynchronous.
835 * The unlinking is just triggered. It may happen after this
836 * function has returned.
837 *
838 * This routine should not be called by a driver after its disconnect
839 * method has returned.
840 */
usb_unlink_anchored_urbs(struct usb_anchor * anchor)841 void usb_unlink_anchored_urbs(struct usb_anchor *anchor)
842 {
843 struct urb *victim;
844
845 while ((victim = usb_get_from_anchor(anchor)) != NULL) {
846 usb_unlink_urb(victim);
847 usb_put_urb(victim);
848 }
849 }
850 EXPORT_SYMBOL_GPL(usb_unlink_anchored_urbs);
851
852 /**
853 * usb_anchor_suspend_wakeups
854 * @anchor: the anchor you want to suspend wakeups on
855 *
856 * Call this to stop the last urb being unanchored from waking up any
857 * usb_wait_anchor_empty_timeout waiters. This is used in the hcd urb give-
858 * back path to delay waking up until after the completion handler has run.
859 */
usb_anchor_suspend_wakeups(struct usb_anchor * anchor)860 void usb_anchor_suspend_wakeups(struct usb_anchor *anchor)
861 {
862 if (anchor)
863 atomic_inc(&anchor->suspend_wakeups);
864 }
865 EXPORT_SYMBOL_GPL(usb_anchor_suspend_wakeups);
866
867 /**
868 * usb_anchor_resume_wakeups
869 * @anchor: the anchor you want to resume wakeups on
870 *
871 * Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and
872 * wake up any current waiters if the anchor is empty.
873 */
usb_anchor_resume_wakeups(struct usb_anchor * anchor)874 void usb_anchor_resume_wakeups(struct usb_anchor *anchor)
875 {
876 if (!anchor)
877 return;
878
879 atomic_dec(&anchor->suspend_wakeups);
880 if (usb_anchor_check_wakeup(anchor))
881 wake_up(&anchor->wait);
882 }
883 EXPORT_SYMBOL_GPL(usb_anchor_resume_wakeups);
884
885 /**
886 * usb_wait_anchor_empty_timeout - wait for an anchor to be unused
887 * @anchor: the anchor you want to become unused
888 * @timeout: how long you are willing to wait in milliseconds
889 *
890 * Call this is you want to be sure all an anchor's
891 * URBs have finished
892 *
893 * Return: Non-zero if the anchor became unused. Zero on timeout.
894 */
usb_wait_anchor_empty_timeout(struct usb_anchor * anchor,unsigned int timeout)895 int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
896 unsigned int timeout)
897 {
898 return wait_event_timeout(anchor->wait,
899 usb_anchor_check_wakeup(anchor),
900 msecs_to_jiffies(timeout));
901 }
902 EXPORT_SYMBOL_GPL(usb_wait_anchor_empty_timeout);
903
904 /**
905 * usb_get_from_anchor - get an anchor's oldest urb
906 * @anchor: the anchor whose urb you want
907 *
908 * This will take the oldest urb from an anchor,
909 * unanchor and return it
910 *
911 * Return: The oldest urb from @anchor, or %NULL if @anchor has no
912 * urbs associated with it.
913 */
usb_get_from_anchor(struct usb_anchor * anchor)914 struct urb *usb_get_from_anchor(struct usb_anchor *anchor)
915 {
916 struct urb *victim;
917 unsigned long flags;
918
919 spin_lock_irqsave(&anchor->lock, flags);
920 if (!list_empty(&anchor->urb_list)) {
921 victim = list_entry(anchor->urb_list.next, struct urb,
922 anchor_list);
923 usb_get_urb(victim);
924 __usb_unanchor_urb(victim, anchor);
925 } else {
926 victim = NULL;
927 }
928 spin_unlock_irqrestore(&anchor->lock, flags);
929
930 return victim;
931 }
932
933 EXPORT_SYMBOL_GPL(usb_get_from_anchor);
934
935 /**
936 * usb_scuttle_anchored_urbs - unanchor all an anchor's urbs
937 * @anchor: the anchor whose urbs you want to unanchor
938 *
939 * use this to get rid of all an anchor's urbs
940 */
usb_scuttle_anchored_urbs(struct usb_anchor * anchor)941 void usb_scuttle_anchored_urbs(struct usb_anchor *anchor)
942 {
943 struct urb *victim;
944 unsigned long flags;
945
946 spin_lock_irqsave(&anchor->lock, flags);
947 while (!list_empty(&anchor->urb_list)) {
948 victim = list_entry(anchor->urb_list.prev, struct urb,
949 anchor_list);
950 __usb_unanchor_urb(victim, anchor);
951 }
952 spin_unlock_irqrestore(&anchor->lock, flags);
953 }
954
955 EXPORT_SYMBOL_GPL(usb_scuttle_anchored_urbs);
956
957 /**
958 * usb_anchor_empty - is an anchor empty
959 * @anchor: the anchor you want to query
960 *
961 * Return: 1 if the anchor has no urbs associated with it.
962 */
usb_anchor_empty(struct usb_anchor * anchor)963 int usb_anchor_empty(struct usb_anchor *anchor)
964 {
965 return list_empty(&anchor->urb_list);
966 }
967
968 EXPORT_SYMBOL_GPL(usb_anchor_empty);
969
970