1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h> /* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include "internal.h"
37
38
39 LIST_HEAD(super_blocks);
40 DEFINE_SPINLOCK(sb_lock);
41
42 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
43 "sb_writers",
44 "sb_pagefaults",
45 "sb_internal",
46 };
47
48 /*
49 * One thing we have to be careful of with a per-sb shrinker is that we don't
50 * drop the last active reference to the superblock from within the shrinker.
51 * If that happens we could trigger unregistering the shrinker from within the
52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53 * take a passive reference to the superblock to avoid this from occurring.
54 */
super_cache_scan(struct shrinker * shrink,struct shrink_control * sc)55 static unsigned long super_cache_scan(struct shrinker *shrink,
56 struct shrink_control *sc)
57 {
58 struct super_block *sb;
59 long fs_objects = 0;
60 long total_objects;
61 long freed = 0;
62 long dentries;
63 long inodes;
64
65 sb = container_of(shrink, struct super_block, s_shrink);
66
67 /*
68 * Deadlock avoidance. We may hold various FS locks, and we don't want
69 * to recurse into the FS that called us in clear_inode() and friends..
70 */
71 if (!(sc->gfp_mask & __GFP_FS))
72 return SHRINK_STOP;
73
74 if (!grab_super_passive(sb))
75 return SHRINK_STOP;
76
77 if (sb->s_op->nr_cached_objects)
78 fs_objects = sb->s_op->nr_cached_objects(sb, sc->nid);
79
80 inodes = list_lru_count_node(&sb->s_inode_lru, sc->nid);
81 dentries = list_lru_count_node(&sb->s_dentry_lru, sc->nid);
82 total_objects = dentries + inodes + fs_objects + 1;
83 if (!total_objects)
84 total_objects = 1;
85
86 /* proportion the scan between the caches */
87 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
88 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
89
90 /*
91 * prune the dcache first as the icache is pinned by it, then
92 * prune the icache, followed by the filesystem specific caches
93 */
94 freed = prune_dcache_sb(sb, dentries, sc->nid);
95 freed += prune_icache_sb(sb, inodes, sc->nid);
96
97 if (fs_objects) {
98 fs_objects = mult_frac(sc->nr_to_scan, fs_objects,
99 total_objects);
100 freed += sb->s_op->free_cached_objects(sb, fs_objects,
101 sc->nid);
102 }
103
104 drop_super(sb);
105 return freed;
106 }
107
super_cache_count(struct shrinker * shrink,struct shrink_control * sc)108 static unsigned long super_cache_count(struct shrinker *shrink,
109 struct shrink_control *sc)
110 {
111 struct super_block *sb;
112 long total_objects = 0;
113
114 sb = container_of(shrink, struct super_block, s_shrink);
115
116 /*
117 * Don't call grab_super_passive as it is a potential
118 * scalability bottleneck. The counts could get updated
119 * between super_cache_count and super_cache_scan anyway.
120 * Call to super_cache_count with shrinker_rwsem held
121 * ensures the safety of call to list_lru_count_node() and
122 * s_op->nr_cached_objects().
123 */
124 if (sb->s_op && sb->s_op->nr_cached_objects)
125 total_objects = sb->s_op->nr_cached_objects(sb,
126 sc->nid);
127
128 total_objects += list_lru_count_node(&sb->s_dentry_lru,
129 sc->nid);
130 total_objects += list_lru_count_node(&sb->s_inode_lru,
131 sc->nid);
132
133 total_objects = vfs_pressure_ratio(total_objects);
134 return total_objects;
135 }
136
137 /**
138 * destroy_super - frees a superblock
139 * @s: superblock to free
140 *
141 * Frees a superblock.
142 */
destroy_super(struct super_block * s)143 static void destroy_super(struct super_block *s)
144 {
145 int i;
146 list_lru_destroy(&s->s_dentry_lru);
147 list_lru_destroy(&s->s_inode_lru);
148 for (i = 0; i < SB_FREEZE_LEVELS; i++)
149 percpu_counter_destroy(&s->s_writers.counter[i]);
150 security_sb_free(s);
151 WARN_ON(!list_empty(&s->s_mounts));
152 kfree(s->s_subtype);
153 kfree(s->s_options);
154 kfree_rcu(s, rcu);
155 }
156
157 /**
158 * alloc_super - create new superblock
159 * @type: filesystem type superblock should belong to
160 * @flags: the mount flags
161 *
162 * Allocates and initializes a new &struct super_block. alloc_super()
163 * returns a pointer new superblock or %NULL if allocation had failed.
164 */
alloc_super(struct file_system_type * type,int flags)165 static struct super_block *alloc_super(struct file_system_type *type, int flags)
166 {
167 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
168 static const struct super_operations default_op;
169 int i;
170
171 if (!s)
172 return NULL;
173
174 INIT_LIST_HEAD(&s->s_mounts);
175
176 if (security_sb_alloc(s))
177 goto fail;
178
179 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
180 if (percpu_counter_init(&s->s_writers.counter[i], 0,
181 GFP_KERNEL) < 0)
182 goto fail;
183 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
184 &type->s_writers_key[i], 0);
185 }
186 init_waitqueue_head(&s->s_writers.wait);
187 init_waitqueue_head(&s->s_writers.wait_unfrozen);
188 s->s_flags = flags;
189 s->s_bdi = &default_backing_dev_info;
190 INIT_HLIST_NODE(&s->s_instances);
191 INIT_HLIST_BL_HEAD(&s->s_anon);
192 INIT_LIST_HEAD(&s->s_inodes);
193
194 if (list_lru_init(&s->s_dentry_lru))
195 goto fail;
196 if (list_lru_init(&s->s_inode_lru))
197 goto fail;
198
199 init_rwsem(&s->s_umount);
200 lockdep_set_class(&s->s_umount, &type->s_umount_key);
201 /*
202 * sget() can have s_umount recursion.
203 *
204 * When it cannot find a suitable sb, it allocates a new
205 * one (this one), and tries again to find a suitable old
206 * one.
207 *
208 * In case that succeeds, it will acquire the s_umount
209 * lock of the old one. Since these are clearly distrinct
210 * locks, and this object isn't exposed yet, there's no
211 * risk of deadlocks.
212 *
213 * Annotate this by putting this lock in a different
214 * subclass.
215 */
216 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
217 s->s_count = 1;
218 atomic_set(&s->s_active, 1);
219 mutex_init(&s->s_vfs_rename_mutex);
220 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
221 mutex_init(&s->s_dquot.dqio_mutex);
222 mutex_init(&s->s_dquot.dqonoff_mutex);
223 s->s_maxbytes = MAX_NON_LFS;
224 s->s_op = &default_op;
225 s->s_time_gran = 1000000000;
226 s->cleancache_poolid = -1;
227
228 s->s_shrink.seeks = DEFAULT_SEEKS;
229 s->s_shrink.scan_objects = super_cache_scan;
230 s->s_shrink.count_objects = super_cache_count;
231 s->s_shrink.batch = 1024;
232 s->s_shrink.flags = SHRINKER_NUMA_AWARE;
233 return s;
234
235 fail:
236 destroy_super(s);
237 return NULL;
238 }
239
240 /* Superblock refcounting */
241
242 /*
243 * Drop a superblock's refcount. The caller must hold sb_lock.
244 */
__put_super(struct super_block * sb)245 static void __put_super(struct super_block *sb)
246 {
247 if (!--sb->s_count) {
248 list_del_init(&sb->s_list);
249 destroy_super(sb);
250 }
251 }
252
253 /**
254 * put_super - drop a temporary reference to superblock
255 * @sb: superblock in question
256 *
257 * Drops a temporary reference, frees superblock if there's no
258 * references left.
259 */
put_super(struct super_block * sb)260 static void put_super(struct super_block *sb)
261 {
262 spin_lock(&sb_lock);
263 __put_super(sb);
264 spin_unlock(&sb_lock);
265 }
266
267
268 /**
269 * deactivate_locked_super - drop an active reference to superblock
270 * @s: superblock to deactivate
271 *
272 * Drops an active reference to superblock, converting it into a temprory
273 * one if there is no other active references left. In that case we
274 * tell fs driver to shut it down and drop the temporary reference we
275 * had just acquired.
276 *
277 * Caller holds exclusive lock on superblock; that lock is released.
278 */
deactivate_locked_super(struct super_block * s)279 void deactivate_locked_super(struct super_block *s)
280 {
281 struct file_system_type *fs = s->s_type;
282 if (atomic_dec_and_test(&s->s_active)) {
283 cleancache_invalidate_fs(s);
284 unregister_shrinker(&s->s_shrink);
285 fs->kill_sb(s);
286
287 put_filesystem(fs);
288 put_super(s);
289 } else {
290 up_write(&s->s_umount);
291 }
292 }
293
294 EXPORT_SYMBOL(deactivate_locked_super);
295
296 /**
297 * deactivate_super - drop an active reference to superblock
298 * @s: superblock to deactivate
299 *
300 * Variant of deactivate_locked_super(), except that superblock is *not*
301 * locked by caller. If we are going to drop the final active reference,
302 * lock will be acquired prior to that.
303 */
deactivate_super(struct super_block * s)304 void deactivate_super(struct super_block *s)
305 {
306 if (!atomic_add_unless(&s->s_active, -1, 1)) {
307 down_write(&s->s_umount);
308 deactivate_locked_super(s);
309 }
310 }
311
312 EXPORT_SYMBOL(deactivate_super);
313
314 /**
315 * grab_super - acquire an active reference
316 * @s: reference we are trying to make active
317 *
318 * Tries to acquire an active reference. grab_super() is used when we
319 * had just found a superblock in super_blocks or fs_type->fs_supers
320 * and want to turn it into a full-blown active reference. grab_super()
321 * is called with sb_lock held and drops it. Returns 1 in case of
322 * success, 0 if we had failed (superblock contents was already dead or
323 * dying when grab_super() had been called). Note that this is only
324 * called for superblocks not in rundown mode (== ones still on ->fs_supers
325 * of their type), so increment of ->s_count is OK here.
326 */
grab_super(struct super_block * s)327 static int grab_super(struct super_block *s) __releases(sb_lock)
328 {
329 s->s_count++;
330 spin_unlock(&sb_lock);
331 down_write(&s->s_umount);
332 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
333 put_super(s);
334 return 1;
335 }
336 up_write(&s->s_umount);
337 put_super(s);
338 return 0;
339 }
340
341 /*
342 * grab_super_passive - acquire a passive reference
343 * @sb: reference we are trying to grab
344 *
345 * Tries to acquire a passive reference. This is used in places where we
346 * cannot take an active reference but we need to ensure that the
347 * superblock does not go away while we are working on it. It returns
348 * false if a reference was not gained, and returns true with the s_umount
349 * lock held in read mode if a reference is gained. On successful return,
350 * the caller must drop the s_umount lock and the passive reference when
351 * done.
352 */
grab_super_passive(struct super_block * sb)353 bool grab_super_passive(struct super_block *sb)
354 {
355 spin_lock(&sb_lock);
356 if (hlist_unhashed(&sb->s_instances)) {
357 spin_unlock(&sb_lock);
358 return false;
359 }
360
361 sb->s_count++;
362 spin_unlock(&sb_lock);
363
364 if (down_read_trylock(&sb->s_umount)) {
365 if (sb->s_root && (sb->s_flags & MS_BORN))
366 return true;
367 up_read(&sb->s_umount);
368 }
369
370 put_super(sb);
371 return false;
372 }
373
374 /**
375 * generic_shutdown_super - common helper for ->kill_sb()
376 * @sb: superblock to kill
377 *
378 * generic_shutdown_super() does all fs-independent work on superblock
379 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
380 * that need destruction out of superblock, call generic_shutdown_super()
381 * and release aforementioned objects. Note: dentries and inodes _are_
382 * taken care of and do not need specific handling.
383 *
384 * Upon calling this function, the filesystem may no longer alter or
385 * rearrange the set of dentries belonging to this super_block, nor may it
386 * change the attachments of dentries to inodes.
387 */
generic_shutdown_super(struct super_block * sb)388 void generic_shutdown_super(struct super_block *sb)
389 {
390 const struct super_operations *sop = sb->s_op;
391
392 if (sb->s_root) {
393 shrink_dcache_for_umount(sb);
394 sync_filesystem(sb);
395 sb->s_flags &= ~MS_ACTIVE;
396
397 fsnotify_unmount_inodes(&sb->s_inodes);
398
399 evict_inodes(sb);
400
401 if (sb->s_dio_done_wq) {
402 destroy_workqueue(sb->s_dio_done_wq);
403 sb->s_dio_done_wq = NULL;
404 }
405
406 if (sop->put_super)
407 sop->put_super(sb);
408
409 if (!list_empty(&sb->s_inodes)) {
410 printk("VFS: Busy inodes after unmount of %s. "
411 "Self-destruct in 5 seconds. Have a nice day...\n",
412 sb->s_id);
413 }
414 }
415 spin_lock(&sb_lock);
416 /* should be initialized for __put_super_and_need_restart() */
417 hlist_del_init(&sb->s_instances);
418 spin_unlock(&sb_lock);
419 up_write(&sb->s_umount);
420 }
421
422 EXPORT_SYMBOL(generic_shutdown_super);
423
424 /**
425 * sget - find or create a superblock
426 * @type: filesystem type superblock should belong to
427 * @test: comparison callback
428 * @set: setup callback
429 * @flags: mount flags
430 * @data: argument to each of them
431 */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),int flags,void * data)432 struct super_block *sget(struct file_system_type *type,
433 int (*test)(struct super_block *,void *),
434 int (*set)(struct super_block *,void *),
435 int flags,
436 void *data)
437 {
438 struct super_block *s = NULL;
439 struct super_block *old;
440 int err;
441
442 retry:
443 spin_lock(&sb_lock);
444 if (test) {
445 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
446 if (!test(old, data))
447 continue;
448 if (!grab_super(old))
449 goto retry;
450 if (s) {
451 up_write(&s->s_umount);
452 destroy_super(s);
453 s = NULL;
454 }
455 return old;
456 }
457 }
458 if (!s) {
459 spin_unlock(&sb_lock);
460 s = alloc_super(type, flags);
461 if (!s)
462 return ERR_PTR(-ENOMEM);
463 goto retry;
464 }
465
466 err = set(s, data);
467 if (err) {
468 spin_unlock(&sb_lock);
469 up_write(&s->s_umount);
470 destroy_super(s);
471 return ERR_PTR(err);
472 }
473 s->s_type = type;
474 strlcpy(s->s_id, type->name, sizeof(s->s_id));
475 list_add_tail(&s->s_list, &super_blocks);
476 hlist_add_head(&s->s_instances, &type->fs_supers);
477 spin_unlock(&sb_lock);
478 get_filesystem(type);
479 register_shrinker(&s->s_shrink);
480 return s;
481 }
482
483 EXPORT_SYMBOL(sget);
484
drop_super(struct super_block * sb)485 void drop_super(struct super_block *sb)
486 {
487 up_read(&sb->s_umount);
488 put_super(sb);
489 }
490
491 EXPORT_SYMBOL(drop_super);
492
493 /**
494 * iterate_supers - call function for all active superblocks
495 * @f: function to call
496 * @arg: argument to pass to it
497 *
498 * Scans the superblock list and calls given function, passing it
499 * locked superblock and given argument.
500 */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)501 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
502 {
503 struct super_block *sb, *p = NULL;
504
505 spin_lock(&sb_lock);
506 list_for_each_entry(sb, &super_blocks, s_list) {
507 if (hlist_unhashed(&sb->s_instances))
508 continue;
509 sb->s_count++;
510 spin_unlock(&sb_lock);
511
512 down_read(&sb->s_umount);
513 if (sb->s_root && (sb->s_flags & MS_BORN))
514 f(sb, arg);
515 up_read(&sb->s_umount);
516
517 spin_lock(&sb_lock);
518 if (p)
519 __put_super(p);
520 p = sb;
521 }
522 if (p)
523 __put_super(p);
524 spin_unlock(&sb_lock);
525 }
526
527 /**
528 * iterate_supers_type - call function for superblocks of given type
529 * @type: fs type
530 * @f: function to call
531 * @arg: argument to pass to it
532 *
533 * Scans the superblock list and calls given function, passing it
534 * locked superblock and given argument.
535 */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)536 void iterate_supers_type(struct file_system_type *type,
537 void (*f)(struct super_block *, void *), void *arg)
538 {
539 struct super_block *sb, *p = NULL;
540
541 spin_lock(&sb_lock);
542 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
543 sb->s_count++;
544 spin_unlock(&sb_lock);
545
546 down_read(&sb->s_umount);
547 if (sb->s_root && (sb->s_flags & MS_BORN))
548 f(sb, arg);
549 up_read(&sb->s_umount);
550
551 spin_lock(&sb_lock);
552 if (p)
553 __put_super(p);
554 p = sb;
555 }
556 if (p)
557 __put_super(p);
558 spin_unlock(&sb_lock);
559 }
560
561 EXPORT_SYMBOL(iterate_supers_type);
562
563 /**
564 * get_super - get the superblock of a device
565 * @bdev: device to get the superblock for
566 *
567 * Scans the superblock list and finds the superblock of the file system
568 * mounted on the device given. %NULL is returned if no match is found.
569 */
570
get_super(struct block_device * bdev)571 struct super_block *get_super(struct block_device *bdev)
572 {
573 struct super_block *sb;
574
575 if (!bdev)
576 return NULL;
577
578 spin_lock(&sb_lock);
579 rescan:
580 list_for_each_entry(sb, &super_blocks, s_list) {
581 if (hlist_unhashed(&sb->s_instances))
582 continue;
583 if (sb->s_bdev == bdev) {
584 sb->s_count++;
585 spin_unlock(&sb_lock);
586 down_read(&sb->s_umount);
587 /* still alive? */
588 if (sb->s_root && (sb->s_flags & MS_BORN))
589 return sb;
590 up_read(&sb->s_umount);
591 /* nope, got unmounted */
592 spin_lock(&sb_lock);
593 __put_super(sb);
594 goto rescan;
595 }
596 }
597 spin_unlock(&sb_lock);
598 return NULL;
599 }
600
601 EXPORT_SYMBOL(get_super);
602
603 /**
604 * get_super_thawed - get thawed superblock of a device
605 * @bdev: device to get the superblock for
606 *
607 * Scans the superblock list and finds the superblock of the file system
608 * mounted on the device. The superblock is returned once it is thawed
609 * (or immediately if it was not frozen). %NULL is returned if no match
610 * is found.
611 */
get_super_thawed(struct block_device * bdev)612 struct super_block *get_super_thawed(struct block_device *bdev)
613 {
614 while (1) {
615 struct super_block *s = get_super(bdev);
616 if (!s || s->s_writers.frozen == SB_UNFROZEN)
617 return s;
618 up_read(&s->s_umount);
619 wait_event(s->s_writers.wait_unfrozen,
620 s->s_writers.frozen == SB_UNFROZEN);
621 put_super(s);
622 }
623 }
624 EXPORT_SYMBOL(get_super_thawed);
625
626 /**
627 * get_active_super - get an active reference to the superblock of a device
628 * @bdev: device to get the superblock for
629 *
630 * Scans the superblock list and finds the superblock of the file system
631 * mounted on the device given. Returns the superblock with an active
632 * reference or %NULL if none was found.
633 */
get_active_super(struct block_device * bdev)634 struct super_block *get_active_super(struct block_device *bdev)
635 {
636 struct super_block *sb;
637
638 if (!bdev)
639 return NULL;
640
641 restart:
642 spin_lock(&sb_lock);
643 list_for_each_entry(sb, &super_blocks, s_list) {
644 if (hlist_unhashed(&sb->s_instances))
645 continue;
646 if (sb->s_bdev == bdev) {
647 if (!grab_super(sb))
648 goto restart;
649 up_write(&sb->s_umount);
650 return sb;
651 }
652 }
653 spin_unlock(&sb_lock);
654 return NULL;
655 }
656
user_get_super(dev_t dev)657 struct super_block *user_get_super(dev_t dev)
658 {
659 struct super_block *sb;
660
661 spin_lock(&sb_lock);
662 rescan:
663 list_for_each_entry(sb, &super_blocks, s_list) {
664 if (hlist_unhashed(&sb->s_instances))
665 continue;
666 if (sb->s_dev == dev) {
667 sb->s_count++;
668 spin_unlock(&sb_lock);
669 down_read(&sb->s_umount);
670 /* still alive? */
671 if (sb->s_root && (sb->s_flags & MS_BORN))
672 return sb;
673 up_read(&sb->s_umount);
674 /* nope, got unmounted */
675 spin_lock(&sb_lock);
676 __put_super(sb);
677 goto rescan;
678 }
679 }
680 spin_unlock(&sb_lock);
681 return NULL;
682 }
683
684 /**
685 * do_remount_sb2 - asks filesystem to change mount options.
686 * @mnt: mount we are looking at
687 * @sb: superblock in question
688 * @flags: numeric part of options
689 * @data: the rest of options
690 * @force: whether or not to force the change
691 *
692 * Alters the mount options of a mounted file system.
693 */
do_remount_sb2(struct vfsmount * mnt,struct super_block * sb,int flags,void * data,int force)694 int do_remount_sb2(struct vfsmount *mnt, struct super_block *sb, int flags, void *data, int force)
695 {
696 int retval;
697 int remount_ro;
698
699 if (sb->s_writers.frozen != SB_UNFROZEN)
700 return -EBUSY;
701
702 #ifdef CONFIG_BLOCK
703 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
704 return -EACCES;
705 #endif
706
707 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
708
709 if (remount_ro) {
710 if (sb->s_pins.first) {
711 up_write(&sb->s_umount);
712 sb_pin_kill(sb);
713 down_write(&sb->s_umount);
714 if (!sb->s_root)
715 return 0;
716 if (sb->s_writers.frozen != SB_UNFROZEN)
717 return -EBUSY;
718 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
719 }
720 }
721 shrink_dcache_sb(sb);
722
723 /* If we are remounting RDONLY and current sb is read/write,
724 make sure there are no rw files opened */
725 if (remount_ro) {
726 if (force) {
727 sb->s_readonly_remount = 1;
728 smp_wmb();
729 } else {
730 retval = sb_prepare_remount_readonly(sb);
731 if (retval)
732 return retval;
733 }
734 }
735
736 if (mnt && sb->s_op->remount_fs2) {
737 retval = sb->s_op->remount_fs2(mnt, sb, &flags, data);
738 if (retval) {
739 if (!force)
740 goto cancel_readonly;
741 /* If forced remount, go ahead despite any errors */
742 WARN(1, "forced remount of a %s fs returned %i\n",
743 sb->s_type->name, retval);
744 }
745 } else if (sb->s_op->remount_fs) {
746 retval = sb->s_op->remount_fs(sb, &flags, data);
747 if (retval) {
748 if (!force)
749 goto cancel_readonly;
750 /* If forced remount, go ahead despite any errors */
751 WARN(1, "forced remount of a %s fs returned %i\n",
752 sb->s_type->name, retval);
753 }
754 }
755 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
756 /* Needs to be ordered wrt mnt_is_readonly() */
757 smp_wmb();
758 sb->s_readonly_remount = 0;
759
760 /*
761 * Some filesystems modify their metadata via some other path than the
762 * bdev buffer cache (eg. use a private mapping, or directories in
763 * pagecache, etc). Also file data modifications go via their own
764 * mappings. So If we try to mount readonly then copy the filesystem
765 * from bdev, we could get stale data, so invalidate it to give a best
766 * effort at coherency.
767 */
768 if (remount_ro && sb->s_bdev)
769 invalidate_bdev(sb->s_bdev);
770 return 0;
771
772 cancel_readonly:
773 sb->s_readonly_remount = 0;
774 return retval;
775 }
776
do_remount_sb(struct super_block * sb,int flags,void * data,int force)777 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
778 {
779 return do_remount_sb2(NULL, sb, flags, data, force);
780 }
781
do_emergency_remount(struct work_struct * work)782 static void do_emergency_remount(struct work_struct *work)
783 {
784 struct super_block *sb, *p = NULL;
785
786 spin_lock(&sb_lock);
787 list_for_each_entry_reverse(sb, &super_blocks, s_list) {
788 if (hlist_unhashed(&sb->s_instances))
789 continue;
790 sb->s_count++;
791 spin_unlock(&sb_lock);
792 down_write(&sb->s_umount);
793 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
794 !(sb->s_flags & MS_RDONLY)) {
795 /*
796 * What lock protects sb->s_flags??
797 */
798 do_remount_sb(sb, MS_RDONLY, NULL, 1);
799 }
800 up_write(&sb->s_umount);
801 spin_lock(&sb_lock);
802 if (p)
803 __put_super(p);
804 p = sb;
805 }
806 if (p)
807 __put_super(p);
808 spin_unlock(&sb_lock);
809 kfree(work);
810 printk("Emergency Remount complete\n");
811 }
812
emergency_remount(void)813 void emergency_remount(void)
814 {
815 struct work_struct *work;
816
817 work = kmalloc(sizeof(*work), GFP_ATOMIC);
818 if (work) {
819 INIT_WORK(work, do_emergency_remount);
820 schedule_work(work);
821 }
822 }
823
824 /*
825 * Unnamed block devices are dummy devices used by virtual
826 * filesystems which don't use real block-devices. -- jrs
827 */
828
829 static DEFINE_IDA(unnamed_dev_ida);
830 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
831 /* Many userspace utilities consider an FSID of 0 invalid.
832 * Always return at least 1 from get_anon_bdev.
833 */
834 static int unnamed_dev_start = 1;
835
get_anon_bdev(dev_t * p)836 int get_anon_bdev(dev_t *p)
837 {
838 int dev;
839 int error;
840
841 retry:
842 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
843 return -ENOMEM;
844 spin_lock(&unnamed_dev_lock);
845 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
846 if (!error)
847 unnamed_dev_start = dev + 1;
848 spin_unlock(&unnamed_dev_lock);
849 if (error == -EAGAIN)
850 /* We raced and lost with another CPU. */
851 goto retry;
852 else if (error)
853 return -EAGAIN;
854
855 if (dev == (1 << MINORBITS)) {
856 spin_lock(&unnamed_dev_lock);
857 ida_remove(&unnamed_dev_ida, dev);
858 if (unnamed_dev_start > dev)
859 unnamed_dev_start = dev;
860 spin_unlock(&unnamed_dev_lock);
861 return -EMFILE;
862 }
863 *p = MKDEV(0, dev & MINORMASK);
864 return 0;
865 }
866 EXPORT_SYMBOL(get_anon_bdev);
867
free_anon_bdev(dev_t dev)868 void free_anon_bdev(dev_t dev)
869 {
870 int slot = MINOR(dev);
871 spin_lock(&unnamed_dev_lock);
872 ida_remove(&unnamed_dev_ida, slot);
873 if (slot < unnamed_dev_start)
874 unnamed_dev_start = slot;
875 spin_unlock(&unnamed_dev_lock);
876 }
877 EXPORT_SYMBOL(free_anon_bdev);
878
set_anon_super(struct super_block * s,void * data)879 int set_anon_super(struct super_block *s, void *data)
880 {
881 int error = get_anon_bdev(&s->s_dev);
882 if (!error)
883 s->s_bdi = &noop_backing_dev_info;
884 return error;
885 }
886
887 EXPORT_SYMBOL(set_anon_super);
888
kill_anon_super(struct super_block * sb)889 void kill_anon_super(struct super_block *sb)
890 {
891 dev_t dev = sb->s_dev;
892 generic_shutdown_super(sb);
893 free_anon_bdev(dev);
894 }
895
896 EXPORT_SYMBOL(kill_anon_super);
897
kill_litter_super(struct super_block * sb)898 void kill_litter_super(struct super_block *sb)
899 {
900 if (sb->s_root)
901 d_genocide(sb->s_root);
902 kill_anon_super(sb);
903 }
904
905 EXPORT_SYMBOL(kill_litter_super);
906
ns_test_super(struct super_block * sb,void * data)907 static int ns_test_super(struct super_block *sb, void *data)
908 {
909 return sb->s_fs_info == data;
910 }
911
ns_set_super(struct super_block * sb,void * data)912 static int ns_set_super(struct super_block *sb, void *data)
913 {
914 sb->s_fs_info = data;
915 return set_anon_super(sb, NULL);
916 }
917
mount_ns(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))918 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
919 void *data, int (*fill_super)(struct super_block *, void *, int))
920 {
921 struct super_block *sb;
922
923 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
924 if (IS_ERR(sb))
925 return ERR_CAST(sb);
926
927 if (!sb->s_root) {
928 int err;
929 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
930 if (err) {
931 deactivate_locked_super(sb);
932 return ERR_PTR(err);
933 }
934
935 sb->s_flags |= MS_ACTIVE;
936 }
937
938 return dget(sb->s_root);
939 }
940
941 EXPORT_SYMBOL(mount_ns);
942
943 #ifdef CONFIG_BLOCK
set_bdev_super(struct super_block * s,void * data)944 static int set_bdev_super(struct super_block *s, void *data)
945 {
946 s->s_bdev = data;
947 s->s_dev = s->s_bdev->bd_dev;
948
949 /*
950 * We set the bdi here to the queue backing, file systems can
951 * overwrite this in ->fill_super()
952 */
953 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
954 return 0;
955 }
956
test_bdev_super(struct super_block * s,void * data)957 static int test_bdev_super(struct super_block *s, void *data)
958 {
959 return (void *)s->s_bdev == data;
960 }
961
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))962 struct dentry *mount_bdev(struct file_system_type *fs_type,
963 int flags, const char *dev_name, void *data,
964 int (*fill_super)(struct super_block *, void *, int))
965 {
966 struct block_device *bdev;
967 struct super_block *s;
968 fmode_t mode = FMODE_READ | FMODE_EXCL;
969 int error = 0;
970
971 if (!(flags & MS_RDONLY))
972 mode |= FMODE_WRITE;
973
974 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
975 if (IS_ERR(bdev))
976 return ERR_CAST(bdev);
977
978 /*
979 * once the super is inserted into the list by sget, s_umount
980 * will protect the lockfs code from trying to start a snapshot
981 * while we are mounting
982 */
983 mutex_lock(&bdev->bd_fsfreeze_mutex);
984 if (bdev->bd_fsfreeze_count > 0) {
985 mutex_unlock(&bdev->bd_fsfreeze_mutex);
986 error = -EBUSY;
987 goto error_bdev;
988 }
989 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
990 bdev);
991 mutex_unlock(&bdev->bd_fsfreeze_mutex);
992 if (IS_ERR(s))
993 goto error_s;
994
995 if (s->s_root) {
996 if ((flags ^ s->s_flags) & MS_RDONLY) {
997 deactivate_locked_super(s);
998 error = -EBUSY;
999 goto error_bdev;
1000 }
1001
1002 /*
1003 * s_umount nests inside bd_mutex during
1004 * __invalidate_device(). blkdev_put() acquires
1005 * bd_mutex and can't be called under s_umount. Drop
1006 * s_umount temporarily. This is safe as we're
1007 * holding an active reference.
1008 */
1009 up_write(&s->s_umount);
1010 blkdev_put(bdev, mode);
1011 down_write(&s->s_umount);
1012 } else {
1013 char b[BDEVNAME_SIZE];
1014
1015 s->s_mode = mode;
1016 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1017 sb_set_blocksize(s, block_size(bdev));
1018 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1019 if (error) {
1020 deactivate_locked_super(s);
1021 goto error;
1022 }
1023
1024 s->s_flags |= MS_ACTIVE;
1025 bdev->bd_super = s;
1026 }
1027
1028 return dget(s->s_root);
1029
1030 error_s:
1031 error = PTR_ERR(s);
1032 error_bdev:
1033 blkdev_put(bdev, mode);
1034 error:
1035 return ERR_PTR(error);
1036 }
1037 EXPORT_SYMBOL(mount_bdev);
1038
kill_block_super(struct super_block * sb)1039 void kill_block_super(struct super_block *sb)
1040 {
1041 struct block_device *bdev = sb->s_bdev;
1042 fmode_t mode = sb->s_mode;
1043
1044 bdev->bd_super = NULL;
1045 generic_shutdown_super(sb);
1046 sync_blockdev(bdev);
1047 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1048 blkdev_put(bdev, mode | FMODE_EXCL);
1049 }
1050
1051 EXPORT_SYMBOL(kill_block_super);
1052 #endif
1053
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1054 struct dentry *mount_nodev(struct file_system_type *fs_type,
1055 int flags, void *data,
1056 int (*fill_super)(struct super_block *, void *, int))
1057 {
1058 int error;
1059 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1060
1061 if (IS_ERR(s))
1062 return ERR_CAST(s);
1063
1064 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1065 if (error) {
1066 deactivate_locked_super(s);
1067 return ERR_PTR(error);
1068 }
1069 s->s_flags |= MS_ACTIVE;
1070 return dget(s->s_root);
1071 }
1072 EXPORT_SYMBOL(mount_nodev);
1073
compare_single(struct super_block * s,void * p)1074 static int compare_single(struct super_block *s, void *p)
1075 {
1076 return 1;
1077 }
1078
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1079 struct dentry *mount_single(struct file_system_type *fs_type,
1080 int flags, void *data,
1081 int (*fill_super)(struct super_block *, void *, int))
1082 {
1083 struct super_block *s;
1084 int error;
1085
1086 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1087 if (IS_ERR(s))
1088 return ERR_CAST(s);
1089 if (!s->s_root) {
1090 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1091 if (error) {
1092 deactivate_locked_super(s);
1093 return ERR_PTR(error);
1094 }
1095 s->s_flags |= MS_ACTIVE;
1096 } else {
1097 do_remount_sb(s, flags, data, 0);
1098 }
1099 return dget(s->s_root);
1100 }
1101 EXPORT_SYMBOL(mount_single);
1102
1103 struct dentry *
mount_fs(struct file_system_type * type,int flags,const char * name,struct vfsmount * mnt,void * data)1104 mount_fs(struct file_system_type *type, int flags, const char *name, struct vfsmount *mnt, void *data)
1105 {
1106 struct dentry *root;
1107 struct super_block *sb;
1108 char *secdata = NULL;
1109 int error = -ENOMEM;
1110
1111 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1112 secdata = alloc_secdata();
1113 if (!secdata)
1114 goto out;
1115
1116 error = security_sb_copy_data(data, secdata);
1117 if (error)
1118 goto out_free_secdata;
1119 }
1120
1121 if (type->mount2)
1122 root = type->mount2(mnt, type, flags, name, data);
1123 else
1124 root = type->mount(type, flags, name, data);
1125 if (IS_ERR(root)) {
1126 error = PTR_ERR(root);
1127 goto out_free_secdata;
1128 }
1129 sb = root->d_sb;
1130 BUG_ON(!sb);
1131 WARN_ON(!sb->s_bdi);
1132 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1133 sb->s_flags |= MS_BORN;
1134
1135 error = security_sb_kern_mount(sb, flags, secdata);
1136 if (error)
1137 goto out_sb;
1138
1139 /*
1140 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1141 * but s_maxbytes was an unsigned long long for many releases. Throw
1142 * this warning for a little while to try and catch filesystems that
1143 * violate this rule.
1144 */
1145 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1146 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1147
1148 up_write(&sb->s_umount);
1149 free_secdata(secdata);
1150 return root;
1151 out_sb:
1152 dput(root);
1153 deactivate_locked_super(sb);
1154 out_free_secdata:
1155 free_secdata(secdata);
1156 out:
1157 return ERR_PTR(error);
1158 }
1159
1160 /*
1161 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1162 * instead.
1163 */
__sb_end_write(struct super_block * sb,int level)1164 void __sb_end_write(struct super_block *sb, int level)
1165 {
1166 percpu_counter_dec(&sb->s_writers.counter[level-1]);
1167 /*
1168 * Make sure s_writers are updated before we wake up waiters in
1169 * freeze_super().
1170 */
1171 smp_mb();
1172 if (waitqueue_active(&sb->s_writers.wait))
1173 wake_up(&sb->s_writers.wait);
1174 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1175 }
1176 EXPORT_SYMBOL(__sb_end_write);
1177
1178 #ifdef CONFIG_LOCKDEP
1179 /*
1180 * We want lockdep to tell us about possible deadlocks with freezing but
1181 * it's it bit tricky to properly instrument it. Getting a freeze protection
1182 * works as getting a read lock but there are subtle problems. XFS for example
1183 * gets freeze protection on internal level twice in some cases, which is OK
1184 * only because we already hold a freeze protection also on higher level. Due
1185 * to these cases we have to tell lockdep we are doing trylock when we
1186 * already hold a freeze protection for a higher freeze level.
1187 */
acquire_freeze_lock(struct super_block * sb,int level,bool trylock,unsigned long ip)1188 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1189 unsigned long ip)
1190 {
1191 int i;
1192
1193 if (!trylock) {
1194 for (i = 0; i < level - 1; i++)
1195 if (lock_is_held(&sb->s_writers.lock_map[i])) {
1196 trylock = true;
1197 break;
1198 }
1199 }
1200 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1201 }
1202 #endif
1203
1204 /*
1205 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1206 * instead.
1207 */
__sb_start_write(struct super_block * sb,int level,bool wait)1208 int __sb_start_write(struct super_block *sb, int level, bool wait)
1209 {
1210 retry:
1211 if (unlikely(sb->s_writers.frozen >= level)) {
1212 if (!wait)
1213 return 0;
1214 wait_event(sb->s_writers.wait_unfrozen,
1215 sb->s_writers.frozen < level);
1216 }
1217
1218 #ifdef CONFIG_LOCKDEP
1219 acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1220 #endif
1221 percpu_counter_inc(&sb->s_writers.counter[level-1]);
1222 /*
1223 * Make sure counter is updated before we check for frozen.
1224 * freeze_super() first sets frozen and then checks the counter.
1225 */
1226 smp_mb();
1227 if (unlikely(sb->s_writers.frozen >= level)) {
1228 __sb_end_write(sb, level);
1229 goto retry;
1230 }
1231 return 1;
1232 }
1233 EXPORT_SYMBOL(__sb_start_write);
1234
1235 /**
1236 * sb_wait_write - wait until all writers to given file system finish
1237 * @sb: the super for which we wait
1238 * @level: type of writers we wait for (normal vs page fault)
1239 *
1240 * This function waits until there are no writers of given type to given file
1241 * system. Caller of this function should make sure there can be no new writers
1242 * of type @level before calling this function. Otherwise this function can
1243 * livelock.
1244 */
sb_wait_write(struct super_block * sb,int level)1245 static void sb_wait_write(struct super_block *sb, int level)
1246 {
1247 s64 writers;
1248
1249 /*
1250 * We just cycle-through lockdep here so that it does not complain
1251 * about returning with lock to userspace
1252 */
1253 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1254 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1255
1256 do {
1257 DEFINE_WAIT(wait);
1258
1259 /*
1260 * We use a barrier in prepare_to_wait() to separate setting
1261 * of frozen and checking of the counter
1262 */
1263 prepare_to_wait(&sb->s_writers.wait, &wait,
1264 TASK_UNINTERRUPTIBLE);
1265
1266 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1267 if (writers)
1268 schedule();
1269
1270 finish_wait(&sb->s_writers.wait, &wait);
1271 } while (writers);
1272 }
1273
1274 /**
1275 * freeze_super - lock the filesystem and force it into a consistent state
1276 * @sb: the super to lock
1277 *
1278 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1279 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1280 * -EBUSY.
1281 *
1282 * During this function, sb->s_writers.frozen goes through these values:
1283 *
1284 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1285 *
1286 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1287 * writes should be blocked, though page faults are still allowed. We wait for
1288 * all writes to complete and then proceed to the next stage.
1289 *
1290 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1291 * but internal fs threads can still modify the filesystem (although they
1292 * should not dirty new pages or inodes), writeback can run etc. After waiting
1293 * for all running page faults we sync the filesystem which will clean all
1294 * dirty pages and inodes (no new dirty pages or inodes can be created when
1295 * sync is running).
1296 *
1297 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1298 * modification are blocked (e.g. XFS preallocation truncation on inode
1299 * reclaim). This is usually implemented by blocking new transactions for
1300 * filesystems that have them and need this additional guard. After all
1301 * internal writers are finished we call ->freeze_fs() to finish filesystem
1302 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1303 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1304 *
1305 * sb->s_writers.frozen is protected by sb->s_umount.
1306 */
freeze_super(struct super_block * sb)1307 int freeze_super(struct super_block *sb)
1308 {
1309 int ret;
1310
1311 atomic_inc(&sb->s_active);
1312 down_write(&sb->s_umount);
1313 if (sb->s_writers.frozen != SB_UNFROZEN) {
1314 deactivate_locked_super(sb);
1315 return -EBUSY;
1316 }
1317
1318 if (!(sb->s_flags & MS_BORN)) {
1319 up_write(&sb->s_umount);
1320 return 0; /* sic - it's "nothing to do" */
1321 }
1322
1323 if (sb->s_flags & MS_RDONLY) {
1324 /* Nothing to do really... */
1325 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1326 up_write(&sb->s_umount);
1327 return 0;
1328 }
1329
1330 /* From now on, no new normal writers can start */
1331 sb->s_writers.frozen = SB_FREEZE_WRITE;
1332 smp_wmb();
1333
1334 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1335 up_write(&sb->s_umount);
1336
1337 sb_wait_write(sb, SB_FREEZE_WRITE);
1338
1339 /* Now we go and block page faults... */
1340 down_write(&sb->s_umount);
1341 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1342 smp_wmb();
1343
1344 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1345
1346 /* All writers are done so after syncing there won't be dirty data */
1347 sync_filesystem(sb);
1348
1349 /* Now wait for internal filesystem counter */
1350 sb->s_writers.frozen = SB_FREEZE_FS;
1351 smp_wmb();
1352 sb_wait_write(sb, SB_FREEZE_FS);
1353
1354 if (sb->s_op->freeze_fs) {
1355 ret = sb->s_op->freeze_fs(sb);
1356 if (ret) {
1357 printk(KERN_ERR
1358 "VFS:Filesystem freeze failed\n");
1359 sb->s_writers.frozen = SB_UNFROZEN;
1360 smp_wmb();
1361 wake_up(&sb->s_writers.wait_unfrozen);
1362 deactivate_locked_super(sb);
1363 return ret;
1364 }
1365 }
1366 /*
1367 * For debugging purposes so that fs can warn if it sees write activity
1368 * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1369 */
1370 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1371 up_write(&sb->s_umount);
1372 return 0;
1373 }
1374 EXPORT_SYMBOL(freeze_super);
1375
1376 /**
1377 * thaw_super -- unlock filesystem
1378 * @sb: the super to thaw
1379 *
1380 * Unlocks the filesystem and marks it writeable again after freeze_super().
1381 */
thaw_super(struct super_block * sb)1382 int thaw_super(struct super_block *sb)
1383 {
1384 int error;
1385
1386 down_write(&sb->s_umount);
1387 if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1388 up_write(&sb->s_umount);
1389 return -EINVAL;
1390 }
1391
1392 if (sb->s_flags & MS_RDONLY)
1393 goto out;
1394
1395 if (sb->s_op->unfreeze_fs) {
1396 error = sb->s_op->unfreeze_fs(sb);
1397 if (error) {
1398 printk(KERN_ERR
1399 "VFS:Filesystem thaw failed\n");
1400 up_write(&sb->s_umount);
1401 return error;
1402 }
1403 }
1404
1405 out:
1406 sb->s_writers.frozen = SB_UNFROZEN;
1407 smp_wmb();
1408 wake_up(&sb->s_writers.wait_unfrozen);
1409 deactivate_locked_super(sb);
1410
1411 return 0;
1412 }
1413 EXPORT_SYMBOL(thaw_super);
1414