1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
final_putname(struct filename * name)121 void final_putname(struct filename *name)
122 {
123 if (name->separate) {
124 __putname(name->name);
125 kfree(name);
126 } else {
127 __putname(name);
128 }
129 }
130
131 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
132
133 static struct filename *
getname_flags(const char __user * filename,int flags,int * empty)134 getname_flags(const char __user *filename, int flags, int *empty)
135 {
136 struct filename *result, *err;
137 int len;
138 long max;
139 char *kname;
140
141 result = audit_reusename(filename);
142 if (result)
143 return result;
144
145 result = __getname();
146 if (unlikely(!result))
147 return ERR_PTR(-ENOMEM);
148
149 /*
150 * First, try to embed the struct filename inside the names_cache
151 * allocation
152 */
153 kname = (char *)result + sizeof(*result);
154 result->name = kname;
155 result->separate = false;
156 max = EMBEDDED_NAME_MAX;
157
158 recopy:
159 len = strncpy_from_user(kname, filename, max);
160 if (unlikely(len < 0)) {
161 err = ERR_PTR(len);
162 goto error;
163 }
164
165 /*
166 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
167 * separate struct filename so we can dedicate the entire
168 * names_cache allocation for the pathname, and re-do the copy from
169 * userland.
170 */
171 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
172 kname = (char *)result;
173
174 result = kzalloc(sizeof(*result), GFP_KERNEL);
175 if (!result) {
176 err = ERR_PTR(-ENOMEM);
177 result = (struct filename *)kname;
178 goto error;
179 }
180 result->name = kname;
181 result->separate = true;
182 max = PATH_MAX;
183 goto recopy;
184 }
185
186 /* The empty path is special. */
187 if (unlikely(!len)) {
188 if (empty)
189 *empty = 1;
190 err = ERR_PTR(-ENOENT);
191 if (!(flags & LOOKUP_EMPTY))
192 goto error;
193 }
194
195 err = ERR_PTR(-ENAMETOOLONG);
196 if (unlikely(len >= PATH_MAX))
197 goto error;
198
199 result->uptr = filename;
200 result->aname = NULL;
201 audit_getname(result);
202 return result;
203
204 error:
205 final_putname(result);
206 return err;
207 }
208
209 struct filename *
getname(const char __user * filename)210 getname(const char __user * filename)
211 {
212 return getname_flags(filename, 0, NULL);
213 }
214
215 /*
216 * The "getname_kernel()" interface doesn't do pathnames longer
217 * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
218 */
219 struct filename *
getname_kernel(const char * filename)220 getname_kernel(const char * filename)
221 {
222 struct filename *result;
223 char *kname;
224 int len;
225
226 len = strlen(filename);
227 if (len >= EMBEDDED_NAME_MAX)
228 return ERR_PTR(-ENAMETOOLONG);
229
230 result = __getname();
231 if (unlikely(!result))
232 return ERR_PTR(-ENOMEM);
233
234 kname = (char *)result + sizeof(*result);
235 result->name = kname;
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->separate = false;
239
240 strlcpy(kname, filename, EMBEDDED_NAME_MAX);
241 return result;
242 }
243
244 #ifdef CONFIG_AUDITSYSCALL
putname(struct filename * name)245 void putname(struct filename *name)
246 {
247 if (unlikely(!audit_dummy_context()))
248 return audit_putname(name);
249 final_putname(name);
250 }
251 #endif
252
check_acl(struct inode * inode,int mask)253 static int check_acl(struct inode *inode, int mask)
254 {
255 #ifdef CONFIG_FS_POSIX_ACL
256 struct posix_acl *acl;
257
258 if (mask & MAY_NOT_BLOCK) {
259 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
260 if (!acl)
261 return -EAGAIN;
262 /* no ->get_acl() calls in RCU mode... */
263 if (acl == ACL_NOT_CACHED)
264 return -ECHILD;
265 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
266 }
267
268 acl = get_acl(inode, ACL_TYPE_ACCESS);
269 if (IS_ERR(acl))
270 return PTR_ERR(acl);
271 if (acl) {
272 int error = posix_acl_permission(inode, acl, mask);
273 posix_acl_release(acl);
274 return error;
275 }
276 #endif
277
278 return -EAGAIN;
279 }
280
281 /*
282 * This does the basic permission checking
283 */
acl_permission_check(struct inode * inode,int mask)284 static int acl_permission_check(struct inode *inode, int mask)
285 {
286 unsigned int mode = inode->i_mode;
287
288 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
289 mode >>= 6;
290 else {
291 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
292 int error = check_acl(inode, mask);
293 if (error != -EAGAIN)
294 return error;
295 }
296
297 if (in_group_p(inode->i_gid))
298 mode >>= 3;
299 }
300
301 /*
302 * If the DACs are ok we don't need any capability check.
303 */
304 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
305 return 0;
306 return -EACCES;
307 }
308
309 /**
310 * generic_permission - check for access rights on a Posix-like filesystem
311 * @inode: inode to check access rights for
312 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
313 *
314 * Used to check for read/write/execute permissions on a file.
315 * We use "fsuid" for this, letting us set arbitrary permissions
316 * for filesystem access without changing the "normal" uids which
317 * are used for other things.
318 *
319 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
320 * request cannot be satisfied (eg. requires blocking or too much complexity).
321 * It would then be called again in ref-walk mode.
322 */
generic_permission(struct inode * inode,int mask)323 int generic_permission(struct inode *inode, int mask)
324 {
325 int ret;
326
327 /*
328 * Do the basic permission checks.
329 */
330 ret = acl_permission_check(inode, mask);
331 if (ret != -EACCES)
332 return ret;
333
334 if (S_ISDIR(inode->i_mode)) {
335 /* DACs are overridable for directories */
336 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
337 return 0;
338 if (!(mask & MAY_WRITE))
339 if (capable_wrt_inode_uidgid(inode,
340 CAP_DAC_READ_SEARCH))
341 return 0;
342 return -EACCES;
343 }
344 /*
345 * Read/write DACs are always overridable.
346 * Executable DACs are overridable when there is
347 * at least one exec bit set.
348 */
349 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
350 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
351 return 0;
352
353 /*
354 * Searching includes executable on directories, else just read.
355 */
356 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
357 if (mask == MAY_READ)
358 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
359 return 0;
360
361 return -EACCES;
362 }
363 EXPORT_SYMBOL(generic_permission);
364
365 /*
366 * We _really_ want to just do "generic_permission()" without
367 * even looking at the inode->i_op values. So we keep a cache
368 * flag in inode->i_opflags, that says "this has not special
369 * permission function, use the fast case".
370 */
do_inode_permission(struct vfsmount * mnt,struct inode * inode,int mask)371 static inline int do_inode_permission(struct vfsmount *mnt, struct inode *inode, int mask)
372 {
373 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
374 if (likely(mnt && inode->i_op->permission2))
375 return inode->i_op->permission2(mnt, inode, mask);
376 if (likely(inode->i_op->permission))
377 return inode->i_op->permission(inode, mask);
378
379 /* This gets set once for the inode lifetime */
380 spin_lock(&inode->i_lock);
381 inode->i_opflags |= IOP_FASTPERM;
382 spin_unlock(&inode->i_lock);
383 }
384 return generic_permission(inode, mask);
385 }
386
387 /**
388 * __inode_permission - Check for access rights to a given inode
389 * @inode: Inode to check permission on
390 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
391 *
392 * Check for read/write/execute permissions on an inode.
393 *
394 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
395 *
396 * This does not check for a read-only file system. You probably want
397 * inode_permission().
398 */
__inode_permission2(struct vfsmount * mnt,struct inode * inode,int mask)399 int __inode_permission2(struct vfsmount *mnt, struct inode *inode, int mask)
400 {
401 int retval;
402
403 if (unlikely(mask & MAY_WRITE)) {
404 /*
405 * Nobody gets write access to an immutable file.
406 */
407 if (IS_IMMUTABLE(inode))
408 return -EACCES;
409 }
410
411 retval = do_inode_permission(mnt, inode, mask);
412 if (retval)
413 return retval;
414
415 retval = devcgroup_inode_permission(inode, mask);
416 if (retval)
417 return retval;
418
419 retval = security_inode_permission(inode, mask);
420 return retval;
421 }
422 EXPORT_SYMBOL(__inode_permission2);
423
__inode_permission(struct inode * inode,int mask)424 int __inode_permission(struct inode *inode, int mask)
425 {
426 return __inode_permission2(NULL, inode, mask);
427 }
428 EXPORT_SYMBOL(__inode_permission);
429
430 /**
431 * sb_permission - Check superblock-level permissions
432 * @sb: Superblock of inode to check permission on
433 * @inode: Inode to check permission on
434 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
435 *
436 * Separate out file-system wide checks from inode-specific permission checks.
437 */
sb_permission(struct super_block * sb,struct inode * inode,int mask)438 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
439 {
440 if (unlikely(mask & MAY_WRITE)) {
441 umode_t mode = inode->i_mode;
442
443 /* Nobody gets write access to a read-only fs. */
444 if ((sb->s_flags & MS_RDONLY) &&
445 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
446 return -EROFS;
447 }
448 return 0;
449 }
450
451 /**
452 * inode_permission - Check for access rights to a given inode
453 * @inode: Inode to check permission on
454 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
455 *
456 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
457 * this, letting us set arbitrary permissions for filesystem access without
458 * changing the "normal" UIDs which are used for other things.
459 *
460 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
461 */
inode_permission2(struct vfsmount * mnt,struct inode * inode,int mask)462 int inode_permission2(struct vfsmount *mnt, struct inode *inode, int mask)
463 {
464 int retval;
465
466 retval = sb_permission(inode->i_sb, inode, mask);
467 if (retval)
468 return retval;
469 return __inode_permission2(mnt, inode, mask);
470 }
471 EXPORT_SYMBOL(inode_permission2);
472
inode_permission(struct inode * inode,int mask)473 int inode_permission(struct inode *inode, int mask)
474 {
475 return inode_permission2(NULL, inode, mask);
476 }
477 EXPORT_SYMBOL(inode_permission);
478
479 /**
480 * path_get - get a reference to a path
481 * @path: path to get the reference to
482 *
483 * Given a path increment the reference count to the dentry and the vfsmount.
484 */
path_get(const struct path * path)485 void path_get(const struct path *path)
486 {
487 mntget(path->mnt);
488 dget(path->dentry);
489 }
490 EXPORT_SYMBOL(path_get);
491
492 /**
493 * path_put - put a reference to a path
494 * @path: path to put the reference to
495 *
496 * Given a path decrement the reference count to the dentry and the vfsmount.
497 */
path_put(const struct path * path)498 void path_put(const struct path *path)
499 {
500 dput(path->dentry);
501 mntput(path->mnt);
502 }
503 EXPORT_SYMBOL(path_put);
504
505 /**
506 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
507 * @path: nameidate to verify
508 *
509 * Rename can sometimes move a file or directory outside of a bind
510 * mount, path_connected allows those cases to be detected.
511 */
path_connected(const struct path * path)512 static bool path_connected(const struct path *path)
513 {
514 struct vfsmount *mnt = path->mnt;
515
516 /* Only bind mounts can have disconnected paths */
517 if (mnt->mnt_root == mnt->mnt_sb->s_root)
518 return true;
519
520 return is_subdir(path->dentry, mnt->mnt_root);
521 }
522
523 /*
524 * Path walking has 2 modes, rcu-walk and ref-walk (see
525 * Documentation/filesystems/path-lookup.txt). In situations when we can't
526 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
527 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
528 * mode. Refcounts are grabbed at the last known good point before rcu-walk
529 * got stuck, so ref-walk may continue from there. If this is not successful
530 * (eg. a seqcount has changed), then failure is returned and it's up to caller
531 * to restart the path walk from the beginning in ref-walk mode.
532 */
533
534 /**
535 * unlazy_walk - try to switch to ref-walk mode.
536 * @nd: nameidata pathwalk data
537 * @dentry: child of nd->path.dentry or NULL
538 * Returns: 0 on success, -ECHILD on failure
539 *
540 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
541 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
542 * @nd or NULL. Must be called from rcu-walk context.
543 */
unlazy_walk(struct nameidata * nd,struct dentry * dentry)544 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
545 {
546 struct fs_struct *fs = current->fs;
547 struct dentry *parent = nd->path.dentry;
548
549 BUG_ON(!(nd->flags & LOOKUP_RCU));
550
551 /*
552 * After legitimizing the bastards, terminate_walk()
553 * will do the right thing for non-RCU mode, and all our
554 * subsequent exit cases should rcu_read_unlock()
555 * before returning. Do vfsmount first; if dentry
556 * can't be legitimized, just set nd->path.dentry to NULL
557 * and rely on dput(NULL) being a no-op.
558 */
559 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
560 return -ECHILD;
561 nd->flags &= ~LOOKUP_RCU;
562
563 if (!lockref_get_not_dead(&parent->d_lockref)) {
564 nd->path.dentry = NULL;
565 goto out;
566 }
567
568 /*
569 * For a negative lookup, the lookup sequence point is the parents
570 * sequence point, and it only needs to revalidate the parent dentry.
571 *
572 * For a positive lookup, we need to move both the parent and the
573 * dentry from the RCU domain to be properly refcounted. And the
574 * sequence number in the dentry validates *both* dentry counters,
575 * since we checked the sequence number of the parent after we got
576 * the child sequence number. So we know the parent must still
577 * be valid if the child sequence number is still valid.
578 */
579 if (!dentry) {
580 if (read_seqcount_retry(&parent->d_seq, nd->seq))
581 goto out;
582 BUG_ON(nd->inode != parent->d_inode);
583 } else {
584 if (!lockref_get_not_dead(&dentry->d_lockref))
585 goto out;
586 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
587 goto drop_dentry;
588 }
589
590 /*
591 * Sequence counts matched. Now make sure that the root is
592 * still valid and get it if required.
593 */
594 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
595 spin_lock(&fs->lock);
596 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
597 goto unlock_and_drop_dentry;
598 path_get(&nd->root);
599 spin_unlock(&fs->lock);
600 }
601
602 rcu_read_unlock();
603 return 0;
604
605 unlock_and_drop_dentry:
606 spin_unlock(&fs->lock);
607 drop_dentry:
608 rcu_read_unlock();
609 dput(dentry);
610 goto drop_root_mnt;
611 out:
612 rcu_read_unlock();
613 drop_root_mnt:
614 if (!(nd->flags & LOOKUP_ROOT))
615 nd->root.mnt = NULL;
616 return -ECHILD;
617 }
618
d_revalidate(struct dentry * dentry,unsigned int flags)619 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
620 {
621 return dentry->d_op->d_revalidate(dentry, flags);
622 }
623
624 /**
625 * complete_walk - successful completion of path walk
626 * @nd: pointer nameidata
627 *
628 * If we had been in RCU mode, drop out of it and legitimize nd->path.
629 * Revalidate the final result, unless we'd already done that during
630 * the path walk or the filesystem doesn't ask for it. Return 0 on
631 * success, -error on failure. In case of failure caller does not
632 * need to drop nd->path.
633 */
complete_walk(struct nameidata * nd)634 static int complete_walk(struct nameidata *nd)
635 {
636 struct dentry *dentry = nd->path.dentry;
637 int status;
638
639 if (nd->flags & LOOKUP_RCU) {
640 nd->flags &= ~LOOKUP_RCU;
641 if (!(nd->flags & LOOKUP_ROOT))
642 nd->root.mnt = NULL;
643
644 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
645 rcu_read_unlock();
646 return -ECHILD;
647 }
648 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
649 rcu_read_unlock();
650 mntput(nd->path.mnt);
651 return -ECHILD;
652 }
653 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
654 rcu_read_unlock();
655 dput(dentry);
656 mntput(nd->path.mnt);
657 return -ECHILD;
658 }
659 rcu_read_unlock();
660 }
661
662 if (likely(!(nd->flags & LOOKUP_JUMPED)))
663 return 0;
664
665 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
666 return 0;
667
668 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
669 if (status > 0)
670 return 0;
671
672 if (!status)
673 status = -ESTALE;
674
675 path_put(&nd->path);
676 return status;
677 }
678
set_root(struct nameidata * nd)679 static __always_inline void set_root(struct nameidata *nd)
680 {
681 get_fs_root(current->fs, &nd->root);
682 }
683
684 static int link_path_walk(const char *, struct nameidata *);
685
set_root_rcu(struct nameidata * nd)686 static __always_inline unsigned set_root_rcu(struct nameidata *nd)
687 {
688 struct fs_struct *fs = current->fs;
689 unsigned seq, res;
690
691 do {
692 seq = read_seqcount_begin(&fs->seq);
693 nd->root = fs->root;
694 res = __read_seqcount_begin(&nd->root.dentry->d_seq);
695 } while (read_seqcount_retry(&fs->seq, seq));
696 return res;
697 }
698
path_put_conditional(struct path * path,struct nameidata * nd)699 static void path_put_conditional(struct path *path, struct nameidata *nd)
700 {
701 dput(path->dentry);
702 if (path->mnt != nd->path.mnt)
703 mntput(path->mnt);
704 }
705
path_to_nameidata(const struct path * path,struct nameidata * nd)706 static inline void path_to_nameidata(const struct path *path,
707 struct nameidata *nd)
708 {
709 if (!(nd->flags & LOOKUP_RCU)) {
710 dput(nd->path.dentry);
711 if (nd->path.mnt != path->mnt)
712 mntput(nd->path.mnt);
713 }
714 nd->path.mnt = path->mnt;
715 nd->path.dentry = path->dentry;
716 }
717
718 /*
719 * Helper to directly jump to a known parsed path from ->follow_link,
720 * caller must have taken a reference to path beforehand.
721 */
nd_jump_link(struct nameidata * nd,struct path * path)722 void nd_jump_link(struct nameidata *nd, struct path *path)
723 {
724 path_put(&nd->path);
725
726 nd->path = *path;
727 nd->inode = nd->path.dentry->d_inode;
728 nd->flags |= LOOKUP_JUMPED;
729 }
730
put_link(struct nameidata * nd,struct path * link,void * cookie)731 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
732 {
733 struct inode *inode = link->dentry->d_inode;
734 if (inode->i_op->put_link)
735 inode->i_op->put_link(link->dentry, nd, cookie);
736 path_put(link);
737 }
738
739 int sysctl_protected_symlinks __read_mostly = 0;
740 int sysctl_protected_hardlinks __read_mostly = 0;
741
742 /**
743 * may_follow_link - Check symlink following for unsafe situations
744 * @link: The path of the symlink
745 * @nd: nameidata pathwalk data
746 *
747 * In the case of the sysctl_protected_symlinks sysctl being enabled,
748 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
749 * in a sticky world-writable directory. This is to protect privileged
750 * processes from failing races against path names that may change out
751 * from under them by way of other users creating malicious symlinks.
752 * It will permit symlinks to be followed only when outside a sticky
753 * world-writable directory, or when the uid of the symlink and follower
754 * match, or when the directory owner matches the symlink's owner.
755 *
756 * Returns 0 if following the symlink is allowed, -ve on error.
757 */
may_follow_link(struct path * link,struct nameidata * nd)758 static inline int may_follow_link(struct path *link, struct nameidata *nd)
759 {
760 const struct inode *inode;
761 const struct inode *parent;
762
763 if (!sysctl_protected_symlinks)
764 return 0;
765
766 /* Allowed if owner and follower match. */
767 inode = link->dentry->d_inode;
768 if (uid_eq(current_cred()->fsuid, inode->i_uid))
769 return 0;
770
771 /* Allowed if parent directory not sticky and world-writable. */
772 parent = nd->path.dentry->d_inode;
773 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
774 return 0;
775
776 /* Allowed if parent directory and link owner match. */
777 if (uid_eq(parent->i_uid, inode->i_uid))
778 return 0;
779
780 audit_log_link_denied("follow_link", link);
781 path_put_conditional(link, nd);
782 path_put(&nd->path);
783 return -EACCES;
784 }
785
786 /**
787 * safe_hardlink_source - Check for safe hardlink conditions
788 * @inode: the source inode to hardlink from
789 *
790 * Return false if at least one of the following conditions:
791 * - inode is not a regular file
792 * - inode is setuid
793 * - inode is setgid and group-exec
794 * - access failure for read and write
795 *
796 * Otherwise returns true.
797 */
safe_hardlink_source(struct inode * inode)798 static bool safe_hardlink_source(struct inode *inode)
799 {
800 umode_t mode = inode->i_mode;
801
802 /* Special files should not get pinned to the filesystem. */
803 if (!S_ISREG(mode))
804 return false;
805
806 /* Setuid files should not get pinned to the filesystem. */
807 if (mode & S_ISUID)
808 return false;
809
810 /* Executable setgid files should not get pinned to the filesystem. */
811 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
812 return false;
813
814 /* Hardlinking to unreadable or unwritable sources is dangerous. */
815 if (inode_permission(inode, MAY_READ | MAY_WRITE))
816 return false;
817
818 return true;
819 }
820
821 /**
822 * may_linkat - Check permissions for creating a hardlink
823 * @link: the source to hardlink from
824 *
825 * Block hardlink when all of:
826 * - sysctl_protected_hardlinks enabled
827 * - fsuid does not match inode
828 * - hardlink source is unsafe (see safe_hardlink_source() above)
829 * - not CAP_FOWNER
830 *
831 * Returns 0 if successful, -ve on error.
832 */
may_linkat(struct path * link)833 static int may_linkat(struct path *link)
834 {
835 const struct cred *cred;
836 struct inode *inode;
837
838 if (!sysctl_protected_hardlinks)
839 return 0;
840
841 cred = current_cred();
842 inode = link->dentry->d_inode;
843
844 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
845 * otherwise, it must be a safe source.
846 */
847 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
848 capable(CAP_FOWNER))
849 return 0;
850
851 audit_log_link_denied("linkat", link);
852 return -EPERM;
853 }
854
855 static __always_inline int
follow_link(struct path * link,struct nameidata * nd,void ** p)856 follow_link(struct path *link, struct nameidata *nd, void **p)
857 {
858 struct dentry *dentry = link->dentry;
859 int error;
860 char *s;
861
862 BUG_ON(nd->flags & LOOKUP_RCU);
863
864 if (link->mnt == nd->path.mnt)
865 mntget(link->mnt);
866
867 error = -ELOOP;
868 if (unlikely(current->total_link_count >= 40))
869 goto out_put_nd_path;
870
871 cond_resched();
872 current->total_link_count++;
873
874 touch_atime(link);
875 nd_set_link(nd, NULL);
876
877 error = security_inode_follow_link(link->dentry, nd);
878 if (error)
879 goto out_put_nd_path;
880
881 nd->last_type = LAST_BIND;
882 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
883 error = PTR_ERR(*p);
884 if (IS_ERR(*p))
885 goto out_put_nd_path;
886
887 error = 0;
888 s = nd_get_link(nd);
889 if (s) {
890 if (unlikely(IS_ERR(s))) {
891 path_put(&nd->path);
892 put_link(nd, link, *p);
893 return PTR_ERR(s);
894 }
895 if (*s == '/') {
896 if (!nd->root.mnt)
897 set_root(nd);
898 path_put(&nd->path);
899 nd->path = nd->root;
900 path_get(&nd->root);
901 nd->flags |= LOOKUP_JUMPED;
902 }
903 nd->inode = nd->path.dentry->d_inode;
904 error = link_path_walk(s, nd);
905 if (unlikely(error))
906 put_link(nd, link, *p);
907 }
908
909 return error;
910
911 out_put_nd_path:
912 *p = NULL;
913 path_put(&nd->path);
914 path_put(link);
915 return error;
916 }
917
follow_up_rcu(struct path * path)918 static int follow_up_rcu(struct path *path)
919 {
920 struct mount *mnt = real_mount(path->mnt);
921 struct mount *parent;
922 struct dentry *mountpoint;
923
924 parent = mnt->mnt_parent;
925 if (&parent->mnt == path->mnt)
926 return 0;
927 mountpoint = mnt->mnt_mountpoint;
928 path->dentry = mountpoint;
929 path->mnt = &parent->mnt;
930 return 1;
931 }
932
933 /*
934 * follow_up - Find the mountpoint of path's vfsmount
935 *
936 * Given a path, find the mountpoint of its source file system.
937 * Replace @path with the path of the mountpoint in the parent mount.
938 * Up is towards /.
939 *
940 * Return 1 if we went up a level and 0 if we were already at the
941 * root.
942 */
follow_up(struct path * path)943 int follow_up(struct path *path)
944 {
945 struct mount *mnt = real_mount(path->mnt);
946 struct mount *parent;
947 struct dentry *mountpoint;
948
949 read_seqlock_excl(&mount_lock);
950 parent = mnt->mnt_parent;
951 if (parent == mnt) {
952 read_sequnlock_excl(&mount_lock);
953 return 0;
954 }
955 mntget(&parent->mnt);
956 mountpoint = dget(mnt->mnt_mountpoint);
957 read_sequnlock_excl(&mount_lock);
958 dput(path->dentry);
959 path->dentry = mountpoint;
960 mntput(path->mnt);
961 path->mnt = &parent->mnt;
962 return 1;
963 }
964 EXPORT_SYMBOL(follow_up);
965
966 /*
967 * Perform an automount
968 * - return -EISDIR to tell follow_managed() to stop and return the path we
969 * were called with.
970 */
follow_automount(struct path * path,unsigned flags,bool * need_mntput)971 static int follow_automount(struct path *path, unsigned flags,
972 bool *need_mntput)
973 {
974 struct vfsmount *mnt;
975 int err;
976
977 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
978 return -EREMOTE;
979
980 /* We don't want to mount if someone's just doing a stat -
981 * unless they're stat'ing a directory and appended a '/' to
982 * the name.
983 *
984 * We do, however, want to mount if someone wants to open or
985 * create a file of any type under the mountpoint, wants to
986 * traverse through the mountpoint or wants to open the
987 * mounted directory. Also, autofs may mark negative dentries
988 * as being automount points. These will need the attentions
989 * of the daemon to instantiate them before they can be used.
990 */
991 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
992 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
993 path->dentry->d_inode)
994 return -EISDIR;
995
996 current->total_link_count++;
997 if (current->total_link_count >= 40)
998 return -ELOOP;
999
1000 mnt = path->dentry->d_op->d_automount(path);
1001 if (IS_ERR(mnt)) {
1002 /*
1003 * The filesystem is allowed to return -EISDIR here to indicate
1004 * it doesn't want to automount. For instance, autofs would do
1005 * this so that its userspace daemon can mount on this dentry.
1006 *
1007 * However, we can only permit this if it's a terminal point in
1008 * the path being looked up; if it wasn't then the remainder of
1009 * the path is inaccessible and we should say so.
1010 */
1011 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
1012 return -EREMOTE;
1013 return PTR_ERR(mnt);
1014 }
1015
1016 if (!mnt) /* mount collision */
1017 return 0;
1018
1019 if (!*need_mntput) {
1020 /* lock_mount() may release path->mnt on error */
1021 mntget(path->mnt);
1022 *need_mntput = true;
1023 }
1024 err = finish_automount(mnt, path);
1025
1026 switch (err) {
1027 case -EBUSY:
1028 /* Someone else made a mount here whilst we were busy */
1029 return 0;
1030 case 0:
1031 path_put(path);
1032 path->mnt = mnt;
1033 path->dentry = dget(mnt->mnt_root);
1034 return 0;
1035 default:
1036 return err;
1037 }
1038
1039 }
1040
1041 /*
1042 * Handle a dentry that is managed in some way.
1043 * - Flagged for transit management (autofs)
1044 * - Flagged as mountpoint
1045 * - Flagged as automount point
1046 *
1047 * This may only be called in refwalk mode.
1048 *
1049 * Serialization is taken care of in namespace.c
1050 */
follow_managed(struct path * path,unsigned flags)1051 static int follow_managed(struct path *path, unsigned flags)
1052 {
1053 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1054 unsigned managed;
1055 bool need_mntput = false;
1056 int ret = 0;
1057
1058 /* Given that we're not holding a lock here, we retain the value in a
1059 * local variable for each dentry as we look at it so that we don't see
1060 * the components of that value change under us */
1061 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1062 managed &= DCACHE_MANAGED_DENTRY,
1063 unlikely(managed != 0)) {
1064 /* Allow the filesystem to manage the transit without i_mutex
1065 * being held. */
1066 if (managed & DCACHE_MANAGE_TRANSIT) {
1067 BUG_ON(!path->dentry->d_op);
1068 BUG_ON(!path->dentry->d_op->d_manage);
1069 ret = path->dentry->d_op->d_manage(path->dentry, false);
1070 if (ret < 0)
1071 break;
1072 }
1073
1074 /* Transit to a mounted filesystem. */
1075 if (managed & DCACHE_MOUNTED) {
1076 struct vfsmount *mounted = lookup_mnt(path);
1077 if (mounted) {
1078 dput(path->dentry);
1079 if (need_mntput)
1080 mntput(path->mnt);
1081 path->mnt = mounted;
1082 path->dentry = dget(mounted->mnt_root);
1083 need_mntput = true;
1084 continue;
1085 }
1086
1087 /* Something is mounted on this dentry in another
1088 * namespace and/or whatever was mounted there in this
1089 * namespace got unmounted before lookup_mnt() could
1090 * get it */
1091 }
1092
1093 /* Handle an automount point */
1094 if (managed & DCACHE_NEED_AUTOMOUNT) {
1095 ret = follow_automount(path, flags, &need_mntput);
1096 if (ret < 0)
1097 break;
1098 continue;
1099 }
1100
1101 /* We didn't change the current path point */
1102 break;
1103 }
1104
1105 if (need_mntput && path->mnt == mnt)
1106 mntput(path->mnt);
1107 if (ret == -EISDIR)
1108 ret = 0;
1109 return ret < 0 ? ret : need_mntput;
1110 }
1111
follow_down_one(struct path * path)1112 int follow_down_one(struct path *path)
1113 {
1114 struct vfsmount *mounted;
1115
1116 mounted = lookup_mnt(path);
1117 if (mounted) {
1118 dput(path->dentry);
1119 mntput(path->mnt);
1120 path->mnt = mounted;
1121 path->dentry = dget(mounted->mnt_root);
1122 return 1;
1123 }
1124 return 0;
1125 }
1126 EXPORT_SYMBOL(follow_down_one);
1127
managed_dentry_rcu(struct dentry * dentry)1128 static inline int managed_dentry_rcu(struct dentry *dentry)
1129 {
1130 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1131 dentry->d_op->d_manage(dentry, true) : 0;
1132 }
1133
1134 /*
1135 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1136 * we meet a managed dentry that would need blocking.
1137 */
__follow_mount_rcu(struct nameidata * nd,struct path * path,struct inode ** inode)1138 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1139 struct inode **inode)
1140 {
1141 for (;;) {
1142 struct mount *mounted;
1143 /*
1144 * Don't forget we might have a non-mountpoint managed dentry
1145 * that wants to block transit.
1146 */
1147 switch (managed_dentry_rcu(path->dentry)) {
1148 case -ECHILD:
1149 default:
1150 return false;
1151 case -EISDIR:
1152 return true;
1153 case 0:
1154 break;
1155 }
1156
1157 if (!d_mountpoint(path->dentry))
1158 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1159
1160 mounted = __lookup_mnt(path->mnt, path->dentry);
1161 if (!mounted)
1162 break;
1163 path->mnt = &mounted->mnt;
1164 path->dentry = mounted->mnt.mnt_root;
1165 nd->flags |= LOOKUP_JUMPED;
1166 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1167 /*
1168 * Update the inode too. We don't need to re-check the
1169 * dentry sequence number here after this d_inode read,
1170 * because a mount-point is always pinned.
1171 */
1172 *inode = path->dentry->d_inode;
1173 }
1174 return !read_seqretry(&mount_lock, nd->m_seq) &&
1175 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1176 }
1177
follow_dotdot_rcu(struct nameidata * nd)1178 static int follow_dotdot_rcu(struct nameidata *nd)
1179 {
1180 struct inode *inode = nd->inode;
1181 if (!nd->root.mnt)
1182 set_root_rcu(nd);
1183
1184 while (1) {
1185 if (nd->path.dentry == nd->root.dentry &&
1186 nd->path.mnt == nd->root.mnt) {
1187 break;
1188 }
1189 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1190 struct dentry *old = nd->path.dentry;
1191 struct dentry *parent = old->d_parent;
1192 unsigned seq;
1193
1194 inode = parent->d_inode;
1195 seq = read_seqcount_begin(&parent->d_seq);
1196 if (read_seqcount_retry(&old->d_seq, nd->seq))
1197 goto failed;
1198 nd->path.dentry = parent;
1199 nd->seq = seq;
1200 if (unlikely(!path_connected(&nd->path)))
1201 goto failed;
1202 break;
1203 }
1204 if (!follow_up_rcu(&nd->path))
1205 break;
1206 inode = nd->path.dentry->d_inode;
1207 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1208 }
1209 while (d_mountpoint(nd->path.dentry)) {
1210 struct mount *mounted;
1211 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1212 if (!mounted)
1213 break;
1214 nd->path.mnt = &mounted->mnt;
1215 nd->path.dentry = mounted->mnt.mnt_root;
1216 inode = nd->path.dentry->d_inode;
1217 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1218 if (read_seqretry(&mount_lock, nd->m_seq))
1219 goto failed;
1220 }
1221 nd->inode = inode;
1222 return 0;
1223
1224 failed:
1225 nd->flags &= ~LOOKUP_RCU;
1226 if (!(nd->flags & LOOKUP_ROOT))
1227 nd->root.mnt = NULL;
1228 rcu_read_unlock();
1229 return -ECHILD;
1230 }
1231
1232 /*
1233 * Follow down to the covering mount currently visible to userspace. At each
1234 * point, the filesystem owning that dentry may be queried as to whether the
1235 * caller is permitted to proceed or not.
1236 */
follow_down(struct path * path)1237 int follow_down(struct path *path)
1238 {
1239 unsigned managed;
1240 int ret;
1241
1242 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1243 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1244 /* Allow the filesystem to manage the transit without i_mutex
1245 * being held.
1246 *
1247 * We indicate to the filesystem if someone is trying to mount
1248 * something here. This gives autofs the chance to deny anyone
1249 * other than its daemon the right to mount on its
1250 * superstructure.
1251 *
1252 * The filesystem may sleep at this point.
1253 */
1254 if (managed & DCACHE_MANAGE_TRANSIT) {
1255 BUG_ON(!path->dentry->d_op);
1256 BUG_ON(!path->dentry->d_op->d_manage);
1257 ret = path->dentry->d_op->d_manage(
1258 path->dentry, false);
1259 if (ret < 0)
1260 return ret == -EISDIR ? 0 : ret;
1261 }
1262
1263 /* Transit to a mounted filesystem. */
1264 if (managed & DCACHE_MOUNTED) {
1265 struct vfsmount *mounted = lookup_mnt(path);
1266 if (!mounted)
1267 break;
1268 dput(path->dentry);
1269 mntput(path->mnt);
1270 path->mnt = mounted;
1271 path->dentry = dget(mounted->mnt_root);
1272 continue;
1273 }
1274
1275 /* Don't handle automount points here */
1276 break;
1277 }
1278 return 0;
1279 }
1280 EXPORT_SYMBOL(follow_down);
1281
1282 /*
1283 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1284 */
follow_mount(struct path * path)1285 static void follow_mount(struct path *path)
1286 {
1287 while (d_mountpoint(path->dentry)) {
1288 struct vfsmount *mounted = lookup_mnt(path);
1289 if (!mounted)
1290 break;
1291 dput(path->dentry);
1292 mntput(path->mnt);
1293 path->mnt = mounted;
1294 path->dentry = dget(mounted->mnt_root);
1295 }
1296 }
1297
follow_dotdot(struct nameidata * nd)1298 static int follow_dotdot(struct nameidata *nd)
1299 {
1300 if (!nd->root.mnt)
1301 set_root(nd);
1302
1303 while(1) {
1304 struct dentry *old = nd->path.dentry;
1305
1306 if (nd->path.dentry == nd->root.dentry &&
1307 nd->path.mnt == nd->root.mnt) {
1308 break;
1309 }
1310 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1311 /* rare case of legitimate dget_parent()... */
1312 nd->path.dentry = dget_parent(nd->path.dentry);
1313 dput(old);
1314 if (unlikely(!path_connected(&nd->path))) {
1315 path_put(&nd->path);
1316 return -ENOENT;
1317 }
1318 break;
1319 }
1320 if (!follow_up(&nd->path))
1321 break;
1322 }
1323 follow_mount(&nd->path);
1324 nd->inode = nd->path.dentry->d_inode;
1325 return 0;
1326 }
1327
1328 /*
1329 * This looks up the name in dcache, possibly revalidates the old dentry and
1330 * allocates a new one if not found or not valid. In the need_lookup argument
1331 * returns whether i_op->lookup is necessary.
1332 *
1333 * dir->d_inode->i_mutex must be held
1334 */
lookup_dcache(struct qstr * name,struct dentry * dir,unsigned int flags,bool * need_lookup)1335 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1336 unsigned int flags, bool *need_lookup)
1337 {
1338 struct dentry *dentry;
1339 int error;
1340
1341 *need_lookup = false;
1342 dentry = d_lookup(dir, name);
1343 if (dentry) {
1344 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1345 error = d_revalidate(dentry, flags);
1346 if (unlikely(error <= 0)) {
1347 if (error < 0) {
1348 dput(dentry);
1349 return ERR_PTR(error);
1350 } else {
1351 d_invalidate(dentry);
1352 dput(dentry);
1353 dentry = NULL;
1354 }
1355 }
1356 }
1357 }
1358
1359 if (!dentry) {
1360 dentry = d_alloc(dir, name);
1361 if (unlikely(!dentry))
1362 return ERR_PTR(-ENOMEM);
1363
1364 *need_lookup = true;
1365 }
1366 return dentry;
1367 }
1368
1369 /*
1370 * Call i_op->lookup on the dentry. The dentry must be negative and
1371 * unhashed.
1372 *
1373 * dir->d_inode->i_mutex must be held
1374 */
lookup_real(struct inode * dir,struct dentry * dentry,unsigned int flags)1375 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1376 unsigned int flags)
1377 {
1378 struct dentry *old;
1379
1380 /* Don't create child dentry for a dead directory. */
1381 if (unlikely(IS_DEADDIR(dir))) {
1382 dput(dentry);
1383 return ERR_PTR(-ENOENT);
1384 }
1385
1386 old = dir->i_op->lookup(dir, dentry, flags);
1387 if (unlikely(old)) {
1388 dput(dentry);
1389 dentry = old;
1390 }
1391 return dentry;
1392 }
1393
__lookup_hash(struct qstr * name,struct dentry * base,unsigned int flags)1394 static struct dentry *__lookup_hash(struct qstr *name,
1395 struct dentry *base, unsigned int flags)
1396 {
1397 bool need_lookup;
1398 struct dentry *dentry;
1399
1400 dentry = lookup_dcache(name, base, flags, &need_lookup);
1401 if (!need_lookup)
1402 return dentry;
1403
1404 return lookup_real(base->d_inode, dentry, flags);
1405 }
1406
1407 /*
1408 * It's more convoluted than I'd like it to be, but... it's still fairly
1409 * small and for now I'd prefer to have fast path as straight as possible.
1410 * It _is_ time-critical.
1411 */
lookup_fast(struct nameidata * nd,struct path * path,struct inode ** inode)1412 static int lookup_fast(struct nameidata *nd,
1413 struct path *path, struct inode **inode)
1414 {
1415 struct vfsmount *mnt = nd->path.mnt;
1416 struct dentry *dentry, *parent = nd->path.dentry;
1417 int need_reval = 1;
1418 int status = 1;
1419 int err;
1420
1421 /*
1422 * Rename seqlock is not required here because in the off chance
1423 * of a false negative due to a concurrent rename, we're going to
1424 * do the non-racy lookup, below.
1425 */
1426 if (nd->flags & LOOKUP_RCU) {
1427 unsigned seq;
1428 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1429 if (!dentry)
1430 goto unlazy;
1431
1432 /*
1433 * This sequence count validates that the inode matches
1434 * the dentry name information from lookup.
1435 */
1436 *inode = dentry->d_inode;
1437 if (read_seqcount_retry(&dentry->d_seq, seq))
1438 return -ECHILD;
1439
1440 /*
1441 * This sequence count validates that the parent had no
1442 * changes while we did the lookup of the dentry above.
1443 *
1444 * The memory barrier in read_seqcount_begin of child is
1445 * enough, we can use __read_seqcount_retry here.
1446 */
1447 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1448 return -ECHILD;
1449 nd->seq = seq;
1450
1451 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1452 status = d_revalidate(dentry, nd->flags);
1453 if (unlikely(status <= 0)) {
1454 if (status != -ECHILD)
1455 need_reval = 0;
1456 goto unlazy;
1457 }
1458 }
1459 path->mnt = mnt;
1460 path->dentry = dentry;
1461 if (likely(__follow_mount_rcu(nd, path, inode)))
1462 return 0;
1463 unlazy:
1464 if (unlazy_walk(nd, dentry))
1465 return -ECHILD;
1466 } else {
1467 dentry = __d_lookup(parent, &nd->last);
1468 }
1469
1470 if (unlikely(!dentry))
1471 goto need_lookup;
1472
1473 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1474 status = d_revalidate(dentry, nd->flags);
1475 if (unlikely(status <= 0)) {
1476 if (status < 0) {
1477 dput(dentry);
1478 return status;
1479 }
1480 d_invalidate(dentry);
1481 dput(dentry);
1482 goto need_lookup;
1483 }
1484
1485 path->mnt = mnt;
1486 path->dentry = dentry;
1487 err = follow_managed(path, nd->flags);
1488 if (unlikely(err < 0)) {
1489 path_put_conditional(path, nd);
1490 return err;
1491 }
1492 if (err)
1493 nd->flags |= LOOKUP_JUMPED;
1494 *inode = path->dentry->d_inode;
1495 return 0;
1496
1497 need_lookup:
1498 return 1;
1499 }
1500
1501 /* Fast lookup failed, do it the slow way */
lookup_slow(struct nameidata * nd,struct path * path)1502 static int lookup_slow(struct nameidata *nd, struct path *path)
1503 {
1504 struct dentry *dentry, *parent;
1505 int err;
1506
1507 parent = nd->path.dentry;
1508 BUG_ON(nd->inode != parent->d_inode);
1509
1510 mutex_lock(&parent->d_inode->i_mutex);
1511 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1512 mutex_unlock(&parent->d_inode->i_mutex);
1513 if (IS_ERR(dentry))
1514 return PTR_ERR(dentry);
1515 path->mnt = nd->path.mnt;
1516 path->dentry = dentry;
1517 err = follow_managed(path, nd->flags);
1518 if (unlikely(err < 0)) {
1519 path_put_conditional(path, nd);
1520 return err;
1521 }
1522 if (err)
1523 nd->flags |= LOOKUP_JUMPED;
1524 return 0;
1525 }
1526
may_lookup(struct nameidata * nd)1527 static inline int may_lookup(struct nameidata *nd)
1528 {
1529 if (nd->flags & LOOKUP_RCU) {
1530 int err = inode_permission2(nd->path.mnt, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1531 if (err != -ECHILD)
1532 return err;
1533 if (unlazy_walk(nd, NULL))
1534 return -ECHILD;
1535 }
1536 return inode_permission2(nd->path.mnt, nd->inode, MAY_EXEC);
1537 }
1538
handle_dots(struct nameidata * nd,int type)1539 static inline int handle_dots(struct nameidata *nd, int type)
1540 {
1541 if (type == LAST_DOTDOT) {
1542 if (nd->flags & LOOKUP_RCU) {
1543 if (follow_dotdot_rcu(nd))
1544 return -ECHILD;
1545 } else
1546 return follow_dotdot(nd);
1547 }
1548 return 0;
1549 }
1550
terminate_walk(struct nameidata * nd)1551 static void terminate_walk(struct nameidata *nd)
1552 {
1553 if (!(nd->flags & LOOKUP_RCU)) {
1554 path_put(&nd->path);
1555 } else {
1556 nd->flags &= ~LOOKUP_RCU;
1557 if (!(nd->flags & LOOKUP_ROOT))
1558 nd->root.mnt = NULL;
1559 rcu_read_unlock();
1560 }
1561 }
1562
1563 /*
1564 * Do we need to follow links? We _really_ want to be able
1565 * to do this check without having to look at inode->i_op,
1566 * so we keep a cache of "no, this doesn't need follow_link"
1567 * for the common case.
1568 */
should_follow_link(struct dentry * dentry,int follow)1569 static inline int should_follow_link(struct dentry *dentry, int follow)
1570 {
1571 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1572 }
1573
walk_component(struct nameidata * nd,struct path * path,int follow)1574 static inline int walk_component(struct nameidata *nd, struct path *path,
1575 int follow)
1576 {
1577 struct inode *inode;
1578 int err;
1579 /*
1580 * "." and ".." are special - ".." especially so because it has
1581 * to be able to know about the current root directory and
1582 * parent relationships.
1583 */
1584 if (unlikely(nd->last_type != LAST_NORM))
1585 return handle_dots(nd, nd->last_type);
1586 err = lookup_fast(nd, path, &inode);
1587 if (unlikely(err)) {
1588 if (err < 0)
1589 goto out_err;
1590
1591 err = lookup_slow(nd, path);
1592 if (err < 0)
1593 goto out_err;
1594
1595 inode = path->dentry->d_inode;
1596 }
1597 err = -ENOENT;
1598 if (!inode || d_is_negative(path->dentry))
1599 goto out_path_put;
1600
1601 if (should_follow_link(path->dentry, follow)) {
1602 if (nd->flags & LOOKUP_RCU) {
1603 if (unlikely(nd->path.mnt != path->mnt ||
1604 unlazy_walk(nd, path->dentry))) {
1605 err = -ECHILD;
1606 goto out_err;
1607 }
1608 }
1609 BUG_ON(inode != path->dentry->d_inode);
1610 return 1;
1611 }
1612 path_to_nameidata(path, nd);
1613 nd->inode = inode;
1614 return 0;
1615
1616 out_path_put:
1617 path_to_nameidata(path, nd);
1618 out_err:
1619 terminate_walk(nd);
1620 return err;
1621 }
1622
1623 /*
1624 * This limits recursive symlink follows to 8, while
1625 * limiting consecutive symlinks to 40.
1626 *
1627 * Without that kind of total limit, nasty chains of consecutive
1628 * symlinks can cause almost arbitrarily long lookups.
1629 */
nested_symlink(struct path * path,struct nameidata * nd)1630 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1631 {
1632 int res;
1633
1634 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1635 path_put_conditional(path, nd);
1636 path_put(&nd->path);
1637 return -ELOOP;
1638 }
1639 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1640
1641 nd->depth++;
1642 current->link_count++;
1643
1644 do {
1645 struct path link = *path;
1646 void *cookie;
1647
1648 res = follow_link(&link, nd, &cookie);
1649 if (res)
1650 break;
1651 res = walk_component(nd, path, LOOKUP_FOLLOW);
1652 put_link(nd, &link, cookie);
1653 } while (res > 0);
1654
1655 current->link_count--;
1656 nd->depth--;
1657 return res;
1658 }
1659
1660 /*
1661 * We can do the critical dentry name comparison and hashing
1662 * operations one word at a time, but we are limited to:
1663 *
1664 * - Architectures with fast unaligned word accesses. We could
1665 * do a "get_unaligned()" if this helps and is sufficiently
1666 * fast.
1667 *
1668 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1669 * do not trap on the (extremely unlikely) case of a page
1670 * crossing operation.
1671 *
1672 * - Furthermore, we need an efficient 64-bit compile for the
1673 * 64-bit case in order to generate the "number of bytes in
1674 * the final mask". Again, that could be replaced with a
1675 * efficient population count instruction or similar.
1676 */
1677 #ifdef CONFIG_DCACHE_WORD_ACCESS
1678
1679 #include <asm/word-at-a-time.h>
1680
1681 #ifdef CONFIG_64BIT
1682
fold_hash(unsigned long hash)1683 static inline unsigned int fold_hash(unsigned long hash)
1684 {
1685 return hash_64(hash, 32);
1686 }
1687
1688 #else /* 32-bit case */
1689
1690 #define fold_hash(x) (x)
1691
1692 #endif
1693
full_name_hash(const unsigned char * name,unsigned int len)1694 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1695 {
1696 unsigned long a, mask;
1697 unsigned long hash = 0;
1698
1699 for (;;) {
1700 a = load_unaligned_zeropad(name);
1701 if (len < sizeof(unsigned long))
1702 break;
1703 hash += a;
1704 hash *= 9;
1705 name += sizeof(unsigned long);
1706 len -= sizeof(unsigned long);
1707 if (!len)
1708 goto done;
1709 }
1710 mask = bytemask_from_count(len);
1711 hash += mask & a;
1712 done:
1713 return fold_hash(hash);
1714 }
1715 EXPORT_SYMBOL(full_name_hash);
1716
1717 /*
1718 * Calculate the length and hash of the path component, and
1719 * return the "hash_len" as the result.
1720 */
hash_name(const char * name)1721 static inline u64 hash_name(const char *name)
1722 {
1723 unsigned long a, b, adata, bdata, mask, hash, len;
1724 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1725
1726 hash = a = 0;
1727 len = -sizeof(unsigned long);
1728 do {
1729 hash = (hash + a) * 9;
1730 len += sizeof(unsigned long);
1731 a = load_unaligned_zeropad(name+len);
1732 b = a ^ REPEAT_BYTE('/');
1733 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1734
1735 adata = prep_zero_mask(a, adata, &constants);
1736 bdata = prep_zero_mask(b, bdata, &constants);
1737
1738 mask = create_zero_mask(adata | bdata);
1739
1740 hash += a & zero_bytemask(mask);
1741 len += find_zero(mask);
1742 return hashlen_create(fold_hash(hash), len);
1743 }
1744
1745 #else
1746
full_name_hash(const unsigned char * name,unsigned int len)1747 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1748 {
1749 unsigned long hash = init_name_hash();
1750 while (len--)
1751 hash = partial_name_hash(*name++, hash);
1752 return end_name_hash(hash);
1753 }
1754 EXPORT_SYMBOL(full_name_hash);
1755
1756 /*
1757 * We know there's a real path component here of at least
1758 * one character.
1759 */
hash_name(const char * name)1760 static inline u64 hash_name(const char *name)
1761 {
1762 unsigned long hash = init_name_hash();
1763 unsigned long len = 0, c;
1764
1765 c = (unsigned char)*name;
1766 do {
1767 len++;
1768 hash = partial_name_hash(c, hash);
1769 c = (unsigned char)name[len];
1770 } while (c && c != '/');
1771 return hashlen_create(end_name_hash(hash), len);
1772 }
1773
1774 #endif
1775
1776 /*
1777 * Name resolution.
1778 * This is the basic name resolution function, turning a pathname into
1779 * the final dentry. We expect 'base' to be positive and a directory.
1780 *
1781 * Returns 0 and nd will have valid dentry and mnt on success.
1782 * Returns error and drops reference to input namei data on failure.
1783 */
link_path_walk(const char * name,struct nameidata * nd)1784 static int link_path_walk(const char *name, struct nameidata *nd)
1785 {
1786 struct path next;
1787 int err;
1788
1789 while (*name=='/')
1790 name++;
1791 if (!*name)
1792 return 0;
1793
1794 /* At this point we know we have a real path component. */
1795 for(;;) {
1796 u64 hash_len;
1797 int type;
1798
1799 err = may_lookup(nd);
1800 if (err)
1801 break;
1802
1803 hash_len = hash_name(name);
1804
1805 type = LAST_NORM;
1806 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1807 case 2:
1808 if (name[1] == '.') {
1809 type = LAST_DOTDOT;
1810 nd->flags |= LOOKUP_JUMPED;
1811 }
1812 break;
1813 case 1:
1814 type = LAST_DOT;
1815 }
1816 if (likely(type == LAST_NORM)) {
1817 struct dentry *parent = nd->path.dentry;
1818 nd->flags &= ~LOOKUP_JUMPED;
1819 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1820 struct qstr this = { { .hash_len = hash_len }, .name = name };
1821 err = parent->d_op->d_hash(parent, &this);
1822 if (err < 0)
1823 break;
1824 hash_len = this.hash_len;
1825 name = this.name;
1826 }
1827 }
1828
1829 nd->last.hash_len = hash_len;
1830 nd->last.name = name;
1831 nd->last_type = type;
1832
1833 name += hashlen_len(hash_len);
1834 if (!*name)
1835 return 0;
1836 /*
1837 * If it wasn't NUL, we know it was '/'. Skip that
1838 * slash, and continue until no more slashes.
1839 */
1840 do {
1841 name++;
1842 } while (unlikely(*name == '/'));
1843 if (!*name)
1844 return 0;
1845
1846 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1847 if (err < 0)
1848 return err;
1849
1850 if (err) {
1851 err = nested_symlink(&next, nd);
1852 if (err)
1853 return err;
1854 }
1855 if (!d_can_lookup(nd->path.dentry)) {
1856 err = -ENOTDIR;
1857 break;
1858 }
1859 }
1860 terminate_walk(nd);
1861 return err;
1862 }
1863
path_init(int dfd,const char * name,unsigned int flags,struct nameidata * nd,struct file ** fp)1864 static int path_init(int dfd, const char *name, unsigned int flags,
1865 struct nameidata *nd, struct file **fp)
1866 {
1867 int retval = 0;
1868
1869 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1870 nd->flags = flags | LOOKUP_JUMPED;
1871 nd->depth = 0;
1872 if (flags & LOOKUP_ROOT) {
1873 struct dentry *root = nd->root.dentry;
1874 struct vfsmount *mnt = nd->root.mnt;
1875 struct inode *inode = root->d_inode;
1876 if (*name) {
1877 if (!d_can_lookup(root))
1878 return -ENOTDIR;
1879 retval = inode_permission2(mnt, inode, MAY_EXEC);
1880 if (retval)
1881 return retval;
1882 }
1883 nd->path = nd->root;
1884 nd->inode = inode;
1885 if (flags & LOOKUP_RCU) {
1886 rcu_read_lock();
1887 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1888 nd->m_seq = read_seqbegin(&mount_lock);
1889 } else {
1890 path_get(&nd->path);
1891 }
1892 return 0;
1893 }
1894
1895 nd->root.mnt = NULL;
1896
1897 nd->m_seq = read_seqbegin(&mount_lock);
1898 if (*name=='/') {
1899 if (flags & LOOKUP_RCU) {
1900 rcu_read_lock();
1901 nd->seq = set_root_rcu(nd);
1902 } else {
1903 set_root(nd);
1904 path_get(&nd->root);
1905 }
1906 nd->path = nd->root;
1907 } else if (dfd == AT_FDCWD) {
1908 if (flags & LOOKUP_RCU) {
1909 struct fs_struct *fs = current->fs;
1910 unsigned seq;
1911
1912 rcu_read_lock();
1913
1914 do {
1915 seq = read_seqcount_begin(&fs->seq);
1916 nd->path = fs->pwd;
1917 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1918 } while (read_seqcount_retry(&fs->seq, seq));
1919 } else {
1920 get_fs_pwd(current->fs, &nd->path);
1921 }
1922 } else {
1923 /* Caller must check execute permissions on the starting path component */
1924 struct fd f = fdget_raw(dfd);
1925 struct dentry *dentry;
1926
1927 if (!f.file)
1928 return -EBADF;
1929
1930 dentry = f.file->f_path.dentry;
1931
1932 if (*name) {
1933 if (!d_can_lookup(dentry)) {
1934 fdput(f);
1935 return -ENOTDIR;
1936 }
1937 }
1938
1939 nd->path = f.file->f_path;
1940 if (flags & LOOKUP_RCU) {
1941 if (f.flags & FDPUT_FPUT)
1942 *fp = f.file;
1943 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1944 rcu_read_lock();
1945 } else {
1946 path_get(&nd->path);
1947 fdput(f);
1948 }
1949 }
1950
1951 nd->inode = nd->path.dentry->d_inode;
1952 if (!(flags & LOOKUP_RCU))
1953 return 0;
1954 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1955 return 0;
1956 if (!(nd->flags & LOOKUP_ROOT))
1957 nd->root.mnt = NULL;
1958 rcu_read_unlock();
1959 return -ECHILD;
1960 }
1961
lookup_last(struct nameidata * nd,struct path * path)1962 static inline int lookup_last(struct nameidata *nd, struct path *path)
1963 {
1964 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1965 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1966
1967 nd->flags &= ~LOOKUP_PARENT;
1968 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1969 }
1970
1971 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(int dfd,const char * name,unsigned int flags,struct nameidata * nd)1972 static int path_lookupat(int dfd, const char *name,
1973 unsigned int flags, struct nameidata *nd)
1974 {
1975 struct file *base = NULL;
1976 struct path path;
1977 int err;
1978
1979 /*
1980 * Path walking is largely split up into 2 different synchronisation
1981 * schemes, rcu-walk and ref-walk (explained in
1982 * Documentation/filesystems/path-lookup.txt). These share much of the
1983 * path walk code, but some things particularly setup, cleanup, and
1984 * following mounts are sufficiently divergent that functions are
1985 * duplicated. Typically there is a function foo(), and its RCU
1986 * analogue, foo_rcu().
1987 *
1988 * -ECHILD is the error number of choice (just to avoid clashes) that
1989 * is returned if some aspect of an rcu-walk fails. Such an error must
1990 * be handled by restarting a traditional ref-walk (which will always
1991 * be able to complete).
1992 */
1993 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1994
1995 if (unlikely(err))
1996 goto out;
1997
1998 current->total_link_count = 0;
1999 err = link_path_walk(name, nd);
2000
2001 if (!err && !(flags & LOOKUP_PARENT)) {
2002 err = lookup_last(nd, &path);
2003 while (err > 0) {
2004 void *cookie;
2005 struct path link = path;
2006 err = may_follow_link(&link, nd);
2007 if (unlikely(err))
2008 break;
2009 nd->flags |= LOOKUP_PARENT;
2010 err = follow_link(&link, nd, &cookie);
2011 if (err)
2012 break;
2013 err = lookup_last(nd, &path);
2014 put_link(nd, &link, cookie);
2015 }
2016 }
2017
2018 if (!err)
2019 err = complete_walk(nd);
2020
2021 if (!err && nd->flags & LOOKUP_DIRECTORY) {
2022 if (!d_can_lookup(nd->path.dentry)) {
2023 path_put(&nd->path);
2024 err = -ENOTDIR;
2025 }
2026 }
2027
2028 out:
2029 if (base)
2030 fput(base);
2031
2032 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
2033 path_put(&nd->root);
2034 nd->root.mnt = NULL;
2035 }
2036 return err;
2037 }
2038
filename_lookup(int dfd,struct filename * name,unsigned int flags,struct nameidata * nd)2039 static int filename_lookup(int dfd, struct filename *name,
2040 unsigned int flags, struct nameidata *nd)
2041 {
2042 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
2043 if (unlikely(retval == -ECHILD))
2044 retval = path_lookupat(dfd, name->name, flags, nd);
2045 if (unlikely(retval == -ESTALE))
2046 retval = path_lookupat(dfd, name->name,
2047 flags | LOOKUP_REVAL, nd);
2048
2049 if (likely(!retval))
2050 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2051 return retval;
2052 }
2053
do_path_lookup(int dfd,const char * name,unsigned int flags,struct nameidata * nd)2054 static int do_path_lookup(int dfd, const char *name,
2055 unsigned int flags, struct nameidata *nd)
2056 {
2057 struct filename filename = { .name = name };
2058
2059 return filename_lookup(dfd, &filename, flags, nd);
2060 }
2061
2062 /* does lookup, returns the object with parent locked */
kern_path_locked(const char * name,struct path * path)2063 struct dentry *kern_path_locked(const char *name, struct path *path)
2064 {
2065 struct nameidata nd;
2066 struct dentry *d;
2067 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2068 if (err)
2069 return ERR_PTR(err);
2070 if (nd.last_type != LAST_NORM) {
2071 path_put(&nd.path);
2072 return ERR_PTR(-EINVAL);
2073 }
2074 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2075 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2076 if (IS_ERR(d)) {
2077 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2078 path_put(&nd.path);
2079 return d;
2080 }
2081 *path = nd.path;
2082 return d;
2083 }
2084
kern_path(const char * name,unsigned int flags,struct path * path)2085 int kern_path(const char *name, unsigned int flags, struct path *path)
2086 {
2087 struct nameidata nd;
2088 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2089 if (!res)
2090 *path = nd.path;
2091 return res;
2092 }
2093 EXPORT_SYMBOL(kern_path);
2094
2095 /**
2096 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2097 * @dentry: pointer to dentry of the base directory
2098 * @mnt: pointer to vfs mount of the base directory
2099 * @name: pointer to file name
2100 * @flags: lookup flags
2101 * @path: pointer to struct path to fill
2102 */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2103 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2104 const char *name, unsigned int flags,
2105 struct path *path)
2106 {
2107 struct nameidata nd;
2108 int err;
2109 nd.root.dentry = dentry;
2110 nd.root.mnt = mnt;
2111 BUG_ON(flags & LOOKUP_PARENT);
2112 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2113 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2114 if (!err)
2115 *path = nd.path;
2116 return err;
2117 }
2118 EXPORT_SYMBOL(vfs_path_lookup);
2119
2120 /*
2121 * Restricted form of lookup. Doesn't follow links, single-component only,
2122 * needs parent already locked. Doesn't follow mounts.
2123 * SMP-safe.
2124 */
lookup_hash(struct nameidata * nd)2125 static struct dentry *lookup_hash(struct nameidata *nd)
2126 {
2127 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2128 }
2129
2130 /**
2131 * lookup_one_len - filesystem helper to lookup single pathname component
2132 * @name: pathname component to lookup
2133 * @mnt: mount we are looking up on
2134 * @base: base directory to lookup from
2135 * @len: maximum length @len should be interpreted to
2136 *
2137 * Note that this routine is purely a helper for filesystem usage and should
2138 * not be called by generic code. Also note that by using this function the
2139 * nameidata argument is passed to the filesystem methods and a filesystem
2140 * using this helper needs to be prepared for that.
2141 */
lookup_one_len2(const char * name,struct vfsmount * mnt,struct dentry * base,int len)2142 struct dentry *lookup_one_len2(const char *name, struct vfsmount *mnt, struct dentry *base, int len)
2143 {
2144 struct qstr this;
2145 unsigned int c;
2146 int err;
2147
2148 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2149
2150 this.name = name;
2151 this.len = len;
2152 this.hash = full_name_hash(name, len);
2153 if (!len)
2154 return ERR_PTR(-EACCES);
2155
2156 if (unlikely(name[0] == '.')) {
2157 if (len < 2 || (len == 2 && name[1] == '.'))
2158 return ERR_PTR(-EACCES);
2159 }
2160
2161 while (len--) {
2162 c = *(const unsigned char *)name++;
2163 if (c == '/' || c == '\0')
2164 return ERR_PTR(-EACCES);
2165 }
2166 /*
2167 * See if the low-level filesystem might want
2168 * to use its own hash..
2169 */
2170 if (base->d_flags & DCACHE_OP_HASH) {
2171 int err = base->d_op->d_hash(base, &this);
2172 if (err < 0)
2173 return ERR_PTR(err);
2174 }
2175
2176 err = inode_permission2(mnt, base->d_inode, MAY_EXEC);
2177 if (err)
2178 return ERR_PTR(err);
2179
2180 return __lookup_hash(&this, base, 0);
2181 }
2182 EXPORT_SYMBOL(lookup_one_len2);
2183
lookup_one_len(const char * name,struct dentry * base,int len)2184 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2185 {
2186 return lookup_one_len2(name, NULL, base, len);
2187 }
2188 EXPORT_SYMBOL(lookup_one_len);
2189
user_path_at_empty(int dfd,const char __user * name,unsigned flags,struct path * path,int * empty)2190 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2191 struct path *path, int *empty)
2192 {
2193 struct nameidata nd;
2194 struct filename *tmp = getname_flags(name, flags, empty);
2195 int err = PTR_ERR(tmp);
2196 if (!IS_ERR(tmp)) {
2197
2198 BUG_ON(flags & LOOKUP_PARENT);
2199
2200 err = filename_lookup(dfd, tmp, flags, &nd);
2201 putname(tmp);
2202 if (!err)
2203 *path = nd.path;
2204 }
2205 return err;
2206 }
2207
user_path_at(int dfd,const char __user * name,unsigned flags,struct path * path)2208 int user_path_at(int dfd, const char __user *name, unsigned flags,
2209 struct path *path)
2210 {
2211 return user_path_at_empty(dfd, name, flags, path, NULL);
2212 }
2213 EXPORT_SYMBOL(user_path_at);
2214
2215 /*
2216 * NB: most callers don't do anything directly with the reference to the
2217 * to struct filename, but the nd->last pointer points into the name string
2218 * allocated by getname. So we must hold the reference to it until all
2219 * path-walking is complete.
2220 */
2221 static struct filename *
user_path_parent(int dfd,const char __user * path,struct nameidata * nd,unsigned int flags)2222 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2223 unsigned int flags)
2224 {
2225 struct filename *s = getname(path);
2226 int error;
2227
2228 /* only LOOKUP_REVAL is allowed in extra flags */
2229 flags &= LOOKUP_REVAL;
2230
2231 if (IS_ERR(s))
2232 return s;
2233
2234 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2235 if (error) {
2236 putname(s);
2237 return ERR_PTR(error);
2238 }
2239
2240 return s;
2241 }
2242
2243 /**
2244 * mountpoint_last - look up last component for umount
2245 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2246 * @path: pointer to container for result
2247 *
2248 * This is a special lookup_last function just for umount. In this case, we
2249 * need to resolve the path without doing any revalidation.
2250 *
2251 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2252 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2253 * in almost all cases, this lookup will be served out of the dcache. The only
2254 * cases where it won't are if nd->last refers to a symlink or the path is
2255 * bogus and it doesn't exist.
2256 *
2257 * Returns:
2258 * -error: if there was an error during lookup. This includes -ENOENT if the
2259 * lookup found a negative dentry. The nd->path reference will also be
2260 * put in this case.
2261 *
2262 * 0: if we successfully resolved nd->path and found it to not to be a
2263 * symlink that needs to be followed. "path" will also be populated.
2264 * The nd->path reference will also be put.
2265 *
2266 * 1: if we successfully resolved nd->last and found it to be a symlink
2267 * that needs to be followed. "path" will be populated with the path
2268 * to the link, and nd->path will *not* be put.
2269 */
2270 static int
mountpoint_last(struct nameidata * nd,struct path * path)2271 mountpoint_last(struct nameidata *nd, struct path *path)
2272 {
2273 int error = 0;
2274 struct dentry *dentry;
2275 struct dentry *dir = nd->path.dentry;
2276
2277 /* If we're in rcuwalk, drop out of it to handle last component */
2278 if (nd->flags & LOOKUP_RCU) {
2279 if (unlazy_walk(nd, NULL)) {
2280 error = -ECHILD;
2281 goto out;
2282 }
2283 }
2284
2285 nd->flags &= ~LOOKUP_PARENT;
2286
2287 if (unlikely(nd->last_type != LAST_NORM)) {
2288 error = handle_dots(nd, nd->last_type);
2289 if (error)
2290 return error;
2291 dentry = dget(nd->path.dentry);
2292 goto done;
2293 }
2294
2295 mutex_lock(&dir->d_inode->i_mutex);
2296 dentry = d_lookup(dir, &nd->last);
2297 if (!dentry) {
2298 /*
2299 * No cached dentry. Mounted dentries are pinned in the cache,
2300 * so that means that this dentry is probably a symlink or the
2301 * path doesn't actually point to a mounted dentry.
2302 */
2303 dentry = d_alloc(dir, &nd->last);
2304 if (!dentry) {
2305 error = -ENOMEM;
2306 mutex_unlock(&dir->d_inode->i_mutex);
2307 goto out;
2308 }
2309 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2310 error = PTR_ERR(dentry);
2311 if (IS_ERR(dentry)) {
2312 mutex_unlock(&dir->d_inode->i_mutex);
2313 goto out;
2314 }
2315 }
2316 mutex_unlock(&dir->d_inode->i_mutex);
2317
2318 done:
2319 if (!dentry->d_inode || d_is_negative(dentry)) {
2320 error = -ENOENT;
2321 dput(dentry);
2322 goto out;
2323 }
2324 path->dentry = dentry;
2325 path->mnt = nd->path.mnt;
2326 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2327 return 1;
2328 mntget(path->mnt);
2329 follow_mount(path);
2330 error = 0;
2331 out:
2332 terminate_walk(nd);
2333 return error;
2334 }
2335
2336 /**
2337 * path_mountpoint - look up a path to be umounted
2338 * @dfd: directory file descriptor to start walk from
2339 * @name: full pathname to walk
2340 * @path: pointer to container for result
2341 * @flags: lookup flags
2342 *
2343 * Look up the given name, but don't attempt to revalidate the last component.
2344 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2345 */
2346 static int
path_mountpoint(int dfd,const char * name,struct path * path,unsigned int flags)2347 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2348 {
2349 struct file *base = NULL;
2350 struct nameidata nd;
2351 int err;
2352
2353 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2354 if (unlikely(err))
2355 goto out;
2356
2357 current->total_link_count = 0;
2358 err = link_path_walk(name, &nd);
2359 if (err)
2360 goto out;
2361
2362 err = mountpoint_last(&nd, path);
2363 while (err > 0) {
2364 void *cookie;
2365 struct path link = *path;
2366 err = may_follow_link(&link, &nd);
2367 if (unlikely(err))
2368 break;
2369 nd.flags |= LOOKUP_PARENT;
2370 err = follow_link(&link, &nd, &cookie);
2371 if (err)
2372 break;
2373 err = mountpoint_last(&nd, path);
2374 put_link(&nd, &link, cookie);
2375 }
2376 out:
2377 if (base)
2378 fput(base);
2379
2380 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2381 path_put(&nd.root);
2382
2383 return err;
2384 }
2385
2386 static int
filename_mountpoint(int dfd,struct filename * s,struct path * path,unsigned int flags)2387 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2388 unsigned int flags)
2389 {
2390 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2391 if (unlikely(error == -ECHILD))
2392 error = path_mountpoint(dfd, s->name, path, flags);
2393 if (unlikely(error == -ESTALE))
2394 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2395 if (likely(!error))
2396 audit_inode(s, path->dentry, 0);
2397 return error;
2398 }
2399
2400 /**
2401 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2402 * @dfd: directory file descriptor
2403 * @name: pathname from userland
2404 * @flags: lookup flags
2405 * @path: pointer to container to hold result
2406 *
2407 * A umount is a special case for path walking. We're not actually interested
2408 * in the inode in this situation, and ESTALE errors can be a problem. We
2409 * simply want track down the dentry and vfsmount attached at the mountpoint
2410 * and avoid revalidating the last component.
2411 *
2412 * Returns 0 and populates "path" on success.
2413 */
2414 int
user_path_mountpoint_at(int dfd,const char __user * name,unsigned int flags,struct path * path)2415 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2416 struct path *path)
2417 {
2418 struct filename *s = getname(name);
2419 int error;
2420 if (IS_ERR(s))
2421 return PTR_ERR(s);
2422 error = filename_mountpoint(dfd, s, path, flags);
2423 putname(s);
2424 return error;
2425 }
2426
2427 int
kern_path_mountpoint(int dfd,const char * name,struct path * path,unsigned int flags)2428 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2429 unsigned int flags)
2430 {
2431 struct filename s = {.name = name};
2432 return filename_mountpoint(dfd, &s, path, flags);
2433 }
2434 EXPORT_SYMBOL(kern_path_mountpoint);
2435
__check_sticky(struct inode * dir,struct inode * inode)2436 int __check_sticky(struct inode *dir, struct inode *inode)
2437 {
2438 kuid_t fsuid = current_fsuid();
2439
2440 if (uid_eq(inode->i_uid, fsuid))
2441 return 0;
2442 if (uid_eq(dir->i_uid, fsuid))
2443 return 0;
2444 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2445 }
2446 EXPORT_SYMBOL(__check_sticky);
2447
2448 /*
2449 * Check whether we can remove a link victim from directory dir, check
2450 * whether the type of victim is right.
2451 * 1. We can't do it if dir is read-only (done in permission())
2452 * 2. We should have write and exec permissions on dir
2453 * 3. We can't remove anything from append-only dir
2454 * 4. We can't do anything with immutable dir (done in permission())
2455 * 5. If the sticky bit on dir is set we should either
2456 * a. be owner of dir, or
2457 * b. be owner of victim, or
2458 * c. have CAP_FOWNER capability
2459 * 6. If the victim is append-only or immutable we can't do antyhing with
2460 * links pointing to it.
2461 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2462 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2463 * 9. We can't remove a root or mountpoint.
2464 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2465 * nfs_async_unlink().
2466 */
may_delete(struct vfsmount * mnt,struct inode * dir,struct dentry * victim,bool isdir)2467 static int may_delete(struct vfsmount *mnt, struct inode *dir, struct dentry *victim, bool isdir)
2468 {
2469 struct inode *inode = victim->d_inode;
2470 int error;
2471
2472 if (d_is_negative(victim))
2473 return -ENOENT;
2474 BUG_ON(!inode);
2475
2476 BUG_ON(victim->d_parent->d_inode != dir);
2477 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2478
2479 error = inode_permission2(mnt, dir, MAY_WRITE | MAY_EXEC);
2480 if (error)
2481 return error;
2482 if (IS_APPEND(dir))
2483 return -EPERM;
2484
2485 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2486 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2487 return -EPERM;
2488 if (isdir) {
2489 if (!d_is_dir(victim))
2490 return -ENOTDIR;
2491 if (IS_ROOT(victim))
2492 return -EBUSY;
2493 } else if (d_is_dir(victim))
2494 return -EISDIR;
2495 if (IS_DEADDIR(dir))
2496 return -ENOENT;
2497 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2498 return -EBUSY;
2499 return 0;
2500 }
2501
2502 /* Check whether we can create an object with dentry child in directory
2503 * dir.
2504 * 1. We can't do it if child already exists (open has special treatment for
2505 * this case, but since we are inlined it's OK)
2506 * 2. We can't do it if dir is read-only (done in permission())
2507 * 3. We should have write and exec permissions on dir
2508 * 4. We can't do it if dir is immutable (done in permission())
2509 */
may_create(struct vfsmount * mnt,struct inode * dir,struct dentry * child)2510 static inline int may_create(struct vfsmount *mnt, struct inode *dir, struct dentry *child)
2511 {
2512 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2513 if (child->d_inode)
2514 return -EEXIST;
2515 if (IS_DEADDIR(dir))
2516 return -ENOENT;
2517 return inode_permission2(mnt, dir, MAY_WRITE | MAY_EXEC);
2518 }
2519
2520 /*
2521 * p1 and p2 should be directories on the same fs.
2522 */
lock_rename(struct dentry * p1,struct dentry * p2)2523 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2524 {
2525 struct dentry *p;
2526
2527 if (p1 == p2) {
2528 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2529 return NULL;
2530 }
2531
2532 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2533
2534 p = d_ancestor(p2, p1);
2535 if (p) {
2536 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2537 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2538 return p;
2539 }
2540
2541 p = d_ancestor(p1, p2);
2542 if (p) {
2543 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2544 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2545 return p;
2546 }
2547
2548 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2549 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2550 return NULL;
2551 }
2552 EXPORT_SYMBOL(lock_rename);
2553
unlock_rename(struct dentry * p1,struct dentry * p2)2554 void unlock_rename(struct dentry *p1, struct dentry *p2)
2555 {
2556 mutex_unlock(&p1->d_inode->i_mutex);
2557 if (p1 != p2) {
2558 mutex_unlock(&p2->d_inode->i_mutex);
2559 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2560 }
2561 }
2562 EXPORT_SYMBOL(unlock_rename);
2563
vfs_create2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)2564 int vfs_create2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry,
2565 umode_t mode, bool want_excl)
2566 {
2567 int error = may_create(mnt, dir, dentry);
2568 if (error)
2569 return error;
2570
2571 if (!dir->i_op->create)
2572 return -EACCES; /* shouldn't it be ENOSYS? */
2573 mode &= S_IALLUGO;
2574 mode |= S_IFREG;
2575 error = security_inode_create(dir, dentry, mode);
2576 if (error)
2577 return error;
2578 error = dir->i_op->create(dir, dentry, mode, want_excl);
2579 if (!error)
2580 fsnotify_create(dir, dentry);
2581 return error;
2582 }
2583 EXPORT_SYMBOL(vfs_create2);
2584
vfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)2585 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2586 bool want_excl)
2587 {
2588 return vfs_create2(NULL, dir, dentry, mode, want_excl);
2589 }
2590 EXPORT_SYMBOL(vfs_create);
2591
may_open(struct path * path,int acc_mode,int flag)2592 static int may_open(struct path *path, int acc_mode, int flag)
2593 {
2594 struct dentry *dentry = path->dentry;
2595 struct vfsmount *mnt = path->mnt;
2596 struct inode *inode = dentry->d_inode;
2597 int error;
2598
2599 /* O_PATH? */
2600 if (!acc_mode)
2601 return 0;
2602
2603 if (!inode)
2604 return -ENOENT;
2605
2606 switch (inode->i_mode & S_IFMT) {
2607 case S_IFLNK:
2608 return -ELOOP;
2609 case S_IFDIR:
2610 if (acc_mode & MAY_WRITE)
2611 return -EISDIR;
2612 break;
2613 case S_IFBLK:
2614 case S_IFCHR:
2615 if (path->mnt->mnt_flags & MNT_NODEV)
2616 return -EACCES;
2617 /*FALLTHRU*/
2618 case S_IFIFO:
2619 case S_IFSOCK:
2620 flag &= ~O_TRUNC;
2621 break;
2622 }
2623
2624 error = inode_permission2(mnt, inode, acc_mode);
2625 if (error)
2626 return error;
2627
2628 /*
2629 * An append-only file must be opened in append mode for writing.
2630 */
2631 if (IS_APPEND(inode)) {
2632 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2633 return -EPERM;
2634 if (flag & O_TRUNC)
2635 return -EPERM;
2636 }
2637
2638 /* O_NOATIME can only be set by the owner or superuser */
2639 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2640 return -EPERM;
2641
2642 return 0;
2643 }
2644
handle_truncate(struct file * filp)2645 static int handle_truncate(struct file *filp)
2646 {
2647 struct path *path = &filp->f_path;
2648 struct inode *inode = path->dentry->d_inode;
2649 int error = get_write_access(inode);
2650 if (error)
2651 return error;
2652 /*
2653 * Refuse to truncate files with mandatory locks held on them.
2654 */
2655 error = locks_verify_locked(filp);
2656 if (!error)
2657 error = security_path_truncate(path);
2658 if (!error) {
2659 error = do_truncate2(path->mnt, path->dentry, 0,
2660 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2661 filp);
2662 }
2663 put_write_access(inode);
2664 return error;
2665 }
2666
open_to_namei_flags(int flag)2667 static inline int open_to_namei_flags(int flag)
2668 {
2669 if ((flag & O_ACCMODE) == 3)
2670 flag--;
2671 return flag;
2672 }
2673
may_o_create(struct path * dir,struct dentry * dentry,umode_t mode)2674 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2675 {
2676 int error = security_path_mknod(dir, dentry, mode, 0);
2677 if (error)
2678 return error;
2679
2680 error = inode_permission2(dir->mnt, dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2681 if (error)
2682 return error;
2683
2684 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2685 }
2686
2687 /*
2688 * Attempt to atomically look up, create and open a file from a negative
2689 * dentry.
2690 *
2691 * Returns 0 if successful. The file will have been created and attached to
2692 * @file by the filesystem calling finish_open().
2693 *
2694 * Returns 1 if the file was looked up only or didn't need creating. The
2695 * caller will need to perform the open themselves. @path will have been
2696 * updated to point to the new dentry. This may be negative.
2697 *
2698 * Returns an error code otherwise.
2699 */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct path * path,struct file * file,const struct open_flags * op,bool got_write,bool need_lookup,int * opened)2700 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2701 struct path *path, struct file *file,
2702 const struct open_flags *op,
2703 bool got_write, bool need_lookup,
2704 int *opened)
2705 {
2706 struct inode *dir = nd->path.dentry->d_inode;
2707 unsigned open_flag = open_to_namei_flags(op->open_flag);
2708 umode_t mode;
2709 int error;
2710 int acc_mode;
2711 int create_error = 0;
2712 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2713 bool excl;
2714
2715 BUG_ON(dentry->d_inode);
2716
2717 /* Don't create child dentry for a dead directory. */
2718 if (unlikely(IS_DEADDIR(dir))) {
2719 error = -ENOENT;
2720 goto out;
2721 }
2722
2723 mode = op->mode;
2724 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2725 mode &= ~current_umask();
2726
2727 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2728 if (excl)
2729 open_flag &= ~O_TRUNC;
2730
2731 /*
2732 * Checking write permission is tricky, bacuse we don't know if we are
2733 * going to actually need it: O_CREAT opens should work as long as the
2734 * file exists. But checking existence breaks atomicity. The trick is
2735 * to check access and if not granted clear O_CREAT from the flags.
2736 *
2737 * Another problem is returing the "right" error value (e.g. for an
2738 * O_EXCL open we want to return EEXIST not EROFS).
2739 */
2740 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2741 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2742 if (!(open_flag & O_CREAT)) {
2743 /*
2744 * No O_CREATE -> atomicity not a requirement -> fall
2745 * back to lookup + open
2746 */
2747 goto no_open;
2748 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2749 /* Fall back and fail with the right error */
2750 create_error = -EROFS;
2751 goto no_open;
2752 } else {
2753 /* No side effects, safe to clear O_CREAT */
2754 create_error = -EROFS;
2755 open_flag &= ~O_CREAT;
2756 }
2757 }
2758
2759 if (open_flag & O_CREAT) {
2760 error = may_o_create(&nd->path, dentry, mode);
2761 if (error) {
2762 create_error = error;
2763 if (open_flag & O_EXCL)
2764 goto no_open;
2765 open_flag &= ~O_CREAT;
2766 }
2767 }
2768
2769 if (nd->flags & LOOKUP_DIRECTORY)
2770 open_flag |= O_DIRECTORY;
2771
2772 file->f_path.dentry = DENTRY_NOT_SET;
2773 file->f_path.mnt = nd->path.mnt;
2774 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2775 opened);
2776 if (error < 0) {
2777 if (create_error && error == -ENOENT)
2778 error = create_error;
2779 goto out;
2780 }
2781
2782 if (error) { /* returned 1, that is */
2783 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2784 error = -EIO;
2785 goto out;
2786 }
2787 if (file->f_path.dentry) {
2788 dput(dentry);
2789 dentry = file->f_path.dentry;
2790 }
2791 if (*opened & FILE_CREATED)
2792 fsnotify_create(dir, dentry);
2793 if (!dentry->d_inode) {
2794 WARN_ON(*opened & FILE_CREATED);
2795 if (create_error) {
2796 error = create_error;
2797 goto out;
2798 }
2799 } else {
2800 if (excl && !(*opened & FILE_CREATED)) {
2801 error = -EEXIST;
2802 goto out;
2803 }
2804 }
2805 goto looked_up;
2806 }
2807
2808 /*
2809 * We didn't have the inode before the open, so check open permission
2810 * here.
2811 */
2812 acc_mode = op->acc_mode;
2813 if (*opened & FILE_CREATED) {
2814 WARN_ON(!(open_flag & O_CREAT));
2815 fsnotify_create(dir, dentry);
2816 acc_mode = MAY_OPEN;
2817 }
2818 error = may_open(&file->f_path, acc_mode, open_flag);
2819 if (error)
2820 fput(file);
2821
2822 out:
2823 dput(dentry);
2824 return error;
2825
2826 no_open:
2827 if (need_lookup) {
2828 dentry = lookup_real(dir, dentry, nd->flags);
2829 if (IS_ERR(dentry))
2830 return PTR_ERR(dentry);
2831 }
2832 if (create_error && !dentry->d_inode) {
2833 error = create_error;
2834 goto out;
2835 }
2836 looked_up:
2837 path->dentry = dentry;
2838 path->mnt = nd->path.mnt;
2839 return 1;
2840 }
2841
2842 /*
2843 * Look up and maybe create and open the last component.
2844 *
2845 * Must be called with i_mutex held on parent.
2846 *
2847 * Returns 0 if the file was successfully atomically created (if necessary) and
2848 * opened. In this case the file will be returned attached to @file.
2849 *
2850 * Returns 1 if the file was not completely opened at this time, though lookups
2851 * and creations will have been performed and the dentry returned in @path will
2852 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2853 * specified then a negative dentry may be returned.
2854 *
2855 * An error code is returned otherwise.
2856 *
2857 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2858 * cleared otherwise prior to returning.
2859 */
lookup_open(struct nameidata * nd,struct path * path,struct file * file,const struct open_flags * op,bool got_write,int * opened)2860 static int lookup_open(struct nameidata *nd, struct path *path,
2861 struct file *file,
2862 const struct open_flags *op,
2863 bool got_write, int *opened)
2864 {
2865 struct dentry *dir = nd->path.dentry;
2866 struct vfsmount *mnt = nd->path.mnt;
2867 struct inode *dir_inode = dir->d_inode;
2868 struct dentry *dentry;
2869 int error;
2870 bool need_lookup;
2871
2872 *opened &= ~FILE_CREATED;
2873 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2874 if (IS_ERR(dentry))
2875 return PTR_ERR(dentry);
2876
2877 /* Cached positive dentry: will open in f_op->open */
2878 if (!need_lookup && dentry->d_inode)
2879 goto out_no_open;
2880
2881 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2882 return atomic_open(nd, dentry, path, file, op, got_write,
2883 need_lookup, opened);
2884 }
2885
2886 if (need_lookup) {
2887 BUG_ON(dentry->d_inode);
2888
2889 dentry = lookup_real(dir_inode, dentry, nd->flags);
2890 if (IS_ERR(dentry))
2891 return PTR_ERR(dentry);
2892 }
2893
2894 /* Negative dentry, just create the file */
2895 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2896 umode_t mode = op->mode;
2897 if (!IS_POSIXACL(dir->d_inode))
2898 mode &= ~current_umask();
2899 /*
2900 * This write is needed to ensure that a
2901 * rw->ro transition does not occur between
2902 * the time when the file is created and when
2903 * a permanent write count is taken through
2904 * the 'struct file' in finish_open().
2905 */
2906 if (!got_write) {
2907 error = -EROFS;
2908 goto out_dput;
2909 }
2910 *opened |= FILE_CREATED;
2911 error = security_path_mknod(&nd->path, dentry, mode, 0);
2912 if (error)
2913 goto out_dput;
2914 error = vfs_create2(mnt, dir->d_inode, dentry, mode,
2915 nd->flags & LOOKUP_EXCL);
2916 if (error)
2917 goto out_dput;
2918 }
2919 out_no_open:
2920 path->dentry = dentry;
2921 path->mnt = nd->path.mnt;
2922 return 1;
2923
2924 out_dput:
2925 dput(dentry);
2926 return error;
2927 }
2928
2929 /*
2930 * Handle the last step of open()
2931 */
do_last(struct nameidata * nd,struct path * path,struct file * file,const struct open_flags * op,int * opened,struct filename * name)2932 static int do_last(struct nameidata *nd, struct path *path,
2933 struct file *file, const struct open_flags *op,
2934 int *opened, struct filename *name)
2935 {
2936 struct dentry *dir = nd->path.dentry;
2937 int open_flag = op->open_flag;
2938 bool will_truncate = (open_flag & O_TRUNC) != 0;
2939 bool got_write = false;
2940 int acc_mode = op->acc_mode;
2941 struct inode *inode;
2942 bool symlink_ok = false;
2943 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2944 bool retried = false;
2945 int error;
2946
2947 nd->flags &= ~LOOKUP_PARENT;
2948 nd->flags |= op->intent;
2949
2950 if (nd->last_type != LAST_NORM) {
2951 error = handle_dots(nd, nd->last_type);
2952 if (error)
2953 return error;
2954 goto finish_open;
2955 }
2956
2957 if (!(open_flag & O_CREAT)) {
2958 if (nd->last.name[nd->last.len])
2959 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2960 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2961 symlink_ok = true;
2962 /* we _can_ be in RCU mode here */
2963 error = lookup_fast(nd, path, &inode);
2964 if (likely(!error))
2965 goto finish_lookup;
2966
2967 if (error < 0)
2968 goto out;
2969
2970 BUG_ON(nd->inode != dir->d_inode);
2971 } else {
2972 /* create side of things */
2973 /*
2974 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2975 * has been cleared when we got to the last component we are
2976 * about to look up
2977 */
2978 error = complete_walk(nd);
2979 if (error)
2980 return error;
2981
2982 audit_inode(name, dir, LOOKUP_PARENT);
2983 error = -EISDIR;
2984 /* trailing slashes? */
2985 if (nd->last.name[nd->last.len])
2986 goto out;
2987 }
2988
2989 retry_lookup:
2990 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2991 error = mnt_want_write(nd->path.mnt);
2992 if (!error)
2993 got_write = true;
2994 /*
2995 * do _not_ fail yet - we might not need that or fail with
2996 * a different error; let lookup_open() decide; we'll be
2997 * dropping this one anyway.
2998 */
2999 }
3000 mutex_lock(&dir->d_inode->i_mutex);
3001 error = lookup_open(nd, path, file, op, got_write, opened);
3002 mutex_unlock(&dir->d_inode->i_mutex);
3003
3004 if (error <= 0) {
3005 if (error)
3006 goto out;
3007
3008 if ((*opened & FILE_CREATED) ||
3009 !S_ISREG(file_inode(file)->i_mode))
3010 will_truncate = false;
3011
3012 audit_inode(name, file->f_path.dentry, 0);
3013 goto opened;
3014 }
3015
3016 if (*opened & FILE_CREATED) {
3017 /* Don't check for write permission, don't truncate */
3018 open_flag &= ~O_TRUNC;
3019 will_truncate = false;
3020 acc_mode = MAY_OPEN;
3021 path_to_nameidata(path, nd);
3022 goto finish_open_created;
3023 }
3024
3025 /*
3026 * create/update audit record if it already exists.
3027 */
3028 if (d_is_positive(path->dentry))
3029 audit_inode(name, path->dentry, 0);
3030
3031 /*
3032 * If atomic_open() acquired write access it is dropped now due to
3033 * possible mount and symlink following (this might be optimized away if
3034 * necessary...)
3035 */
3036 if (got_write) {
3037 mnt_drop_write(nd->path.mnt);
3038 got_write = false;
3039 }
3040
3041 error = -EEXIST;
3042 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3043 goto exit_dput;
3044
3045 error = follow_managed(path, nd->flags);
3046 if (error < 0)
3047 goto exit_dput;
3048
3049 if (error)
3050 nd->flags |= LOOKUP_JUMPED;
3051
3052 BUG_ON(nd->flags & LOOKUP_RCU);
3053 inode = path->dentry->d_inode;
3054 finish_lookup:
3055 /* we _can_ be in RCU mode here */
3056 error = -ENOENT;
3057 if (!inode || d_is_negative(path->dentry)) {
3058 path_to_nameidata(path, nd);
3059 goto out;
3060 }
3061
3062 if (should_follow_link(path->dentry, !symlink_ok)) {
3063 if (nd->flags & LOOKUP_RCU) {
3064 if (unlikely(nd->path.mnt != path->mnt ||
3065 unlazy_walk(nd, path->dentry))) {
3066 error = -ECHILD;
3067 goto out;
3068 }
3069 }
3070 BUG_ON(inode != path->dentry->d_inode);
3071 return 1;
3072 }
3073
3074 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3075 path_to_nameidata(path, nd);
3076 } else {
3077 save_parent.dentry = nd->path.dentry;
3078 save_parent.mnt = mntget(path->mnt);
3079 nd->path.dentry = path->dentry;
3080
3081 }
3082 nd->inode = inode;
3083 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3084 finish_open:
3085 error = complete_walk(nd);
3086 if (error) {
3087 path_put(&save_parent);
3088 return error;
3089 }
3090 audit_inode(name, nd->path.dentry, 0);
3091 error = -EISDIR;
3092 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3093 goto out;
3094 error = -ENOTDIR;
3095 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3096 goto out;
3097 if (!S_ISREG(nd->inode->i_mode))
3098 will_truncate = false;
3099
3100 if (will_truncate) {
3101 error = mnt_want_write(nd->path.mnt);
3102 if (error)
3103 goto out;
3104 got_write = true;
3105 }
3106 finish_open_created:
3107 error = may_open(&nd->path, acc_mode, open_flag);
3108 if (error)
3109 goto out;
3110
3111 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3112 error = vfs_open(&nd->path, file, current_cred());
3113 if (!error) {
3114 *opened |= FILE_OPENED;
3115 } else {
3116 if (error == -EOPENSTALE)
3117 goto stale_open;
3118 goto out;
3119 }
3120 opened:
3121 error = open_check_o_direct(file);
3122 if (error)
3123 goto exit_fput;
3124 error = ima_file_check(file, op->acc_mode, *opened);
3125 if (error)
3126 goto exit_fput;
3127
3128 if (will_truncate) {
3129 error = handle_truncate(file);
3130 if (error)
3131 goto exit_fput;
3132 }
3133 out:
3134 if (unlikely(error > 0)) {
3135 WARN_ON(1);
3136 error = -EINVAL;
3137 }
3138 if (got_write)
3139 mnt_drop_write(nd->path.mnt);
3140 path_put(&save_parent);
3141 terminate_walk(nd);
3142 return error;
3143
3144 exit_dput:
3145 path_put_conditional(path, nd);
3146 goto out;
3147 exit_fput:
3148 fput(file);
3149 goto out;
3150
3151 stale_open:
3152 /* If no saved parent or already retried then can't retry */
3153 if (!save_parent.dentry || retried)
3154 goto out;
3155
3156 BUG_ON(save_parent.dentry != dir);
3157 path_put(&nd->path);
3158 nd->path = save_parent;
3159 nd->inode = dir->d_inode;
3160 save_parent.mnt = NULL;
3161 save_parent.dentry = NULL;
3162 if (got_write) {
3163 mnt_drop_write(nd->path.mnt);
3164 got_write = false;
3165 }
3166 retried = true;
3167 goto retry_lookup;
3168 }
3169
do_tmpfile(int dfd,struct filename * pathname,struct nameidata * nd,int flags,const struct open_flags * op,struct file * file,int * opened)3170 static int do_tmpfile(int dfd, struct filename *pathname,
3171 struct nameidata *nd, int flags,
3172 const struct open_flags *op,
3173 struct file *file, int *opened)
3174 {
3175 static const struct qstr name = QSTR_INIT("/", 1);
3176 struct dentry *dentry, *child;
3177 struct inode *dir;
3178 int error = path_lookupat(dfd, pathname->name,
3179 flags | LOOKUP_DIRECTORY, nd);
3180 if (unlikely(error))
3181 return error;
3182 error = mnt_want_write(nd->path.mnt);
3183 if (unlikely(error))
3184 goto out;
3185 /* we want directory to be writable */
3186 error = inode_permission2(nd->path.mnt, nd->inode, MAY_WRITE | MAY_EXEC);
3187 if (error)
3188 goto out2;
3189 dentry = nd->path.dentry;
3190 dir = dentry->d_inode;
3191 if (!dir->i_op->tmpfile) {
3192 error = -EOPNOTSUPP;
3193 goto out2;
3194 }
3195 child = d_alloc(dentry, &name);
3196 if (unlikely(!child)) {
3197 error = -ENOMEM;
3198 goto out2;
3199 }
3200 nd->flags &= ~LOOKUP_DIRECTORY;
3201 nd->flags |= op->intent;
3202 dput(nd->path.dentry);
3203 nd->path.dentry = child;
3204 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3205 if (error)
3206 goto out2;
3207 audit_inode(pathname, nd->path.dentry, 0);
3208 /* Don't check for other permissions, the inode was just created */
3209 error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3210 if (error)
3211 goto out2;
3212 file->f_path.mnt = nd->path.mnt;
3213 error = finish_open(file, nd->path.dentry, NULL, opened);
3214 if (error)
3215 goto out2;
3216 error = open_check_o_direct(file);
3217 if (error) {
3218 fput(file);
3219 } else if (!(op->open_flag & O_EXCL)) {
3220 struct inode *inode = file_inode(file);
3221 spin_lock(&inode->i_lock);
3222 inode->i_state |= I_LINKABLE;
3223 spin_unlock(&inode->i_lock);
3224 }
3225 out2:
3226 mnt_drop_write(nd->path.mnt);
3227 out:
3228 path_put(&nd->path);
3229 return error;
3230 }
3231
path_openat(int dfd,struct filename * pathname,struct nameidata * nd,const struct open_flags * op,int flags)3232 static struct file *path_openat(int dfd, struct filename *pathname,
3233 struct nameidata *nd, const struct open_flags *op, int flags)
3234 {
3235 struct file *base = NULL;
3236 struct file *file;
3237 struct path path;
3238 int opened = 0;
3239 int error;
3240
3241 file = get_empty_filp();
3242 if (IS_ERR(file))
3243 return file;
3244
3245 file->f_flags = op->open_flag;
3246
3247 if (unlikely(file->f_flags & __O_TMPFILE)) {
3248 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3249 goto out2;
3250 }
3251
3252 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3253 if (unlikely(error))
3254 goto out;
3255
3256 current->total_link_count = 0;
3257 error = link_path_walk(pathname->name, nd);
3258 if (unlikely(error))
3259 goto out;
3260
3261 error = do_last(nd, &path, file, op, &opened, pathname);
3262 while (unlikely(error > 0)) { /* trailing symlink */
3263 struct path link = path;
3264 void *cookie;
3265 if (!(nd->flags & LOOKUP_FOLLOW)) {
3266 path_put_conditional(&path, nd);
3267 path_put(&nd->path);
3268 error = -ELOOP;
3269 break;
3270 }
3271 error = may_follow_link(&link, nd);
3272 if (unlikely(error))
3273 break;
3274 nd->flags |= LOOKUP_PARENT;
3275 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3276 error = follow_link(&link, nd, &cookie);
3277 if (unlikely(error))
3278 break;
3279 error = do_last(nd, &path, file, op, &opened, pathname);
3280 put_link(nd, &link, cookie);
3281 }
3282 out:
3283 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3284 path_put(&nd->root);
3285 if (base)
3286 fput(base);
3287 out2:
3288 if (!(opened & FILE_OPENED)) {
3289 BUG_ON(!error);
3290 put_filp(file);
3291 }
3292 if (unlikely(error)) {
3293 if (error == -EOPENSTALE) {
3294 if (flags & LOOKUP_RCU)
3295 error = -ECHILD;
3296 else
3297 error = -ESTALE;
3298 }
3299 file = ERR_PTR(error);
3300 }
3301 return file;
3302 }
3303
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)3304 struct file *do_filp_open(int dfd, struct filename *pathname,
3305 const struct open_flags *op)
3306 {
3307 struct nameidata nd;
3308 int flags = op->lookup_flags;
3309 struct file *filp;
3310
3311 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3312 if (unlikely(filp == ERR_PTR(-ECHILD)))
3313 filp = path_openat(dfd, pathname, &nd, op, flags);
3314 if (unlikely(filp == ERR_PTR(-ESTALE)))
3315 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3316 return filp;
3317 }
3318
do_file_open_root(struct dentry * dentry,struct vfsmount * mnt,const char * name,const struct open_flags * op)3319 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3320 const char *name, const struct open_flags *op)
3321 {
3322 struct nameidata nd;
3323 struct file *file;
3324 struct filename filename = { .name = name };
3325 int flags = op->lookup_flags | LOOKUP_ROOT;
3326
3327 nd.root.mnt = mnt;
3328 nd.root.dentry = dentry;
3329
3330 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3331 return ERR_PTR(-ELOOP);
3332
3333 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3334 if (unlikely(file == ERR_PTR(-ECHILD)))
3335 file = path_openat(-1, &filename, &nd, op, flags);
3336 if (unlikely(file == ERR_PTR(-ESTALE)))
3337 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3338 return file;
3339 }
3340
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)3341 struct dentry *kern_path_create(int dfd, const char *pathname,
3342 struct path *path, unsigned int lookup_flags)
3343 {
3344 struct dentry *dentry = ERR_PTR(-EEXIST);
3345 struct nameidata nd;
3346 int err2;
3347 int error;
3348 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3349
3350 /*
3351 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3352 * other flags passed in are ignored!
3353 */
3354 lookup_flags &= LOOKUP_REVAL;
3355
3356 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3357 if (error)
3358 return ERR_PTR(error);
3359
3360 /*
3361 * Yucky last component or no last component at all?
3362 * (foo/., foo/.., /////)
3363 */
3364 if (nd.last_type != LAST_NORM)
3365 goto out;
3366 nd.flags &= ~LOOKUP_PARENT;
3367 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3368
3369 /* don't fail immediately if it's r/o, at least try to report other errors */
3370 err2 = mnt_want_write(nd.path.mnt);
3371 /*
3372 * Do the final lookup.
3373 */
3374 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3375 dentry = lookup_hash(&nd);
3376 if (IS_ERR(dentry))
3377 goto unlock;
3378
3379 error = -EEXIST;
3380 if (d_is_positive(dentry))
3381 goto fail;
3382
3383 /*
3384 * Special case - lookup gave negative, but... we had foo/bar/
3385 * From the vfs_mknod() POV we just have a negative dentry -
3386 * all is fine. Let's be bastards - you had / on the end, you've
3387 * been asking for (non-existent) directory. -ENOENT for you.
3388 */
3389 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3390 error = -ENOENT;
3391 goto fail;
3392 }
3393 if (unlikely(err2)) {
3394 error = err2;
3395 goto fail;
3396 }
3397 *path = nd.path;
3398 return dentry;
3399 fail:
3400 dput(dentry);
3401 dentry = ERR_PTR(error);
3402 unlock:
3403 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3404 if (!err2)
3405 mnt_drop_write(nd.path.mnt);
3406 out:
3407 path_put(&nd.path);
3408 return dentry;
3409 }
3410 EXPORT_SYMBOL(kern_path_create);
3411
done_path_create(struct path * path,struct dentry * dentry)3412 void done_path_create(struct path *path, struct dentry *dentry)
3413 {
3414 dput(dentry);
3415 mutex_unlock(&path->dentry->d_inode->i_mutex);
3416 mnt_drop_write(path->mnt);
3417 path_put(path);
3418 }
3419 EXPORT_SYMBOL(done_path_create);
3420
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)3421 struct dentry *user_path_create(int dfd, const char __user *pathname,
3422 struct path *path, unsigned int lookup_flags)
3423 {
3424 struct filename *tmp = getname(pathname);
3425 struct dentry *res;
3426 if (IS_ERR(tmp))
3427 return ERR_CAST(tmp);
3428 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3429 putname(tmp);
3430 return res;
3431 }
3432 EXPORT_SYMBOL(user_path_create);
3433
vfs_mknod2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3434 int vfs_mknod2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3435 {
3436 int error = may_create(mnt, dir, dentry);
3437
3438 if (error)
3439 return error;
3440
3441 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3442 return -EPERM;
3443
3444 if (!dir->i_op->mknod)
3445 return -EPERM;
3446
3447 error = devcgroup_inode_mknod(mode, dev);
3448 if (error)
3449 return error;
3450
3451 error = security_inode_mknod(dir, dentry, mode, dev);
3452 if (error)
3453 return error;
3454
3455 error = dir->i_op->mknod(dir, dentry, mode, dev);
3456 if (!error)
3457 fsnotify_create(dir, dentry);
3458 return error;
3459 }
3460 EXPORT_SYMBOL(vfs_mknod2);
3461
vfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3462 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3463 {
3464 return vfs_mknod2(NULL, dir, dentry, mode, dev);
3465 }
3466 EXPORT_SYMBOL(vfs_mknod);
3467
may_mknod(umode_t mode)3468 static int may_mknod(umode_t mode)
3469 {
3470 switch (mode & S_IFMT) {
3471 case S_IFREG:
3472 case S_IFCHR:
3473 case S_IFBLK:
3474 case S_IFIFO:
3475 case S_IFSOCK:
3476 case 0: /* zero mode translates to S_IFREG */
3477 return 0;
3478 case S_IFDIR:
3479 return -EPERM;
3480 default:
3481 return -EINVAL;
3482 }
3483 }
3484
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned,dev)3485 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3486 unsigned, dev)
3487 {
3488 struct dentry *dentry;
3489 struct path path;
3490 int error;
3491 unsigned int lookup_flags = 0;
3492
3493 error = may_mknod(mode);
3494 if (error)
3495 return error;
3496 retry:
3497 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3498 if (IS_ERR(dentry))
3499 return PTR_ERR(dentry);
3500
3501 if (!IS_POSIXACL(path.dentry->d_inode))
3502 mode &= ~current_umask();
3503 error = security_path_mknod(&path, dentry, mode, dev);
3504 if (error)
3505 goto out;
3506 switch (mode & S_IFMT) {
3507 case 0: case S_IFREG:
3508 error = vfs_create2(path.mnt, path.dentry->d_inode,dentry,mode,true);
3509 break;
3510 case S_IFCHR: case S_IFBLK:
3511 error = vfs_mknod2(path.mnt, path.dentry->d_inode,dentry,mode,
3512 new_decode_dev(dev));
3513 break;
3514 case S_IFIFO: case S_IFSOCK:
3515 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3516 break;
3517 }
3518 out:
3519 done_path_create(&path, dentry);
3520 if (retry_estale(error, lookup_flags)) {
3521 lookup_flags |= LOOKUP_REVAL;
3522 goto retry;
3523 }
3524 return error;
3525 }
3526
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)3527 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3528 {
3529 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3530 }
3531
vfs_mkdir2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,umode_t mode)3532 int vfs_mkdir2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, umode_t mode)
3533 {
3534 int error = may_create(mnt, dir, dentry);
3535 unsigned max_links = dir->i_sb->s_max_links;
3536
3537 if (error)
3538 return error;
3539
3540 if (!dir->i_op->mkdir)
3541 return -EPERM;
3542
3543 mode &= (S_IRWXUGO|S_ISVTX);
3544 error = security_inode_mkdir(dir, dentry, mode);
3545 if (error)
3546 return error;
3547
3548 if (max_links && dir->i_nlink >= max_links)
3549 return -EMLINK;
3550
3551 error = dir->i_op->mkdir(dir, dentry, mode);
3552 if (!error)
3553 fsnotify_mkdir(dir, dentry);
3554 return error;
3555 }
3556 EXPORT_SYMBOL(vfs_mkdir2);
3557
vfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)3558 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3559 {
3560 return vfs_mkdir2(NULL, dir, dentry, mode);
3561 }
3562 EXPORT_SYMBOL(vfs_mkdir);
3563
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)3564 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3565 {
3566 struct dentry *dentry;
3567 struct path path;
3568 int error;
3569 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3570
3571 retry:
3572 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3573 if (IS_ERR(dentry))
3574 return PTR_ERR(dentry);
3575
3576 if (!IS_POSIXACL(path.dentry->d_inode))
3577 mode &= ~current_umask();
3578 error = security_path_mkdir(&path, dentry, mode);
3579 if (!error)
3580 error = vfs_mkdir2(path.mnt, path.dentry->d_inode, dentry, mode);
3581 done_path_create(&path, dentry);
3582 if (retry_estale(error, lookup_flags)) {
3583 lookup_flags |= LOOKUP_REVAL;
3584 goto retry;
3585 }
3586 return error;
3587 }
3588
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)3589 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3590 {
3591 return sys_mkdirat(AT_FDCWD, pathname, mode);
3592 }
3593
3594 /*
3595 * The dentry_unhash() helper will try to drop the dentry early: we
3596 * should have a usage count of 1 if we're the only user of this
3597 * dentry, and if that is true (possibly after pruning the dcache),
3598 * then we drop the dentry now.
3599 *
3600 * A low-level filesystem can, if it choses, legally
3601 * do a
3602 *
3603 * if (!d_unhashed(dentry))
3604 * return -EBUSY;
3605 *
3606 * if it cannot handle the case of removing a directory
3607 * that is still in use by something else..
3608 */
dentry_unhash(struct dentry * dentry)3609 void dentry_unhash(struct dentry *dentry)
3610 {
3611 shrink_dcache_parent(dentry);
3612 spin_lock(&dentry->d_lock);
3613 if (dentry->d_lockref.count == 1)
3614 __d_drop(dentry);
3615 spin_unlock(&dentry->d_lock);
3616 }
3617 EXPORT_SYMBOL(dentry_unhash);
3618
vfs_rmdir2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry)3619 int vfs_rmdir2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry)
3620 {
3621 int error = may_delete(mnt, dir, dentry, 1);
3622
3623 if (error)
3624 return error;
3625
3626 if (!dir->i_op->rmdir)
3627 return -EPERM;
3628
3629 dget(dentry);
3630 mutex_lock(&dentry->d_inode->i_mutex);
3631
3632 error = -EBUSY;
3633 if (is_local_mountpoint(dentry))
3634 goto out;
3635
3636 error = security_inode_rmdir(dir, dentry);
3637 if (error)
3638 goto out;
3639
3640 shrink_dcache_parent(dentry);
3641 error = dir->i_op->rmdir(dir, dentry);
3642 if (error)
3643 goto out;
3644
3645 dentry->d_inode->i_flags |= S_DEAD;
3646 dont_mount(dentry);
3647 detach_mounts(dentry);
3648
3649 out:
3650 mutex_unlock(&dentry->d_inode->i_mutex);
3651 dput(dentry);
3652 if (!error)
3653 d_delete(dentry);
3654 return error;
3655 }
3656 EXPORT_SYMBOL(vfs_rmdir2);
3657
vfs_rmdir(struct inode * dir,struct dentry * dentry)3658 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3659 {
3660 return vfs_rmdir2(NULL, dir, dentry);
3661 }
3662 EXPORT_SYMBOL(vfs_rmdir);
3663
do_rmdir(int dfd,const char __user * pathname)3664 static long do_rmdir(int dfd, const char __user *pathname)
3665 {
3666 int error = 0;
3667 struct filename *name;
3668 struct dentry *dentry;
3669 struct nameidata nd;
3670 unsigned int lookup_flags = 0;
3671 retry:
3672 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3673 if (IS_ERR(name))
3674 return PTR_ERR(name);
3675
3676 switch(nd.last_type) {
3677 case LAST_DOTDOT:
3678 error = -ENOTEMPTY;
3679 goto exit1;
3680 case LAST_DOT:
3681 error = -EINVAL;
3682 goto exit1;
3683 case LAST_ROOT:
3684 error = -EBUSY;
3685 goto exit1;
3686 }
3687
3688 nd.flags &= ~LOOKUP_PARENT;
3689 error = mnt_want_write(nd.path.mnt);
3690 if (error)
3691 goto exit1;
3692
3693 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3694 dentry = lookup_hash(&nd);
3695 error = PTR_ERR(dentry);
3696 if (IS_ERR(dentry))
3697 goto exit2;
3698 if (!dentry->d_inode) {
3699 error = -ENOENT;
3700 goto exit3;
3701 }
3702 error = security_path_rmdir(&nd.path, dentry);
3703 if (error)
3704 goto exit3;
3705 error = vfs_rmdir2(nd.path.mnt, nd.path.dentry->d_inode, dentry);
3706 exit3:
3707 dput(dentry);
3708 exit2:
3709 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3710 mnt_drop_write(nd.path.mnt);
3711 exit1:
3712 path_put(&nd.path);
3713 putname(name);
3714 if (retry_estale(error, lookup_flags)) {
3715 lookup_flags |= LOOKUP_REVAL;
3716 goto retry;
3717 }
3718 return error;
3719 }
3720
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)3721 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3722 {
3723 return do_rmdir(AT_FDCWD, pathname);
3724 }
3725
3726 /**
3727 * vfs_unlink - unlink a filesystem object
3728 * @dir: parent directory
3729 * @dentry: victim
3730 * @delegated_inode: returns victim inode, if the inode is delegated.
3731 *
3732 * The caller must hold dir->i_mutex.
3733 *
3734 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3735 * return a reference to the inode in delegated_inode. The caller
3736 * should then break the delegation on that inode and retry. Because
3737 * breaking a delegation may take a long time, the caller should drop
3738 * dir->i_mutex before doing so.
3739 *
3740 * Alternatively, a caller may pass NULL for delegated_inode. This may
3741 * be appropriate for callers that expect the underlying filesystem not
3742 * to be NFS exported.
3743 */
vfs_unlink2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)3744 int vfs_unlink2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3745 {
3746 struct inode *target = dentry->d_inode;
3747 int error = may_delete(mnt, dir, dentry, 0);
3748
3749 if (error)
3750 return error;
3751
3752 if (!dir->i_op->unlink)
3753 return -EPERM;
3754
3755 mutex_lock(&target->i_mutex);
3756 if (is_local_mountpoint(dentry))
3757 error = -EBUSY;
3758 else {
3759 error = security_inode_unlink(dir, dentry);
3760 if (!error) {
3761 error = try_break_deleg(target, delegated_inode);
3762 if (error)
3763 goto out;
3764 error = dir->i_op->unlink(dir, dentry);
3765 if (!error) {
3766 dont_mount(dentry);
3767 detach_mounts(dentry);
3768 }
3769 }
3770 }
3771 out:
3772 mutex_unlock(&target->i_mutex);
3773
3774 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3775 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3776 fsnotify_link_count(target);
3777 d_delete(dentry);
3778 }
3779
3780 return error;
3781 }
3782 EXPORT_SYMBOL(vfs_unlink2);
3783
vfs_unlink(struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)3784 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3785 {
3786 return vfs_unlink2(NULL, dir, dentry, delegated_inode);
3787 }
3788 EXPORT_SYMBOL(vfs_unlink);
3789
3790 /*
3791 * Make sure that the actual truncation of the file will occur outside its
3792 * directory's i_mutex. Truncate can take a long time if there is a lot of
3793 * writeout happening, and we don't want to prevent access to the directory
3794 * while waiting on the I/O.
3795 */
do_unlinkat(int dfd,const char __user * pathname)3796 static long do_unlinkat(int dfd, const char __user *pathname)
3797 {
3798 int error;
3799 struct filename *name;
3800 struct dentry *dentry;
3801 struct nameidata nd;
3802 struct inode *inode = NULL;
3803 struct inode *delegated_inode = NULL;
3804 unsigned int lookup_flags = 0;
3805 retry:
3806 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3807 if (IS_ERR(name))
3808 return PTR_ERR(name);
3809
3810 error = -EISDIR;
3811 if (nd.last_type != LAST_NORM)
3812 goto exit1;
3813
3814 nd.flags &= ~LOOKUP_PARENT;
3815 error = mnt_want_write(nd.path.mnt);
3816 if (error)
3817 goto exit1;
3818 retry_deleg:
3819 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3820 dentry = lookup_hash(&nd);
3821 error = PTR_ERR(dentry);
3822 if (!IS_ERR(dentry)) {
3823 /* Why not before? Because we want correct error value */
3824 if (nd.last.name[nd.last.len])
3825 goto slashes;
3826 inode = dentry->d_inode;
3827 if (d_is_negative(dentry))
3828 goto slashes;
3829 ihold(inode);
3830 error = security_path_unlink(&nd.path, dentry);
3831 if (error)
3832 goto exit2;
3833 error = vfs_unlink2(nd.path.mnt, nd.path.dentry->d_inode, dentry, &delegated_inode);
3834 exit2:
3835 dput(dentry);
3836 }
3837 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3838 if (inode)
3839 iput(inode); /* truncate the inode here */
3840 inode = NULL;
3841 if (delegated_inode) {
3842 error = break_deleg_wait(&delegated_inode);
3843 if (!error)
3844 goto retry_deleg;
3845 }
3846 mnt_drop_write(nd.path.mnt);
3847 exit1:
3848 path_put(&nd.path);
3849 putname(name);
3850 if (retry_estale(error, lookup_flags)) {
3851 lookup_flags |= LOOKUP_REVAL;
3852 inode = NULL;
3853 goto retry;
3854 }
3855 return error;
3856
3857 slashes:
3858 if (d_is_negative(dentry))
3859 error = -ENOENT;
3860 else if (d_is_dir(dentry))
3861 error = -EISDIR;
3862 else
3863 error = -ENOTDIR;
3864 goto exit2;
3865 }
3866
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)3867 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3868 {
3869 if ((flag & ~AT_REMOVEDIR) != 0)
3870 return -EINVAL;
3871
3872 if (flag & AT_REMOVEDIR)
3873 return do_rmdir(dfd, pathname);
3874
3875 return do_unlinkat(dfd, pathname);
3876 }
3877
SYSCALL_DEFINE1(unlink,const char __user *,pathname)3878 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3879 {
3880 return do_unlinkat(AT_FDCWD, pathname);
3881 }
3882
vfs_symlink2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,const char * oldname)3883 int vfs_symlink2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, const char *oldname)
3884 {
3885 int error = may_create(mnt, dir, dentry);
3886
3887 if (error)
3888 return error;
3889
3890 if (!dir->i_op->symlink)
3891 return -EPERM;
3892
3893 error = security_inode_symlink(dir, dentry, oldname);
3894 if (error)
3895 return error;
3896
3897 error = dir->i_op->symlink(dir, dentry, oldname);
3898 if (!error)
3899 fsnotify_create(dir, dentry);
3900 return error;
3901 }
3902 EXPORT_SYMBOL(vfs_symlink2);
3903
vfs_symlink(struct inode * dir,struct dentry * dentry,const char * oldname)3904 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3905 {
3906 return vfs_symlink2(NULL, dir, dentry, oldname);
3907 }
3908 EXPORT_SYMBOL(vfs_symlink);
3909
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)3910 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3911 int, newdfd, const char __user *, newname)
3912 {
3913 int error;
3914 struct filename *from;
3915 struct dentry *dentry;
3916 struct path path;
3917 unsigned int lookup_flags = 0;
3918
3919 from = getname(oldname);
3920 if (IS_ERR(from))
3921 return PTR_ERR(from);
3922 retry:
3923 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3924 error = PTR_ERR(dentry);
3925 if (IS_ERR(dentry))
3926 goto out_putname;
3927
3928 error = security_path_symlink(&path, dentry, from->name);
3929 if (!error)
3930 error = vfs_symlink2(path.mnt, path.dentry->d_inode, dentry, from->name);
3931 done_path_create(&path, dentry);
3932 if (retry_estale(error, lookup_flags)) {
3933 lookup_flags |= LOOKUP_REVAL;
3934 goto retry;
3935 }
3936 out_putname:
3937 putname(from);
3938 return error;
3939 }
3940
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)3941 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3942 {
3943 return sys_symlinkat(oldname, AT_FDCWD, newname);
3944 }
3945
3946 /**
3947 * vfs_link - create a new link
3948 * @old_dentry: object to be linked
3949 * @dir: new parent
3950 * @new_dentry: where to create the new link
3951 * @delegated_inode: returns inode needing a delegation break
3952 *
3953 * The caller must hold dir->i_mutex
3954 *
3955 * If vfs_link discovers a delegation on the to-be-linked file in need
3956 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3957 * inode in delegated_inode. The caller should then break the delegation
3958 * and retry. Because breaking a delegation may take a long time, the
3959 * caller should drop the i_mutex before doing so.
3960 *
3961 * Alternatively, a caller may pass NULL for delegated_inode. This may
3962 * be appropriate for callers that expect the underlying filesystem not
3963 * to be NFS exported.
3964 */
vfs_link2(struct vfsmount * mnt,struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)3965 int vfs_link2(struct vfsmount *mnt, struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3966 {
3967 struct inode *inode = old_dentry->d_inode;
3968 unsigned max_links = dir->i_sb->s_max_links;
3969 int error;
3970
3971 if (!inode)
3972 return -ENOENT;
3973
3974 error = may_create(mnt, dir, new_dentry);
3975 if (error)
3976 return error;
3977
3978 if (dir->i_sb != inode->i_sb)
3979 return -EXDEV;
3980
3981 /*
3982 * A link to an append-only or immutable file cannot be created.
3983 */
3984 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3985 return -EPERM;
3986 if (!dir->i_op->link)
3987 return -EPERM;
3988 if (S_ISDIR(inode->i_mode))
3989 return -EPERM;
3990
3991 error = security_inode_link(old_dentry, dir, new_dentry);
3992 if (error)
3993 return error;
3994
3995 mutex_lock(&inode->i_mutex);
3996 /* Make sure we don't allow creating hardlink to an unlinked file */
3997 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3998 error = -ENOENT;
3999 else if (max_links && inode->i_nlink >= max_links)
4000 error = -EMLINK;
4001 else {
4002 error = try_break_deleg(inode, delegated_inode);
4003 if (!error)
4004 error = dir->i_op->link(old_dentry, dir, new_dentry);
4005 }
4006
4007 if (!error && (inode->i_state & I_LINKABLE)) {
4008 spin_lock(&inode->i_lock);
4009 inode->i_state &= ~I_LINKABLE;
4010 spin_unlock(&inode->i_lock);
4011 }
4012 mutex_unlock(&inode->i_mutex);
4013 if (!error)
4014 fsnotify_link(dir, inode, new_dentry);
4015 return error;
4016 }
4017 EXPORT_SYMBOL(vfs_link2);
4018
vfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4019 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4020 {
4021 return vfs_link2(NULL, old_dentry, dir, new_dentry, delegated_inode);
4022 }
4023 EXPORT_SYMBOL(vfs_link);
4024
4025 /*
4026 * Hardlinks are often used in delicate situations. We avoid
4027 * security-related surprises by not following symlinks on the
4028 * newname. --KAB
4029 *
4030 * We don't follow them on the oldname either to be compatible
4031 * with linux 2.0, and to avoid hard-linking to directories
4032 * and other special files. --ADM
4033 */
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4034 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4035 int, newdfd, const char __user *, newname, int, flags)
4036 {
4037 struct dentry *new_dentry;
4038 struct path old_path, new_path;
4039 struct inode *delegated_inode = NULL;
4040 int how = 0;
4041 int error;
4042
4043 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4044 return -EINVAL;
4045 /*
4046 * To use null names we require CAP_DAC_READ_SEARCH
4047 * This ensures that not everyone will be able to create
4048 * handlink using the passed filedescriptor.
4049 */
4050 if (flags & AT_EMPTY_PATH) {
4051 if (!capable(CAP_DAC_READ_SEARCH))
4052 return -ENOENT;
4053 how = LOOKUP_EMPTY;
4054 }
4055
4056 if (flags & AT_SYMLINK_FOLLOW)
4057 how |= LOOKUP_FOLLOW;
4058 retry:
4059 error = user_path_at(olddfd, oldname, how, &old_path);
4060 if (error)
4061 return error;
4062
4063 new_dentry = user_path_create(newdfd, newname, &new_path,
4064 (how & LOOKUP_REVAL));
4065 error = PTR_ERR(new_dentry);
4066 if (IS_ERR(new_dentry))
4067 goto out;
4068
4069 error = -EXDEV;
4070 if (old_path.mnt != new_path.mnt)
4071 goto out_dput;
4072 error = may_linkat(&old_path);
4073 if (unlikely(error))
4074 goto out_dput;
4075 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4076 if (error)
4077 goto out_dput;
4078 error = vfs_link2(old_path.mnt, old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4079 out_dput:
4080 done_path_create(&new_path, new_dentry);
4081 if (delegated_inode) {
4082 error = break_deleg_wait(&delegated_inode);
4083 if (!error) {
4084 path_put(&old_path);
4085 goto retry;
4086 }
4087 }
4088 if (retry_estale(error, how)) {
4089 path_put(&old_path);
4090 how |= LOOKUP_REVAL;
4091 goto retry;
4092 }
4093 out:
4094 path_put(&old_path);
4095
4096 return error;
4097 }
4098
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4099 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4100 {
4101 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4102 }
4103
4104 /**
4105 * vfs_rename - rename a filesystem object
4106 * @old_dir: parent of source
4107 * @old_dentry: source
4108 * @new_dir: parent of destination
4109 * @new_dentry: destination
4110 * @delegated_inode: returns an inode needing a delegation break
4111 * @flags: rename flags
4112 *
4113 * The caller must hold multiple mutexes--see lock_rename()).
4114 *
4115 * If vfs_rename discovers a delegation in need of breaking at either
4116 * the source or destination, it will return -EWOULDBLOCK and return a
4117 * reference to the inode in delegated_inode. The caller should then
4118 * break the delegation and retry. Because breaking a delegation may
4119 * take a long time, the caller should drop all locks before doing
4120 * so.
4121 *
4122 * Alternatively, a caller may pass NULL for delegated_inode. This may
4123 * be appropriate for callers that expect the underlying filesystem not
4124 * to be NFS exported.
4125 *
4126 * The worst of all namespace operations - renaming directory. "Perverted"
4127 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4128 * Problems:
4129 * a) we can get into loop creation.
4130 * b) race potential - two innocent renames can create a loop together.
4131 * That's where 4.4 screws up. Current fix: serialization on
4132 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4133 * story.
4134 * c) we have to lock _four_ objects - parents and victim (if it exists),
4135 * and source (if it is not a directory).
4136 * And that - after we got ->i_mutex on parents (until then we don't know
4137 * whether the target exists). Solution: try to be smart with locking
4138 * order for inodes. We rely on the fact that tree topology may change
4139 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4140 * move will be locked. Thus we can rank directories by the tree
4141 * (ancestors first) and rank all non-directories after them.
4142 * That works since everybody except rename does "lock parent, lookup,
4143 * lock child" and rename is under ->s_vfs_rename_mutex.
4144 * HOWEVER, it relies on the assumption that any object with ->lookup()
4145 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4146 * we'd better make sure that there's no link(2) for them.
4147 * d) conversion from fhandle to dentry may come in the wrong moment - when
4148 * we are removing the target. Solution: we will have to grab ->i_mutex
4149 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4150 * ->i_mutex on parents, which works but leads to some truly excessive
4151 * locking].
4152 */
vfs_rename2(struct vfsmount * mnt,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,struct inode ** delegated_inode,unsigned int flags)4153 int vfs_rename2(struct vfsmount *mnt,
4154 struct inode *old_dir, struct dentry *old_dentry,
4155 struct inode *new_dir, struct dentry *new_dentry,
4156 struct inode **delegated_inode, unsigned int flags)
4157 {
4158 int error;
4159 bool is_dir = d_is_dir(old_dentry);
4160 struct inode *source = old_dentry->d_inode;
4161 struct inode *target = new_dentry->d_inode;
4162 bool new_is_dir = false;
4163 unsigned max_links = new_dir->i_sb->s_max_links;
4164 struct name_snapshot old_name;
4165
4166 if (source == target)
4167 return 0;
4168
4169 error = may_delete(mnt, old_dir, old_dentry, is_dir);
4170 if (error)
4171 return error;
4172
4173 if (!target) {
4174 error = may_create(mnt, new_dir, new_dentry);
4175 } else {
4176 new_is_dir = d_is_dir(new_dentry);
4177
4178 if (!(flags & RENAME_EXCHANGE))
4179 error = may_delete(mnt, new_dir, new_dentry, is_dir);
4180 else
4181 error = may_delete(mnt, new_dir, new_dentry, new_is_dir);
4182 }
4183 if (error)
4184 return error;
4185
4186 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4187 return -EPERM;
4188
4189 if (flags && !old_dir->i_op->rename2)
4190 return -EINVAL;
4191
4192 /*
4193 * If we are going to change the parent - check write permissions,
4194 * we'll need to flip '..'.
4195 */
4196 if (new_dir != old_dir) {
4197 if (is_dir) {
4198 error = inode_permission2(mnt, source, MAY_WRITE);
4199 if (error)
4200 return error;
4201 }
4202 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4203 error = inode_permission2(mnt, target, MAY_WRITE);
4204 if (error)
4205 return error;
4206 }
4207 }
4208
4209 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4210 flags);
4211 if (error)
4212 return error;
4213
4214 take_dentry_name_snapshot(&old_name, old_dentry);
4215 dget(new_dentry);
4216 if (!is_dir || (flags & RENAME_EXCHANGE))
4217 lock_two_nondirectories(source, target);
4218 else if (target)
4219 mutex_lock(&target->i_mutex);
4220
4221 error = -EBUSY;
4222 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4223 goto out;
4224
4225 if (max_links && new_dir != old_dir) {
4226 error = -EMLINK;
4227 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4228 goto out;
4229 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4230 old_dir->i_nlink >= max_links)
4231 goto out;
4232 }
4233 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4234 shrink_dcache_parent(new_dentry);
4235 if (!is_dir) {
4236 error = try_break_deleg(source, delegated_inode);
4237 if (error)
4238 goto out;
4239 }
4240 if (target && !new_is_dir) {
4241 error = try_break_deleg(target, delegated_inode);
4242 if (error)
4243 goto out;
4244 }
4245 if (!old_dir->i_op->rename2) {
4246 error = old_dir->i_op->rename(old_dir, old_dentry,
4247 new_dir, new_dentry);
4248 } else {
4249 WARN_ON(old_dir->i_op->rename != NULL);
4250 error = old_dir->i_op->rename2(old_dir, old_dentry,
4251 new_dir, new_dentry, flags);
4252 }
4253 if (error)
4254 goto out;
4255
4256 if (!(flags & RENAME_EXCHANGE) && target) {
4257 if (is_dir)
4258 target->i_flags |= S_DEAD;
4259 dont_mount(new_dentry);
4260 detach_mounts(new_dentry);
4261 }
4262 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4263 if (!(flags & RENAME_EXCHANGE))
4264 d_move(old_dentry, new_dentry);
4265 else
4266 d_exchange(old_dentry, new_dentry);
4267 }
4268 out:
4269 if (!is_dir || (flags & RENAME_EXCHANGE))
4270 unlock_two_nondirectories(source, target);
4271 else if (target)
4272 mutex_unlock(&target->i_mutex);
4273 dput(new_dentry);
4274 if (!error) {
4275 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4276 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4277 if (flags & RENAME_EXCHANGE) {
4278 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4279 new_is_dir, NULL, new_dentry);
4280 }
4281 }
4282 release_dentry_name_snapshot(&old_name);
4283
4284 return error;
4285 }
4286 EXPORT_SYMBOL(vfs_rename2);
4287
vfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,struct inode ** delegated_inode,unsigned int flags)4288 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4289 struct inode *new_dir, struct dentry *new_dentry,
4290 struct inode **delegated_inode, unsigned int flags)
4291 {
4292 return vfs_rename2(NULL, old_dir, old_dentry, new_dir, new_dentry, delegated_inode, flags);
4293 }
4294 EXPORT_SYMBOL(vfs_rename);
4295
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)4296 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4297 int, newdfd, const char __user *, newname, unsigned int, flags)
4298 {
4299 struct dentry *old_dir, *new_dir;
4300 struct dentry *old_dentry, *new_dentry;
4301 struct dentry *trap;
4302 struct nameidata oldnd, newnd;
4303 struct inode *delegated_inode = NULL;
4304 struct filename *from;
4305 struct filename *to;
4306 unsigned int lookup_flags = 0;
4307 bool should_retry = false;
4308 int error;
4309
4310 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4311 return -EINVAL;
4312
4313 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4314 (flags & RENAME_EXCHANGE))
4315 return -EINVAL;
4316
4317 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4318 return -EPERM;
4319
4320 retry:
4321 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4322 if (IS_ERR(from)) {
4323 error = PTR_ERR(from);
4324 goto exit;
4325 }
4326
4327 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4328 if (IS_ERR(to)) {
4329 error = PTR_ERR(to);
4330 goto exit1;
4331 }
4332
4333 error = -EXDEV;
4334 if (oldnd.path.mnt != newnd.path.mnt)
4335 goto exit2;
4336
4337 old_dir = oldnd.path.dentry;
4338 error = -EBUSY;
4339 if (oldnd.last_type != LAST_NORM)
4340 goto exit2;
4341
4342 new_dir = newnd.path.dentry;
4343 if (flags & RENAME_NOREPLACE)
4344 error = -EEXIST;
4345 if (newnd.last_type != LAST_NORM)
4346 goto exit2;
4347
4348 error = mnt_want_write(oldnd.path.mnt);
4349 if (error)
4350 goto exit2;
4351
4352 oldnd.flags &= ~LOOKUP_PARENT;
4353 newnd.flags &= ~LOOKUP_PARENT;
4354 if (!(flags & RENAME_EXCHANGE))
4355 newnd.flags |= LOOKUP_RENAME_TARGET;
4356
4357 retry_deleg:
4358 trap = lock_rename(new_dir, old_dir);
4359
4360 old_dentry = lookup_hash(&oldnd);
4361 error = PTR_ERR(old_dentry);
4362 if (IS_ERR(old_dentry))
4363 goto exit3;
4364 /* source must exist */
4365 error = -ENOENT;
4366 if (d_is_negative(old_dentry))
4367 goto exit4;
4368 new_dentry = lookup_hash(&newnd);
4369 error = PTR_ERR(new_dentry);
4370 if (IS_ERR(new_dentry))
4371 goto exit4;
4372 error = -EEXIST;
4373 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4374 goto exit5;
4375 if (flags & RENAME_EXCHANGE) {
4376 error = -ENOENT;
4377 if (d_is_negative(new_dentry))
4378 goto exit5;
4379
4380 if (!d_is_dir(new_dentry)) {
4381 error = -ENOTDIR;
4382 if (newnd.last.name[newnd.last.len])
4383 goto exit5;
4384 }
4385 }
4386 /* unless the source is a directory trailing slashes give -ENOTDIR */
4387 if (!d_is_dir(old_dentry)) {
4388 error = -ENOTDIR;
4389 if (oldnd.last.name[oldnd.last.len])
4390 goto exit5;
4391 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4392 goto exit5;
4393 }
4394 /* source should not be ancestor of target */
4395 error = -EINVAL;
4396 if (old_dentry == trap)
4397 goto exit5;
4398 /* target should not be an ancestor of source */
4399 if (!(flags & RENAME_EXCHANGE))
4400 error = -ENOTEMPTY;
4401 if (new_dentry == trap)
4402 goto exit5;
4403
4404 error = security_path_rename(&oldnd.path, old_dentry,
4405 &newnd.path, new_dentry, flags);
4406 if (error)
4407 goto exit5;
4408 error = vfs_rename2(oldnd.path.mnt, old_dir->d_inode, old_dentry,
4409 new_dir->d_inode, new_dentry,
4410 &delegated_inode, flags);
4411 exit5:
4412 dput(new_dentry);
4413 exit4:
4414 dput(old_dentry);
4415 exit3:
4416 unlock_rename(new_dir, old_dir);
4417 if (delegated_inode) {
4418 error = break_deleg_wait(&delegated_inode);
4419 if (!error)
4420 goto retry_deleg;
4421 }
4422 mnt_drop_write(oldnd.path.mnt);
4423 exit2:
4424 if (retry_estale(error, lookup_flags))
4425 should_retry = true;
4426 path_put(&newnd.path);
4427 putname(to);
4428 exit1:
4429 path_put(&oldnd.path);
4430 putname(from);
4431 if (should_retry) {
4432 should_retry = false;
4433 lookup_flags |= LOOKUP_REVAL;
4434 goto retry;
4435 }
4436 exit:
4437 return error;
4438 }
4439
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)4440 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4441 int, newdfd, const char __user *, newname)
4442 {
4443 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4444 }
4445
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)4446 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4447 {
4448 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4449 }
4450
vfs_whiteout(struct inode * dir,struct dentry * dentry)4451 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4452 {
4453 int error = may_create(NULL, dir, dentry);
4454 if (error)
4455 return error;
4456
4457 if (!dir->i_op->mknod)
4458 return -EPERM;
4459
4460 return dir->i_op->mknod(dir, dentry,
4461 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4462 }
4463 EXPORT_SYMBOL(vfs_whiteout);
4464
readlink_copy(char __user * buffer,int buflen,const char * link)4465 int readlink_copy(char __user *buffer, int buflen, const char *link)
4466 {
4467 int len = PTR_ERR(link);
4468 if (IS_ERR(link))
4469 goto out;
4470
4471 len = strlen(link);
4472 if (len > (unsigned) buflen)
4473 len = buflen;
4474 if (copy_to_user(buffer, link, len))
4475 len = -EFAULT;
4476 out:
4477 return len;
4478 }
4479 EXPORT_SYMBOL(readlink_copy);
4480
4481 /*
4482 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4483 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4484 * using) it for any given inode is up to filesystem.
4485 */
generic_readlink(struct dentry * dentry,char __user * buffer,int buflen)4486 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4487 {
4488 struct nameidata nd;
4489 void *cookie;
4490 int res;
4491
4492 nd.depth = 0;
4493 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4494 if (IS_ERR(cookie))
4495 return PTR_ERR(cookie);
4496
4497 res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4498 if (dentry->d_inode->i_op->put_link)
4499 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4500 return res;
4501 }
4502 EXPORT_SYMBOL(generic_readlink);
4503
4504 /* get the link contents into pagecache */
page_getlink(struct dentry * dentry,struct page ** ppage)4505 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4506 {
4507 char *kaddr;
4508 struct page *page;
4509 struct address_space *mapping = dentry->d_inode->i_mapping;
4510 page = read_mapping_page(mapping, 0, NULL);
4511 if (IS_ERR(page))
4512 return (char*)page;
4513 *ppage = page;
4514 kaddr = kmap(page);
4515 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4516 return kaddr;
4517 }
4518
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)4519 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4520 {
4521 struct page *page = NULL;
4522 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4523 if (page) {
4524 kunmap(page);
4525 page_cache_release(page);
4526 }
4527 return res;
4528 }
4529 EXPORT_SYMBOL(page_readlink);
4530
page_follow_link_light(struct dentry * dentry,struct nameidata * nd)4531 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4532 {
4533 struct page *page = NULL;
4534 nd_set_link(nd, page_getlink(dentry, &page));
4535 return page;
4536 }
4537 EXPORT_SYMBOL(page_follow_link_light);
4538
page_put_link(struct dentry * dentry,struct nameidata * nd,void * cookie)4539 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4540 {
4541 struct page *page = cookie;
4542
4543 if (page) {
4544 kunmap(page);
4545 page_cache_release(page);
4546 }
4547 }
4548 EXPORT_SYMBOL(page_put_link);
4549
4550 /*
4551 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4552 */
__page_symlink(struct inode * inode,const char * symname,int len,int nofs)4553 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4554 {
4555 struct address_space *mapping = inode->i_mapping;
4556 struct page *page;
4557 void *fsdata;
4558 int err;
4559 char *kaddr;
4560 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4561 if (nofs)
4562 flags |= AOP_FLAG_NOFS;
4563
4564 retry:
4565 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4566 flags, &page, &fsdata);
4567 if (err)
4568 goto fail;
4569
4570 kaddr = kmap_atomic(page);
4571 memcpy(kaddr, symname, len-1);
4572 kunmap_atomic(kaddr);
4573
4574 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4575 page, fsdata);
4576 if (err < 0)
4577 goto fail;
4578 if (err < len-1)
4579 goto retry;
4580
4581 mark_inode_dirty(inode);
4582 return 0;
4583 fail:
4584 return err;
4585 }
4586 EXPORT_SYMBOL(__page_symlink);
4587
page_symlink(struct inode * inode,const char * symname,int len)4588 int page_symlink(struct inode *inode, const char *symname, int len)
4589 {
4590 return __page_symlink(inode, symname, len,
4591 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4592 }
4593 EXPORT_SYMBOL(page_symlink);
4594
4595 const struct inode_operations page_symlink_inode_operations = {
4596 .readlink = generic_readlink,
4597 .follow_link = page_follow_link_light,
4598 .put_link = page_put_link,
4599 };
4600 EXPORT_SYMBOL(page_symlink_inode_operations);
4601