• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/page-debug-flags.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 
63 #include <asm/sections.h>
64 #include <asm/tlbflush.h>
65 #include <asm/div64.h>
66 #include "internal.h"
67 
68 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
69 static DEFINE_MUTEX(pcp_batch_high_lock);
70 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
71 
72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73 DEFINE_PER_CPU(int, numa_node);
74 EXPORT_PER_CPU_SYMBOL(numa_node);
75 #endif
76 
77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
78 /*
79  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82  * defined in <linux/topology.h>.
83  */
84 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
85 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
86 int _node_numa_mem_[MAX_NUMNODES];
87 #endif
88 
89 /*
90  * Array of node states.
91  */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 	[N_POSSIBLE] = NODE_MASK_ALL,
94 	[N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 	[N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 	[N_CPU] = { { [0] = 1UL } },
104 #endif	/* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107 
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110 
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 unsigned long totalcma_pages __read_mostly;
114 /*
115  * When calculating the number of globally allowed dirty pages, there
116  * is a certain number of per-zone reserves that should not be
117  * considered dirtyable memory.  This is the sum of those reserves
118  * over all existing zones that contribute dirtyable memory.
119  */
120 unsigned long dirty_balance_reserve __read_mostly;
121 
122 int percpu_pagelist_fraction;
123 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
124 
125 #ifdef CONFIG_PM_SLEEP
126 /*
127  * The following functions are used by the suspend/hibernate code to temporarily
128  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
129  * while devices are suspended.  To avoid races with the suspend/hibernate code,
130  * they should always be called with pm_mutex held (gfp_allowed_mask also should
131  * only be modified with pm_mutex held, unless the suspend/hibernate code is
132  * guaranteed not to run in parallel with that modification).
133  */
134 
135 static gfp_t saved_gfp_mask;
136 
pm_restore_gfp_mask(void)137 void pm_restore_gfp_mask(void)
138 {
139 	WARN_ON(!mutex_is_locked(&pm_mutex));
140 	if (saved_gfp_mask) {
141 		gfp_allowed_mask = saved_gfp_mask;
142 		saved_gfp_mask = 0;
143 	}
144 }
145 
pm_restrict_gfp_mask(void)146 void pm_restrict_gfp_mask(void)
147 {
148 	WARN_ON(!mutex_is_locked(&pm_mutex));
149 	WARN_ON(saved_gfp_mask);
150 	saved_gfp_mask = gfp_allowed_mask;
151 	gfp_allowed_mask &= ~GFP_IOFS;
152 }
153 
pm_suspended_storage(void)154 bool pm_suspended_storage(void)
155 {
156 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
157 		return false;
158 	return true;
159 }
160 #endif /* CONFIG_PM_SLEEP */
161 
162 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
163 unsigned int pageblock_order __read_mostly;
164 #endif
165 
166 static void __free_pages_ok(struct page *page, unsigned int order);
167 
168 /*
169  * results with 256, 32 in the lowmem_reserve sysctl:
170  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
171  *	1G machine -> (16M dma, 784M normal, 224M high)
172  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
173  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
174  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
175  *
176  * TBD: should special case ZONE_DMA32 machines here - in those we normally
177  * don't need any ZONE_NORMAL reservation
178  */
179 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
180 #ifdef CONFIG_ZONE_DMA
181 	 256,
182 #endif
183 #ifdef CONFIG_ZONE_DMA32
184 	 256,
185 #endif
186 #ifdef CONFIG_HIGHMEM
187 	 32,
188 #endif
189 	 32,
190 };
191 
192 EXPORT_SYMBOL(totalram_pages);
193 
194 static char * const zone_names[MAX_NR_ZONES] = {
195 #ifdef CONFIG_ZONE_DMA
196 	 "DMA",
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 	 "DMA32",
200 #endif
201 	 "Normal",
202 #ifdef CONFIG_HIGHMEM
203 	 "HighMem",
204 #endif
205 	 "Movable",
206 };
207 
208 /*
209  * Try to keep at least this much lowmem free.  Do not allow normal
210  * allocations below this point, only high priority ones. Automatically
211  * tuned according to the amount of memory in the system.
212  */
213 int min_free_kbytes = 1024;
214 int user_min_free_kbytes = -1;
215 int min_free_order_shift = 1;
216 
217 /*
218  * Extra memory for the system to try freeing. Used to temporarily
219  * free memory, to make space for new workloads. Anyone can allocate
220  * down to the min watermarks controlled by min_free_kbytes above.
221  */
222 int extra_free_kbytes = 0;
223 
224 static unsigned long __meminitdata nr_kernel_pages;
225 static unsigned long __meminitdata nr_all_pages;
226 static unsigned long __meminitdata dma_reserve;
227 
228 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
229 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
230 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
231 static unsigned long __initdata required_kernelcore;
232 static unsigned long __initdata required_movablecore;
233 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
234 
235 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
236 int movable_zone;
237 EXPORT_SYMBOL(movable_zone);
238 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
239 
240 #if MAX_NUMNODES > 1
241 int nr_node_ids __read_mostly = MAX_NUMNODES;
242 int nr_online_nodes __read_mostly = 1;
243 EXPORT_SYMBOL(nr_node_ids);
244 EXPORT_SYMBOL(nr_online_nodes);
245 #endif
246 
247 int page_group_by_mobility_disabled __read_mostly;
248 
set_pageblock_migratetype(struct page * page,int migratetype)249 void set_pageblock_migratetype(struct page *page, int migratetype)
250 {
251 	if (unlikely(page_group_by_mobility_disabled &&
252 		     migratetype < MIGRATE_PCPTYPES))
253 		migratetype = MIGRATE_UNMOVABLE;
254 
255 	set_pageblock_flags_group(page, (unsigned long)migratetype,
256 					PB_migrate, PB_migrate_end);
257 }
258 
259 bool oom_killer_disabled __read_mostly;
260 
261 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)262 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
263 {
264 	int ret = 0;
265 	unsigned seq;
266 	unsigned long pfn = page_to_pfn(page);
267 	unsigned long sp, start_pfn;
268 
269 	do {
270 		seq = zone_span_seqbegin(zone);
271 		start_pfn = zone->zone_start_pfn;
272 		sp = zone->spanned_pages;
273 		if (!zone_spans_pfn(zone, pfn))
274 			ret = 1;
275 	} while (zone_span_seqretry(zone, seq));
276 
277 	if (ret)
278 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
279 			pfn, zone_to_nid(zone), zone->name,
280 			start_pfn, start_pfn + sp);
281 
282 	return ret;
283 }
284 
page_is_consistent(struct zone * zone,struct page * page)285 static int page_is_consistent(struct zone *zone, struct page *page)
286 {
287 	if (!pfn_valid_within(page_to_pfn(page)))
288 		return 0;
289 	if (zone != page_zone(page))
290 		return 0;
291 
292 	return 1;
293 }
294 /*
295  * Temporary debugging check for pages not lying within a given zone.
296  */
bad_range(struct zone * zone,struct page * page)297 static int bad_range(struct zone *zone, struct page *page)
298 {
299 	if (page_outside_zone_boundaries(zone, page))
300 		return 1;
301 	if (!page_is_consistent(zone, page))
302 		return 1;
303 
304 	return 0;
305 }
306 #else
bad_range(struct zone * zone,struct page * page)307 static inline int bad_range(struct zone *zone, struct page *page)
308 {
309 	return 0;
310 }
311 #endif
312 
bad_page(struct page * page,const char * reason,unsigned long bad_flags)313 static void bad_page(struct page *page, const char *reason,
314 		unsigned long bad_flags)
315 {
316 	static unsigned long resume;
317 	static unsigned long nr_shown;
318 	static unsigned long nr_unshown;
319 
320 	/* Don't complain about poisoned pages */
321 	if (PageHWPoison(page)) {
322 		page_mapcount_reset(page); /* remove PageBuddy */
323 		return;
324 	}
325 
326 	/*
327 	 * Allow a burst of 60 reports, then keep quiet for that minute;
328 	 * or allow a steady drip of one report per second.
329 	 */
330 	if (nr_shown == 60) {
331 		if (time_before(jiffies, resume)) {
332 			nr_unshown++;
333 			goto out;
334 		}
335 		if (nr_unshown) {
336 			printk(KERN_ALERT
337 			      "BUG: Bad page state: %lu messages suppressed\n",
338 				nr_unshown);
339 			nr_unshown = 0;
340 		}
341 		nr_shown = 0;
342 	}
343 	if (nr_shown++ == 0)
344 		resume = jiffies + 60 * HZ;
345 
346 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
347 		current->comm, page_to_pfn(page));
348 	dump_page_badflags(page, reason, bad_flags);
349 
350 	print_modules();
351 	dump_stack();
352 out:
353 	/* Leave bad fields for debug, except PageBuddy could make trouble */
354 	page_mapcount_reset(page); /* remove PageBuddy */
355 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
356 }
357 
358 /*
359  * Higher-order pages are called "compound pages".  They are structured thusly:
360  *
361  * The first PAGE_SIZE page is called the "head page".
362  *
363  * The remaining PAGE_SIZE pages are called "tail pages".
364  *
365  * All pages have PG_compound set.  All tail pages have their ->first_page
366  * pointing at the head page.
367  *
368  * The first tail page's ->lru.next holds the address of the compound page's
369  * put_page() function.  Its ->lru.prev holds the order of allocation.
370  * This usage means that zero-order pages may not be compound.
371  */
372 
free_compound_page(struct page * page)373 static void free_compound_page(struct page *page)
374 {
375 	__free_pages_ok(page, compound_order(page));
376 }
377 
prep_compound_page(struct page * page,unsigned int order)378 void prep_compound_page(struct page *page, unsigned int order)
379 {
380 	int i;
381 	int nr_pages = 1 << order;
382 
383 	set_compound_page_dtor(page, free_compound_page);
384 	set_compound_order(page, order);
385 	__SetPageHead(page);
386 	for (i = 1; i < nr_pages; i++) {
387 		struct page *p = page + i;
388 		set_page_count(p, 0);
389 		p->first_page = page;
390 		/* Make sure p->first_page is always valid for PageTail() */
391 		smp_wmb();
392 		__SetPageTail(p);
393 	}
394 }
395 
396 /* update __split_huge_page_refcount if you change this function */
destroy_compound_page(struct page * page,unsigned long order)397 static int destroy_compound_page(struct page *page, unsigned long order)
398 {
399 	int i;
400 	int nr_pages = 1 << order;
401 	int bad = 0;
402 
403 	if (unlikely(compound_order(page) != order)) {
404 		bad_page(page, "wrong compound order", 0);
405 		bad++;
406 	}
407 
408 	__ClearPageHead(page);
409 
410 	for (i = 1; i < nr_pages; i++) {
411 		struct page *p = page + i;
412 
413 		if (unlikely(!PageTail(p))) {
414 			bad_page(page, "PageTail not set", 0);
415 			bad++;
416 		} else if (unlikely(p->first_page != page)) {
417 			bad_page(page, "first_page not consistent", 0);
418 			bad++;
419 		}
420 		__ClearPageTail(p);
421 	}
422 
423 	return bad;
424 }
425 
prep_zero_page(struct page * page,unsigned int order,gfp_t gfp_flags)426 static inline void prep_zero_page(struct page *page, unsigned int order,
427 							gfp_t gfp_flags)
428 {
429 	int i;
430 
431 	/*
432 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
433 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
434 	 */
435 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
436 	for (i = 0; i < (1 << order); i++)
437 		clear_highpage(page + i);
438 }
439 
440 #ifdef CONFIG_DEBUG_PAGEALLOC
441 unsigned int _debug_guardpage_minorder;
442 
debug_guardpage_minorder_setup(char * buf)443 static int __init debug_guardpage_minorder_setup(char *buf)
444 {
445 	unsigned long res;
446 
447 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
448 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
449 		return 0;
450 	}
451 	_debug_guardpage_minorder = res;
452 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
453 	return 0;
454 }
455 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
456 
set_page_guard_flag(struct page * page)457 static inline void set_page_guard_flag(struct page *page)
458 {
459 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
460 }
461 
clear_page_guard_flag(struct page * page)462 static inline void clear_page_guard_flag(struct page *page)
463 {
464 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
465 }
466 #else
set_page_guard_flag(struct page * page)467 static inline void set_page_guard_flag(struct page *page) { }
clear_page_guard_flag(struct page * page)468 static inline void clear_page_guard_flag(struct page *page) { }
469 #endif
470 
set_page_order(struct page * page,unsigned int order)471 static inline void set_page_order(struct page *page, unsigned int order)
472 {
473 	set_page_private(page, order);
474 	__SetPageBuddy(page);
475 }
476 
rmv_page_order(struct page * page)477 static inline void rmv_page_order(struct page *page)
478 {
479 	__ClearPageBuddy(page);
480 	set_page_private(page, 0);
481 }
482 
483 /*
484  * This function checks whether a page is free && is the buddy
485  * we can do coalesce a page and its buddy if
486  * (a) the buddy is not in a hole &&
487  * (b) the buddy is in the buddy system &&
488  * (c) a page and its buddy have the same order &&
489  * (d) a page and its buddy are in the same zone.
490  *
491  * For recording whether a page is in the buddy system, we set ->_mapcount
492  * PAGE_BUDDY_MAPCOUNT_VALUE.
493  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
494  * serialized by zone->lock.
495  *
496  * For recording page's order, we use page_private(page).
497  */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)498 static inline int page_is_buddy(struct page *page, struct page *buddy,
499 							unsigned int order)
500 {
501 	if (!pfn_valid_within(page_to_pfn(buddy)))
502 		return 0;
503 
504 	if (page_is_guard(buddy) && page_order(buddy) == order) {
505 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
506 
507 		if (page_zone_id(page) != page_zone_id(buddy))
508 			return 0;
509 
510 		return 1;
511 	}
512 
513 	if (PageBuddy(buddy) && page_order(buddy) == order) {
514 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
515 
516 		/*
517 		 * zone check is done late to avoid uselessly
518 		 * calculating zone/node ids for pages that could
519 		 * never merge.
520 		 */
521 		if (page_zone_id(page) != page_zone_id(buddy))
522 			return 0;
523 
524 		return 1;
525 	}
526 	return 0;
527 }
528 
529 /*
530  * Freeing function for a buddy system allocator.
531  *
532  * The concept of a buddy system is to maintain direct-mapped table
533  * (containing bit values) for memory blocks of various "orders".
534  * The bottom level table contains the map for the smallest allocatable
535  * units of memory (here, pages), and each level above it describes
536  * pairs of units from the levels below, hence, "buddies".
537  * At a high level, all that happens here is marking the table entry
538  * at the bottom level available, and propagating the changes upward
539  * as necessary, plus some accounting needed to play nicely with other
540  * parts of the VM system.
541  * At each level, we keep a list of pages, which are heads of continuous
542  * free pages of length of (1 << order) and marked with _mapcount
543  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
544  * field.
545  * So when we are allocating or freeing one, we can derive the state of the
546  * other.  That is, if we allocate a small block, and both were
547  * free, the remainder of the region must be split into blocks.
548  * If a block is freed, and its buddy is also free, then this
549  * triggers coalescing into a block of larger size.
550  *
551  * -- nyc
552  */
553 
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype)554 static inline void __free_one_page(struct page *page,
555 		unsigned long pfn,
556 		struct zone *zone, unsigned int order,
557 		int migratetype)
558 {
559 	unsigned long page_idx;
560 	unsigned long combined_idx;
561 	unsigned long uninitialized_var(buddy_idx);
562 	struct page *buddy;
563 	unsigned int max_order;
564 
565 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
566 
567 	VM_BUG_ON(!zone_is_initialized(zone));
568 
569 	if (unlikely(PageCompound(page)))
570 		if (unlikely(destroy_compound_page(page, order)))
571 			return;
572 
573 	VM_BUG_ON(migratetype == -1);
574 	if (likely(!is_migrate_isolate(migratetype)))
575 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
576 
577 	page_idx = pfn & ((1 << MAX_ORDER) - 1);
578 
579 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
580 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
581 
582 continue_merging:
583 	while (order < max_order - 1) {
584 		buddy_idx = __find_buddy_index(page_idx, order);
585 		buddy = page + (buddy_idx - page_idx);
586 		if (!page_is_buddy(page, buddy, order))
587 			goto done_merging;
588 		/*
589 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
590 		 * merge with it and move up one order.
591 		 */
592 		if (page_is_guard(buddy)) {
593 			clear_page_guard_flag(buddy);
594 			set_page_private(buddy, 0);
595 			if (!is_migrate_isolate(migratetype)) {
596 				__mod_zone_freepage_state(zone, 1 << order,
597 							  migratetype);
598 			}
599 		} else {
600 			list_del(&buddy->lru);
601 			zone->free_area[order].nr_free--;
602 			rmv_page_order(buddy);
603 		}
604 		combined_idx = buddy_idx & page_idx;
605 		page = page + (combined_idx - page_idx);
606 		page_idx = combined_idx;
607 		order++;
608 	}
609 	if (max_order < MAX_ORDER) {
610 		/* If we are here, it means order is >= pageblock_order.
611 		 * We want to prevent merge between freepages on isolate
612 		 * pageblock and normal pageblock. Without this, pageblock
613 		 * isolation could cause incorrect freepage or CMA accounting.
614 		 *
615 		 * We don't want to hit this code for the more frequent
616 		 * low-order merging.
617 		 */
618 		if (unlikely(has_isolate_pageblock(zone))) {
619 			int buddy_mt;
620 
621 			buddy_idx = __find_buddy_index(page_idx, order);
622 			buddy = page + (buddy_idx - page_idx);
623 			buddy_mt = get_pageblock_migratetype(buddy);
624 
625 			if (migratetype != buddy_mt
626 					&& (is_migrate_isolate(migratetype) ||
627 						is_migrate_isolate(buddy_mt)))
628 				goto done_merging;
629 		}
630 		max_order++;
631 		goto continue_merging;
632 	}
633 
634 done_merging:
635 	set_page_order(page, order);
636 
637 	/*
638 	 * If this is not the largest possible page, check if the buddy
639 	 * of the next-highest order is free. If it is, it's possible
640 	 * that pages are being freed that will coalesce soon. In case,
641 	 * that is happening, add the free page to the tail of the list
642 	 * so it's less likely to be used soon and more likely to be merged
643 	 * as a higher order page
644 	 */
645 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
646 		struct page *higher_page, *higher_buddy;
647 		combined_idx = buddy_idx & page_idx;
648 		higher_page = page + (combined_idx - page_idx);
649 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
650 		higher_buddy = higher_page + (buddy_idx - combined_idx);
651 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
652 			list_add_tail(&page->lru,
653 				&zone->free_area[order].free_list[migratetype]);
654 			goto out;
655 		}
656 	}
657 
658 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
659 out:
660 	zone->free_area[order].nr_free++;
661 }
662 
free_pages_check(struct page * page)663 static inline int free_pages_check(struct page *page)
664 {
665 	const char *bad_reason = NULL;
666 	unsigned long bad_flags = 0;
667 
668 	if (unlikely(page_mapcount(page)))
669 		bad_reason = "nonzero mapcount";
670 	if (unlikely(page->mapping != NULL))
671 		bad_reason = "non-NULL mapping";
672 	if (unlikely(atomic_read(&page->_count) != 0))
673 		bad_reason = "nonzero _count";
674 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
675 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
676 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
677 	}
678 	if (unlikely(mem_cgroup_bad_page_check(page)))
679 		bad_reason = "cgroup check failed";
680 	if (unlikely(bad_reason)) {
681 		bad_page(page, bad_reason, bad_flags);
682 		return 1;
683 	}
684 	page_cpupid_reset_last(page);
685 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
686 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
687 	return 0;
688 }
689 
690 /*
691  * Frees a number of pages from the PCP lists
692  * Assumes all pages on list are in same zone, and of same order.
693  * count is the number of pages to free.
694  *
695  * If the zone was previously in an "all pages pinned" state then look to
696  * see if this freeing clears that state.
697  *
698  * And clear the zone's pages_scanned counter, to hold off the "all pages are
699  * pinned" detection logic.
700  */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)701 static void free_pcppages_bulk(struct zone *zone, int count,
702 					struct per_cpu_pages *pcp)
703 {
704 	int migratetype = 0;
705 	int batch_free = 0;
706 	int to_free = count;
707 	unsigned long nr_scanned;
708 
709 	spin_lock(&zone->lock);
710 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
711 	if (nr_scanned)
712 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
713 
714 	while (to_free) {
715 		struct page *page;
716 		struct list_head *list;
717 
718 		/*
719 		 * Remove pages from lists in a round-robin fashion. A
720 		 * batch_free count is maintained that is incremented when an
721 		 * empty list is encountered.  This is so more pages are freed
722 		 * off fuller lists instead of spinning excessively around empty
723 		 * lists
724 		 */
725 		do {
726 			batch_free++;
727 			if (++migratetype == MIGRATE_PCPTYPES)
728 				migratetype = 0;
729 			list = &pcp->lists[migratetype];
730 		} while (list_empty(list));
731 
732 		/* This is the only non-empty list. Free them all. */
733 		if (batch_free == MIGRATE_PCPTYPES)
734 			batch_free = to_free;
735 
736 		do {
737 			int mt;	/* migratetype of the to-be-freed page */
738 
739 			page = list_entry(list->prev, struct page, lru);
740 			/* must delete as __free_one_page list manipulates */
741 			list_del(&page->lru);
742 			mt = get_freepage_migratetype(page);
743 			if (unlikely(has_isolate_pageblock(zone)))
744 				mt = get_pageblock_migratetype(page);
745 
746 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
747 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
748 			trace_mm_page_pcpu_drain(page, 0, mt);
749 		} while (--to_free && --batch_free && !list_empty(list));
750 	}
751 	spin_unlock(&zone->lock);
752 }
753 
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype)754 static void free_one_page(struct zone *zone,
755 				struct page *page, unsigned long pfn,
756 				unsigned int order,
757 				int migratetype)
758 {
759 	unsigned long nr_scanned;
760 	spin_lock(&zone->lock);
761 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
762 	if (nr_scanned)
763 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
764 
765 	if (unlikely(has_isolate_pageblock(zone) ||
766 		is_migrate_isolate(migratetype))) {
767 		migratetype = get_pfnblock_migratetype(page, pfn);
768 	}
769 	__free_one_page(page, pfn, zone, order, migratetype);
770 	spin_unlock(&zone->lock);
771 }
772 
free_pages_prepare(struct page * page,unsigned int order)773 static bool free_pages_prepare(struct page *page, unsigned int order)
774 {
775 	int i;
776 	int bad = 0;
777 
778 	trace_mm_page_free(page, order);
779 	kmemcheck_free_shadow(page, order);
780 
781 	if (PageAnon(page))
782 		page->mapping = NULL;
783 	for (i = 0; i < (1 << order); i++)
784 		bad += free_pages_check(page + i);
785 	if (bad)
786 		return false;
787 
788 	if (!PageHighMem(page)) {
789 		debug_check_no_locks_freed(page_address(page),
790 					   PAGE_SIZE << order);
791 		debug_check_no_obj_freed(page_address(page),
792 					   PAGE_SIZE << order);
793 	}
794 	arch_free_page(page, order);
795 	kernel_map_pages(page, 1 << order, 0);
796 
797 	return true;
798 }
799 
__free_pages_ok(struct page * page,unsigned int order)800 static void __free_pages_ok(struct page *page, unsigned int order)
801 {
802 	unsigned long flags;
803 	int migratetype;
804 	unsigned long pfn = page_to_pfn(page);
805 
806 	if (!free_pages_prepare(page, order))
807 		return;
808 
809 	migratetype = get_pfnblock_migratetype(page, pfn);
810 	local_irq_save(flags);
811 	__count_vm_events(PGFREE, 1 << order);
812 	set_freepage_migratetype(page, migratetype);
813 	free_one_page(page_zone(page), page, pfn, order, migratetype);
814 	local_irq_restore(flags);
815 }
816 
__free_pages_bootmem(struct page * page,unsigned long pfn,unsigned int order)817 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
818 							unsigned int order)
819 {
820 	unsigned int nr_pages = 1 << order;
821 	struct page *p = page;
822 	unsigned int loop;
823 
824 	prefetchw(p);
825 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
826 		prefetchw(p + 1);
827 		__ClearPageReserved(p);
828 		set_page_count(p, 0);
829 	}
830 	__ClearPageReserved(p);
831 	set_page_count(p, 0);
832 
833 	page_zone(page)->managed_pages += nr_pages;
834 	set_page_refcounted(page);
835 	__free_pages(page, order);
836 }
837 
838 #ifdef CONFIG_CMA
839 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)840 void __init init_cma_reserved_pageblock(struct page *page)
841 {
842 	unsigned i = pageblock_nr_pages;
843 	struct page *p = page;
844 
845 	do {
846 		__ClearPageReserved(p);
847 		set_page_count(p, 0);
848 	} while (++p, --i);
849 
850 	set_pageblock_migratetype(page, MIGRATE_CMA);
851 
852 	if (pageblock_order >= MAX_ORDER) {
853 		i = pageblock_nr_pages;
854 		p = page;
855 		do {
856 			set_page_refcounted(p);
857 			__free_pages(p, MAX_ORDER - 1);
858 			p += MAX_ORDER_NR_PAGES;
859 		} while (i -= MAX_ORDER_NR_PAGES);
860 	} else {
861 		set_page_refcounted(page);
862 		__free_pages(page, pageblock_order);
863 	}
864 
865 	adjust_managed_page_count(page, pageblock_nr_pages);
866 }
867 #endif
868 
869 /*
870  * The order of subdivision here is critical for the IO subsystem.
871  * Please do not alter this order without good reasons and regression
872  * testing. Specifically, as large blocks of memory are subdivided,
873  * the order in which smaller blocks are delivered depends on the order
874  * they're subdivided in this function. This is the primary factor
875  * influencing the order in which pages are delivered to the IO
876  * subsystem according to empirical testing, and this is also justified
877  * by considering the behavior of a buddy system containing a single
878  * large block of memory acted on by a series of small allocations.
879  * This behavior is a critical factor in sglist merging's success.
880  *
881  * -- nyc
882  */
expand(struct zone * zone,struct page * page,int low,int high,struct free_area * area,int migratetype)883 static inline void expand(struct zone *zone, struct page *page,
884 	int low, int high, struct free_area *area,
885 	int migratetype)
886 {
887 	unsigned long size = 1 << high;
888 
889 	while (high > low) {
890 		area--;
891 		high--;
892 		size >>= 1;
893 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
894 
895 #ifdef CONFIG_DEBUG_PAGEALLOC
896 		if (high < debug_guardpage_minorder()) {
897 			/*
898 			 * Mark as guard pages (or page), that will allow to
899 			 * merge back to allocator when buddy will be freed.
900 			 * Corresponding page table entries will not be touched,
901 			 * pages will stay not present in virtual address space
902 			 */
903 			INIT_LIST_HEAD(&page[size].lru);
904 			set_page_guard_flag(&page[size]);
905 			set_page_private(&page[size], high);
906 			/* Guard pages are not available for any usage */
907 			__mod_zone_freepage_state(zone, -(1 << high),
908 						  migratetype);
909 			continue;
910 		}
911 #endif
912 		list_add(&page[size].lru, &area->free_list[migratetype]);
913 		area->nr_free++;
914 		set_page_order(&page[size], high);
915 	}
916 }
917 
918 /*
919  * This page is about to be returned from the page allocator
920  */
check_new_page(struct page * page)921 static inline int check_new_page(struct page *page)
922 {
923 	const char *bad_reason = NULL;
924 	unsigned long bad_flags = 0;
925 
926 	if (unlikely(page_mapcount(page)))
927 		bad_reason = "nonzero mapcount";
928 	if (unlikely(page->mapping != NULL))
929 		bad_reason = "non-NULL mapping";
930 	if (unlikely(atomic_read(&page->_count) != 0))
931 		bad_reason = "nonzero _count";
932 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
933 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
934 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
935 	}
936 	if (unlikely(mem_cgroup_bad_page_check(page)))
937 		bad_reason = "cgroup check failed";
938 	if (unlikely(bad_reason)) {
939 		bad_page(page, bad_reason, bad_flags);
940 		return 1;
941 	}
942 	return 0;
943 }
944 
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags)945 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
946 {
947 	int i;
948 
949 	for (i = 0; i < (1 << order); i++) {
950 		struct page *p = page + i;
951 		if (unlikely(check_new_page(p)))
952 			return 1;
953 	}
954 
955 	set_page_private(page, 0);
956 	set_page_refcounted(page);
957 
958 	arch_alloc_page(page, order);
959 	kernel_map_pages(page, 1 << order, 1);
960 
961 	if (gfp_flags & __GFP_ZERO)
962 		prep_zero_page(page, order, gfp_flags);
963 
964 	if (order && (gfp_flags & __GFP_COMP))
965 		prep_compound_page(page, order);
966 
967 	return 0;
968 }
969 
970 /*
971  * Go through the free lists for the given migratetype and remove
972  * the smallest available page from the freelists
973  */
974 static inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)975 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
976 						int migratetype)
977 {
978 	unsigned int current_order;
979 	struct free_area *area;
980 	struct page *page;
981 
982 	/* Find a page of the appropriate size in the preferred list */
983 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
984 		area = &(zone->free_area[current_order]);
985 		if (list_empty(&area->free_list[migratetype]))
986 			continue;
987 
988 		page = list_entry(area->free_list[migratetype].next,
989 							struct page, lru);
990 		list_del(&page->lru);
991 		rmv_page_order(page);
992 		area->nr_free--;
993 		expand(zone, page, order, current_order, area, migratetype);
994 		set_freepage_migratetype(page, migratetype);
995 		return page;
996 	}
997 
998 	return NULL;
999 }
1000 
1001 
1002 /*
1003  * This array describes the order lists are fallen back to when
1004  * the free lists for the desirable migrate type are depleted
1005  */
1006 static int fallbacks[MIGRATE_TYPES][4] = {
1007 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1008 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1009 #ifdef CONFIG_CMA
1010 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1011 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
1012 #else
1013 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
1014 #endif
1015 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
1016 #ifdef CONFIG_MEMORY_ISOLATION
1017 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
1018 #endif
1019 };
1020 
1021 /*
1022  * Move the free pages in a range to the free lists of the requested type.
1023  * Note that start_page and end_pages are not aligned on a pageblock
1024  * boundary. If alignment is required, use move_freepages_block()
1025  */
move_freepages(struct zone * zone,struct page * start_page,struct page * end_page,int migratetype)1026 int move_freepages(struct zone *zone,
1027 			  struct page *start_page, struct page *end_page,
1028 			  int migratetype)
1029 {
1030 	struct page *page;
1031 	unsigned int order;
1032 	int pages_moved = 0;
1033 
1034 #ifndef CONFIG_HOLES_IN_ZONE
1035 	/*
1036 	 * page_zone is not safe to call in this context when
1037 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1038 	 * anyway as we check zone boundaries in move_freepages_block().
1039 	 * Remove at a later date when no bug reports exist related to
1040 	 * grouping pages by mobility
1041 	 */
1042 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1043 #endif
1044 
1045 	for (page = start_page; page <= end_page;) {
1046 		if (!pfn_valid_within(page_to_pfn(page))) {
1047 			page++;
1048 			continue;
1049 		}
1050 
1051 		/* Make sure we are not inadvertently changing nodes */
1052 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1053 
1054 		if (!PageBuddy(page)) {
1055 			page++;
1056 			continue;
1057 		}
1058 
1059 		order = page_order(page);
1060 		list_move(&page->lru,
1061 			  &zone->free_area[order].free_list[migratetype]);
1062 		set_freepage_migratetype(page, migratetype);
1063 		page += 1 << order;
1064 		pages_moved += 1 << order;
1065 	}
1066 
1067 	return pages_moved;
1068 }
1069 
move_freepages_block(struct zone * zone,struct page * page,int migratetype)1070 int move_freepages_block(struct zone *zone, struct page *page,
1071 				int migratetype)
1072 {
1073 	unsigned long start_pfn, end_pfn;
1074 	struct page *start_page, *end_page;
1075 
1076 	start_pfn = page_to_pfn(page);
1077 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1078 	start_page = pfn_to_page(start_pfn);
1079 	end_page = start_page + pageblock_nr_pages - 1;
1080 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1081 
1082 	/* Do not cross zone boundaries */
1083 	if (!zone_spans_pfn(zone, start_pfn))
1084 		start_page = page;
1085 	if (!zone_spans_pfn(zone, end_pfn))
1086 		return 0;
1087 
1088 	return move_freepages(zone, start_page, end_page, migratetype);
1089 }
1090 
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1091 static void change_pageblock_range(struct page *pageblock_page,
1092 					int start_order, int migratetype)
1093 {
1094 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1095 
1096 	while (nr_pageblocks--) {
1097 		set_pageblock_migratetype(pageblock_page, migratetype);
1098 		pageblock_page += pageblock_nr_pages;
1099 	}
1100 }
1101 
1102 /*
1103  * When we are falling back to another migratetype during allocation, try to
1104  * steal extra free pages from the same pageblocks to satisfy further
1105  * allocations, instead of polluting multiple pageblocks.
1106  *
1107  * If we are stealing a relatively large buddy page, it is likely there will
1108  * be more free pages in the pageblock, so try to steal them all. For
1109  * reclaimable and unmovable allocations, we steal regardless of page size,
1110  * as fragmentation caused by those allocations polluting movable pageblocks
1111  * is worse than movable allocations stealing from unmovable and reclaimable
1112  * pageblocks.
1113  *
1114  * If we claim more than half of the pageblock, change pageblock's migratetype
1115  * as well.
1116  */
try_to_steal_freepages(struct zone * zone,struct page * page,int start_type,int fallback_type)1117 static void try_to_steal_freepages(struct zone *zone, struct page *page,
1118 				  int start_type, int fallback_type)
1119 {
1120 	unsigned int current_order = page_order(page);
1121 
1122 	/* Take ownership for orders >= pageblock_order */
1123 	if (current_order >= pageblock_order) {
1124 		change_pageblock_range(page, current_order, start_type);
1125 		return;
1126 	}
1127 
1128 	if (current_order >= pageblock_order / 2 ||
1129 	    start_type == MIGRATE_RECLAIMABLE ||
1130 	    start_type == MIGRATE_UNMOVABLE ||
1131 	    page_group_by_mobility_disabled) {
1132 		int pages;
1133 
1134 		pages = move_freepages_block(zone, page, start_type);
1135 
1136 		/* Claim the whole block if over half of it is free */
1137 		if (pages >= (1 << (pageblock_order-1)) ||
1138 				page_group_by_mobility_disabled)
1139 			set_pageblock_migratetype(page, start_type);
1140 	}
1141 }
1142 
1143 /* Remove an element from the buddy allocator from the fallback list */
1144 static inline struct page *
__rmqueue_fallback(struct zone * zone,unsigned int order,int start_migratetype)1145 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1146 {
1147 	struct free_area *area;
1148 	unsigned int current_order;
1149 	struct page *page;
1150 
1151 	/* Find the largest possible block of pages in the other list */
1152 	for (current_order = MAX_ORDER-1;
1153 				current_order >= order && current_order <= MAX_ORDER-1;
1154 				--current_order) {
1155 		int i;
1156 		for (i = 0;; i++) {
1157 			int migratetype = fallbacks[start_migratetype][i];
1158 			int buddy_type = start_migratetype;
1159 
1160 			/* MIGRATE_RESERVE handled later if necessary */
1161 			if (migratetype == MIGRATE_RESERVE)
1162 				break;
1163 
1164 			area = &(zone->free_area[current_order]);
1165 			if (list_empty(&area->free_list[migratetype]))
1166 				continue;
1167 
1168 			page = list_entry(area->free_list[migratetype].next,
1169 					struct page, lru);
1170 			area->nr_free--;
1171 
1172 			if (!is_migrate_cma(migratetype)) {
1173 				try_to_steal_freepages(zone, page,
1174 							start_migratetype,
1175 							migratetype);
1176 			} else {
1177 				/*
1178 				 * When borrowing from MIGRATE_CMA, we need to
1179 				 * release the excess buddy pages to CMA
1180 				 * itself, and we do not try to steal extra
1181 				 * free pages.
1182 				 */
1183 				buddy_type = migratetype;
1184 			}
1185 
1186 			/* Remove the page from the freelists */
1187 			list_del(&page->lru);
1188 			rmv_page_order(page);
1189 
1190 			expand(zone, page, order, current_order, area,
1191 					buddy_type);
1192 
1193 			/*
1194 			 * The freepage_migratetype may differ from pageblock's
1195 			 * migratetype depending on the decisions in
1196 			 * try_to_steal_freepages(). This is OK as long as it
1197 			 * does not differ for MIGRATE_CMA pageblocks. For CMA
1198 			 * we need to make sure unallocated pages flushed from
1199 			 * pcp lists are returned to the correct freelist.
1200 			 */
1201 			set_freepage_migratetype(page, buddy_type);
1202 
1203 			trace_mm_page_alloc_extfrag(page, order, current_order,
1204 				start_migratetype, migratetype);
1205 
1206 			return page;
1207 		}
1208 	}
1209 
1210 	return NULL;
1211 }
1212 
1213 /*
1214  * Do the hard work of removing an element from the buddy allocator.
1215  * Call me with the zone->lock already held.
1216  */
__rmqueue(struct zone * zone,unsigned int order,int migratetype)1217 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1218 						int migratetype)
1219 {
1220 	struct page *page;
1221 
1222 retry_reserve:
1223 	page = __rmqueue_smallest(zone, order, migratetype);
1224 
1225 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1226 		page = __rmqueue_fallback(zone, order, migratetype);
1227 
1228 		/*
1229 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1230 		 * is used because __rmqueue_smallest is an inline function
1231 		 * and we want just one call site
1232 		 */
1233 		if (!page) {
1234 			migratetype = MIGRATE_RESERVE;
1235 			goto retry_reserve;
1236 		}
1237 	}
1238 
1239 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1240 	return page;
1241 }
1242 
1243 /*
1244  * Obtain a specified number of elements from the buddy allocator, all under
1245  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1246  * Returns the number of new pages which were placed at *list.
1247  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,bool cold)1248 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1249 			unsigned long count, struct list_head *list,
1250 			int migratetype, bool cold)
1251 {
1252 	int i;
1253 
1254 	spin_lock(&zone->lock);
1255 	for (i = 0; i < count; ++i) {
1256 		struct page *page = __rmqueue(zone, order, migratetype);
1257 		if (unlikely(page == NULL))
1258 			break;
1259 
1260 		/*
1261 		 * Split buddy pages returned by expand() are received here
1262 		 * in physical page order. The page is added to the callers and
1263 		 * list and the list head then moves forward. From the callers
1264 		 * perspective, the linked list is ordered by page number in
1265 		 * some conditions. This is useful for IO devices that can
1266 		 * merge IO requests if the physical pages are ordered
1267 		 * properly.
1268 		 */
1269 		if (likely(!cold))
1270 			list_add(&page->lru, list);
1271 		else
1272 			list_add_tail(&page->lru, list);
1273 		list = &page->lru;
1274 		if (is_migrate_cma(get_freepage_migratetype(page)))
1275 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1276 					      -(1 << order));
1277 	}
1278 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1279 	spin_unlock(&zone->lock);
1280 	return i;
1281 }
1282 
1283 #ifdef CONFIG_NUMA
1284 /*
1285  * Called from the vmstat counter updater to drain pagesets of this
1286  * currently executing processor on remote nodes after they have
1287  * expired.
1288  *
1289  * Note that this function must be called with the thread pinned to
1290  * a single processor.
1291  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)1292 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1293 {
1294 	unsigned long flags;
1295 	int to_drain, batch;
1296 
1297 	local_irq_save(flags);
1298 	batch = ACCESS_ONCE(pcp->batch);
1299 	to_drain = min(pcp->count, batch);
1300 	if (to_drain > 0) {
1301 		free_pcppages_bulk(zone, to_drain, pcp);
1302 		pcp->count -= to_drain;
1303 	}
1304 	local_irq_restore(flags);
1305 }
1306 #endif
1307 
1308 /*
1309  * Drain pages of the indicated processor.
1310  *
1311  * The processor must either be the current processor and the
1312  * thread pinned to the current processor or a processor that
1313  * is not online.
1314  */
drain_pages(unsigned int cpu)1315 static void drain_pages(unsigned int cpu)
1316 {
1317 	unsigned long flags;
1318 	struct zone *zone;
1319 
1320 	for_each_populated_zone(zone) {
1321 		struct per_cpu_pageset *pset;
1322 		struct per_cpu_pages *pcp;
1323 
1324 		local_irq_save(flags);
1325 		pset = per_cpu_ptr(zone->pageset, cpu);
1326 
1327 		pcp = &pset->pcp;
1328 		if (pcp->count) {
1329 			free_pcppages_bulk(zone, pcp->count, pcp);
1330 			pcp->count = 0;
1331 		}
1332 		local_irq_restore(flags);
1333 	}
1334 }
1335 
1336 /*
1337  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1338  */
drain_local_pages(void * arg)1339 void drain_local_pages(void *arg)
1340 {
1341 	drain_pages(smp_processor_id());
1342 }
1343 
1344 /*
1345  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1346  *
1347  * Note that this code is protected against sending an IPI to an offline
1348  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1349  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1350  * nothing keeps CPUs from showing up after we populated the cpumask and
1351  * before the call to on_each_cpu_mask().
1352  */
drain_all_pages(void)1353 void drain_all_pages(void)
1354 {
1355 	int cpu;
1356 	struct per_cpu_pageset *pcp;
1357 	struct zone *zone;
1358 
1359 	/*
1360 	 * Allocate in the BSS so we wont require allocation in
1361 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1362 	 */
1363 	static cpumask_t cpus_with_pcps;
1364 
1365 	/*
1366 	 * We don't care about racing with CPU hotplug event
1367 	 * as offline notification will cause the notified
1368 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1369 	 * disables preemption as part of its processing
1370 	 */
1371 	for_each_online_cpu(cpu) {
1372 		bool has_pcps = false;
1373 		for_each_populated_zone(zone) {
1374 			pcp = per_cpu_ptr(zone->pageset, cpu);
1375 			if (pcp->pcp.count) {
1376 				has_pcps = true;
1377 				break;
1378 			}
1379 		}
1380 		if (has_pcps)
1381 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1382 		else
1383 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1384 	}
1385 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1386 }
1387 
1388 #ifdef CONFIG_HIBERNATION
1389 
mark_free_pages(struct zone * zone)1390 void mark_free_pages(struct zone *zone)
1391 {
1392 	unsigned long pfn, max_zone_pfn;
1393 	unsigned long flags;
1394 	unsigned int order, t;
1395 	struct list_head *curr;
1396 
1397 	if (zone_is_empty(zone))
1398 		return;
1399 
1400 	spin_lock_irqsave(&zone->lock, flags);
1401 
1402 	max_zone_pfn = zone_end_pfn(zone);
1403 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1404 		if (pfn_valid(pfn)) {
1405 			struct page *page = pfn_to_page(pfn);
1406 
1407 			if (!swsusp_page_is_forbidden(page))
1408 				swsusp_unset_page_free(page);
1409 		}
1410 
1411 	for_each_migratetype_order(order, t) {
1412 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1413 			unsigned long i;
1414 
1415 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1416 			for (i = 0; i < (1UL << order); i++)
1417 				swsusp_set_page_free(pfn_to_page(pfn + i));
1418 		}
1419 	}
1420 	spin_unlock_irqrestore(&zone->lock, flags);
1421 }
1422 #endif /* CONFIG_PM */
1423 
1424 /*
1425  * Free a 0-order page
1426  * cold == true ? free a cold page : free a hot page
1427  */
free_hot_cold_page(struct page * page,bool cold)1428 void free_hot_cold_page(struct page *page, bool cold)
1429 {
1430 	struct zone *zone = page_zone(page);
1431 	struct per_cpu_pages *pcp;
1432 	unsigned long flags;
1433 	unsigned long pfn = page_to_pfn(page);
1434 	int migratetype;
1435 
1436 	if (!free_pages_prepare(page, 0))
1437 		return;
1438 
1439 	migratetype = get_pfnblock_migratetype(page, pfn);
1440 	set_freepage_migratetype(page, migratetype);
1441 	local_irq_save(flags);
1442 	__count_vm_event(PGFREE);
1443 
1444 	/*
1445 	 * We only track unmovable, reclaimable and movable on pcp lists.
1446 	 * Free ISOLATE pages back to the allocator because they are being
1447 	 * offlined but treat RESERVE as movable pages so we can get those
1448 	 * areas back if necessary. Otherwise, we may have to free
1449 	 * excessively into the page allocator
1450 	 */
1451 	if (migratetype >= MIGRATE_PCPTYPES) {
1452 		if (unlikely(is_migrate_isolate(migratetype))) {
1453 			free_one_page(zone, page, pfn, 0, migratetype);
1454 			goto out;
1455 		}
1456 		migratetype = MIGRATE_MOVABLE;
1457 	}
1458 
1459 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1460 	if (!cold)
1461 		list_add(&page->lru, &pcp->lists[migratetype]);
1462 	else
1463 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1464 	pcp->count++;
1465 	if (pcp->count >= pcp->high) {
1466 		unsigned long batch = ACCESS_ONCE(pcp->batch);
1467 		free_pcppages_bulk(zone, batch, pcp);
1468 		pcp->count -= batch;
1469 	}
1470 
1471 out:
1472 	local_irq_restore(flags);
1473 }
1474 
1475 /*
1476  * Free a list of 0-order pages
1477  */
free_hot_cold_page_list(struct list_head * list,bool cold)1478 void free_hot_cold_page_list(struct list_head *list, bool cold)
1479 {
1480 	struct page *page, *next;
1481 
1482 	list_for_each_entry_safe(page, next, list, lru) {
1483 		trace_mm_page_free_batched(page, cold);
1484 		free_hot_cold_page(page, cold);
1485 	}
1486 }
1487 
1488 /*
1489  * split_page takes a non-compound higher-order page, and splits it into
1490  * n (1<<order) sub-pages: page[0..n]
1491  * Each sub-page must be freed individually.
1492  *
1493  * Note: this is probably too low level an operation for use in drivers.
1494  * Please consult with lkml before using this in your driver.
1495  */
split_page(struct page * page,unsigned int order)1496 void split_page(struct page *page, unsigned int order)
1497 {
1498 	int i;
1499 
1500 	VM_BUG_ON_PAGE(PageCompound(page), page);
1501 	VM_BUG_ON_PAGE(!page_count(page), page);
1502 
1503 #ifdef CONFIG_KMEMCHECK
1504 	/*
1505 	 * Split shadow pages too, because free(page[0]) would
1506 	 * otherwise free the whole shadow.
1507 	 */
1508 	if (kmemcheck_page_is_tracked(page))
1509 		split_page(virt_to_page(page[0].shadow), order);
1510 #endif
1511 
1512 	for (i = 1; i < (1 << order); i++)
1513 		set_page_refcounted(page + i);
1514 }
1515 EXPORT_SYMBOL_GPL(split_page);
1516 
__isolate_free_page(struct page * page,unsigned int order)1517 int __isolate_free_page(struct page *page, unsigned int order)
1518 {
1519 	unsigned long watermark;
1520 	struct zone *zone;
1521 	int mt;
1522 
1523 	BUG_ON(!PageBuddy(page));
1524 
1525 	zone = page_zone(page);
1526 	mt = get_pageblock_migratetype(page);
1527 
1528 	if (!is_migrate_isolate(mt)) {
1529 		/* Obey watermarks as if the page was being allocated */
1530 		watermark = low_wmark_pages(zone) + (1 << order);
1531 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1532 			return 0;
1533 
1534 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
1535 	}
1536 
1537 	/* Remove page from free list */
1538 	list_del(&page->lru);
1539 	zone->free_area[order].nr_free--;
1540 	rmv_page_order(page);
1541 
1542 	/* Set the pageblock if the isolated page is at least a pageblock */
1543 	if (order >= pageblock_order - 1) {
1544 		struct page *endpage = page + (1 << order) - 1;
1545 		for (; page < endpage; page += pageblock_nr_pages) {
1546 			int mt = get_pageblock_migratetype(page);
1547 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1548 				set_pageblock_migratetype(page,
1549 							  MIGRATE_MOVABLE);
1550 		}
1551 	}
1552 
1553 	return 1UL << order;
1554 }
1555 
1556 /*
1557  * Similar to split_page except the page is already free. As this is only
1558  * being used for migration, the migratetype of the block also changes.
1559  * As this is called with interrupts disabled, the caller is responsible
1560  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1561  * are enabled.
1562  *
1563  * Note: this is probably too low level an operation for use in drivers.
1564  * Please consult with lkml before using this in your driver.
1565  */
split_free_page(struct page * page)1566 int split_free_page(struct page *page)
1567 {
1568 	unsigned int order;
1569 	int nr_pages;
1570 
1571 	order = page_order(page);
1572 
1573 	nr_pages = __isolate_free_page(page, order);
1574 	if (!nr_pages)
1575 		return 0;
1576 
1577 	/* Split into individual pages */
1578 	set_page_refcounted(page);
1579 	split_page(page, order);
1580 	return nr_pages;
1581 }
1582 
1583 /*
1584  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1585  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1586  * or two.
1587  */
1588 static inline
buffered_rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,int migratetype)1589 struct page *buffered_rmqueue(struct zone *preferred_zone,
1590 			struct zone *zone, unsigned int order,
1591 			gfp_t gfp_flags, int migratetype)
1592 {
1593 	unsigned long flags;
1594 	struct page *page;
1595 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
1596 
1597 again:
1598 	if (likely(order == 0)) {
1599 		struct per_cpu_pages *pcp;
1600 		struct list_head *list;
1601 
1602 		local_irq_save(flags);
1603 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1604 		list = &pcp->lists[migratetype];
1605 		if (list_empty(list)) {
1606 			pcp->count += rmqueue_bulk(zone, 0,
1607 					pcp->batch, list,
1608 					migratetype, cold);
1609 			if (unlikely(list_empty(list)))
1610 				goto failed;
1611 		}
1612 
1613 		if (cold)
1614 			page = list_entry(list->prev, struct page, lru);
1615 		else
1616 			page = list_entry(list->next, struct page, lru);
1617 
1618 		list_del(&page->lru);
1619 		pcp->count--;
1620 	} else {
1621 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1622 			/*
1623 			 * __GFP_NOFAIL is not to be used in new code.
1624 			 *
1625 			 * All __GFP_NOFAIL callers should be fixed so that they
1626 			 * properly detect and handle allocation failures.
1627 			 *
1628 			 * We most definitely don't want callers attempting to
1629 			 * allocate greater than order-1 page units with
1630 			 * __GFP_NOFAIL.
1631 			 */
1632 			WARN_ON_ONCE(order > 1);
1633 		}
1634 		spin_lock_irqsave(&zone->lock, flags);
1635 		page = __rmqueue(zone, order, migratetype);
1636 		spin_unlock(&zone->lock);
1637 		if (!page)
1638 			goto failed;
1639 		__mod_zone_freepage_state(zone, -(1 << order),
1640 					  get_freepage_migratetype(page));
1641 	}
1642 
1643 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1644 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1645 	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1646 		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1647 
1648 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1649 	zone_statistics(preferred_zone, zone, gfp_flags);
1650 	local_irq_restore(flags);
1651 
1652 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1653 	if (prep_new_page(page, order, gfp_flags))
1654 		goto again;
1655 	return page;
1656 
1657 failed:
1658 	local_irq_restore(flags);
1659 	return NULL;
1660 }
1661 
1662 #ifdef CONFIG_FAIL_PAGE_ALLOC
1663 
1664 static struct {
1665 	struct fault_attr attr;
1666 
1667 	u32 ignore_gfp_highmem;
1668 	u32 ignore_gfp_wait;
1669 	u32 min_order;
1670 } fail_page_alloc = {
1671 	.attr = FAULT_ATTR_INITIALIZER,
1672 	.ignore_gfp_wait = 1,
1673 	.ignore_gfp_highmem = 1,
1674 	.min_order = 1,
1675 };
1676 
setup_fail_page_alloc(char * str)1677 static int __init setup_fail_page_alloc(char *str)
1678 {
1679 	return setup_fault_attr(&fail_page_alloc.attr, str);
1680 }
1681 __setup("fail_page_alloc=", setup_fail_page_alloc);
1682 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)1683 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1684 {
1685 	if (order < fail_page_alloc.min_order)
1686 		return false;
1687 	if (gfp_mask & __GFP_NOFAIL)
1688 		return false;
1689 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1690 		return false;
1691 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1692 		return false;
1693 
1694 	return should_fail(&fail_page_alloc.attr, 1 << order);
1695 }
1696 
1697 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1698 
fail_page_alloc_debugfs(void)1699 static int __init fail_page_alloc_debugfs(void)
1700 {
1701 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1702 	struct dentry *dir;
1703 
1704 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1705 					&fail_page_alloc.attr);
1706 	if (IS_ERR(dir))
1707 		return PTR_ERR(dir);
1708 
1709 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1710 				&fail_page_alloc.ignore_gfp_wait))
1711 		goto fail;
1712 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1713 				&fail_page_alloc.ignore_gfp_highmem))
1714 		goto fail;
1715 	if (!debugfs_create_u32("min-order", mode, dir,
1716 				&fail_page_alloc.min_order))
1717 		goto fail;
1718 
1719 	return 0;
1720 fail:
1721 	debugfs_remove_recursive(dir);
1722 
1723 	return -ENOMEM;
1724 }
1725 
1726 late_initcall(fail_page_alloc_debugfs);
1727 
1728 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1729 
1730 #else /* CONFIG_FAIL_PAGE_ALLOC */
1731 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)1732 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1733 {
1734 	return false;
1735 }
1736 
1737 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1738 
1739 /*
1740  * Return true if free pages are above 'mark'. This takes into account the order
1741  * of the allocation.
1742  */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,int alloc_flags,long free_pages)1743 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1744 			unsigned long mark, int classzone_idx, int alloc_flags,
1745 			long free_pages)
1746 {
1747 	/* free_pages my go negative - that's OK */
1748 	long min = mark;
1749 	int o;
1750 	long free_cma = 0;
1751 
1752 	free_pages -= (1 << order) - 1;
1753 	if (alloc_flags & ALLOC_HIGH)
1754 		min -= min / 2;
1755 	if (alloc_flags & ALLOC_HARDER)
1756 		min -= min / 4;
1757 #ifdef CONFIG_CMA
1758 	/* If allocation can't use CMA areas don't use free CMA pages */
1759 	if (!(alloc_flags & ALLOC_CMA))
1760 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1761 #endif
1762 
1763 	if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1764 		return false;
1765 	for (o = 0; o < order; o++) {
1766 		/* At the next order, this order's pages become unavailable */
1767 		free_pages -= z->free_area[o].nr_free << o;
1768 
1769 		/* Require fewer higher order pages to be free */
1770 		min >>= min_free_order_shift;
1771 
1772 		if (free_pages <= min)
1773 			return false;
1774 	}
1775 	return true;
1776 }
1777 
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,int alloc_flags)1778 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1779 		      int classzone_idx, int alloc_flags)
1780 {
1781 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1782 					zone_page_state(z, NR_FREE_PAGES));
1783 }
1784 
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,int alloc_flags)1785 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1786 			unsigned long mark, int classzone_idx, int alloc_flags)
1787 {
1788 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1789 
1790 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1791 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1792 
1793 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1794 								free_pages);
1795 }
1796 
1797 #ifdef CONFIG_NUMA
1798 /*
1799  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1800  * skip over zones that are not allowed by the cpuset, or that have
1801  * been recently (in last second) found to be nearly full.  See further
1802  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1803  * that have to skip over a lot of full or unallowed zones.
1804  *
1805  * If the zonelist cache is present in the passed zonelist, then
1806  * returns a pointer to the allowed node mask (either the current
1807  * tasks mems_allowed, or node_states[N_MEMORY].)
1808  *
1809  * If the zonelist cache is not available for this zonelist, does
1810  * nothing and returns NULL.
1811  *
1812  * If the fullzones BITMAP in the zonelist cache is stale (more than
1813  * a second since last zap'd) then we zap it out (clear its bits.)
1814  *
1815  * We hold off even calling zlc_setup, until after we've checked the
1816  * first zone in the zonelist, on the theory that most allocations will
1817  * be satisfied from that first zone, so best to examine that zone as
1818  * quickly as we can.
1819  */
zlc_setup(struct zonelist * zonelist,int alloc_flags)1820 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1821 {
1822 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1823 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1824 
1825 	zlc = zonelist->zlcache_ptr;
1826 	if (!zlc)
1827 		return NULL;
1828 
1829 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1830 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1831 		zlc->last_full_zap = jiffies;
1832 	}
1833 
1834 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1835 					&cpuset_current_mems_allowed :
1836 					&node_states[N_MEMORY];
1837 	return allowednodes;
1838 }
1839 
1840 /*
1841  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1842  * if it is worth looking at further for free memory:
1843  *  1) Check that the zone isn't thought to be full (doesn't have its
1844  *     bit set in the zonelist_cache fullzones BITMAP).
1845  *  2) Check that the zones node (obtained from the zonelist_cache
1846  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1847  * Return true (non-zero) if zone is worth looking at further, or
1848  * else return false (zero) if it is not.
1849  *
1850  * This check -ignores- the distinction between various watermarks,
1851  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1852  * found to be full for any variation of these watermarks, it will
1853  * be considered full for up to one second by all requests, unless
1854  * we are so low on memory on all allowed nodes that we are forced
1855  * into the second scan of the zonelist.
1856  *
1857  * In the second scan we ignore this zonelist cache and exactly
1858  * apply the watermarks to all zones, even it is slower to do so.
1859  * We are low on memory in the second scan, and should leave no stone
1860  * unturned looking for a free page.
1861  */
zlc_zone_worth_trying(struct zonelist * zonelist,struct zoneref * z,nodemask_t * allowednodes)1862 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1863 						nodemask_t *allowednodes)
1864 {
1865 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1866 	int i;				/* index of *z in zonelist zones */
1867 	int n;				/* node that zone *z is on */
1868 
1869 	zlc = zonelist->zlcache_ptr;
1870 	if (!zlc)
1871 		return 1;
1872 
1873 	i = z - zonelist->_zonerefs;
1874 	n = zlc->z_to_n[i];
1875 
1876 	/* This zone is worth trying if it is allowed but not full */
1877 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1878 }
1879 
1880 /*
1881  * Given 'z' scanning a zonelist, set the corresponding bit in
1882  * zlc->fullzones, so that subsequent attempts to allocate a page
1883  * from that zone don't waste time re-examining it.
1884  */
zlc_mark_zone_full(struct zonelist * zonelist,struct zoneref * z)1885 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1886 {
1887 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1888 	int i;				/* index of *z in zonelist zones */
1889 
1890 	zlc = zonelist->zlcache_ptr;
1891 	if (!zlc)
1892 		return;
1893 
1894 	i = z - zonelist->_zonerefs;
1895 
1896 	set_bit(i, zlc->fullzones);
1897 }
1898 
1899 /*
1900  * clear all zones full, called after direct reclaim makes progress so that
1901  * a zone that was recently full is not skipped over for up to a second
1902  */
zlc_clear_zones_full(struct zonelist * zonelist)1903 static void zlc_clear_zones_full(struct zonelist *zonelist)
1904 {
1905 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1906 
1907 	zlc = zonelist->zlcache_ptr;
1908 	if (!zlc)
1909 		return;
1910 
1911 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1912 }
1913 
zone_local(struct zone * local_zone,struct zone * zone)1914 static bool zone_local(struct zone *local_zone, struct zone *zone)
1915 {
1916 	return local_zone->node == zone->node;
1917 }
1918 
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)1919 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1920 {
1921 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1922 				RECLAIM_DISTANCE;
1923 }
1924 
1925 #else	/* CONFIG_NUMA */
1926 
zlc_setup(struct zonelist * zonelist,int alloc_flags)1927 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1928 {
1929 	return NULL;
1930 }
1931 
zlc_zone_worth_trying(struct zonelist * zonelist,struct zoneref * z,nodemask_t * allowednodes)1932 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1933 				nodemask_t *allowednodes)
1934 {
1935 	return 1;
1936 }
1937 
zlc_mark_zone_full(struct zonelist * zonelist,struct zoneref * z)1938 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1939 {
1940 }
1941 
zlc_clear_zones_full(struct zonelist * zonelist)1942 static void zlc_clear_zones_full(struct zonelist *zonelist)
1943 {
1944 }
1945 
zone_local(struct zone * local_zone,struct zone * zone)1946 static bool zone_local(struct zone *local_zone, struct zone *zone)
1947 {
1948 	return true;
1949 }
1950 
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)1951 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1952 {
1953 	return true;
1954 }
1955 
1956 #endif	/* CONFIG_NUMA */
1957 
reset_alloc_batches(struct zone * preferred_zone)1958 static void reset_alloc_batches(struct zone *preferred_zone)
1959 {
1960 	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
1961 
1962 	do {
1963 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
1964 			high_wmark_pages(zone) - low_wmark_pages(zone) -
1965 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
1966 		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1967 	} while (zone++ != preferred_zone);
1968 }
1969 
1970 /*
1971  * get_page_from_freelist goes through the zonelist trying to allocate
1972  * a page.
1973  */
1974 static struct page *
get_page_from_freelist(gfp_t gfp_mask,nodemask_t * nodemask,unsigned int order,struct zonelist * zonelist,int high_zoneidx,int alloc_flags,struct zone * preferred_zone,int classzone_idx,int migratetype)1975 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1976 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1977 		struct zone *preferred_zone, int classzone_idx, int migratetype)
1978 {
1979 	struct zoneref *z;
1980 	struct page *page = NULL;
1981 	struct zone *zone;
1982 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1983 	int zlc_active = 0;		/* set if using zonelist_cache */
1984 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1985 	bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1986 				(gfp_mask & __GFP_WRITE);
1987 	int nr_fair_skipped = 0;
1988 	bool zonelist_rescan;
1989 
1990 zonelist_scan:
1991 	zonelist_rescan = false;
1992 
1993 	/*
1994 	 * Scan zonelist, looking for a zone with enough free.
1995 	 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1996 	 */
1997 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1998 						high_zoneidx, nodemask) {
1999 		unsigned long mark;
2000 
2001 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2002 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
2003 				continue;
2004 		if (cpusets_enabled() &&
2005 			(alloc_flags & ALLOC_CPUSET) &&
2006 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
2007 				continue;
2008 		/*
2009 		 * Distribute pages in proportion to the individual
2010 		 * zone size to ensure fair page aging.  The zone a
2011 		 * page was allocated in should have no effect on the
2012 		 * time the page has in memory before being reclaimed.
2013 		 */
2014 		if (alloc_flags & ALLOC_FAIR) {
2015 			if (!zone_local(preferred_zone, zone))
2016 				break;
2017 			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2018 				nr_fair_skipped++;
2019 				continue;
2020 			}
2021 		}
2022 		/*
2023 		 * When allocating a page cache page for writing, we
2024 		 * want to get it from a zone that is within its dirty
2025 		 * limit, such that no single zone holds more than its
2026 		 * proportional share of globally allowed dirty pages.
2027 		 * The dirty limits take into account the zone's
2028 		 * lowmem reserves and high watermark so that kswapd
2029 		 * should be able to balance it without having to
2030 		 * write pages from its LRU list.
2031 		 *
2032 		 * This may look like it could increase pressure on
2033 		 * lower zones by failing allocations in higher zones
2034 		 * before they are full.  But the pages that do spill
2035 		 * over are limited as the lower zones are protected
2036 		 * by this very same mechanism.  It should not become
2037 		 * a practical burden to them.
2038 		 *
2039 		 * XXX: For now, allow allocations to potentially
2040 		 * exceed the per-zone dirty limit in the slowpath
2041 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2042 		 * which is important when on a NUMA setup the allowed
2043 		 * zones are together not big enough to reach the
2044 		 * global limit.  The proper fix for these situations
2045 		 * will require awareness of zones in the
2046 		 * dirty-throttling and the flusher threads.
2047 		 */
2048 		if (consider_zone_dirty && !zone_dirty_ok(zone))
2049 			continue;
2050 
2051 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2052 		if (!zone_watermark_ok(zone, order, mark,
2053 				       classzone_idx, alloc_flags)) {
2054 			int ret;
2055 
2056 			/* Checked here to keep the fast path fast */
2057 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2058 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2059 				goto try_this_zone;
2060 
2061 			if (IS_ENABLED(CONFIG_NUMA) &&
2062 					!did_zlc_setup && nr_online_nodes > 1) {
2063 				/*
2064 				 * we do zlc_setup if there are multiple nodes
2065 				 * and before considering the first zone allowed
2066 				 * by the cpuset.
2067 				 */
2068 				allowednodes = zlc_setup(zonelist, alloc_flags);
2069 				zlc_active = 1;
2070 				did_zlc_setup = 1;
2071 			}
2072 
2073 			if (zone_reclaim_mode == 0 ||
2074 			    !zone_allows_reclaim(preferred_zone, zone))
2075 				goto this_zone_full;
2076 
2077 			/*
2078 			 * As we may have just activated ZLC, check if the first
2079 			 * eligible zone has failed zone_reclaim recently.
2080 			 */
2081 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2082 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
2083 				continue;
2084 
2085 			ret = zone_reclaim(zone, gfp_mask, order);
2086 			switch (ret) {
2087 			case ZONE_RECLAIM_NOSCAN:
2088 				/* did not scan */
2089 				continue;
2090 			case ZONE_RECLAIM_FULL:
2091 				/* scanned but unreclaimable */
2092 				continue;
2093 			default:
2094 				/* did we reclaim enough */
2095 				if (zone_watermark_ok(zone, order, mark,
2096 						classzone_idx, alloc_flags))
2097 					goto try_this_zone;
2098 
2099 				/*
2100 				 * Failed to reclaim enough to meet watermark.
2101 				 * Only mark the zone full if checking the min
2102 				 * watermark or if we failed to reclaim just
2103 				 * 1<<order pages or else the page allocator
2104 				 * fastpath will prematurely mark zones full
2105 				 * when the watermark is between the low and
2106 				 * min watermarks.
2107 				 */
2108 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2109 				    ret == ZONE_RECLAIM_SOME)
2110 					goto this_zone_full;
2111 
2112 				continue;
2113 			}
2114 		}
2115 
2116 try_this_zone:
2117 		page = buffered_rmqueue(preferred_zone, zone, order,
2118 						gfp_mask, migratetype);
2119 		if (page)
2120 			break;
2121 this_zone_full:
2122 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2123 			zlc_mark_zone_full(zonelist, z);
2124 	}
2125 
2126 	if (page) {
2127 		/*
2128 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2129 		 * necessary to allocate the page. The expectation is
2130 		 * that the caller is taking steps that will free more
2131 		 * memory. The caller should avoid the page being used
2132 		 * for !PFMEMALLOC purposes.
2133 		 */
2134 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2135 		return page;
2136 	}
2137 
2138 	/*
2139 	 * The first pass makes sure allocations are spread fairly within the
2140 	 * local node.  However, the local node might have free pages left
2141 	 * after the fairness batches are exhausted, and remote zones haven't
2142 	 * even been considered yet.  Try once more without fairness, and
2143 	 * include remote zones now, before entering the slowpath and waking
2144 	 * kswapd: prefer spilling to a remote zone over swapping locally.
2145 	 */
2146 	if (alloc_flags & ALLOC_FAIR) {
2147 		alloc_flags &= ~ALLOC_FAIR;
2148 		if (nr_fair_skipped) {
2149 			zonelist_rescan = true;
2150 			reset_alloc_batches(preferred_zone);
2151 		}
2152 		if (nr_online_nodes > 1)
2153 			zonelist_rescan = true;
2154 	}
2155 
2156 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2157 		/* Disable zlc cache for second zonelist scan */
2158 		zlc_active = 0;
2159 		zonelist_rescan = true;
2160 	}
2161 
2162 	if (zonelist_rescan)
2163 		goto zonelist_scan;
2164 
2165 	return NULL;
2166 }
2167 
2168 /*
2169  * Large machines with many possible nodes should not always dump per-node
2170  * meminfo in irq context.
2171  */
should_suppress_show_mem(void)2172 static inline bool should_suppress_show_mem(void)
2173 {
2174 	bool ret = false;
2175 
2176 #if NODES_SHIFT > 8
2177 	ret = in_interrupt();
2178 #endif
2179 	return ret;
2180 }
2181 
2182 static DEFINE_RATELIMIT_STATE(nopage_rs,
2183 		DEFAULT_RATELIMIT_INTERVAL,
2184 		DEFAULT_RATELIMIT_BURST);
2185 
warn_alloc_failed(gfp_t gfp_mask,unsigned int order,const char * fmt,...)2186 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2187 {
2188 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2189 
2190 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2191 	    debug_guardpage_minorder() > 0)
2192 		return;
2193 
2194 	/*
2195 	 * This documents exceptions given to allocations in certain
2196 	 * contexts that are allowed to allocate outside current's set
2197 	 * of allowed nodes.
2198 	 */
2199 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2200 		if (test_thread_flag(TIF_MEMDIE) ||
2201 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2202 			filter &= ~SHOW_MEM_FILTER_NODES;
2203 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2204 		filter &= ~SHOW_MEM_FILTER_NODES;
2205 
2206 	if (fmt) {
2207 		struct va_format vaf;
2208 		va_list args;
2209 
2210 		va_start(args, fmt);
2211 
2212 		vaf.fmt = fmt;
2213 		vaf.va = &args;
2214 
2215 		pr_warn("%pV", &vaf);
2216 
2217 		va_end(args);
2218 	}
2219 
2220 	pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
2221 		current->comm, order, gfp_mask);
2222 
2223 	dump_stack();
2224 	if (!should_suppress_show_mem())
2225 		show_mem(filter);
2226 }
2227 
2228 static inline int
should_alloc_retry(gfp_t gfp_mask,unsigned int order,unsigned long did_some_progress,unsigned long pages_reclaimed)2229 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2230 				unsigned long did_some_progress,
2231 				unsigned long pages_reclaimed)
2232 {
2233 	/* Do not loop if specifically requested */
2234 	if (gfp_mask & __GFP_NORETRY)
2235 		return 0;
2236 
2237 	/* Always retry if specifically requested */
2238 	if (gfp_mask & __GFP_NOFAIL)
2239 		return 1;
2240 
2241 	/*
2242 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2243 	 * making forward progress without invoking OOM. Suspend also disables
2244 	 * storage devices so kswapd will not help. Bail if we are suspending.
2245 	 */
2246 	if (!did_some_progress && pm_suspended_storage())
2247 		return 0;
2248 
2249 	/*
2250 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2251 	 * means __GFP_NOFAIL, but that may not be true in other
2252 	 * implementations.
2253 	 */
2254 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2255 		return 1;
2256 
2257 	/*
2258 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2259 	 * specified, then we retry until we no longer reclaim any pages
2260 	 * (above), or we've reclaimed an order of pages at least as
2261 	 * large as the allocation's order. In both cases, if the
2262 	 * allocation still fails, we stop retrying.
2263 	 */
2264 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2265 		return 1;
2266 
2267 	return 0;
2268 }
2269 
2270 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist,enum zone_type high_zoneidx,nodemask_t * nodemask,struct zone * preferred_zone,int classzone_idx,int migratetype)2271 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2272 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2273 	nodemask_t *nodemask, struct zone *preferred_zone,
2274 	int classzone_idx, int migratetype)
2275 {
2276 	struct page *page;
2277 
2278 	/* Acquire the per-zone oom lock for each zone */
2279 	if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
2280 		schedule_timeout_uninterruptible(1);
2281 		return NULL;
2282 	}
2283 
2284 	/*
2285 	 * PM-freezer should be notified that there might be an OOM killer on
2286 	 * its way to kill and wake somebody up. This is too early and we might
2287 	 * end up not killing anything but false positives are acceptable.
2288 	 * See freeze_processes.
2289 	 */
2290 	note_oom_kill();
2291 
2292 	/*
2293 	 * Go through the zonelist yet one more time, keep very high watermark
2294 	 * here, this is only to catch a parallel oom killing, we must fail if
2295 	 * we're still under heavy pressure.
2296 	 */
2297 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2298 		order, zonelist, high_zoneidx,
2299 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2300 		preferred_zone, classzone_idx, migratetype);
2301 	if (page)
2302 		goto out;
2303 
2304 	if (!(gfp_mask & __GFP_NOFAIL)) {
2305 		/* The OOM killer will not help higher order allocs */
2306 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2307 			goto out;
2308 		/* The OOM killer does not needlessly kill tasks for lowmem */
2309 		if (high_zoneidx < ZONE_NORMAL)
2310 			goto out;
2311 		/*
2312 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2313 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2314 		 * The caller should handle page allocation failure by itself if
2315 		 * it specifies __GFP_THISNODE.
2316 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2317 		 */
2318 		if (gfp_mask & __GFP_THISNODE)
2319 			goto out;
2320 	}
2321 	/* Exhausted what can be done so it's blamo time */
2322 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2323 
2324 out:
2325 	oom_zonelist_unlock(zonelist, gfp_mask);
2326 	return page;
2327 }
2328 
2329 #ifdef CONFIG_COMPACTION
2330 /* Try memory compaction for high-order allocations before reclaim */
2331 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist,enum zone_type high_zoneidx,nodemask_t * nodemask,int alloc_flags,struct zone * preferred_zone,int classzone_idx,int migratetype,enum migrate_mode mode,int * contended_compaction,bool * deferred_compaction)2332 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2333 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2334 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2335 	int classzone_idx, int migratetype, enum migrate_mode mode,
2336 	int *contended_compaction, bool *deferred_compaction)
2337 {
2338 	struct zone *last_compact_zone = NULL;
2339 	unsigned long compact_result;
2340 	struct page *page;
2341 
2342 	if (!order)
2343 		return NULL;
2344 
2345 	current->flags |= PF_MEMALLOC;
2346 	compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
2347 						nodemask, mode,
2348 						contended_compaction,
2349 						&last_compact_zone);
2350 	current->flags &= ~PF_MEMALLOC;
2351 
2352 	switch (compact_result) {
2353 	case COMPACT_DEFERRED:
2354 		*deferred_compaction = true;
2355 		/* fall-through */
2356 	case COMPACT_SKIPPED:
2357 		return NULL;
2358 	default:
2359 		break;
2360 	}
2361 
2362 	/*
2363 	 * At least in one zone compaction wasn't deferred or skipped, so let's
2364 	 * count a compaction stall
2365 	 */
2366 	count_vm_event(COMPACTSTALL);
2367 
2368 	/* Page migration frees to the PCP lists but we want merging */
2369 	drain_pages(get_cpu());
2370 	put_cpu();
2371 
2372 	page = get_page_from_freelist(gfp_mask, nodemask,
2373 			order, zonelist, high_zoneidx,
2374 			alloc_flags & ~ALLOC_NO_WATERMARKS,
2375 			preferred_zone, classzone_idx, migratetype);
2376 
2377 	if (page) {
2378 		struct zone *zone = page_zone(page);
2379 
2380 		zone->compact_blockskip_flush = false;
2381 		compaction_defer_reset(zone, order, true);
2382 		count_vm_event(COMPACTSUCCESS);
2383 		return page;
2384 	}
2385 
2386 	/*
2387 	 * last_compact_zone is where try_to_compact_pages thought allocation
2388 	 * should succeed, so it did not defer compaction. But here we know
2389 	 * that it didn't succeed, so we do the defer.
2390 	 */
2391 	if (last_compact_zone && mode != MIGRATE_ASYNC)
2392 		defer_compaction(last_compact_zone, order);
2393 
2394 	/*
2395 	 * It's bad if compaction run occurs and fails. The most likely reason
2396 	 * is that pages exist, but not enough to satisfy watermarks.
2397 	 */
2398 	count_vm_event(COMPACTFAIL);
2399 
2400 	cond_resched();
2401 
2402 	return NULL;
2403 }
2404 #else
2405 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist,enum zone_type high_zoneidx,nodemask_t * nodemask,int alloc_flags,struct zone * preferred_zone,int classzone_idx,int migratetype,enum migrate_mode mode,int * contended_compaction,bool * deferred_compaction)2406 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2407 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2408 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2409 	int classzone_idx, int migratetype, enum migrate_mode mode,
2410 	int *contended_compaction, bool *deferred_compaction)
2411 {
2412 	return NULL;
2413 }
2414 #endif /* CONFIG_COMPACTION */
2415 
2416 /* Perform direct synchronous page reclaim */
2417 static int
__perform_reclaim(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist,nodemask_t * nodemask)2418 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2419 		  nodemask_t *nodemask)
2420 {
2421 	struct reclaim_state reclaim_state;
2422 	int progress;
2423 
2424 	cond_resched();
2425 
2426 	/* We now go into synchronous reclaim */
2427 	cpuset_memory_pressure_bump();
2428 	current->flags |= PF_MEMALLOC;
2429 	lockdep_set_current_reclaim_state(gfp_mask);
2430 	reclaim_state.reclaimed_slab = 0;
2431 	current->reclaim_state = &reclaim_state;
2432 
2433 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2434 
2435 	current->reclaim_state = NULL;
2436 	lockdep_clear_current_reclaim_state();
2437 	current->flags &= ~PF_MEMALLOC;
2438 
2439 	cond_resched();
2440 
2441 	return progress;
2442 }
2443 
2444 /* The really slow allocator path where we enter direct reclaim */
2445 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist,enum zone_type high_zoneidx,nodemask_t * nodemask,int alloc_flags,struct zone * preferred_zone,int classzone_idx,int migratetype,unsigned long * did_some_progress)2446 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2447 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2448 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2449 	int classzone_idx, int migratetype, unsigned long *did_some_progress)
2450 {
2451 	struct page *page = NULL;
2452 	bool drained = false;
2453 
2454 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2455 					       nodemask);
2456 	if (unlikely(!(*did_some_progress)))
2457 		return NULL;
2458 
2459 	/* After successful reclaim, reconsider all zones for allocation */
2460 	if (IS_ENABLED(CONFIG_NUMA))
2461 		zlc_clear_zones_full(zonelist);
2462 
2463 retry:
2464 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2465 					zonelist, high_zoneidx,
2466 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2467 					preferred_zone, classzone_idx,
2468 					migratetype);
2469 
2470 	/*
2471 	 * If an allocation failed after direct reclaim, it could be because
2472 	 * pages are pinned on the per-cpu lists. Drain them and try again
2473 	 */
2474 	if (!page && !drained) {
2475 		drain_all_pages();
2476 		drained = true;
2477 		goto retry;
2478 	}
2479 
2480 	return page;
2481 }
2482 
2483 /*
2484  * This is called in the allocator slow-path if the allocation request is of
2485  * sufficient urgency to ignore watermarks and take other desperate measures
2486  */
2487 static inline struct page *
__alloc_pages_high_priority(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist,enum zone_type high_zoneidx,nodemask_t * nodemask,struct zone * preferred_zone,int classzone_idx,int migratetype)2488 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2489 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2490 	nodemask_t *nodemask, struct zone *preferred_zone,
2491 	int classzone_idx, int migratetype)
2492 {
2493 	struct page *page;
2494 
2495 	do {
2496 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2497 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2498 			preferred_zone, classzone_idx, migratetype);
2499 
2500 		if (!page && gfp_mask & __GFP_NOFAIL)
2501 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2502 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2503 
2504 	return page;
2505 }
2506 
wake_all_kswapds(unsigned int order,struct zonelist * zonelist,enum zone_type high_zoneidx,struct zone * preferred_zone,nodemask_t * nodemask)2507 static void wake_all_kswapds(unsigned int order,
2508 			     struct zonelist *zonelist,
2509 			     enum zone_type high_zoneidx,
2510 			     struct zone *preferred_zone,
2511 			     nodemask_t *nodemask)
2512 {
2513 	struct zoneref *z;
2514 	struct zone *zone;
2515 
2516 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2517 						high_zoneidx, nodemask)
2518 		wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2519 }
2520 
2521 static inline int
gfp_to_alloc_flags(gfp_t gfp_mask)2522 gfp_to_alloc_flags(gfp_t gfp_mask)
2523 {
2524 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2525 	const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2526 
2527 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2528 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2529 
2530 	/*
2531 	 * The caller may dip into page reserves a bit more if the caller
2532 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2533 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2534 	 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2535 	 */
2536 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2537 
2538 	if (atomic) {
2539 		/*
2540 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2541 		 * if it can't schedule.
2542 		 */
2543 		if (!(gfp_mask & __GFP_NOMEMALLOC))
2544 			alloc_flags |= ALLOC_HARDER;
2545 		/*
2546 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2547 		 * comment for __cpuset_node_allowed_softwall().
2548 		 */
2549 		alloc_flags &= ~ALLOC_CPUSET;
2550 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2551 		alloc_flags |= ALLOC_HARDER;
2552 
2553 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2554 		if (gfp_mask & __GFP_MEMALLOC)
2555 			alloc_flags |= ALLOC_NO_WATERMARKS;
2556 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2557 			alloc_flags |= ALLOC_NO_WATERMARKS;
2558 		else if (!in_interrupt() &&
2559 				((current->flags & PF_MEMALLOC) ||
2560 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2561 			alloc_flags |= ALLOC_NO_WATERMARKS;
2562 	}
2563 #ifdef CONFIG_CMA
2564 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2565 		alloc_flags |= ALLOC_CMA;
2566 #endif
2567 	return alloc_flags;
2568 }
2569 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)2570 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2571 {
2572 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2573 }
2574 
2575 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist,enum zone_type high_zoneidx,nodemask_t * nodemask,struct zone * preferred_zone,int classzone_idx,int migratetype)2576 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2577 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2578 	nodemask_t *nodemask, struct zone *preferred_zone,
2579 	int classzone_idx, int migratetype)
2580 {
2581 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2582 	struct page *page = NULL;
2583 	int alloc_flags;
2584 	unsigned long pages_reclaimed = 0;
2585 	unsigned long did_some_progress;
2586 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
2587 	bool deferred_compaction = false;
2588 	int contended_compaction = COMPACT_CONTENDED_NONE;
2589 
2590 	/*
2591 	 * In the slowpath, we sanity check order to avoid ever trying to
2592 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2593 	 * be using allocators in order of preference for an area that is
2594 	 * too large.
2595 	 */
2596 	if (order >= MAX_ORDER) {
2597 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2598 		return NULL;
2599 	}
2600 
2601 	/*
2602 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2603 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2604 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2605 	 * using a larger set of nodes after it has established that the
2606 	 * allowed per node queues are empty and that nodes are
2607 	 * over allocated.
2608 	 */
2609 	if (IS_ENABLED(CONFIG_NUMA) &&
2610 	    (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2611 		goto nopage;
2612 
2613 restart:
2614 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2615 		wake_all_kswapds(order, zonelist, high_zoneidx,
2616 				preferred_zone, nodemask);
2617 
2618 	/*
2619 	 * OK, we're below the kswapd watermark and have kicked background
2620 	 * reclaim. Now things get more complex, so set up alloc_flags according
2621 	 * to how we want to proceed.
2622 	 */
2623 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2624 
2625 	/*
2626 	 * Find the true preferred zone if the allocation is unconstrained by
2627 	 * cpusets.
2628 	 */
2629 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2630 		struct zoneref *preferred_zoneref;
2631 		preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2632 				NULL, &preferred_zone);
2633 		classzone_idx = zonelist_zone_idx(preferred_zoneref);
2634 	}
2635 
2636 rebalance:
2637 	/* This is the last chance, in general, before the goto nopage. */
2638 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2639 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2640 			preferred_zone, classzone_idx, migratetype);
2641 	if (page)
2642 		goto got_pg;
2643 
2644 	/* Allocate without watermarks if the context allows */
2645 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2646 		/*
2647 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2648 		 * the allocation is high priority and these type of
2649 		 * allocations are system rather than user orientated
2650 		 */
2651 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2652 
2653 		page = __alloc_pages_high_priority(gfp_mask, order,
2654 				zonelist, high_zoneidx, nodemask,
2655 				preferred_zone, classzone_idx, migratetype);
2656 		if (page) {
2657 			goto got_pg;
2658 		}
2659 	}
2660 
2661 	/* Atomic allocations - we can't balance anything */
2662 	if (!wait) {
2663 		/*
2664 		 * All existing users of the deprecated __GFP_NOFAIL are
2665 		 * blockable, so warn of any new users that actually allow this
2666 		 * type of allocation to fail.
2667 		 */
2668 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2669 		goto nopage;
2670 	}
2671 
2672 	/* Avoid recursion of direct reclaim */
2673 	if (current->flags & PF_MEMALLOC)
2674 		goto nopage;
2675 
2676 	/* Avoid allocations with no watermarks from looping endlessly */
2677 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2678 		goto nopage;
2679 
2680 	/*
2681 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2682 	 * attempts after direct reclaim are synchronous
2683 	 */
2684 	page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2685 					high_zoneidx, nodemask, alloc_flags,
2686 					preferred_zone,
2687 					classzone_idx, migratetype,
2688 					migration_mode, &contended_compaction,
2689 					&deferred_compaction);
2690 	if (page)
2691 		goto got_pg;
2692 
2693 	/* Checks for THP-specific high-order allocations */
2694 	if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2695 		/*
2696 		 * If compaction is deferred for high-order allocations, it is
2697 		 * because sync compaction recently failed. If this is the case
2698 		 * and the caller requested a THP allocation, we do not want
2699 		 * to heavily disrupt the system, so we fail the allocation
2700 		 * instead of entering direct reclaim.
2701 		 */
2702 		if (deferred_compaction)
2703 			goto nopage;
2704 
2705 		/*
2706 		 * In all zones where compaction was attempted (and not
2707 		 * deferred or skipped), lock contention has been detected.
2708 		 * For THP allocation we do not want to disrupt the others
2709 		 * so we fallback to base pages instead.
2710 		 */
2711 		if (contended_compaction == COMPACT_CONTENDED_LOCK)
2712 			goto nopage;
2713 
2714 		/*
2715 		 * If compaction was aborted due to need_resched(), we do not
2716 		 * want to further increase allocation latency, unless it is
2717 		 * khugepaged trying to collapse.
2718 		 */
2719 		if (contended_compaction == COMPACT_CONTENDED_SCHED
2720 			&& !(current->flags & PF_KTHREAD))
2721 			goto nopage;
2722 	}
2723 
2724 	/*
2725 	 * It can become very expensive to allocate transparent hugepages at
2726 	 * fault, so use asynchronous memory compaction for THP unless it is
2727 	 * khugepaged trying to collapse.
2728 	 */
2729 	if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2730 						(current->flags & PF_KTHREAD))
2731 		migration_mode = MIGRATE_SYNC_LIGHT;
2732 
2733 	/* Try direct reclaim and then allocating */
2734 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2735 					zonelist, high_zoneidx,
2736 					nodemask,
2737 					alloc_flags, preferred_zone,
2738 					classzone_idx, migratetype,
2739 					&did_some_progress);
2740 	if (page)
2741 		goto got_pg;
2742 
2743 	/*
2744 	 * If we failed to make any progress reclaiming, then we are
2745 	 * running out of options and have to consider going OOM
2746 	 */
2747 	if (!did_some_progress) {
2748 		if (oom_gfp_allowed(gfp_mask)) {
2749 			if (oom_killer_disabled)
2750 				goto nopage;
2751 			/* Coredumps can quickly deplete all memory reserves */
2752 			if ((current->flags & PF_DUMPCORE) &&
2753 			    !(gfp_mask & __GFP_NOFAIL))
2754 				goto nopage;
2755 			page = __alloc_pages_may_oom(gfp_mask, order,
2756 					zonelist, high_zoneidx,
2757 					nodemask, preferred_zone,
2758 					classzone_idx, migratetype);
2759 			if (page)
2760 				goto got_pg;
2761 
2762 			if (!(gfp_mask & __GFP_NOFAIL)) {
2763 				/*
2764 				 * The oom killer is not called for high-order
2765 				 * allocations that may fail, so if no progress
2766 				 * is being made, there are no other options and
2767 				 * retrying is unlikely to help.
2768 				 */
2769 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2770 					goto nopage;
2771 				/*
2772 				 * The oom killer is not called for lowmem
2773 				 * allocations to prevent needlessly killing
2774 				 * innocent tasks.
2775 				 */
2776 				if (high_zoneidx < ZONE_NORMAL)
2777 					goto nopage;
2778 			}
2779 
2780 			goto restart;
2781 		}
2782 	}
2783 
2784 	/* Check if we should retry the allocation */
2785 	pages_reclaimed += did_some_progress;
2786 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2787 						pages_reclaimed)) {
2788 		/* Wait for some write requests to complete then retry */
2789 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2790 		goto rebalance;
2791 	} else {
2792 		/*
2793 		 * High-order allocations do not necessarily loop after
2794 		 * direct reclaim and reclaim/compaction depends on compaction
2795 		 * being called after reclaim so call directly if necessary
2796 		 */
2797 		page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2798 					high_zoneidx, nodemask, alloc_flags,
2799 					preferred_zone,
2800 					classzone_idx, migratetype,
2801 					migration_mode, &contended_compaction,
2802 					&deferred_compaction);
2803 		if (page)
2804 			goto got_pg;
2805 	}
2806 
2807 nopage:
2808 	warn_alloc_failed(gfp_mask, order, NULL);
2809 	return page;
2810 got_pg:
2811 	if (kmemcheck_enabled)
2812 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2813 
2814 	return page;
2815 }
2816 
2817 /*
2818  * This is the 'heart' of the zoned buddy allocator.
2819  */
2820 struct page *
__alloc_pages_nodemask(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist,nodemask_t * nodemask)2821 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2822 			struct zonelist *zonelist, nodemask_t *nodemask)
2823 {
2824 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2825 	struct zone *preferred_zone;
2826 	struct zoneref *preferred_zoneref;
2827 	struct page *page = NULL;
2828 	int migratetype = gfpflags_to_migratetype(gfp_mask);
2829 	unsigned int cpuset_mems_cookie;
2830 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2831 	int classzone_idx;
2832 
2833 	gfp_mask &= gfp_allowed_mask;
2834 
2835 	lockdep_trace_alloc(gfp_mask);
2836 
2837 	might_sleep_if(gfp_mask & __GFP_WAIT);
2838 
2839 	if (should_fail_alloc_page(gfp_mask, order))
2840 		return NULL;
2841 
2842 	/*
2843 	 * Check the zones suitable for the gfp_mask contain at least one
2844 	 * valid zone. It's possible to have an empty zonelist as a result
2845 	 * of GFP_THISNODE and a memoryless node
2846 	 */
2847 	if (unlikely(!zonelist->_zonerefs->zone))
2848 		return NULL;
2849 
2850 	if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2851 		alloc_flags |= ALLOC_CMA;
2852 
2853 retry_cpuset:
2854 	cpuset_mems_cookie = read_mems_allowed_begin();
2855 
2856 	/* The preferred zone is used for statistics later */
2857 	preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2858 				nodemask ? : &cpuset_current_mems_allowed,
2859 				&preferred_zone);
2860 	if (!preferred_zone)
2861 		goto out;
2862 	classzone_idx = zonelist_zone_idx(preferred_zoneref);
2863 
2864 	/* First allocation attempt */
2865 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2866 			zonelist, high_zoneidx, alloc_flags,
2867 			preferred_zone, classzone_idx, migratetype);
2868 	if (unlikely(!page)) {
2869 		/*
2870 		 * Runtime PM, block IO and its error handling path
2871 		 * can deadlock because I/O on the device might not
2872 		 * complete.
2873 		 */
2874 		gfp_mask = memalloc_noio_flags(gfp_mask);
2875 		page = __alloc_pages_slowpath(gfp_mask, order,
2876 				zonelist, high_zoneidx, nodemask,
2877 				preferred_zone, classzone_idx, migratetype);
2878 	}
2879 
2880 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2881 
2882 out:
2883 	/*
2884 	 * When updating a task's mems_allowed, it is possible to race with
2885 	 * parallel threads in such a way that an allocation can fail while
2886 	 * the mask is being updated. If a page allocation is about to fail,
2887 	 * check if the cpuset changed during allocation and if so, retry.
2888 	 */
2889 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2890 		goto retry_cpuset;
2891 
2892 	return page;
2893 }
2894 EXPORT_SYMBOL(__alloc_pages_nodemask);
2895 
2896 /*
2897  * Common helper functions.
2898  */
__get_free_pages(gfp_t gfp_mask,unsigned int order)2899 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2900 {
2901 	struct page *page;
2902 
2903 	/*
2904 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2905 	 * a highmem page
2906 	 */
2907 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2908 
2909 	page = alloc_pages(gfp_mask, order);
2910 	if (!page)
2911 		return 0;
2912 	return (unsigned long) page_address(page);
2913 }
2914 EXPORT_SYMBOL(__get_free_pages);
2915 
get_zeroed_page(gfp_t gfp_mask)2916 unsigned long get_zeroed_page(gfp_t gfp_mask)
2917 {
2918 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2919 }
2920 EXPORT_SYMBOL(get_zeroed_page);
2921 
__free_pages(struct page * page,unsigned int order)2922 void __free_pages(struct page *page, unsigned int order)
2923 {
2924 	if (put_page_testzero(page)) {
2925 		if (order == 0)
2926 			free_hot_cold_page(page, false);
2927 		else
2928 			__free_pages_ok(page, order);
2929 	}
2930 }
2931 
2932 EXPORT_SYMBOL(__free_pages);
2933 
free_pages(unsigned long addr,unsigned int order)2934 void free_pages(unsigned long addr, unsigned int order)
2935 {
2936 	if (addr != 0) {
2937 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2938 		__free_pages(virt_to_page((void *)addr), order);
2939 	}
2940 }
2941 
2942 EXPORT_SYMBOL(free_pages);
2943 
2944 /*
2945  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2946  * of the current memory cgroup.
2947  *
2948  * It should be used when the caller would like to use kmalloc, but since the
2949  * allocation is large, it has to fall back to the page allocator.
2950  */
alloc_kmem_pages(gfp_t gfp_mask,unsigned int order)2951 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2952 {
2953 	struct page *page;
2954 	struct mem_cgroup *memcg = NULL;
2955 
2956 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2957 		return NULL;
2958 	page = alloc_pages(gfp_mask, order);
2959 	memcg_kmem_commit_charge(page, memcg, order);
2960 	return page;
2961 }
2962 
alloc_kmem_pages_node(int nid,gfp_t gfp_mask,unsigned int order)2963 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2964 {
2965 	struct page *page;
2966 	struct mem_cgroup *memcg = NULL;
2967 
2968 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2969 		return NULL;
2970 	page = alloc_pages_node(nid, gfp_mask, order);
2971 	memcg_kmem_commit_charge(page, memcg, order);
2972 	return page;
2973 }
2974 
2975 /*
2976  * __free_kmem_pages and free_kmem_pages will free pages allocated with
2977  * alloc_kmem_pages.
2978  */
__free_kmem_pages(struct page * page,unsigned int order)2979 void __free_kmem_pages(struct page *page, unsigned int order)
2980 {
2981 	memcg_kmem_uncharge_pages(page, order);
2982 	__free_pages(page, order);
2983 }
2984 
free_kmem_pages(unsigned long addr,unsigned int order)2985 void free_kmem_pages(unsigned long addr, unsigned int order)
2986 {
2987 	if (addr != 0) {
2988 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2989 		__free_kmem_pages(virt_to_page((void *)addr), order);
2990 	}
2991 }
2992 
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)2993 static void *make_alloc_exact(unsigned long addr, unsigned int order,
2994 		size_t size)
2995 {
2996 	if (addr) {
2997 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2998 		unsigned long used = addr + PAGE_ALIGN(size);
2999 
3000 		split_page(virt_to_page((void *)addr), order);
3001 		while (used < alloc_end) {
3002 			free_page(used);
3003 			used += PAGE_SIZE;
3004 		}
3005 	}
3006 	return (void *)addr;
3007 }
3008 
3009 /**
3010  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3011  * @size: the number of bytes to allocate
3012  * @gfp_mask: GFP flags for the allocation
3013  *
3014  * This function is similar to alloc_pages(), except that it allocates the
3015  * minimum number of pages to satisfy the request.  alloc_pages() can only
3016  * allocate memory in power-of-two pages.
3017  *
3018  * This function is also limited by MAX_ORDER.
3019  *
3020  * Memory allocated by this function must be released by free_pages_exact().
3021  */
alloc_pages_exact(size_t size,gfp_t gfp_mask)3022 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3023 {
3024 	unsigned int order = get_order(size);
3025 	unsigned long addr;
3026 
3027 	addr = __get_free_pages(gfp_mask, order);
3028 	return make_alloc_exact(addr, order, size);
3029 }
3030 EXPORT_SYMBOL(alloc_pages_exact);
3031 
3032 /**
3033  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3034  *			   pages on a node.
3035  * @nid: the preferred node ID where memory should be allocated
3036  * @size: the number of bytes to allocate
3037  * @gfp_mask: GFP flags for the allocation
3038  *
3039  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3040  * back.
3041  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3042  * but is not exact.
3043  */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)3044 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3045 {
3046 	unsigned int order = get_order(size);
3047 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3048 	if (!p)
3049 		return NULL;
3050 	return make_alloc_exact((unsigned long)page_address(p), order, size);
3051 }
3052 
3053 /**
3054  * free_pages_exact - release memory allocated via alloc_pages_exact()
3055  * @virt: the value returned by alloc_pages_exact.
3056  * @size: size of allocation, same value as passed to alloc_pages_exact().
3057  *
3058  * Release the memory allocated by a previous call to alloc_pages_exact.
3059  */
free_pages_exact(void * virt,size_t size)3060 void free_pages_exact(void *virt, size_t size)
3061 {
3062 	unsigned long addr = (unsigned long)virt;
3063 	unsigned long end = addr + PAGE_ALIGN(size);
3064 
3065 	while (addr < end) {
3066 		free_page(addr);
3067 		addr += PAGE_SIZE;
3068 	}
3069 }
3070 EXPORT_SYMBOL(free_pages_exact);
3071 
3072 /**
3073  * nr_free_zone_pages - count number of pages beyond high watermark
3074  * @offset: The zone index of the highest zone
3075  *
3076  * nr_free_zone_pages() counts the number of counts pages which are beyond the
3077  * high watermark within all zones at or below a given zone index.  For each
3078  * zone, the number of pages is calculated as:
3079  *     managed_pages - high_pages
3080  */
nr_free_zone_pages(int offset)3081 static unsigned long nr_free_zone_pages(int offset)
3082 {
3083 	struct zoneref *z;
3084 	struct zone *zone;
3085 
3086 	/* Just pick one node, since fallback list is circular */
3087 	unsigned long sum = 0;
3088 
3089 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3090 
3091 	for_each_zone_zonelist(zone, z, zonelist, offset) {
3092 		unsigned long size = zone->managed_pages;
3093 		unsigned long high = high_wmark_pages(zone);
3094 		if (size > high)
3095 			sum += size - high;
3096 	}
3097 
3098 	return sum;
3099 }
3100 
3101 /**
3102  * nr_free_buffer_pages - count number of pages beyond high watermark
3103  *
3104  * nr_free_buffer_pages() counts the number of pages which are beyond the high
3105  * watermark within ZONE_DMA and ZONE_NORMAL.
3106  */
nr_free_buffer_pages(void)3107 unsigned long nr_free_buffer_pages(void)
3108 {
3109 	return nr_free_zone_pages(gfp_zone(GFP_USER));
3110 }
3111 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3112 
3113 /**
3114  * nr_free_pagecache_pages - count number of pages beyond high watermark
3115  *
3116  * nr_free_pagecache_pages() counts the number of pages which are beyond the
3117  * high watermark within all zones.
3118  */
nr_free_pagecache_pages(void)3119 unsigned long nr_free_pagecache_pages(void)
3120 {
3121 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3122 }
3123 
show_node(struct zone * zone)3124 static inline void show_node(struct zone *zone)
3125 {
3126 	if (IS_ENABLED(CONFIG_NUMA))
3127 		printk("Node %d ", zone_to_nid(zone));
3128 }
3129 
si_meminfo(struct sysinfo * val)3130 void si_meminfo(struct sysinfo *val)
3131 {
3132 	val->totalram = totalram_pages;
3133 	val->sharedram = global_page_state(NR_SHMEM);
3134 	val->freeram = global_page_state(NR_FREE_PAGES);
3135 	val->bufferram = nr_blockdev_pages();
3136 	val->totalhigh = totalhigh_pages;
3137 	val->freehigh = nr_free_highpages();
3138 	val->mem_unit = PAGE_SIZE;
3139 }
3140 
3141 EXPORT_SYMBOL(si_meminfo);
3142 
3143 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)3144 void si_meminfo_node(struct sysinfo *val, int nid)
3145 {
3146 	int zone_type;		/* needs to be signed */
3147 	unsigned long managed_pages = 0;
3148 	pg_data_t *pgdat = NODE_DATA(nid);
3149 
3150 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3151 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3152 	val->totalram = managed_pages;
3153 	val->sharedram = node_page_state(nid, NR_SHMEM);
3154 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3155 #ifdef CONFIG_HIGHMEM
3156 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3157 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3158 			NR_FREE_PAGES);
3159 #else
3160 	val->totalhigh = 0;
3161 	val->freehigh = 0;
3162 #endif
3163 	val->mem_unit = PAGE_SIZE;
3164 }
3165 #endif
3166 
3167 /*
3168  * Determine whether the node should be displayed or not, depending on whether
3169  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3170  */
skip_free_areas_node(unsigned int flags,int nid)3171 bool skip_free_areas_node(unsigned int flags, int nid)
3172 {
3173 	bool ret = false;
3174 	unsigned int cpuset_mems_cookie;
3175 
3176 	if (!(flags & SHOW_MEM_FILTER_NODES))
3177 		goto out;
3178 
3179 	do {
3180 		cpuset_mems_cookie = read_mems_allowed_begin();
3181 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3182 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3183 out:
3184 	return ret;
3185 }
3186 
3187 #define K(x) ((x) << (PAGE_SHIFT-10))
3188 
show_migration_types(unsigned char type)3189 static void show_migration_types(unsigned char type)
3190 {
3191 	static const char types[MIGRATE_TYPES] = {
3192 		[MIGRATE_UNMOVABLE]	= 'U',
3193 		[MIGRATE_RECLAIMABLE]	= 'E',
3194 		[MIGRATE_MOVABLE]	= 'M',
3195 		[MIGRATE_RESERVE]	= 'R',
3196 #ifdef CONFIG_CMA
3197 		[MIGRATE_CMA]		= 'C',
3198 #endif
3199 #ifdef CONFIG_MEMORY_ISOLATION
3200 		[MIGRATE_ISOLATE]	= 'I',
3201 #endif
3202 	};
3203 	char tmp[MIGRATE_TYPES + 1];
3204 	char *p = tmp;
3205 	int i;
3206 
3207 	for (i = 0; i < MIGRATE_TYPES; i++) {
3208 		if (type & (1 << i))
3209 			*p++ = types[i];
3210 	}
3211 
3212 	*p = '\0';
3213 	printk("(%s) ", tmp);
3214 }
3215 
3216 /*
3217  * Show free area list (used inside shift_scroll-lock stuff)
3218  * We also calculate the percentage fragmentation. We do this by counting the
3219  * memory on each free list with the exception of the first item on the list.
3220  * Suppresses nodes that are not allowed by current's cpuset if
3221  * SHOW_MEM_FILTER_NODES is passed.
3222  */
show_free_areas(unsigned int filter)3223 void show_free_areas(unsigned int filter)
3224 {
3225 	int cpu;
3226 	struct zone *zone;
3227 
3228 	for_each_populated_zone(zone) {
3229 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3230 			continue;
3231 		show_node(zone);
3232 		printk("%s per-cpu:\n", zone->name);
3233 
3234 		for_each_online_cpu(cpu) {
3235 			struct per_cpu_pageset *pageset;
3236 
3237 			pageset = per_cpu_ptr(zone->pageset, cpu);
3238 
3239 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3240 			       cpu, pageset->pcp.high,
3241 			       pageset->pcp.batch, pageset->pcp.count);
3242 		}
3243 	}
3244 
3245 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3246 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3247 		" unevictable:%lu"
3248 		" dirty:%lu writeback:%lu unstable:%lu\n"
3249 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3250 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3251 		" free_cma:%lu\n",
3252 		global_page_state(NR_ACTIVE_ANON),
3253 		global_page_state(NR_INACTIVE_ANON),
3254 		global_page_state(NR_ISOLATED_ANON),
3255 		global_page_state(NR_ACTIVE_FILE),
3256 		global_page_state(NR_INACTIVE_FILE),
3257 		global_page_state(NR_ISOLATED_FILE),
3258 		global_page_state(NR_UNEVICTABLE),
3259 		global_page_state(NR_FILE_DIRTY),
3260 		global_page_state(NR_WRITEBACK),
3261 		global_page_state(NR_UNSTABLE_NFS),
3262 		global_page_state(NR_FREE_PAGES),
3263 		global_page_state(NR_SLAB_RECLAIMABLE),
3264 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3265 		global_page_state(NR_FILE_MAPPED),
3266 		global_page_state(NR_SHMEM),
3267 		global_page_state(NR_PAGETABLE),
3268 		global_page_state(NR_BOUNCE),
3269 		global_page_state(NR_FREE_CMA_PAGES));
3270 
3271 	for_each_populated_zone(zone) {
3272 		int i;
3273 
3274 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3275 			continue;
3276 		show_node(zone);
3277 		printk("%s"
3278 			" free:%lukB"
3279 			" min:%lukB"
3280 			" low:%lukB"
3281 			" high:%lukB"
3282 			" active_anon:%lukB"
3283 			" inactive_anon:%lukB"
3284 			" active_file:%lukB"
3285 			" inactive_file:%lukB"
3286 			" unevictable:%lukB"
3287 			" isolated(anon):%lukB"
3288 			" isolated(file):%lukB"
3289 			" present:%lukB"
3290 			" managed:%lukB"
3291 			" mlocked:%lukB"
3292 			" dirty:%lukB"
3293 			" writeback:%lukB"
3294 			" mapped:%lukB"
3295 			" shmem:%lukB"
3296 			" slab_reclaimable:%lukB"
3297 			" slab_unreclaimable:%lukB"
3298 			" kernel_stack:%lukB"
3299 			" pagetables:%lukB"
3300 			" unstable:%lukB"
3301 			" bounce:%lukB"
3302 			" free_cma:%lukB"
3303 			" writeback_tmp:%lukB"
3304 			" pages_scanned:%lu"
3305 			" all_unreclaimable? %s"
3306 			"\n",
3307 			zone->name,
3308 			K(zone_page_state(zone, NR_FREE_PAGES)),
3309 			K(min_wmark_pages(zone)),
3310 			K(low_wmark_pages(zone)),
3311 			K(high_wmark_pages(zone)),
3312 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3313 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3314 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3315 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3316 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3317 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3318 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3319 			K(zone->present_pages),
3320 			K(zone->managed_pages),
3321 			K(zone_page_state(zone, NR_MLOCK)),
3322 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3323 			K(zone_page_state(zone, NR_WRITEBACK)),
3324 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3325 			K(zone_page_state(zone, NR_SHMEM)),
3326 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3327 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3328 			zone_page_state(zone, NR_KERNEL_STACK) *
3329 				THREAD_SIZE / 1024,
3330 			K(zone_page_state(zone, NR_PAGETABLE)),
3331 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3332 			K(zone_page_state(zone, NR_BOUNCE)),
3333 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3334 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3335 			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3336 			(!zone_reclaimable(zone) ? "yes" : "no")
3337 			);
3338 		printk("lowmem_reserve[]:");
3339 		for (i = 0; i < MAX_NR_ZONES; i++)
3340 			printk(" %ld", zone->lowmem_reserve[i]);
3341 		printk("\n");
3342 	}
3343 
3344 	for_each_populated_zone(zone) {
3345 		unsigned int order;
3346 		unsigned long nr[MAX_ORDER], flags, total = 0;
3347 		unsigned char types[MAX_ORDER];
3348 
3349 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3350 			continue;
3351 		show_node(zone);
3352 		printk("%s: ", zone->name);
3353 
3354 		spin_lock_irqsave(&zone->lock, flags);
3355 		for (order = 0; order < MAX_ORDER; order++) {
3356 			struct free_area *area = &zone->free_area[order];
3357 			int type;
3358 
3359 			nr[order] = area->nr_free;
3360 			total += nr[order] << order;
3361 
3362 			types[order] = 0;
3363 			for (type = 0; type < MIGRATE_TYPES; type++) {
3364 				if (!list_empty(&area->free_list[type]))
3365 					types[order] |= 1 << type;
3366 			}
3367 		}
3368 		spin_unlock_irqrestore(&zone->lock, flags);
3369 		for (order = 0; order < MAX_ORDER; order++) {
3370 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3371 			if (nr[order])
3372 				show_migration_types(types[order]);
3373 		}
3374 		printk("= %lukB\n", K(total));
3375 	}
3376 
3377 	hugetlb_show_meminfo();
3378 
3379 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3380 
3381 	show_swap_cache_info();
3382 }
3383 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)3384 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3385 {
3386 	zoneref->zone = zone;
3387 	zoneref->zone_idx = zone_idx(zone);
3388 }
3389 
3390 /*
3391  * Builds allocation fallback zone lists.
3392  *
3393  * Add all populated zones of a node to the zonelist.
3394  */
build_zonelists_node(pg_data_t * pgdat,struct zonelist * zonelist,int nr_zones)3395 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3396 				int nr_zones)
3397 {
3398 	struct zone *zone;
3399 	enum zone_type zone_type = MAX_NR_ZONES;
3400 
3401 	do {
3402 		zone_type--;
3403 		zone = pgdat->node_zones + zone_type;
3404 		if (populated_zone(zone)) {
3405 			zoneref_set_zone(zone,
3406 				&zonelist->_zonerefs[nr_zones++]);
3407 			check_highest_zone(zone_type);
3408 		}
3409 	} while (zone_type);
3410 
3411 	return nr_zones;
3412 }
3413 
3414 
3415 /*
3416  *  zonelist_order:
3417  *  0 = automatic detection of better ordering.
3418  *  1 = order by ([node] distance, -zonetype)
3419  *  2 = order by (-zonetype, [node] distance)
3420  *
3421  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3422  *  the same zonelist. So only NUMA can configure this param.
3423  */
3424 #define ZONELIST_ORDER_DEFAULT  0
3425 #define ZONELIST_ORDER_NODE     1
3426 #define ZONELIST_ORDER_ZONE     2
3427 
3428 /* zonelist order in the kernel.
3429  * set_zonelist_order() will set this to NODE or ZONE.
3430  */
3431 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3432 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3433 
3434 
3435 #ifdef CONFIG_NUMA
3436 /* The value user specified ....changed by config */
3437 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3438 /* string for sysctl */
3439 #define NUMA_ZONELIST_ORDER_LEN	16
3440 char numa_zonelist_order[16] = "default";
3441 
3442 /*
3443  * interface for configure zonelist ordering.
3444  * command line option "numa_zonelist_order"
3445  *	= "[dD]efault	- default, automatic configuration.
3446  *	= "[nN]ode 	- order by node locality, then by zone within node
3447  *	= "[zZ]one      - order by zone, then by locality within zone
3448  */
3449 
__parse_numa_zonelist_order(char * s)3450 static int __parse_numa_zonelist_order(char *s)
3451 {
3452 	if (*s == 'd' || *s == 'D') {
3453 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3454 	} else if (*s == 'n' || *s == 'N') {
3455 		user_zonelist_order = ZONELIST_ORDER_NODE;
3456 	} else if (*s == 'z' || *s == 'Z') {
3457 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3458 	} else {
3459 		printk(KERN_WARNING
3460 			"Ignoring invalid numa_zonelist_order value:  "
3461 			"%s\n", s);
3462 		return -EINVAL;
3463 	}
3464 	return 0;
3465 }
3466 
setup_numa_zonelist_order(char * s)3467 static __init int setup_numa_zonelist_order(char *s)
3468 {
3469 	int ret;
3470 
3471 	if (!s)
3472 		return 0;
3473 
3474 	ret = __parse_numa_zonelist_order(s);
3475 	if (ret == 0)
3476 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3477 
3478 	return ret;
3479 }
3480 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3481 
3482 /*
3483  * sysctl handler for numa_zonelist_order
3484  */
numa_zonelist_order_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)3485 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3486 		void __user *buffer, size_t *length,
3487 		loff_t *ppos)
3488 {
3489 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3490 	int ret;
3491 	static DEFINE_MUTEX(zl_order_mutex);
3492 
3493 	mutex_lock(&zl_order_mutex);
3494 	if (write) {
3495 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3496 			ret = -EINVAL;
3497 			goto out;
3498 		}
3499 		strcpy(saved_string, (char *)table->data);
3500 	}
3501 	ret = proc_dostring(table, write, buffer, length, ppos);
3502 	if (ret)
3503 		goto out;
3504 	if (write) {
3505 		int oldval = user_zonelist_order;
3506 
3507 		ret = __parse_numa_zonelist_order((char *)table->data);
3508 		if (ret) {
3509 			/*
3510 			 * bogus value.  restore saved string
3511 			 */
3512 			strncpy((char *)table->data, saved_string,
3513 				NUMA_ZONELIST_ORDER_LEN);
3514 			user_zonelist_order = oldval;
3515 		} else if (oldval != user_zonelist_order) {
3516 			mutex_lock(&zonelists_mutex);
3517 			build_all_zonelists(NULL, NULL);
3518 			mutex_unlock(&zonelists_mutex);
3519 		}
3520 	}
3521 out:
3522 	mutex_unlock(&zl_order_mutex);
3523 	return ret;
3524 }
3525 
3526 
3527 #define MAX_NODE_LOAD (nr_online_nodes)
3528 static int node_load[MAX_NUMNODES];
3529 
3530 /**
3531  * find_next_best_node - find the next node that should appear in a given node's fallback list
3532  * @node: node whose fallback list we're appending
3533  * @used_node_mask: nodemask_t of already used nodes
3534  *
3535  * We use a number of factors to determine which is the next node that should
3536  * appear on a given node's fallback list.  The node should not have appeared
3537  * already in @node's fallback list, and it should be the next closest node
3538  * according to the distance array (which contains arbitrary distance values
3539  * from each node to each node in the system), and should also prefer nodes
3540  * with no CPUs, since presumably they'll have very little allocation pressure
3541  * on them otherwise.
3542  * It returns -1 if no node is found.
3543  */
find_next_best_node(int node,nodemask_t * used_node_mask)3544 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3545 {
3546 	int n, val;
3547 	int min_val = INT_MAX;
3548 	int best_node = NUMA_NO_NODE;
3549 	const struct cpumask *tmp = cpumask_of_node(0);
3550 
3551 	/* Use the local node if we haven't already */
3552 	if (!node_isset(node, *used_node_mask)) {
3553 		node_set(node, *used_node_mask);
3554 		return node;
3555 	}
3556 
3557 	for_each_node_state(n, N_MEMORY) {
3558 
3559 		/* Don't want a node to appear more than once */
3560 		if (node_isset(n, *used_node_mask))
3561 			continue;
3562 
3563 		/* Use the distance array to find the distance */
3564 		val = node_distance(node, n);
3565 
3566 		/* Penalize nodes under us ("prefer the next node") */
3567 		val += (n < node);
3568 
3569 		/* Give preference to headless and unused nodes */
3570 		tmp = cpumask_of_node(n);
3571 		if (!cpumask_empty(tmp))
3572 			val += PENALTY_FOR_NODE_WITH_CPUS;
3573 
3574 		/* Slight preference for less loaded node */
3575 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3576 		val += node_load[n];
3577 
3578 		if (val < min_val) {
3579 			min_val = val;
3580 			best_node = n;
3581 		}
3582 	}
3583 
3584 	if (best_node >= 0)
3585 		node_set(best_node, *used_node_mask);
3586 
3587 	return best_node;
3588 }
3589 
3590 
3591 /*
3592  * Build zonelists ordered by node and zones within node.
3593  * This results in maximum locality--normal zone overflows into local
3594  * DMA zone, if any--but risks exhausting DMA zone.
3595  */
build_zonelists_in_node_order(pg_data_t * pgdat,int node)3596 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3597 {
3598 	int j;
3599 	struct zonelist *zonelist;
3600 
3601 	zonelist = &pgdat->node_zonelists[0];
3602 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3603 		;
3604 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3605 	zonelist->_zonerefs[j].zone = NULL;
3606 	zonelist->_zonerefs[j].zone_idx = 0;
3607 }
3608 
3609 /*
3610  * Build gfp_thisnode zonelists
3611  */
build_thisnode_zonelists(pg_data_t * pgdat)3612 static void build_thisnode_zonelists(pg_data_t *pgdat)
3613 {
3614 	int j;
3615 	struct zonelist *zonelist;
3616 
3617 	zonelist = &pgdat->node_zonelists[1];
3618 	j = build_zonelists_node(pgdat, zonelist, 0);
3619 	zonelist->_zonerefs[j].zone = NULL;
3620 	zonelist->_zonerefs[j].zone_idx = 0;
3621 }
3622 
3623 /*
3624  * Build zonelists ordered by zone and nodes within zones.
3625  * This results in conserving DMA zone[s] until all Normal memory is
3626  * exhausted, but results in overflowing to remote node while memory
3627  * may still exist in local DMA zone.
3628  */
3629 static int node_order[MAX_NUMNODES];
3630 
build_zonelists_in_zone_order(pg_data_t * pgdat,int nr_nodes)3631 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3632 {
3633 	int pos, j, node;
3634 	int zone_type;		/* needs to be signed */
3635 	struct zone *z;
3636 	struct zonelist *zonelist;
3637 
3638 	zonelist = &pgdat->node_zonelists[0];
3639 	pos = 0;
3640 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3641 		for (j = 0; j < nr_nodes; j++) {
3642 			node = node_order[j];
3643 			z = &NODE_DATA(node)->node_zones[zone_type];
3644 			if (populated_zone(z)) {
3645 				zoneref_set_zone(z,
3646 					&zonelist->_zonerefs[pos++]);
3647 				check_highest_zone(zone_type);
3648 			}
3649 		}
3650 	}
3651 	zonelist->_zonerefs[pos].zone = NULL;
3652 	zonelist->_zonerefs[pos].zone_idx = 0;
3653 }
3654 
3655 #if defined(CONFIG_64BIT)
3656 /*
3657  * Devices that require DMA32/DMA are relatively rare and do not justify a
3658  * penalty to every machine in case the specialised case applies. Default
3659  * to Node-ordering on 64-bit NUMA machines
3660  */
default_zonelist_order(void)3661 static int default_zonelist_order(void)
3662 {
3663 	return ZONELIST_ORDER_NODE;
3664 }
3665 #else
3666 /*
3667  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3668  * by the kernel. If processes running on node 0 deplete the low memory zone
3669  * then reclaim will occur more frequency increasing stalls and potentially
3670  * be easier to OOM if a large percentage of the zone is under writeback or
3671  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3672  * Hence, default to zone ordering on 32-bit.
3673  */
default_zonelist_order(void)3674 static int default_zonelist_order(void)
3675 {
3676 	return ZONELIST_ORDER_ZONE;
3677 }
3678 #endif /* CONFIG_64BIT */
3679 
set_zonelist_order(void)3680 static void set_zonelist_order(void)
3681 {
3682 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3683 		current_zonelist_order = default_zonelist_order();
3684 	else
3685 		current_zonelist_order = user_zonelist_order;
3686 }
3687 
build_zonelists(pg_data_t * pgdat)3688 static void build_zonelists(pg_data_t *pgdat)
3689 {
3690 	int j, node, load;
3691 	enum zone_type i;
3692 	nodemask_t used_mask;
3693 	int local_node, prev_node;
3694 	struct zonelist *zonelist;
3695 	unsigned int order = current_zonelist_order;
3696 
3697 	/* initialize zonelists */
3698 	for (i = 0; i < MAX_ZONELISTS; i++) {
3699 		zonelist = pgdat->node_zonelists + i;
3700 		zonelist->_zonerefs[0].zone = NULL;
3701 		zonelist->_zonerefs[0].zone_idx = 0;
3702 	}
3703 
3704 	/* NUMA-aware ordering of nodes */
3705 	local_node = pgdat->node_id;
3706 	load = nr_online_nodes;
3707 	prev_node = local_node;
3708 	nodes_clear(used_mask);
3709 
3710 	memset(node_order, 0, sizeof(node_order));
3711 	j = 0;
3712 
3713 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3714 		/*
3715 		 * We don't want to pressure a particular node.
3716 		 * So adding penalty to the first node in same
3717 		 * distance group to make it round-robin.
3718 		 */
3719 		if (node_distance(local_node, node) !=
3720 		    node_distance(local_node, prev_node))
3721 			node_load[node] = load;
3722 
3723 		prev_node = node;
3724 		load--;
3725 		if (order == ZONELIST_ORDER_NODE)
3726 			build_zonelists_in_node_order(pgdat, node);
3727 		else
3728 			node_order[j++] = node;	/* remember order */
3729 	}
3730 
3731 	if (order == ZONELIST_ORDER_ZONE) {
3732 		/* calculate node order -- i.e., DMA last! */
3733 		build_zonelists_in_zone_order(pgdat, j);
3734 	}
3735 
3736 	build_thisnode_zonelists(pgdat);
3737 }
3738 
3739 /* Construct the zonelist performance cache - see further mmzone.h */
build_zonelist_cache(pg_data_t * pgdat)3740 static void build_zonelist_cache(pg_data_t *pgdat)
3741 {
3742 	struct zonelist *zonelist;
3743 	struct zonelist_cache *zlc;
3744 	struct zoneref *z;
3745 
3746 	zonelist = &pgdat->node_zonelists[0];
3747 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3748 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3749 	for (z = zonelist->_zonerefs; z->zone; z++)
3750 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3751 }
3752 
3753 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3754 /*
3755  * Return node id of node used for "local" allocations.
3756  * I.e., first node id of first zone in arg node's generic zonelist.
3757  * Used for initializing percpu 'numa_mem', which is used primarily
3758  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3759  */
local_memory_node(int node)3760 int local_memory_node(int node)
3761 {
3762 	struct zone *zone;
3763 
3764 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3765 				   gfp_zone(GFP_KERNEL),
3766 				   NULL,
3767 				   &zone);
3768 	return zone->node;
3769 }
3770 #endif
3771 
3772 #else	/* CONFIG_NUMA */
3773 
set_zonelist_order(void)3774 static void set_zonelist_order(void)
3775 {
3776 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3777 }
3778 
build_zonelists(pg_data_t * pgdat)3779 static void build_zonelists(pg_data_t *pgdat)
3780 {
3781 	int node, local_node;
3782 	enum zone_type j;
3783 	struct zonelist *zonelist;
3784 
3785 	local_node = pgdat->node_id;
3786 
3787 	zonelist = &pgdat->node_zonelists[0];
3788 	j = build_zonelists_node(pgdat, zonelist, 0);
3789 
3790 	/*
3791 	 * Now we build the zonelist so that it contains the zones
3792 	 * of all the other nodes.
3793 	 * We don't want to pressure a particular node, so when
3794 	 * building the zones for node N, we make sure that the
3795 	 * zones coming right after the local ones are those from
3796 	 * node N+1 (modulo N)
3797 	 */
3798 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3799 		if (!node_online(node))
3800 			continue;
3801 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3802 	}
3803 	for (node = 0; node < local_node; node++) {
3804 		if (!node_online(node))
3805 			continue;
3806 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3807 	}
3808 
3809 	zonelist->_zonerefs[j].zone = NULL;
3810 	zonelist->_zonerefs[j].zone_idx = 0;
3811 }
3812 
3813 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
build_zonelist_cache(pg_data_t * pgdat)3814 static void build_zonelist_cache(pg_data_t *pgdat)
3815 {
3816 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3817 }
3818 
3819 #endif	/* CONFIG_NUMA */
3820 
3821 /*
3822  * Boot pageset table. One per cpu which is going to be used for all
3823  * zones and all nodes. The parameters will be set in such a way
3824  * that an item put on a list will immediately be handed over to
3825  * the buddy list. This is safe since pageset manipulation is done
3826  * with interrupts disabled.
3827  *
3828  * The boot_pagesets must be kept even after bootup is complete for
3829  * unused processors and/or zones. They do play a role for bootstrapping
3830  * hotplugged processors.
3831  *
3832  * zoneinfo_show() and maybe other functions do
3833  * not check if the processor is online before following the pageset pointer.
3834  * Other parts of the kernel may not check if the zone is available.
3835  */
3836 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3837 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3838 static void setup_zone_pageset(struct zone *zone);
3839 
3840 /*
3841  * Global mutex to protect against size modification of zonelists
3842  * as well as to serialize pageset setup for the new populated zone.
3843  */
3844 DEFINE_MUTEX(zonelists_mutex);
3845 
3846 /* return values int ....just for stop_machine() */
__build_all_zonelists(void * data)3847 static int __build_all_zonelists(void *data)
3848 {
3849 	int nid;
3850 	int cpu;
3851 	pg_data_t *self = data;
3852 
3853 #ifdef CONFIG_NUMA
3854 	memset(node_load, 0, sizeof(node_load));
3855 #endif
3856 
3857 	if (self && !node_online(self->node_id)) {
3858 		build_zonelists(self);
3859 		build_zonelist_cache(self);
3860 	}
3861 
3862 	for_each_online_node(nid) {
3863 		pg_data_t *pgdat = NODE_DATA(nid);
3864 
3865 		build_zonelists(pgdat);
3866 		build_zonelist_cache(pgdat);
3867 	}
3868 
3869 	/*
3870 	 * Initialize the boot_pagesets that are going to be used
3871 	 * for bootstrapping processors. The real pagesets for
3872 	 * each zone will be allocated later when the per cpu
3873 	 * allocator is available.
3874 	 *
3875 	 * boot_pagesets are used also for bootstrapping offline
3876 	 * cpus if the system is already booted because the pagesets
3877 	 * are needed to initialize allocators on a specific cpu too.
3878 	 * F.e. the percpu allocator needs the page allocator which
3879 	 * needs the percpu allocator in order to allocate its pagesets
3880 	 * (a chicken-egg dilemma).
3881 	 */
3882 	for_each_possible_cpu(cpu) {
3883 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3884 
3885 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3886 		/*
3887 		 * We now know the "local memory node" for each node--
3888 		 * i.e., the node of the first zone in the generic zonelist.
3889 		 * Set up numa_mem percpu variable for on-line cpus.  During
3890 		 * boot, only the boot cpu should be on-line;  we'll init the
3891 		 * secondary cpus' numa_mem as they come on-line.  During
3892 		 * node/memory hotplug, we'll fixup all on-line cpus.
3893 		 */
3894 		if (cpu_online(cpu))
3895 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3896 #endif
3897 	}
3898 
3899 	return 0;
3900 }
3901 
3902 /*
3903  * Called with zonelists_mutex held always
3904  * unless system_state == SYSTEM_BOOTING.
3905  */
build_all_zonelists(pg_data_t * pgdat,struct zone * zone)3906 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3907 {
3908 	set_zonelist_order();
3909 
3910 	if (system_state == SYSTEM_BOOTING) {
3911 		__build_all_zonelists(NULL);
3912 		mminit_verify_zonelist();
3913 		cpuset_init_current_mems_allowed();
3914 	} else {
3915 #ifdef CONFIG_MEMORY_HOTPLUG
3916 		if (zone)
3917 			setup_zone_pageset(zone);
3918 #endif
3919 		/* we have to stop all cpus to guarantee there is no user
3920 		   of zonelist */
3921 		stop_machine(__build_all_zonelists, pgdat, NULL);
3922 		/* cpuset refresh routine should be here */
3923 	}
3924 	vm_total_pages = nr_free_pagecache_pages();
3925 	/*
3926 	 * Disable grouping by mobility if the number of pages in the
3927 	 * system is too low to allow the mechanism to work. It would be
3928 	 * more accurate, but expensive to check per-zone. This check is
3929 	 * made on memory-hotadd so a system can start with mobility
3930 	 * disabled and enable it later
3931 	 */
3932 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3933 		page_group_by_mobility_disabled = 1;
3934 	else
3935 		page_group_by_mobility_disabled = 0;
3936 
3937 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3938 		"Total pages: %ld\n",
3939 			nr_online_nodes,
3940 			zonelist_order_name[current_zonelist_order],
3941 			page_group_by_mobility_disabled ? "off" : "on",
3942 			vm_total_pages);
3943 #ifdef CONFIG_NUMA
3944 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3945 #endif
3946 }
3947 
3948 /*
3949  * Helper functions to size the waitqueue hash table.
3950  * Essentially these want to choose hash table sizes sufficiently
3951  * large so that collisions trying to wait on pages are rare.
3952  * But in fact, the number of active page waitqueues on typical
3953  * systems is ridiculously low, less than 200. So this is even
3954  * conservative, even though it seems large.
3955  *
3956  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3957  * waitqueues, i.e. the size of the waitq table given the number of pages.
3958  */
3959 #define PAGES_PER_WAITQUEUE	256
3960 
3961 #ifndef CONFIG_MEMORY_HOTPLUG
wait_table_hash_nr_entries(unsigned long pages)3962 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3963 {
3964 	unsigned long size = 1;
3965 
3966 	pages /= PAGES_PER_WAITQUEUE;
3967 
3968 	while (size < pages)
3969 		size <<= 1;
3970 
3971 	/*
3972 	 * Once we have dozens or even hundreds of threads sleeping
3973 	 * on IO we've got bigger problems than wait queue collision.
3974 	 * Limit the size of the wait table to a reasonable size.
3975 	 */
3976 	size = min(size, 4096UL);
3977 
3978 	return max(size, 4UL);
3979 }
3980 #else
3981 /*
3982  * A zone's size might be changed by hot-add, so it is not possible to determine
3983  * a suitable size for its wait_table.  So we use the maximum size now.
3984  *
3985  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3986  *
3987  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3988  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3989  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3990  *
3991  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3992  * or more by the traditional way. (See above).  It equals:
3993  *
3994  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3995  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3996  *    powerpc (64K page size)             : =  (32G +16M)byte.
3997  */
wait_table_hash_nr_entries(unsigned long pages)3998 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3999 {
4000 	return 4096UL;
4001 }
4002 #endif
4003 
4004 /*
4005  * This is an integer logarithm so that shifts can be used later
4006  * to extract the more random high bits from the multiplicative
4007  * hash function before the remainder is taken.
4008  */
wait_table_bits(unsigned long size)4009 static inline unsigned long wait_table_bits(unsigned long size)
4010 {
4011 	return ffz(~size);
4012 }
4013 
4014 /*
4015  * Check if a pageblock contains reserved pages
4016  */
pageblock_is_reserved(unsigned long start_pfn,unsigned long end_pfn)4017 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4018 {
4019 	unsigned long pfn;
4020 
4021 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4022 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4023 			return 1;
4024 	}
4025 	return 0;
4026 }
4027 
4028 /*
4029  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4030  * of blocks reserved is based on min_wmark_pages(zone). The memory within
4031  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4032  * higher will lead to a bigger reserve which will get freed as contiguous
4033  * blocks as reclaim kicks in
4034  */
setup_zone_migrate_reserve(struct zone * zone)4035 static void setup_zone_migrate_reserve(struct zone *zone)
4036 {
4037 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4038 	struct page *page;
4039 	unsigned long block_migratetype;
4040 	int reserve;
4041 	int old_reserve;
4042 
4043 	/*
4044 	 * Get the start pfn, end pfn and the number of blocks to reserve
4045 	 * We have to be careful to be aligned to pageblock_nr_pages to
4046 	 * make sure that we always check pfn_valid for the first page in
4047 	 * the block.
4048 	 */
4049 	start_pfn = zone->zone_start_pfn;
4050 	end_pfn = zone_end_pfn(zone);
4051 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
4052 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4053 							pageblock_order;
4054 
4055 	/*
4056 	 * Reserve blocks are generally in place to help high-order atomic
4057 	 * allocations that are short-lived. A min_free_kbytes value that
4058 	 * would result in more than 2 reserve blocks for atomic allocations
4059 	 * is assumed to be in place to help anti-fragmentation for the
4060 	 * future allocation of hugepages at runtime.
4061 	 */
4062 	reserve = min(2, reserve);
4063 	old_reserve = zone->nr_migrate_reserve_block;
4064 
4065 	/* When memory hot-add, we almost always need to do nothing */
4066 	if (reserve == old_reserve)
4067 		return;
4068 	zone->nr_migrate_reserve_block = reserve;
4069 
4070 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4071 		if (!pfn_valid(pfn))
4072 			continue;
4073 		page = pfn_to_page(pfn);
4074 
4075 		/* Watch out for overlapping nodes */
4076 		if (page_to_nid(page) != zone_to_nid(zone))
4077 			continue;
4078 
4079 		block_migratetype = get_pageblock_migratetype(page);
4080 
4081 		/* Only test what is necessary when the reserves are not met */
4082 		if (reserve > 0) {
4083 			/*
4084 			 * Blocks with reserved pages will never free, skip
4085 			 * them.
4086 			 */
4087 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4088 			if (pageblock_is_reserved(pfn, block_end_pfn))
4089 				continue;
4090 
4091 			/* If this block is reserved, account for it */
4092 			if (block_migratetype == MIGRATE_RESERVE) {
4093 				reserve--;
4094 				continue;
4095 			}
4096 
4097 			/* Suitable for reserving if this block is movable */
4098 			if (block_migratetype == MIGRATE_MOVABLE) {
4099 				set_pageblock_migratetype(page,
4100 							MIGRATE_RESERVE);
4101 				move_freepages_block(zone, page,
4102 							MIGRATE_RESERVE);
4103 				reserve--;
4104 				continue;
4105 			}
4106 		} else if (!old_reserve) {
4107 			/*
4108 			 * At boot time we don't need to scan the whole zone
4109 			 * for turning off MIGRATE_RESERVE.
4110 			 */
4111 			break;
4112 		}
4113 
4114 		/*
4115 		 * If the reserve is met and this is a previous reserved block,
4116 		 * take it back
4117 		 */
4118 		if (block_migratetype == MIGRATE_RESERVE) {
4119 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4120 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
4121 		}
4122 	}
4123 }
4124 
4125 /*
4126  * Initially all pages are reserved - free ones are freed
4127  * up by free_all_bootmem() once the early boot process is
4128  * done. Non-atomic initialization, single-pass.
4129  */
memmap_init_zone(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,enum memmap_context context)4130 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4131 		unsigned long start_pfn, enum memmap_context context)
4132 {
4133 	struct page *page;
4134 	unsigned long end_pfn = start_pfn + size;
4135 	unsigned long pfn;
4136 	struct zone *z;
4137 
4138 	if (highest_memmap_pfn < end_pfn - 1)
4139 		highest_memmap_pfn = end_pfn - 1;
4140 
4141 	z = &NODE_DATA(nid)->node_zones[zone];
4142 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4143 		/*
4144 		 * There can be holes in boot-time mem_map[]s
4145 		 * handed to this function.  They do not
4146 		 * exist on hotplugged memory.
4147 		 */
4148 		if (context == MEMMAP_EARLY) {
4149 			if (!early_pfn_valid(pfn))
4150 				continue;
4151 			if (!early_pfn_in_nid(pfn, nid))
4152 				continue;
4153 		}
4154 		page = pfn_to_page(pfn);
4155 		set_page_links(page, zone, nid, pfn);
4156 		mminit_verify_page_links(page, zone, nid, pfn);
4157 		init_page_count(page);
4158 		page_mapcount_reset(page);
4159 		page_cpupid_reset_last(page);
4160 		SetPageReserved(page);
4161 		/*
4162 		 * Mark the block movable so that blocks are reserved for
4163 		 * movable at startup. This will force kernel allocations
4164 		 * to reserve their blocks rather than leaking throughout
4165 		 * the address space during boot when many long-lived
4166 		 * kernel allocations are made. Later some blocks near
4167 		 * the start are marked MIGRATE_RESERVE by
4168 		 * setup_zone_migrate_reserve()
4169 		 *
4170 		 * bitmap is created for zone's valid pfn range. but memmap
4171 		 * can be created for invalid pages (for alignment)
4172 		 * check here not to call set_pageblock_migratetype() against
4173 		 * pfn out of zone.
4174 		 */
4175 		if ((z->zone_start_pfn <= pfn)
4176 		    && (pfn < zone_end_pfn(z))
4177 		    && !(pfn & (pageblock_nr_pages - 1)))
4178 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4179 
4180 		INIT_LIST_HEAD(&page->lru);
4181 #ifdef WANT_PAGE_VIRTUAL
4182 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
4183 		if (!is_highmem_idx(zone))
4184 			set_page_address(page, __va(pfn << PAGE_SHIFT));
4185 #endif
4186 	}
4187 }
4188 
zone_init_free_lists(struct zone * zone)4189 static void __meminit zone_init_free_lists(struct zone *zone)
4190 {
4191 	unsigned int order, t;
4192 	for_each_migratetype_order(order, t) {
4193 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4194 		zone->free_area[order].nr_free = 0;
4195 	}
4196 }
4197 
4198 #ifndef __HAVE_ARCH_MEMMAP_INIT
4199 #define memmap_init(size, nid, zone, start_pfn) \
4200 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4201 #endif
4202 
zone_batchsize(struct zone * zone)4203 static int zone_batchsize(struct zone *zone)
4204 {
4205 #ifdef CONFIG_MMU
4206 	int batch;
4207 
4208 	/*
4209 	 * The per-cpu-pages pools are set to around 1000th of the
4210 	 * size of the zone.  But no more than 1/2 of a meg.
4211 	 *
4212 	 * OK, so we don't know how big the cache is.  So guess.
4213 	 */
4214 	batch = zone->managed_pages / 1024;
4215 	if (batch * PAGE_SIZE > 512 * 1024)
4216 		batch = (512 * 1024) / PAGE_SIZE;
4217 	batch /= 4;		/* We effectively *= 4 below */
4218 	if (batch < 1)
4219 		batch = 1;
4220 
4221 	/*
4222 	 * Clamp the batch to a 2^n - 1 value. Having a power
4223 	 * of 2 value was found to be more likely to have
4224 	 * suboptimal cache aliasing properties in some cases.
4225 	 *
4226 	 * For example if 2 tasks are alternately allocating
4227 	 * batches of pages, one task can end up with a lot
4228 	 * of pages of one half of the possible page colors
4229 	 * and the other with pages of the other colors.
4230 	 */
4231 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4232 
4233 	return batch;
4234 
4235 #else
4236 	/* The deferral and batching of frees should be suppressed under NOMMU
4237 	 * conditions.
4238 	 *
4239 	 * The problem is that NOMMU needs to be able to allocate large chunks
4240 	 * of contiguous memory as there's no hardware page translation to
4241 	 * assemble apparent contiguous memory from discontiguous pages.
4242 	 *
4243 	 * Queueing large contiguous runs of pages for batching, however,
4244 	 * causes the pages to actually be freed in smaller chunks.  As there
4245 	 * can be a significant delay between the individual batches being
4246 	 * recycled, this leads to the once large chunks of space being
4247 	 * fragmented and becoming unavailable for high-order allocations.
4248 	 */
4249 	return 0;
4250 #endif
4251 }
4252 
4253 /*
4254  * pcp->high and pcp->batch values are related and dependent on one another:
4255  * ->batch must never be higher then ->high.
4256  * The following function updates them in a safe manner without read side
4257  * locking.
4258  *
4259  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4260  * those fields changing asynchronously (acording the the above rule).
4261  *
4262  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4263  * outside of boot time (or some other assurance that no concurrent updaters
4264  * exist).
4265  */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)4266 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4267 		unsigned long batch)
4268 {
4269        /* start with a fail safe value for batch */
4270 	pcp->batch = 1;
4271 	smp_wmb();
4272 
4273        /* Update high, then batch, in order */
4274 	pcp->high = high;
4275 	smp_wmb();
4276 
4277 	pcp->batch = batch;
4278 }
4279 
4280 /* a companion to pageset_set_high() */
pageset_set_batch(struct per_cpu_pageset * p,unsigned long batch)4281 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4282 {
4283 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4284 }
4285 
pageset_init(struct per_cpu_pageset * p)4286 static void pageset_init(struct per_cpu_pageset *p)
4287 {
4288 	struct per_cpu_pages *pcp;
4289 	int migratetype;
4290 
4291 	memset(p, 0, sizeof(*p));
4292 
4293 	pcp = &p->pcp;
4294 	pcp->count = 0;
4295 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4296 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4297 }
4298 
setup_pageset(struct per_cpu_pageset * p,unsigned long batch)4299 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4300 {
4301 	pageset_init(p);
4302 	pageset_set_batch(p, batch);
4303 }
4304 
4305 /*
4306  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4307  * to the value high for the pageset p.
4308  */
pageset_set_high(struct per_cpu_pageset * p,unsigned long high)4309 static void pageset_set_high(struct per_cpu_pageset *p,
4310 				unsigned long high)
4311 {
4312 	unsigned long batch = max(1UL, high / 4);
4313 	if ((high / 4) > (PAGE_SHIFT * 8))
4314 		batch = PAGE_SHIFT * 8;
4315 
4316 	pageset_update(&p->pcp, high, batch);
4317 }
4318 
pageset_set_high_and_batch(struct zone * zone,struct per_cpu_pageset * pcp)4319 static void pageset_set_high_and_batch(struct zone *zone,
4320 				       struct per_cpu_pageset *pcp)
4321 {
4322 	if (percpu_pagelist_fraction)
4323 		pageset_set_high(pcp,
4324 			(zone->managed_pages /
4325 				percpu_pagelist_fraction));
4326 	else
4327 		pageset_set_batch(pcp, zone_batchsize(zone));
4328 }
4329 
zone_pageset_init(struct zone * zone,int cpu)4330 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4331 {
4332 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4333 
4334 	pageset_init(pcp);
4335 	pageset_set_high_and_batch(zone, pcp);
4336 }
4337 
setup_zone_pageset(struct zone * zone)4338 static void __meminit setup_zone_pageset(struct zone *zone)
4339 {
4340 	int cpu;
4341 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4342 	for_each_possible_cpu(cpu)
4343 		zone_pageset_init(zone, cpu);
4344 }
4345 
4346 /*
4347  * Allocate per cpu pagesets and initialize them.
4348  * Before this call only boot pagesets were available.
4349  */
setup_per_cpu_pageset(void)4350 void __init setup_per_cpu_pageset(void)
4351 {
4352 	struct zone *zone;
4353 
4354 	for_each_populated_zone(zone)
4355 		setup_zone_pageset(zone);
4356 }
4357 
4358 static noinline __init_refok
zone_wait_table_init(struct zone * zone,unsigned long zone_size_pages)4359 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4360 {
4361 	int i;
4362 	size_t alloc_size;
4363 
4364 	/*
4365 	 * The per-page waitqueue mechanism uses hashed waitqueues
4366 	 * per zone.
4367 	 */
4368 	zone->wait_table_hash_nr_entries =
4369 		 wait_table_hash_nr_entries(zone_size_pages);
4370 	zone->wait_table_bits =
4371 		wait_table_bits(zone->wait_table_hash_nr_entries);
4372 	alloc_size = zone->wait_table_hash_nr_entries
4373 					* sizeof(wait_queue_head_t);
4374 
4375 	if (!slab_is_available()) {
4376 		zone->wait_table = (wait_queue_head_t *)
4377 			memblock_virt_alloc_node_nopanic(
4378 				alloc_size, zone->zone_pgdat->node_id);
4379 	} else {
4380 		/*
4381 		 * This case means that a zone whose size was 0 gets new memory
4382 		 * via memory hot-add.
4383 		 * But it may be the case that a new node was hot-added.  In
4384 		 * this case vmalloc() will not be able to use this new node's
4385 		 * memory - this wait_table must be initialized to use this new
4386 		 * node itself as well.
4387 		 * To use this new node's memory, further consideration will be
4388 		 * necessary.
4389 		 */
4390 		zone->wait_table = vmalloc(alloc_size);
4391 	}
4392 	if (!zone->wait_table)
4393 		return -ENOMEM;
4394 
4395 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4396 		init_waitqueue_head(zone->wait_table + i);
4397 
4398 	return 0;
4399 }
4400 
zone_pcp_init(struct zone * zone)4401 static __meminit void zone_pcp_init(struct zone *zone)
4402 {
4403 	/*
4404 	 * per cpu subsystem is not up at this point. The following code
4405 	 * relies on the ability of the linker to provide the
4406 	 * offset of a (static) per cpu variable into the per cpu area.
4407 	 */
4408 	zone->pageset = &boot_pageset;
4409 
4410 	if (populated_zone(zone))
4411 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4412 			zone->name, zone->present_pages,
4413 					 zone_batchsize(zone));
4414 }
4415 
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size,enum memmap_context context)4416 int __meminit init_currently_empty_zone(struct zone *zone,
4417 					unsigned long zone_start_pfn,
4418 					unsigned long size,
4419 					enum memmap_context context)
4420 {
4421 	struct pglist_data *pgdat = zone->zone_pgdat;
4422 	int ret;
4423 	ret = zone_wait_table_init(zone, size);
4424 	if (ret)
4425 		return ret;
4426 	pgdat->nr_zones = zone_idx(zone) + 1;
4427 
4428 	zone->zone_start_pfn = zone_start_pfn;
4429 
4430 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4431 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4432 			pgdat->node_id,
4433 			(unsigned long)zone_idx(zone),
4434 			zone_start_pfn, (zone_start_pfn + size));
4435 
4436 	zone_init_free_lists(zone);
4437 
4438 	return 0;
4439 }
4440 
4441 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4442 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4443 /*
4444  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4445  */
__early_pfn_to_nid(unsigned long pfn)4446 int __meminit __early_pfn_to_nid(unsigned long pfn)
4447 {
4448 	unsigned long start_pfn, end_pfn;
4449 	int nid;
4450 	/*
4451 	 * NOTE: The following SMP-unsafe globals are only used early in boot
4452 	 * when the kernel is running single-threaded.
4453 	 */
4454 	static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4455 	static int __meminitdata last_nid;
4456 
4457 	if (last_start_pfn <= pfn && pfn < last_end_pfn)
4458 		return last_nid;
4459 
4460 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4461 	if (nid != -1) {
4462 		last_start_pfn = start_pfn;
4463 		last_end_pfn = end_pfn;
4464 		last_nid = nid;
4465 	}
4466 
4467 	return nid;
4468 }
4469 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4470 
early_pfn_to_nid(unsigned long pfn)4471 int __meminit early_pfn_to_nid(unsigned long pfn)
4472 {
4473 	int nid;
4474 
4475 	nid = __early_pfn_to_nid(pfn);
4476 	if (nid >= 0)
4477 		return nid;
4478 	/* just returns 0 */
4479 	return 0;
4480 }
4481 
4482 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
early_pfn_in_nid(unsigned long pfn,int node)4483 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4484 {
4485 	int nid;
4486 
4487 	nid = __early_pfn_to_nid(pfn);
4488 	if (nid >= 0 && nid != node)
4489 		return false;
4490 	return true;
4491 }
4492 #endif
4493 
4494 /**
4495  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4496  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4497  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4498  *
4499  * If an architecture guarantees that all ranges registered contain no holes
4500  * and may be freed, this this function may be used instead of calling
4501  * memblock_free_early_nid() manually.
4502  */
free_bootmem_with_active_regions(int nid,unsigned long max_low_pfn)4503 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4504 {
4505 	unsigned long start_pfn, end_pfn;
4506 	int i, this_nid;
4507 
4508 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4509 		start_pfn = min(start_pfn, max_low_pfn);
4510 		end_pfn = min(end_pfn, max_low_pfn);
4511 
4512 		if (start_pfn < end_pfn)
4513 			memblock_free_early_nid(PFN_PHYS(start_pfn),
4514 					(end_pfn - start_pfn) << PAGE_SHIFT,
4515 					this_nid);
4516 	}
4517 }
4518 
4519 /**
4520  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4521  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4522  *
4523  * If an architecture guarantees that all ranges registered contain no holes and may
4524  * be freed, this function may be used instead of calling memory_present() manually.
4525  */
sparse_memory_present_with_active_regions(int nid)4526 void __init sparse_memory_present_with_active_regions(int nid)
4527 {
4528 	unsigned long start_pfn, end_pfn;
4529 	int i, this_nid;
4530 
4531 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4532 		memory_present(this_nid, start_pfn, end_pfn);
4533 }
4534 
4535 /**
4536  * get_pfn_range_for_nid - Return the start and end page frames for a node
4537  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4538  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4539  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4540  *
4541  * It returns the start and end page frame of a node based on information
4542  * provided by memblock_set_node(). If called for a node
4543  * with no available memory, a warning is printed and the start and end
4544  * PFNs will be 0.
4545  */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)4546 void __meminit get_pfn_range_for_nid(unsigned int nid,
4547 			unsigned long *start_pfn, unsigned long *end_pfn)
4548 {
4549 	unsigned long this_start_pfn, this_end_pfn;
4550 	int i;
4551 
4552 	*start_pfn = -1UL;
4553 	*end_pfn = 0;
4554 
4555 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4556 		*start_pfn = min(*start_pfn, this_start_pfn);
4557 		*end_pfn = max(*end_pfn, this_end_pfn);
4558 	}
4559 
4560 	if (*start_pfn == -1UL)
4561 		*start_pfn = 0;
4562 }
4563 
4564 /*
4565  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4566  * assumption is made that zones within a node are ordered in monotonic
4567  * increasing memory addresses so that the "highest" populated zone is used
4568  */
find_usable_zone_for_movable(void)4569 static void __init find_usable_zone_for_movable(void)
4570 {
4571 	int zone_index;
4572 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4573 		if (zone_index == ZONE_MOVABLE)
4574 			continue;
4575 
4576 		if (arch_zone_highest_possible_pfn[zone_index] >
4577 				arch_zone_lowest_possible_pfn[zone_index])
4578 			break;
4579 	}
4580 
4581 	VM_BUG_ON(zone_index == -1);
4582 	movable_zone = zone_index;
4583 }
4584 
4585 /*
4586  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4587  * because it is sized independent of architecture. Unlike the other zones,
4588  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4589  * in each node depending on the size of each node and how evenly kernelcore
4590  * is distributed. This helper function adjusts the zone ranges
4591  * provided by the architecture for a given node by using the end of the
4592  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4593  * zones within a node are in order of monotonic increases memory addresses
4594  */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)4595 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4596 					unsigned long zone_type,
4597 					unsigned long node_start_pfn,
4598 					unsigned long node_end_pfn,
4599 					unsigned long *zone_start_pfn,
4600 					unsigned long *zone_end_pfn)
4601 {
4602 	/* Only adjust if ZONE_MOVABLE is on this node */
4603 	if (zone_movable_pfn[nid]) {
4604 		/* Size ZONE_MOVABLE */
4605 		if (zone_type == ZONE_MOVABLE) {
4606 			*zone_start_pfn = zone_movable_pfn[nid];
4607 			*zone_end_pfn = min(node_end_pfn,
4608 				arch_zone_highest_possible_pfn[movable_zone]);
4609 
4610 		/* Adjust for ZONE_MOVABLE starting within this range */
4611 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4612 				*zone_end_pfn > zone_movable_pfn[nid]) {
4613 			*zone_end_pfn = zone_movable_pfn[nid];
4614 
4615 		/* Check if this whole range is within ZONE_MOVABLE */
4616 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4617 			*zone_start_pfn = *zone_end_pfn;
4618 	}
4619 }
4620 
4621 /*
4622  * Return the number of pages a zone spans in a node, including holes
4623  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4624  */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * ignored)4625 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4626 					unsigned long zone_type,
4627 					unsigned long node_start_pfn,
4628 					unsigned long node_end_pfn,
4629 					unsigned long *ignored)
4630 {
4631 	unsigned long zone_start_pfn, zone_end_pfn;
4632 
4633 	/* Get the start and end of the zone */
4634 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4635 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4636 	adjust_zone_range_for_zone_movable(nid, zone_type,
4637 				node_start_pfn, node_end_pfn,
4638 				&zone_start_pfn, &zone_end_pfn);
4639 
4640 	/* Check that this node has pages within the zone's required range */
4641 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4642 		return 0;
4643 
4644 	/* Move the zone boundaries inside the node if necessary */
4645 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4646 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4647 
4648 	/* Return the spanned pages */
4649 	return zone_end_pfn - zone_start_pfn;
4650 }
4651 
4652 /*
4653  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4654  * then all holes in the requested range will be accounted for.
4655  */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)4656 unsigned long __meminit __absent_pages_in_range(int nid,
4657 				unsigned long range_start_pfn,
4658 				unsigned long range_end_pfn)
4659 {
4660 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4661 	unsigned long start_pfn, end_pfn;
4662 	int i;
4663 
4664 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4665 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4666 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4667 		nr_absent -= end_pfn - start_pfn;
4668 	}
4669 	return nr_absent;
4670 }
4671 
4672 /**
4673  * absent_pages_in_range - Return number of page frames in holes within a range
4674  * @start_pfn: The start PFN to start searching for holes
4675  * @end_pfn: The end PFN to stop searching for holes
4676  *
4677  * It returns the number of pages frames in memory holes within a range.
4678  */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)4679 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4680 							unsigned long end_pfn)
4681 {
4682 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4683 }
4684 
4685 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * ignored)4686 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4687 					unsigned long zone_type,
4688 					unsigned long node_start_pfn,
4689 					unsigned long node_end_pfn,
4690 					unsigned long *ignored)
4691 {
4692 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4693 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4694 	unsigned long zone_start_pfn, zone_end_pfn;
4695 
4696 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4697 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4698 
4699 	adjust_zone_range_for_zone_movable(nid, zone_type,
4700 			node_start_pfn, node_end_pfn,
4701 			&zone_start_pfn, &zone_end_pfn);
4702 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4703 }
4704 
4705 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zones_size)4706 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4707 					unsigned long zone_type,
4708 					unsigned long node_start_pfn,
4709 					unsigned long node_end_pfn,
4710 					unsigned long *zones_size)
4711 {
4712 	return zones_size[zone_type];
4713 }
4714 
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zholes_size)4715 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4716 						unsigned long zone_type,
4717 						unsigned long node_start_pfn,
4718 						unsigned long node_end_pfn,
4719 						unsigned long *zholes_size)
4720 {
4721 	if (!zholes_size)
4722 		return 0;
4723 
4724 	return zholes_size[zone_type];
4725 }
4726 
4727 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4728 
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zones_size,unsigned long * zholes_size)4729 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4730 						unsigned long node_start_pfn,
4731 						unsigned long node_end_pfn,
4732 						unsigned long *zones_size,
4733 						unsigned long *zholes_size)
4734 {
4735 	unsigned long realtotalpages, totalpages = 0;
4736 	enum zone_type i;
4737 
4738 	for (i = 0; i < MAX_NR_ZONES; i++)
4739 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4740 							 node_start_pfn,
4741 							 node_end_pfn,
4742 							 zones_size);
4743 	pgdat->node_spanned_pages = totalpages;
4744 
4745 	realtotalpages = totalpages;
4746 	for (i = 0; i < MAX_NR_ZONES; i++)
4747 		realtotalpages -=
4748 			zone_absent_pages_in_node(pgdat->node_id, i,
4749 						  node_start_pfn, node_end_pfn,
4750 						  zholes_size);
4751 	pgdat->node_present_pages = realtotalpages;
4752 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4753 							realtotalpages);
4754 }
4755 
4756 #ifndef CONFIG_SPARSEMEM
4757 /*
4758  * Calculate the size of the zone->blockflags rounded to an unsigned long
4759  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4760  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4761  * round what is now in bits to nearest long in bits, then return it in
4762  * bytes.
4763  */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)4764 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4765 {
4766 	unsigned long usemapsize;
4767 
4768 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4769 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4770 	usemapsize = usemapsize >> pageblock_order;
4771 	usemapsize *= NR_PAGEBLOCK_BITS;
4772 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4773 
4774 	return usemapsize / 8;
4775 }
4776 
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)4777 static void __init setup_usemap(struct pglist_data *pgdat,
4778 				struct zone *zone,
4779 				unsigned long zone_start_pfn,
4780 				unsigned long zonesize)
4781 {
4782 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4783 	zone->pageblock_flags = NULL;
4784 	if (usemapsize)
4785 		zone->pageblock_flags =
4786 			memblock_virt_alloc_node_nopanic(usemapsize,
4787 							 pgdat->node_id);
4788 }
4789 #else
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)4790 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4791 				unsigned long zone_start_pfn, unsigned long zonesize) {}
4792 #endif /* CONFIG_SPARSEMEM */
4793 
4794 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4795 
4796 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)4797 void __paginginit set_pageblock_order(void)
4798 {
4799 	unsigned int order;
4800 
4801 	/* Check that pageblock_nr_pages has not already been setup */
4802 	if (pageblock_order)
4803 		return;
4804 
4805 	if (HPAGE_SHIFT > PAGE_SHIFT)
4806 		order = HUGETLB_PAGE_ORDER;
4807 	else
4808 		order = MAX_ORDER - 1;
4809 
4810 	/*
4811 	 * Assume the largest contiguous order of interest is a huge page.
4812 	 * This value may be variable depending on boot parameters on IA64 and
4813 	 * powerpc.
4814 	 */
4815 	pageblock_order = order;
4816 }
4817 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4818 
4819 /*
4820  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4821  * is unused as pageblock_order is set at compile-time. See
4822  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4823  * the kernel config
4824  */
set_pageblock_order(void)4825 void __paginginit set_pageblock_order(void)
4826 {
4827 }
4828 
4829 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4830 
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)4831 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4832 						   unsigned long present_pages)
4833 {
4834 	unsigned long pages = spanned_pages;
4835 
4836 	/*
4837 	 * Provide a more accurate estimation if there are holes within
4838 	 * the zone and SPARSEMEM is in use. If there are holes within the
4839 	 * zone, each populated memory region may cost us one or two extra
4840 	 * memmap pages due to alignment because memmap pages for each
4841 	 * populated regions may not naturally algined on page boundary.
4842 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4843 	 */
4844 	if (spanned_pages > present_pages + (present_pages >> 4) &&
4845 	    IS_ENABLED(CONFIG_SPARSEMEM))
4846 		pages = present_pages;
4847 
4848 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4849 }
4850 
4851 /*
4852  * Set up the zone data structures:
4853  *   - mark all pages reserved
4854  *   - mark all memory queues empty
4855  *   - clear the memory bitmaps
4856  *
4857  * NOTE: pgdat should get zeroed by caller.
4858  */
free_area_init_core(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zones_size,unsigned long * zholes_size)4859 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4860 		unsigned long node_start_pfn, unsigned long node_end_pfn,
4861 		unsigned long *zones_size, unsigned long *zholes_size)
4862 {
4863 	enum zone_type j;
4864 	int nid = pgdat->node_id;
4865 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4866 	int ret;
4867 
4868 	pgdat_resize_init(pgdat);
4869 #ifdef CONFIG_NUMA_BALANCING
4870 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
4871 	pgdat->numabalancing_migrate_nr_pages = 0;
4872 	pgdat->numabalancing_migrate_next_window = jiffies;
4873 #endif
4874 	init_waitqueue_head(&pgdat->kswapd_wait);
4875 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4876 	pgdat_page_cgroup_init(pgdat);
4877 
4878 	for (j = 0; j < MAX_NR_ZONES; j++) {
4879 		struct zone *zone = pgdat->node_zones + j;
4880 		unsigned long size, realsize, freesize, memmap_pages;
4881 
4882 		size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4883 						  node_end_pfn, zones_size);
4884 		realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4885 								node_start_pfn,
4886 								node_end_pfn,
4887 								zholes_size);
4888 
4889 		/*
4890 		 * Adjust freesize so that it accounts for how much memory
4891 		 * is used by this zone for memmap. This affects the watermark
4892 		 * and per-cpu initialisations
4893 		 */
4894 		memmap_pages = calc_memmap_size(size, realsize);
4895 		if (freesize >= memmap_pages) {
4896 			freesize -= memmap_pages;
4897 			if (memmap_pages)
4898 				printk(KERN_DEBUG
4899 				       "  %s zone: %lu pages used for memmap\n",
4900 				       zone_names[j], memmap_pages);
4901 		} else
4902 			printk(KERN_WARNING
4903 				"  %s zone: %lu pages exceeds freesize %lu\n",
4904 				zone_names[j], memmap_pages, freesize);
4905 
4906 		/* Account for reserved pages */
4907 		if (j == 0 && freesize > dma_reserve) {
4908 			freesize -= dma_reserve;
4909 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4910 					zone_names[0], dma_reserve);
4911 		}
4912 
4913 		if (!is_highmem_idx(j))
4914 			nr_kernel_pages += freesize;
4915 		/* Charge for highmem memmap if there are enough kernel pages */
4916 		else if (nr_kernel_pages > memmap_pages * 2)
4917 			nr_kernel_pages -= memmap_pages;
4918 		nr_all_pages += freesize;
4919 
4920 		zone->spanned_pages = size;
4921 		zone->present_pages = realsize;
4922 		/*
4923 		 * Set an approximate value for lowmem here, it will be adjusted
4924 		 * when the bootmem allocator frees pages into the buddy system.
4925 		 * And all highmem pages will be managed by the buddy system.
4926 		 */
4927 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4928 #ifdef CONFIG_NUMA
4929 		zone->node = nid;
4930 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4931 						/ 100;
4932 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4933 #endif
4934 		zone->name = zone_names[j];
4935 		spin_lock_init(&zone->lock);
4936 		spin_lock_init(&zone->lru_lock);
4937 		zone_seqlock_init(zone);
4938 		zone->zone_pgdat = pgdat;
4939 		zone_pcp_init(zone);
4940 
4941 		/* For bootup, initialized properly in watermark setup */
4942 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4943 
4944 		lruvec_init(&zone->lruvec);
4945 		if (!size)
4946 			continue;
4947 
4948 		set_pageblock_order();
4949 		setup_usemap(pgdat, zone, zone_start_pfn, size);
4950 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4951 						size, MEMMAP_EARLY);
4952 		BUG_ON(ret);
4953 		memmap_init(size, nid, j, zone_start_pfn);
4954 		zone_start_pfn += size;
4955 	}
4956 }
4957 
alloc_node_mem_map(struct pglist_data * pgdat)4958 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4959 {
4960 	/* Skip empty nodes */
4961 	if (!pgdat->node_spanned_pages)
4962 		return;
4963 
4964 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4965 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4966 	if (!pgdat->node_mem_map) {
4967 		unsigned long size, start, end;
4968 		struct page *map;
4969 
4970 		/*
4971 		 * The zone's endpoints aren't required to be MAX_ORDER
4972 		 * aligned but the node_mem_map endpoints must be in order
4973 		 * for the buddy allocator to function correctly.
4974 		 */
4975 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4976 		end = pgdat_end_pfn(pgdat);
4977 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4978 		size =  (end - start) * sizeof(struct page);
4979 		map = alloc_remap(pgdat->node_id, size);
4980 		if (!map)
4981 			map = memblock_virt_alloc_node_nopanic(size,
4982 							       pgdat->node_id);
4983 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4984 	}
4985 #ifndef CONFIG_NEED_MULTIPLE_NODES
4986 	/*
4987 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4988 	 */
4989 	if (pgdat == NODE_DATA(0)) {
4990 		mem_map = NODE_DATA(0)->node_mem_map;
4991 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4992 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4993 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4994 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4995 	}
4996 #endif
4997 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4998 }
4999 
free_area_init_node(int nid,unsigned long * zones_size,unsigned long node_start_pfn,unsigned long * zholes_size)5000 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5001 		unsigned long node_start_pfn, unsigned long *zholes_size)
5002 {
5003 	pg_data_t *pgdat = NODE_DATA(nid);
5004 	unsigned long start_pfn = 0;
5005 	unsigned long end_pfn = 0;
5006 
5007 	/* pg_data_t should be reset to zero when it's allocated */
5008 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5009 
5010 	pgdat->node_id = nid;
5011 	pgdat->node_start_pfn = node_start_pfn;
5012 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5013 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5014 	printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
5015 			(u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
5016 #endif
5017 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5018 				  zones_size, zholes_size);
5019 
5020 	alloc_node_mem_map(pgdat);
5021 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5022 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5023 		nid, (unsigned long)pgdat,
5024 		(unsigned long)pgdat->node_mem_map);
5025 #endif
5026 
5027 	free_area_init_core(pgdat, start_pfn, end_pfn,
5028 			    zones_size, zholes_size);
5029 }
5030 
5031 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5032 
5033 #if MAX_NUMNODES > 1
5034 /*
5035  * Figure out the number of possible node ids.
5036  */
setup_nr_node_ids(void)5037 void __init setup_nr_node_ids(void)
5038 {
5039 	unsigned int node;
5040 	unsigned int highest = 0;
5041 
5042 	for_each_node_mask(node, node_possible_map)
5043 		highest = node;
5044 	nr_node_ids = highest + 1;
5045 }
5046 #endif
5047 
5048 /**
5049  * node_map_pfn_alignment - determine the maximum internode alignment
5050  *
5051  * This function should be called after node map is populated and sorted.
5052  * It calculates the maximum power of two alignment which can distinguish
5053  * all the nodes.
5054  *
5055  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5056  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5057  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5058  * shifted, 1GiB is enough and this function will indicate so.
5059  *
5060  * This is used to test whether pfn -> nid mapping of the chosen memory
5061  * model has fine enough granularity to avoid incorrect mapping for the
5062  * populated node map.
5063  *
5064  * Returns the determined alignment in pfn's.  0 if there is no alignment
5065  * requirement (single node).
5066  */
node_map_pfn_alignment(void)5067 unsigned long __init node_map_pfn_alignment(void)
5068 {
5069 	unsigned long accl_mask = 0, last_end = 0;
5070 	unsigned long start, end, mask;
5071 	int last_nid = -1;
5072 	int i, nid;
5073 
5074 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5075 		if (!start || last_nid < 0 || last_nid == nid) {
5076 			last_nid = nid;
5077 			last_end = end;
5078 			continue;
5079 		}
5080 
5081 		/*
5082 		 * Start with a mask granular enough to pin-point to the
5083 		 * start pfn and tick off bits one-by-one until it becomes
5084 		 * too coarse to separate the current node from the last.
5085 		 */
5086 		mask = ~((1 << __ffs(start)) - 1);
5087 		while (mask && last_end <= (start & (mask << 1)))
5088 			mask <<= 1;
5089 
5090 		/* accumulate all internode masks */
5091 		accl_mask |= mask;
5092 	}
5093 
5094 	/* convert mask to number of pages */
5095 	return ~accl_mask + 1;
5096 }
5097 
5098 /* Find the lowest pfn for a node */
find_min_pfn_for_node(int nid)5099 static unsigned long __init find_min_pfn_for_node(int nid)
5100 {
5101 	unsigned long min_pfn = ULONG_MAX;
5102 	unsigned long start_pfn;
5103 	int i;
5104 
5105 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5106 		min_pfn = min(min_pfn, start_pfn);
5107 
5108 	if (min_pfn == ULONG_MAX) {
5109 		printk(KERN_WARNING
5110 			"Could not find start_pfn for node %d\n", nid);
5111 		return 0;
5112 	}
5113 
5114 	return min_pfn;
5115 }
5116 
5117 /**
5118  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5119  *
5120  * It returns the minimum PFN based on information provided via
5121  * memblock_set_node().
5122  */
find_min_pfn_with_active_regions(void)5123 unsigned long __init find_min_pfn_with_active_regions(void)
5124 {
5125 	return find_min_pfn_for_node(MAX_NUMNODES);
5126 }
5127 
5128 /*
5129  * early_calculate_totalpages()
5130  * Sum pages in active regions for movable zone.
5131  * Populate N_MEMORY for calculating usable_nodes.
5132  */
early_calculate_totalpages(void)5133 static unsigned long __init early_calculate_totalpages(void)
5134 {
5135 	unsigned long totalpages = 0;
5136 	unsigned long start_pfn, end_pfn;
5137 	int i, nid;
5138 
5139 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5140 		unsigned long pages = end_pfn - start_pfn;
5141 
5142 		totalpages += pages;
5143 		if (pages)
5144 			node_set_state(nid, N_MEMORY);
5145 	}
5146 	return totalpages;
5147 }
5148 
5149 /*
5150  * Find the PFN the Movable zone begins in each node. Kernel memory
5151  * is spread evenly between nodes as long as the nodes have enough
5152  * memory. When they don't, some nodes will have more kernelcore than
5153  * others
5154  */
find_zone_movable_pfns_for_nodes(void)5155 static void __init find_zone_movable_pfns_for_nodes(void)
5156 {
5157 	int i, nid;
5158 	unsigned long usable_startpfn;
5159 	unsigned long kernelcore_node, kernelcore_remaining;
5160 	/* save the state before borrow the nodemask */
5161 	nodemask_t saved_node_state = node_states[N_MEMORY];
5162 	unsigned long totalpages = early_calculate_totalpages();
5163 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5164 	struct memblock_region *r;
5165 
5166 	/* Need to find movable_zone earlier when movable_node is specified. */
5167 	find_usable_zone_for_movable();
5168 
5169 	/*
5170 	 * If movable_node is specified, ignore kernelcore and movablecore
5171 	 * options.
5172 	 */
5173 	if (movable_node_is_enabled()) {
5174 		for_each_memblock(memory, r) {
5175 			if (!memblock_is_hotpluggable(r))
5176 				continue;
5177 
5178 			nid = r->nid;
5179 
5180 			usable_startpfn = PFN_DOWN(r->base);
5181 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5182 				min(usable_startpfn, zone_movable_pfn[nid]) :
5183 				usable_startpfn;
5184 		}
5185 
5186 		goto out2;
5187 	}
5188 
5189 	/*
5190 	 * If movablecore=nn[KMG] was specified, calculate what size of
5191 	 * kernelcore that corresponds so that memory usable for
5192 	 * any allocation type is evenly spread. If both kernelcore
5193 	 * and movablecore are specified, then the value of kernelcore
5194 	 * will be used for required_kernelcore if it's greater than
5195 	 * what movablecore would have allowed.
5196 	 */
5197 	if (required_movablecore) {
5198 		unsigned long corepages;
5199 
5200 		/*
5201 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5202 		 * was requested by the user
5203 		 */
5204 		required_movablecore =
5205 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5206 		corepages = totalpages - required_movablecore;
5207 
5208 		required_kernelcore = max(required_kernelcore, corepages);
5209 	}
5210 
5211 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5212 	if (!required_kernelcore)
5213 		goto out;
5214 
5215 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5216 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5217 
5218 restart:
5219 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5220 	kernelcore_node = required_kernelcore / usable_nodes;
5221 	for_each_node_state(nid, N_MEMORY) {
5222 		unsigned long start_pfn, end_pfn;
5223 
5224 		/*
5225 		 * Recalculate kernelcore_node if the division per node
5226 		 * now exceeds what is necessary to satisfy the requested
5227 		 * amount of memory for the kernel
5228 		 */
5229 		if (required_kernelcore < kernelcore_node)
5230 			kernelcore_node = required_kernelcore / usable_nodes;
5231 
5232 		/*
5233 		 * As the map is walked, we track how much memory is usable
5234 		 * by the kernel using kernelcore_remaining. When it is
5235 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5236 		 */
5237 		kernelcore_remaining = kernelcore_node;
5238 
5239 		/* Go through each range of PFNs within this node */
5240 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5241 			unsigned long size_pages;
5242 
5243 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5244 			if (start_pfn >= end_pfn)
5245 				continue;
5246 
5247 			/* Account for what is only usable for kernelcore */
5248 			if (start_pfn < usable_startpfn) {
5249 				unsigned long kernel_pages;
5250 				kernel_pages = min(end_pfn, usable_startpfn)
5251 								- start_pfn;
5252 
5253 				kernelcore_remaining -= min(kernel_pages,
5254 							kernelcore_remaining);
5255 				required_kernelcore -= min(kernel_pages,
5256 							required_kernelcore);
5257 
5258 				/* Continue if range is now fully accounted */
5259 				if (end_pfn <= usable_startpfn) {
5260 
5261 					/*
5262 					 * Push zone_movable_pfn to the end so
5263 					 * that if we have to rebalance
5264 					 * kernelcore across nodes, we will
5265 					 * not double account here
5266 					 */
5267 					zone_movable_pfn[nid] = end_pfn;
5268 					continue;
5269 				}
5270 				start_pfn = usable_startpfn;
5271 			}
5272 
5273 			/*
5274 			 * The usable PFN range for ZONE_MOVABLE is from
5275 			 * start_pfn->end_pfn. Calculate size_pages as the
5276 			 * number of pages used as kernelcore
5277 			 */
5278 			size_pages = end_pfn - start_pfn;
5279 			if (size_pages > kernelcore_remaining)
5280 				size_pages = kernelcore_remaining;
5281 			zone_movable_pfn[nid] = start_pfn + size_pages;
5282 
5283 			/*
5284 			 * Some kernelcore has been met, update counts and
5285 			 * break if the kernelcore for this node has been
5286 			 * satisfied
5287 			 */
5288 			required_kernelcore -= min(required_kernelcore,
5289 								size_pages);
5290 			kernelcore_remaining -= size_pages;
5291 			if (!kernelcore_remaining)
5292 				break;
5293 		}
5294 	}
5295 
5296 	/*
5297 	 * If there is still required_kernelcore, we do another pass with one
5298 	 * less node in the count. This will push zone_movable_pfn[nid] further
5299 	 * along on the nodes that still have memory until kernelcore is
5300 	 * satisfied
5301 	 */
5302 	usable_nodes--;
5303 	if (usable_nodes && required_kernelcore > usable_nodes)
5304 		goto restart;
5305 
5306 out2:
5307 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5308 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5309 		zone_movable_pfn[nid] =
5310 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5311 
5312 out:
5313 	/* restore the node_state */
5314 	node_states[N_MEMORY] = saved_node_state;
5315 }
5316 
5317 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)5318 static void check_for_memory(pg_data_t *pgdat, int nid)
5319 {
5320 	enum zone_type zone_type;
5321 
5322 	if (N_MEMORY == N_NORMAL_MEMORY)
5323 		return;
5324 
5325 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5326 		struct zone *zone = &pgdat->node_zones[zone_type];
5327 		if (populated_zone(zone)) {
5328 			node_set_state(nid, N_HIGH_MEMORY);
5329 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5330 			    zone_type <= ZONE_NORMAL)
5331 				node_set_state(nid, N_NORMAL_MEMORY);
5332 			break;
5333 		}
5334 	}
5335 }
5336 
5337 /**
5338  * free_area_init_nodes - Initialise all pg_data_t and zone data
5339  * @max_zone_pfn: an array of max PFNs for each zone
5340  *
5341  * This will call free_area_init_node() for each active node in the system.
5342  * Using the page ranges provided by memblock_set_node(), the size of each
5343  * zone in each node and their holes is calculated. If the maximum PFN
5344  * between two adjacent zones match, it is assumed that the zone is empty.
5345  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5346  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5347  * starts where the previous one ended. For example, ZONE_DMA32 starts
5348  * at arch_max_dma_pfn.
5349  */
free_area_init_nodes(unsigned long * max_zone_pfn)5350 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5351 {
5352 	unsigned long start_pfn, end_pfn;
5353 	int i, nid;
5354 
5355 	/* Record where the zone boundaries are */
5356 	memset(arch_zone_lowest_possible_pfn, 0,
5357 				sizeof(arch_zone_lowest_possible_pfn));
5358 	memset(arch_zone_highest_possible_pfn, 0,
5359 				sizeof(arch_zone_highest_possible_pfn));
5360 
5361 	start_pfn = find_min_pfn_with_active_regions();
5362 
5363 	for (i = 0; i < MAX_NR_ZONES; i++) {
5364 		if (i == ZONE_MOVABLE)
5365 			continue;
5366 
5367 		end_pfn = max(max_zone_pfn[i], start_pfn);
5368 		arch_zone_lowest_possible_pfn[i] = start_pfn;
5369 		arch_zone_highest_possible_pfn[i] = end_pfn;
5370 
5371 		start_pfn = end_pfn;
5372 	}
5373 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5374 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5375 
5376 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5377 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5378 	find_zone_movable_pfns_for_nodes();
5379 
5380 	/* Print out the zone ranges */
5381 	printk("Zone ranges:\n");
5382 	for (i = 0; i < MAX_NR_ZONES; i++) {
5383 		if (i == ZONE_MOVABLE)
5384 			continue;
5385 		printk(KERN_CONT "  %-8s ", zone_names[i]);
5386 		if (arch_zone_lowest_possible_pfn[i] ==
5387 				arch_zone_highest_possible_pfn[i])
5388 			printk(KERN_CONT "empty\n");
5389 		else
5390 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5391 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5392 				(arch_zone_highest_possible_pfn[i]
5393 					<< PAGE_SHIFT) - 1);
5394 	}
5395 
5396 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5397 	printk("Movable zone start for each node\n");
5398 	for (i = 0; i < MAX_NUMNODES; i++) {
5399 		if (zone_movable_pfn[i])
5400 			printk("  Node %d: %#010lx\n", i,
5401 			       zone_movable_pfn[i] << PAGE_SHIFT);
5402 	}
5403 
5404 	/* Print out the early node map */
5405 	printk("Early memory node ranges\n");
5406 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5407 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
5408 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5409 
5410 	/* Initialise every node */
5411 	mminit_verify_pageflags_layout();
5412 	setup_nr_node_ids();
5413 	for_each_online_node(nid) {
5414 		pg_data_t *pgdat = NODE_DATA(nid);
5415 		free_area_init_node(nid, NULL,
5416 				find_min_pfn_for_node(nid), NULL);
5417 
5418 		/* Any memory on that node */
5419 		if (pgdat->node_present_pages)
5420 			node_set_state(nid, N_MEMORY);
5421 		check_for_memory(pgdat, nid);
5422 	}
5423 }
5424 
cmdline_parse_core(char * p,unsigned long * core)5425 static int __init cmdline_parse_core(char *p, unsigned long *core)
5426 {
5427 	unsigned long long coremem;
5428 	if (!p)
5429 		return -EINVAL;
5430 
5431 	coremem = memparse(p, &p);
5432 	*core = coremem >> PAGE_SHIFT;
5433 
5434 	/* Paranoid check that UL is enough for the coremem value */
5435 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5436 
5437 	return 0;
5438 }
5439 
5440 /*
5441  * kernelcore=size sets the amount of memory for use for allocations that
5442  * cannot be reclaimed or migrated.
5443  */
cmdline_parse_kernelcore(char * p)5444 static int __init cmdline_parse_kernelcore(char *p)
5445 {
5446 	return cmdline_parse_core(p, &required_kernelcore);
5447 }
5448 
5449 /*
5450  * movablecore=size sets the amount of memory for use for allocations that
5451  * can be reclaimed or migrated.
5452  */
cmdline_parse_movablecore(char * p)5453 static int __init cmdline_parse_movablecore(char *p)
5454 {
5455 	return cmdline_parse_core(p, &required_movablecore);
5456 }
5457 
5458 early_param("kernelcore", cmdline_parse_kernelcore);
5459 early_param("movablecore", cmdline_parse_movablecore);
5460 
5461 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5462 
adjust_managed_page_count(struct page * page,long count)5463 void adjust_managed_page_count(struct page *page, long count)
5464 {
5465 	spin_lock(&managed_page_count_lock);
5466 	page_zone(page)->managed_pages += count;
5467 	totalram_pages += count;
5468 #ifdef CONFIG_HIGHMEM
5469 	if (PageHighMem(page))
5470 		totalhigh_pages += count;
5471 #endif
5472 	spin_unlock(&managed_page_count_lock);
5473 }
5474 EXPORT_SYMBOL(adjust_managed_page_count);
5475 
free_reserved_area(void * start,void * end,int poison,char * s)5476 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5477 {
5478 	void *pos;
5479 	unsigned long pages = 0;
5480 
5481 	start = (void *)PAGE_ALIGN((unsigned long)start);
5482 	end = (void *)((unsigned long)end & PAGE_MASK);
5483 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5484 		if ((unsigned int)poison <= 0xFF)
5485 			memset(pos, poison, PAGE_SIZE);
5486 		free_reserved_page(virt_to_page(pos));
5487 	}
5488 
5489 	if (pages && s)
5490 		pr_info("Freeing %s memory: %ldK\n",
5491 			s, pages << (PAGE_SHIFT - 10));
5492 
5493 	return pages;
5494 }
5495 EXPORT_SYMBOL(free_reserved_area);
5496 
5497 #ifdef	CONFIG_HIGHMEM
free_highmem_page(struct page * page)5498 void free_highmem_page(struct page *page)
5499 {
5500 	__free_reserved_page(page);
5501 	totalram_pages++;
5502 	page_zone(page)->managed_pages++;
5503 	totalhigh_pages++;
5504 }
5505 #endif
5506 
5507 
mem_init_print_info(const char * str)5508 void __init mem_init_print_info(const char *str)
5509 {
5510 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5511 	unsigned long init_code_size, init_data_size;
5512 
5513 	physpages = get_num_physpages();
5514 	codesize = _etext - _stext;
5515 	datasize = _edata - _sdata;
5516 	rosize = __end_rodata - __start_rodata;
5517 	bss_size = __bss_stop - __bss_start;
5518 	init_data_size = __init_end - __init_begin;
5519 	init_code_size = _einittext - _sinittext;
5520 
5521 	/*
5522 	 * Detect special cases and adjust section sizes accordingly:
5523 	 * 1) .init.* may be embedded into .data sections
5524 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5525 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5526 	 * 3) .rodata.* may be embedded into .text or .data sections.
5527 	 */
5528 #define adj_init_size(start, end, size, pos, adj) \
5529 	do { \
5530 		if (start <= pos && pos < end && size > adj) \
5531 			size -= adj; \
5532 	} while (0)
5533 
5534 	adj_init_size(__init_begin, __init_end, init_data_size,
5535 		     _sinittext, init_code_size);
5536 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5537 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5538 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5539 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5540 
5541 #undef	adj_init_size
5542 
5543 	printk("Memory: %luK/%luK available "
5544 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5545 	       "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5546 #ifdef	CONFIG_HIGHMEM
5547 	       ", %luK highmem"
5548 #endif
5549 	       "%s%s)\n",
5550 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5551 	       codesize >> 10, datasize >> 10, rosize >> 10,
5552 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5553 	       (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5554 	       totalcma_pages << (PAGE_SHIFT-10),
5555 #ifdef	CONFIG_HIGHMEM
5556 	       totalhigh_pages << (PAGE_SHIFT-10),
5557 #endif
5558 	       str ? ", " : "", str ? str : "");
5559 }
5560 
5561 /**
5562  * set_dma_reserve - set the specified number of pages reserved in the first zone
5563  * @new_dma_reserve: The number of pages to mark reserved
5564  *
5565  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5566  * In the DMA zone, a significant percentage may be consumed by kernel image
5567  * and other unfreeable allocations which can skew the watermarks badly. This
5568  * function may optionally be used to account for unfreeable pages in the
5569  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5570  * smaller per-cpu batchsize.
5571  */
set_dma_reserve(unsigned long new_dma_reserve)5572 void __init set_dma_reserve(unsigned long new_dma_reserve)
5573 {
5574 	dma_reserve = new_dma_reserve;
5575 }
5576 
free_area_init(unsigned long * zones_size)5577 void __init free_area_init(unsigned long *zones_size)
5578 {
5579 	free_area_init_node(0, zones_size,
5580 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5581 }
5582 
page_alloc_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)5583 static int page_alloc_cpu_notify(struct notifier_block *self,
5584 				 unsigned long action, void *hcpu)
5585 {
5586 	int cpu = (unsigned long)hcpu;
5587 
5588 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5589 		lru_add_drain_cpu(cpu);
5590 		drain_pages(cpu);
5591 
5592 		/*
5593 		 * Spill the event counters of the dead processor
5594 		 * into the current processors event counters.
5595 		 * This artificially elevates the count of the current
5596 		 * processor.
5597 		 */
5598 		vm_events_fold_cpu(cpu);
5599 
5600 		/*
5601 		 * Zero the differential counters of the dead processor
5602 		 * so that the vm statistics are consistent.
5603 		 *
5604 		 * This is only okay since the processor is dead and cannot
5605 		 * race with what we are doing.
5606 		 */
5607 		cpu_vm_stats_fold(cpu);
5608 	}
5609 	return NOTIFY_OK;
5610 }
5611 
page_alloc_init(void)5612 void __init page_alloc_init(void)
5613 {
5614 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5615 }
5616 
5617 /*
5618  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5619  *	or min_free_kbytes changes.
5620  */
calculate_totalreserve_pages(void)5621 static void calculate_totalreserve_pages(void)
5622 {
5623 	struct pglist_data *pgdat;
5624 	unsigned long reserve_pages = 0;
5625 	enum zone_type i, j;
5626 
5627 	for_each_online_pgdat(pgdat) {
5628 		for (i = 0; i < MAX_NR_ZONES; i++) {
5629 			struct zone *zone = pgdat->node_zones + i;
5630 			long max = 0;
5631 
5632 			/* Find valid and maximum lowmem_reserve in the zone */
5633 			for (j = i; j < MAX_NR_ZONES; j++) {
5634 				if (zone->lowmem_reserve[j] > max)
5635 					max = zone->lowmem_reserve[j];
5636 			}
5637 
5638 			/* we treat the high watermark as reserved pages. */
5639 			max += high_wmark_pages(zone);
5640 
5641 			if (max > zone->managed_pages)
5642 				max = zone->managed_pages;
5643 			reserve_pages += max;
5644 			/*
5645 			 * Lowmem reserves are not available to
5646 			 * GFP_HIGHUSER page cache allocations and
5647 			 * kswapd tries to balance zones to their high
5648 			 * watermark.  As a result, neither should be
5649 			 * regarded as dirtyable memory, to prevent a
5650 			 * situation where reclaim has to clean pages
5651 			 * in order to balance the zones.
5652 			 */
5653 			zone->dirty_balance_reserve = max;
5654 		}
5655 	}
5656 	dirty_balance_reserve = reserve_pages;
5657 	totalreserve_pages = reserve_pages;
5658 }
5659 
5660 /*
5661  * setup_per_zone_lowmem_reserve - called whenever
5662  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5663  *	has a correct pages reserved value, so an adequate number of
5664  *	pages are left in the zone after a successful __alloc_pages().
5665  */
setup_per_zone_lowmem_reserve(void)5666 static void setup_per_zone_lowmem_reserve(void)
5667 {
5668 	struct pglist_data *pgdat;
5669 	enum zone_type j, idx;
5670 
5671 	for_each_online_pgdat(pgdat) {
5672 		for (j = 0; j < MAX_NR_ZONES; j++) {
5673 			struct zone *zone = pgdat->node_zones + j;
5674 			unsigned long managed_pages = zone->managed_pages;
5675 
5676 			zone->lowmem_reserve[j] = 0;
5677 
5678 			idx = j;
5679 			while (idx) {
5680 				struct zone *lower_zone;
5681 
5682 				idx--;
5683 
5684 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5685 					sysctl_lowmem_reserve_ratio[idx] = 1;
5686 
5687 				lower_zone = pgdat->node_zones + idx;
5688 				lower_zone->lowmem_reserve[j] = managed_pages /
5689 					sysctl_lowmem_reserve_ratio[idx];
5690 				managed_pages += lower_zone->managed_pages;
5691 			}
5692 		}
5693 	}
5694 
5695 	/* update totalreserve_pages */
5696 	calculate_totalreserve_pages();
5697 }
5698 
__setup_per_zone_wmarks(void)5699 static void __setup_per_zone_wmarks(void)
5700 {
5701 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5702 	unsigned long pages_low = extra_free_kbytes >> (PAGE_SHIFT - 10);
5703 	unsigned long lowmem_pages = 0;
5704 	struct zone *zone;
5705 	unsigned long flags;
5706 
5707 	/* Calculate total number of !ZONE_HIGHMEM pages */
5708 	for_each_zone(zone) {
5709 		if (!is_highmem(zone))
5710 			lowmem_pages += zone->managed_pages;
5711 	}
5712 
5713 	for_each_zone(zone) {
5714 		u64 min, low;
5715 
5716 		spin_lock_irqsave(&zone->lock, flags);
5717 		min = (u64)pages_min * zone->managed_pages;
5718 		do_div(min, lowmem_pages);
5719 		low = (u64)pages_low * zone->managed_pages;
5720 		do_div(low, vm_total_pages);
5721 
5722 		if (is_highmem(zone)) {
5723 			/*
5724 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5725 			 * need highmem pages, so cap pages_min to a small
5726 			 * value here.
5727 			 *
5728 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5729 			 * deltas controls asynch page reclaim, and so should
5730 			 * not be capped for highmem.
5731 			 */
5732 			unsigned long min_pages;
5733 
5734 			min_pages = zone->managed_pages / 1024;
5735 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5736 			zone->watermark[WMARK_MIN] = min_pages;
5737 		} else {
5738 			/*
5739 			 * If it's a lowmem zone, reserve a number of pages
5740 			 * proportionate to the zone's size.
5741 			 */
5742 			zone->watermark[WMARK_MIN] = min;
5743 		}
5744 
5745 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) +
5746 					low + (min >> 2);
5747 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) +
5748 					low + (min >> 1);
5749 
5750 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
5751 			high_wmark_pages(zone) - low_wmark_pages(zone) -
5752 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5753 
5754 		setup_zone_migrate_reserve(zone);
5755 		spin_unlock_irqrestore(&zone->lock, flags);
5756 	}
5757 
5758 	/* update totalreserve_pages */
5759 	calculate_totalreserve_pages();
5760 }
5761 
5762 /**
5763  * setup_per_zone_wmarks - called when min_free_kbytes changes
5764  * or when memory is hot-{added|removed}
5765  *
5766  * Ensures that the watermark[min,low,high] values for each zone are set
5767  * correctly with respect to min_free_kbytes.
5768  */
setup_per_zone_wmarks(void)5769 void setup_per_zone_wmarks(void)
5770 {
5771 	mutex_lock(&zonelists_mutex);
5772 	__setup_per_zone_wmarks();
5773 	mutex_unlock(&zonelists_mutex);
5774 }
5775 
5776 /*
5777  * The inactive anon list should be small enough that the VM never has to
5778  * do too much work, but large enough that each inactive page has a chance
5779  * to be referenced again before it is swapped out.
5780  *
5781  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5782  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5783  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5784  * the anonymous pages are kept on the inactive list.
5785  *
5786  * total     target    max
5787  * memory    ratio     inactive anon
5788  * -------------------------------------
5789  *   10MB       1         5MB
5790  *  100MB       1        50MB
5791  *    1GB       3       250MB
5792  *   10GB      10       0.9GB
5793  *  100GB      31         3GB
5794  *    1TB     101        10GB
5795  *   10TB     320        32GB
5796  */
calculate_zone_inactive_ratio(struct zone * zone)5797 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5798 {
5799 	unsigned int gb, ratio;
5800 
5801 	/* Zone size in gigabytes */
5802 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5803 	if (gb)
5804 		ratio = int_sqrt(10 * gb);
5805 	else
5806 		ratio = 1;
5807 
5808 	zone->inactive_ratio = ratio;
5809 }
5810 
setup_per_zone_inactive_ratio(void)5811 static void __meminit setup_per_zone_inactive_ratio(void)
5812 {
5813 	struct zone *zone;
5814 
5815 	for_each_zone(zone)
5816 		calculate_zone_inactive_ratio(zone);
5817 }
5818 
5819 /*
5820  * Initialise min_free_kbytes.
5821  *
5822  * For small machines we want it small (128k min).  For large machines
5823  * we want it large (64MB max).  But it is not linear, because network
5824  * bandwidth does not increase linearly with machine size.  We use
5825  *
5826  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5827  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5828  *
5829  * which yields
5830  *
5831  * 16MB:	512k
5832  * 32MB:	724k
5833  * 64MB:	1024k
5834  * 128MB:	1448k
5835  * 256MB:	2048k
5836  * 512MB:	2896k
5837  * 1024MB:	4096k
5838  * 2048MB:	5792k
5839  * 4096MB:	8192k
5840  * 8192MB:	11584k
5841  * 16384MB:	16384k
5842  */
init_per_zone_wmark_min(void)5843 int __meminit init_per_zone_wmark_min(void)
5844 {
5845 	unsigned long lowmem_kbytes;
5846 	int new_min_free_kbytes;
5847 
5848 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5849 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5850 
5851 	if (new_min_free_kbytes > user_min_free_kbytes) {
5852 		min_free_kbytes = new_min_free_kbytes;
5853 		if (min_free_kbytes < 128)
5854 			min_free_kbytes = 128;
5855 		if (min_free_kbytes > 65536)
5856 			min_free_kbytes = 65536;
5857 	} else {
5858 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5859 				new_min_free_kbytes, user_min_free_kbytes);
5860 	}
5861 	setup_per_zone_wmarks();
5862 	refresh_zone_stat_thresholds();
5863 	setup_per_zone_lowmem_reserve();
5864 	setup_per_zone_inactive_ratio();
5865 	return 0;
5866 }
module_init(init_per_zone_wmark_min)5867 module_init(init_per_zone_wmark_min)
5868 
5869 /*
5870  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5871  *	that we can call two helper functions whenever min_free_kbytes
5872  *	or extra_free_kbytes changes.
5873  */
5874 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5875 	void __user *buffer, size_t *length, loff_t *ppos)
5876 {
5877 	int rc;
5878 
5879 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5880 	if (rc)
5881 		return rc;
5882 
5883 	if (write) {
5884 		user_min_free_kbytes = min_free_kbytes;
5885 		setup_per_zone_wmarks();
5886 	}
5887 	return 0;
5888 }
5889 
5890 #ifdef CONFIG_NUMA
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)5891 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5892 	void __user *buffer, size_t *length, loff_t *ppos)
5893 {
5894 	struct zone *zone;
5895 	int rc;
5896 
5897 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5898 	if (rc)
5899 		return rc;
5900 
5901 	for_each_zone(zone)
5902 		zone->min_unmapped_pages = (zone->managed_pages *
5903 				sysctl_min_unmapped_ratio) / 100;
5904 	return 0;
5905 }
5906 
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)5907 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5908 	void __user *buffer, size_t *length, loff_t *ppos)
5909 {
5910 	struct zone *zone;
5911 	int rc;
5912 
5913 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5914 	if (rc)
5915 		return rc;
5916 
5917 	for_each_zone(zone)
5918 		zone->min_slab_pages = (zone->managed_pages *
5919 				sysctl_min_slab_ratio) / 100;
5920 	return 0;
5921 }
5922 #endif
5923 
5924 /*
5925  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5926  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5927  *	whenever sysctl_lowmem_reserve_ratio changes.
5928  *
5929  * The reserve ratio obviously has absolutely no relation with the
5930  * minimum watermarks. The lowmem reserve ratio can only make sense
5931  * if in function of the boot time zone sizes.
5932  */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)5933 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5934 	void __user *buffer, size_t *length, loff_t *ppos)
5935 {
5936 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5937 	setup_per_zone_lowmem_reserve();
5938 	return 0;
5939 }
5940 
5941 /*
5942  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5943  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
5944  * pagelist can have before it gets flushed back to buddy allocator.
5945  */
percpu_pagelist_fraction_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)5946 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5947 	void __user *buffer, size_t *length, loff_t *ppos)
5948 {
5949 	struct zone *zone;
5950 	int old_percpu_pagelist_fraction;
5951 	int ret;
5952 
5953 	mutex_lock(&pcp_batch_high_lock);
5954 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5955 
5956 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5957 	if (!write || ret < 0)
5958 		goto out;
5959 
5960 	/* Sanity checking to avoid pcp imbalance */
5961 	if (percpu_pagelist_fraction &&
5962 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5963 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5964 		ret = -EINVAL;
5965 		goto out;
5966 	}
5967 
5968 	/* No change? */
5969 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5970 		goto out;
5971 
5972 	for_each_populated_zone(zone) {
5973 		unsigned int cpu;
5974 
5975 		for_each_possible_cpu(cpu)
5976 			pageset_set_high_and_batch(zone,
5977 					per_cpu_ptr(zone->pageset, cpu));
5978 	}
5979 out:
5980 	mutex_unlock(&pcp_batch_high_lock);
5981 	return ret;
5982 }
5983 
5984 int hashdist = HASHDIST_DEFAULT;
5985 
5986 #ifdef CONFIG_NUMA
set_hashdist(char * str)5987 static int __init set_hashdist(char *str)
5988 {
5989 	if (!str)
5990 		return 0;
5991 	hashdist = simple_strtoul(str, &str, 0);
5992 	return 1;
5993 }
5994 __setup("hashdist=", set_hashdist);
5995 #endif
5996 
5997 /*
5998  * allocate a large system hash table from bootmem
5999  * - it is assumed that the hash table must contain an exact power-of-2
6000  *   quantity of entries
6001  * - limit is the number of hash buckets, not the total allocation size
6002  */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)6003 void *__init alloc_large_system_hash(const char *tablename,
6004 				     unsigned long bucketsize,
6005 				     unsigned long numentries,
6006 				     int scale,
6007 				     int flags,
6008 				     unsigned int *_hash_shift,
6009 				     unsigned int *_hash_mask,
6010 				     unsigned long low_limit,
6011 				     unsigned long high_limit)
6012 {
6013 	unsigned long long max = high_limit;
6014 	unsigned long log2qty, size;
6015 	void *table = NULL;
6016 
6017 	/* allow the kernel cmdline to have a say */
6018 	if (!numentries) {
6019 		/* round applicable memory size up to nearest megabyte */
6020 		numentries = nr_kernel_pages;
6021 
6022 		/* It isn't necessary when PAGE_SIZE >= 1MB */
6023 		if (PAGE_SHIFT < 20)
6024 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6025 
6026 		/* limit to 1 bucket per 2^scale bytes of low memory */
6027 		if (scale > PAGE_SHIFT)
6028 			numentries >>= (scale - PAGE_SHIFT);
6029 		else
6030 			numentries <<= (PAGE_SHIFT - scale);
6031 
6032 		/* Make sure we've got at least a 0-order allocation.. */
6033 		if (unlikely(flags & HASH_SMALL)) {
6034 			/* Makes no sense without HASH_EARLY */
6035 			WARN_ON(!(flags & HASH_EARLY));
6036 			if (!(numentries >> *_hash_shift)) {
6037 				numentries = 1UL << *_hash_shift;
6038 				BUG_ON(!numentries);
6039 			}
6040 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6041 			numentries = PAGE_SIZE / bucketsize;
6042 	}
6043 	numentries = roundup_pow_of_two(numentries);
6044 
6045 	/* limit allocation size to 1/16 total memory by default */
6046 	if (max == 0) {
6047 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6048 		do_div(max, bucketsize);
6049 	}
6050 	max = min(max, 0x80000000ULL);
6051 
6052 	if (numentries < low_limit)
6053 		numentries = low_limit;
6054 	if (numentries > max)
6055 		numentries = max;
6056 
6057 	log2qty = ilog2(numentries);
6058 
6059 	do {
6060 		size = bucketsize << log2qty;
6061 		if (flags & HASH_EARLY)
6062 			table = memblock_virt_alloc_nopanic(size, 0);
6063 		else if (hashdist)
6064 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6065 		else {
6066 			/*
6067 			 * If bucketsize is not a power-of-two, we may free
6068 			 * some pages at the end of hash table which
6069 			 * alloc_pages_exact() automatically does
6070 			 */
6071 			if (get_order(size) < MAX_ORDER) {
6072 				table = alloc_pages_exact(size, GFP_ATOMIC);
6073 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6074 			}
6075 		}
6076 	} while (!table && size > PAGE_SIZE && --log2qty);
6077 
6078 	if (!table)
6079 		panic("Failed to allocate %s hash table\n", tablename);
6080 
6081 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6082 	       tablename,
6083 	       (1UL << log2qty),
6084 	       ilog2(size) - PAGE_SHIFT,
6085 	       size);
6086 
6087 	if (_hash_shift)
6088 		*_hash_shift = log2qty;
6089 	if (_hash_mask)
6090 		*_hash_mask = (1 << log2qty) - 1;
6091 
6092 	return table;
6093 }
6094 
6095 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(struct zone * zone,unsigned long pfn)6096 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6097 							unsigned long pfn)
6098 {
6099 #ifdef CONFIG_SPARSEMEM
6100 	return __pfn_to_section(pfn)->pageblock_flags;
6101 #else
6102 	return zone->pageblock_flags;
6103 #endif /* CONFIG_SPARSEMEM */
6104 }
6105 
pfn_to_bitidx(struct zone * zone,unsigned long pfn)6106 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6107 {
6108 #ifdef CONFIG_SPARSEMEM
6109 	pfn &= (PAGES_PER_SECTION-1);
6110 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6111 #else
6112 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6113 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6114 #endif /* CONFIG_SPARSEMEM */
6115 }
6116 
6117 /**
6118  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6119  * @page: The page within the block of interest
6120  * @pfn: The target page frame number
6121  * @end_bitidx: The last bit of interest to retrieve
6122  * @mask: mask of bits that the caller is interested in
6123  *
6124  * Return: pageblock_bits flags
6125  */
get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)6126 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6127 					unsigned long end_bitidx,
6128 					unsigned long mask)
6129 {
6130 	struct zone *zone;
6131 	unsigned long *bitmap;
6132 	unsigned long bitidx, word_bitidx;
6133 	unsigned long word;
6134 
6135 	zone = page_zone(page);
6136 	bitmap = get_pageblock_bitmap(zone, pfn);
6137 	bitidx = pfn_to_bitidx(zone, pfn);
6138 	word_bitidx = bitidx / BITS_PER_LONG;
6139 	bitidx &= (BITS_PER_LONG-1);
6140 
6141 	word = bitmap[word_bitidx];
6142 	bitidx += end_bitidx;
6143 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6144 }
6145 
6146 /**
6147  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6148  * @page: The page within the block of interest
6149  * @flags: The flags to set
6150  * @pfn: The target page frame number
6151  * @end_bitidx: The last bit of interest
6152  * @mask: mask of bits that the caller is interested in
6153  */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)6154 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6155 					unsigned long pfn,
6156 					unsigned long end_bitidx,
6157 					unsigned long mask)
6158 {
6159 	struct zone *zone;
6160 	unsigned long *bitmap;
6161 	unsigned long bitidx, word_bitidx;
6162 	unsigned long old_word, word;
6163 
6164 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6165 
6166 	zone = page_zone(page);
6167 	bitmap = get_pageblock_bitmap(zone, pfn);
6168 	bitidx = pfn_to_bitidx(zone, pfn);
6169 	word_bitidx = bitidx / BITS_PER_LONG;
6170 	bitidx &= (BITS_PER_LONG-1);
6171 
6172 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6173 
6174 	bitidx += end_bitidx;
6175 	mask <<= (BITS_PER_LONG - bitidx - 1);
6176 	flags <<= (BITS_PER_LONG - bitidx - 1);
6177 
6178 	word = ACCESS_ONCE(bitmap[word_bitidx]);
6179 	for (;;) {
6180 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6181 		if (word == old_word)
6182 			break;
6183 		word = old_word;
6184 	}
6185 }
6186 
6187 /*
6188  * This function checks whether pageblock includes unmovable pages or not.
6189  * If @count is not zero, it is okay to include less @count unmovable pages
6190  *
6191  * PageLRU check without isolation or lru_lock could race so that
6192  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6193  * expect this function should be exact.
6194  */
has_unmovable_pages(struct zone * zone,struct page * page,int count,bool skip_hwpoisoned_pages)6195 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6196 			 bool skip_hwpoisoned_pages)
6197 {
6198 	unsigned long pfn, iter, found;
6199 	int mt;
6200 
6201 	/*
6202 	 * For avoiding noise data, lru_add_drain_all() should be called
6203 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6204 	 */
6205 	if (zone_idx(zone) == ZONE_MOVABLE)
6206 		return false;
6207 	mt = get_pageblock_migratetype(page);
6208 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6209 		return false;
6210 
6211 	pfn = page_to_pfn(page);
6212 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6213 		unsigned long check = pfn + iter;
6214 
6215 		if (!pfn_valid_within(check))
6216 			continue;
6217 
6218 		page = pfn_to_page(check);
6219 
6220 		/*
6221 		 * Hugepages are not in LRU lists, but they're movable.
6222 		 * We need not scan over tail pages bacause we don't
6223 		 * handle each tail page individually in migration.
6224 		 */
6225 		if (PageHuge(page)) {
6226 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6227 			continue;
6228 		}
6229 
6230 		/*
6231 		 * We can't use page_count without pin a page
6232 		 * because another CPU can free compound page.
6233 		 * This check already skips compound tails of THP
6234 		 * because their page->_count is zero at all time.
6235 		 */
6236 		if (!atomic_read(&page->_count)) {
6237 			if (PageBuddy(page))
6238 				iter += (1 << page_order(page)) - 1;
6239 			continue;
6240 		}
6241 
6242 		/*
6243 		 * The HWPoisoned page may be not in buddy system, and
6244 		 * page_count() is not 0.
6245 		 */
6246 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6247 			continue;
6248 
6249 		if (!PageLRU(page))
6250 			found++;
6251 		/*
6252 		 * If there are RECLAIMABLE pages, we need to check it.
6253 		 * But now, memory offline itself doesn't call shrink_slab()
6254 		 * and it still to be fixed.
6255 		 */
6256 		/*
6257 		 * If the page is not RAM, page_count()should be 0.
6258 		 * we don't need more check. This is an _used_ not-movable page.
6259 		 *
6260 		 * The problematic thing here is PG_reserved pages. PG_reserved
6261 		 * is set to both of a memory hole page and a _used_ kernel
6262 		 * page at boot.
6263 		 */
6264 		if (found > count)
6265 			return true;
6266 	}
6267 	return false;
6268 }
6269 
is_pageblock_removable_nolock(struct page * page)6270 bool is_pageblock_removable_nolock(struct page *page)
6271 {
6272 	struct zone *zone;
6273 	unsigned long pfn;
6274 
6275 	/*
6276 	 * We have to be careful here because we are iterating over memory
6277 	 * sections which are not zone aware so we might end up outside of
6278 	 * the zone but still within the section.
6279 	 * We have to take care about the node as well. If the node is offline
6280 	 * its NODE_DATA will be NULL - see page_zone.
6281 	 */
6282 	if (!node_online(page_to_nid(page)))
6283 		return false;
6284 
6285 	zone = page_zone(page);
6286 	pfn = page_to_pfn(page);
6287 	if (!zone_spans_pfn(zone, pfn))
6288 		return false;
6289 
6290 	return !has_unmovable_pages(zone, page, 0, true);
6291 }
6292 
6293 #ifdef CONFIG_CMA
6294 
pfn_max_align_down(unsigned long pfn)6295 static unsigned long pfn_max_align_down(unsigned long pfn)
6296 {
6297 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6298 			     pageblock_nr_pages) - 1);
6299 }
6300 
pfn_max_align_up(unsigned long pfn)6301 static unsigned long pfn_max_align_up(unsigned long pfn)
6302 {
6303 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6304 				pageblock_nr_pages));
6305 }
6306 
6307 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)6308 static int __alloc_contig_migrate_range(struct compact_control *cc,
6309 					unsigned long start, unsigned long end)
6310 {
6311 	/* This function is based on compact_zone() from compaction.c. */
6312 	unsigned long nr_reclaimed;
6313 	unsigned long pfn = start;
6314 	unsigned int tries = 0;
6315 	int ret = 0;
6316 
6317 	migrate_prep();
6318 
6319 	while (pfn < end || !list_empty(&cc->migratepages)) {
6320 		if (fatal_signal_pending(current)) {
6321 			ret = -EINTR;
6322 			break;
6323 		}
6324 
6325 		if (list_empty(&cc->migratepages)) {
6326 			cc->nr_migratepages = 0;
6327 			pfn = isolate_migratepages_range(cc, pfn, end);
6328 			if (!pfn) {
6329 				ret = -EINTR;
6330 				break;
6331 			}
6332 			tries = 0;
6333 		} else if (++tries == 5) {
6334 			ret = ret < 0 ? ret : -EBUSY;
6335 			break;
6336 		}
6337 
6338 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6339 							&cc->migratepages);
6340 		cc->nr_migratepages -= nr_reclaimed;
6341 
6342 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6343 				    NULL, 0, cc->mode, MR_CMA);
6344 	}
6345 	if (ret < 0) {
6346 		putback_movable_pages(&cc->migratepages);
6347 		return ret;
6348 	}
6349 	return 0;
6350 }
6351 
6352 /**
6353  * alloc_contig_range() -- tries to allocate given range of pages
6354  * @start:	start PFN to allocate
6355  * @end:	one-past-the-last PFN to allocate
6356  * @migratetype:	migratetype of the underlaying pageblocks (either
6357  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6358  *			in range must have the same migratetype and it must
6359  *			be either of the two.
6360  *
6361  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6362  * aligned, however it's the caller's responsibility to guarantee that
6363  * we are the only thread that changes migrate type of pageblocks the
6364  * pages fall in.
6365  *
6366  * The PFN range must belong to a single zone.
6367  *
6368  * Returns zero on success or negative error code.  On success all
6369  * pages which PFN is in [start, end) are allocated for the caller and
6370  * need to be freed with free_contig_range().
6371  */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype)6372 int alloc_contig_range(unsigned long start, unsigned long end,
6373 		       unsigned migratetype)
6374 {
6375 	unsigned long outer_start, outer_end;
6376 	unsigned int order;
6377 	int ret = 0;
6378 
6379 	struct compact_control cc = {
6380 		.nr_migratepages = 0,
6381 		.order = -1,
6382 		.zone = page_zone(pfn_to_page(start)),
6383 		.mode = MIGRATE_SYNC,
6384 		.ignore_skip_hint = true,
6385 	};
6386 	INIT_LIST_HEAD(&cc.migratepages);
6387 
6388 	/*
6389 	 * What we do here is we mark all pageblocks in range as
6390 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6391 	 * have different sizes, and due to the way page allocator
6392 	 * work, we align the range to biggest of the two pages so
6393 	 * that page allocator won't try to merge buddies from
6394 	 * different pageblocks and change MIGRATE_ISOLATE to some
6395 	 * other migration type.
6396 	 *
6397 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6398 	 * migrate the pages from an unaligned range (ie. pages that
6399 	 * we are interested in).  This will put all the pages in
6400 	 * range back to page allocator as MIGRATE_ISOLATE.
6401 	 *
6402 	 * When this is done, we take the pages in range from page
6403 	 * allocator removing them from the buddy system.  This way
6404 	 * page allocator will never consider using them.
6405 	 *
6406 	 * This lets us mark the pageblocks back as
6407 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6408 	 * aligned range but not in the unaligned, original range are
6409 	 * put back to page allocator so that buddy can use them.
6410 	 */
6411 
6412 	ret = start_isolate_page_range(pfn_max_align_down(start),
6413 				       pfn_max_align_up(end), migratetype,
6414 				       false);
6415 	if (ret)
6416 		return ret;
6417 
6418 	ret = __alloc_contig_migrate_range(&cc, start, end);
6419 	if (ret)
6420 		goto done;
6421 
6422 	/*
6423 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6424 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6425 	 * more, all pages in [start, end) are free in page allocator.
6426 	 * What we are going to do is to allocate all pages from
6427 	 * [start, end) (that is remove them from page allocator).
6428 	 *
6429 	 * The only problem is that pages at the beginning and at the
6430 	 * end of interesting range may be not aligned with pages that
6431 	 * page allocator holds, ie. they can be part of higher order
6432 	 * pages.  Because of this, we reserve the bigger range and
6433 	 * once this is done free the pages we are not interested in.
6434 	 *
6435 	 * We don't have to hold zone->lock here because the pages are
6436 	 * isolated thus they won't get removed from buddy.
6437 	 */
6438 
6439 	lru_add_drain_all();
6440 	drain_all_pages();
6441 
6442 	order = 0;
6443 	outer_start = start;
6444 	while (!PageBuddy(pfn_to_page(outer_start))) {
6445 		if (++order >= MAX_ORDER) {
6446 			ret = -EBUSY;
6447 			goto done;
6448 		}
6449 		outer_start &= ~0UL << order;
6450 	}
6451 
6452 	/* Make sure the range is really isolated. */
6453 	if (test_pages_isolated(outer_start, end, false)) {
6454 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
6455 			__func__, outer_start, end);
6456 		ret = -EBUSY;
6457 		goto done;
6458 	}
6459 
6460 	/* Grab isolated pages from freelists. */
6461 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6462 	if (!outer_end) {
6463 		ret = -EBUSY;
6464 		goto done;
6465 	}
6466 
6467 	/* Free head and tail (if any) */
6468 	if (start != outer_start)
6469 		free_contig_range(outer_start, start - outer_start);
6470 	if (end != outer_end)
6471 		free_contig_range(end, outer_end - end);
6472 
6473 done:
6474 	undo_isolate_page_range(pfn_max_align_down(start),
6475 				pfn_max_align_up(end), migratetype);
6476 	return ret;
6477 }
6478 
free_contig_range(unsigned long pfn,unsigned nr_pages)6479 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6480 {
6481 	unsigned int count = 0;
6482 
6483 	for (; nr_pages--; pfn++) {
6484 		struct page *page = pfn_to_page(pfn);
6485 
6486 		count += page_count(page) != 1;
6487 		__free_page(page);
6488 	}
6489 	WARN(count != 0, "%d pages are still in use!\n", count);
6490 }
6491 #endif
6492 
6493 #ifdef CONFIG_MEMORY_HOTPLUG
6494 /*
6495  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6496  * page high values need to be recalulated.
6497  */
zone_pcp_update(struct zone * zone)6498 void __meminit zone_pcp_update(struct zone *zone)
6499 {
6500 	unsigned cpu;
6501 	mutex_lock(&pcp_batch_high_lock);
6502 	for_each_possible_cpu(cpu)
6503 		pageset_set_high_and_batch(zone,
6504 				per_cpu_ptr(zone->pageset, cpu));
6505 	mutex_unlock(&pcp_batch_high_lock);
6506 }
6507 #endif
6508 
zone_pcp_reset(struct zone * zone)6509 void zone_pcp_reset(struct zone *zone)
6510 {
6511 	unsigned long flags;
6512 	int cpu;
6513 	struct per_cpu_pageset *pset;
6514 
6515 	/* avoid races with drain_pages()  */
6516 	local_irq_save(flags);
6517 	if (zone->pageset != &boot_pageset) {
6518 		for_each_online_cpu(cpu) {
6519 			pset = per_cpu_ptr(zone->pageset, cpu);
6520 			drain_zonestat(zone, pset);
6521 		}
6522 		free_percpu(zone->pageset);
6523 		zone->pageset = &boot_pageset;
6524 	}
6525 	local_irq_restore(flags);
6526 }
6527 
6528 #ifdef CONFIG_MEMORY_HOTREMOVE
6529 /*
6530  * All pages in the range must be isolated before calling this.
6531  */
6532 void
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)6533 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6534 {
6535 	struct page *page;
6536 	struct zone *zone;
6537 	unsigned int order, i;
6538 	unsigned long pfn;
6539 	unsigned long flags;
6540 	/* find the first valid pfn */
6541 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6542 		if (pfn_valid(pfn))
6543 			break;
6544 	if (pfn == end_pfn)
6545 		return;
6546 	zone = page_zone(pfn_to_page(pfn));
6547 	spin_lock_irqsave(&zone->lock, flags);
6548 	pfn = start_pfn;
6549 	while (pfn < end_pfn) {
6550 		if (!pfn_valid(pfn)) {
6551 			pfn++;
6552 			continue;
6553 		}
6554 		page = pfn_to_page(pfn);
6555 		/*
6556 		 * The HWPoisoned page may be not in buddy system, and
6557 		 * page_count() is not 0.
6558 		 */
6559 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6560 			pfn++;
6561 			SetPageReserved(page);
6562 			continue;
6563 		}
6564 
6565 		BUG_ON(page_count(page));
6566 		BUG_ON(!PageBuddy(page));
6567 		order = page_order(page);
6568 #ifdef CONFIG_DEBUG_VM
6569 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6570 		       pfn, 1 << order, end_pfn);
6571 #endif
6572 		list_del(&page->lru);
6573 		rmv_page_order(page);
6574 		zone->free_area[order].nr_free--;
6575 		for (i = 0; i < (1 << order); i++)
6576 			SetPageReserved((page+i));
6577 		pfn += (1 << order);
6578 	}
6579 	spin_unlock_irqrestore(&zone->lock, flags);
6580 }
6581 #endif
6582 
6583 #ifdef CONFIG_MEMORY_FAILURE
is_free_buddy_page(struct page * page)6584 bool is_free_buddy_page(struct page *page)
6585 {
6586 	struct zone *zone = page_zone(page);
6587 	unsigned long pfn = page_to_pfn(page);
6588 	unsigned long flags;
6589 	unsigned int order;
6590 
6591 	spin_lock_irqsave(&zone->lock, flags);
6592 	for (order = 0; order < MAX_ORDER; order++) {
6593 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6594 
6595 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6596 			break;
6597 	}
6598 	spin_unlock_irqrestore(&zone->lock, flags);
6599 
6600 	return order < MAX_ORDER;
6601 }
6602 #endif
6603