1 /**************************************************************************
2 *
3 * Copyright © 2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31 #include <drm/ttm/ttm_page_alloc.h>
32
33 static struct ttm_place vram_placement_flags = {
34 .fpfn = 0,
35 .lpfn = 0,
36 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
37 };
38
39 static struct ttm_place vram_ne_placement_flags = {
40 .fpfn = 0,
41 .lpfn = 0,
42 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
43 };
44
45 static struct ttm_place sys_placement_flags = {
46 .fpfn = 0,
47 .lpfn = 0,
48 .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
49 };
50
51 static struct ttm_place sys_ne_placement_flags = {
52 .fpfn = 0,
53 .lpfn = 0,
54 .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
55 };
56
57 static struct ttm_place gmr_placement_flags = {
58 .fpfn = 0,
59 .lpfn = 0,
60 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
61 };
62
63 static struct ttm_place gmr_ne_placement_flags = {
64 .fpfn = 0,
65 .lpfn = 0,
66 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
67 };
68
69 static struct ttm_place mob_placement_flags = {
70 .fpfn = 0,
71 .lpfn = 0,
72 .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
73 };
74
75 struct ttm_placement vmw_vram_placement = {
76 .num_placement = 1,
77 .placement = &vram_placement_flags,
78 .num_busy_placement = 1,
79 .busy_placement = &vram_placement_flags
80 };
81
82 static struct ttm_place vram_gmr_placement_flags[] = {
83 {
84 .fpfn = 0,
85 .lpfn = 0,
86 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
87 }, {
88 .fpfn = 0,
89 .lpfn = 0,
90 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
91 }
92 };
93
94 static struct ttm_place gmr_vram_placement_flags[] = {
95 {
96 .fpfn = 0,
97 .lpfn = 0,
98 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
99 }, {
100 .fpfn = 0,
101 .lpfn = 0,
102 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
103 }
104 };
105
106 struct ttm_placement vmw_vram_gmr_placement = {
107 .num_placement = 2,
108 .placement = vram_gmr_placement_flags,
109 .num_busy_placement = 1,
110 .busy_placement = &gmr_placement_flags
111 };
112
113 static struct ttm_place vram_gmr_ne_placement_flags[] = {
114 {
115 .fpfn = 0,
116 .lpfn = 0,
117 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED |
118 TTM_PL_FLAG_NO_EVICT
119 }, {
120 .fpfn = 0,
121 .lpfn = 0,
122 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED |
123 TTM_PL_FLAG_NO_EVICT
124 }
125 };
126
127 struct ttm_placement vmw_vram_gmr_ne_placement = {
128 .num_placement = 2,
129 .placement = vram_gmr_ne_placement_flags,
130 .num_busy_placement = 1,
131 .busy_placement = &gmr_ne_placement_flags
132 };
133
134 struct ttm_placement vmw_vram_sys_placement = {
135 .num_placement = 1,
136 .placement = &vram_placement_flags,
137 .num_busy_placement = 1,
138 .busy_placement = &sys_placement_flags
139 };
140
141 struct ttm_placement vmw_vram_ne_placement = {
142 .num_placement = 1,
143 .placement = &vram_ne_placement_flags,
144 .num_busy_placement = 1,
145 .busy_placement = &vram_ne_placement_flags
146 };
147
148 struct ttm_placement vmw_sys_placement = {
149 .num_placement = 1,
150 .placement = &sys_placement_flags,
151 .num_busy_placement = 1,
152 .busy_placement = &sys_placement_flags
153 };
154
155 struct ttm_placement vmw_sys_ne_placement = {
156 .num_placement = 1,
157 .placement = &sys_ne_placement_flags,
158 .num_busy_placement = 1,
159 .busy_placement = &sys_ne_placement_flags
160 };
161
162 static struct ttm_place evictable_placement_flags[] = {
163 {
164 .fpfn = 0,
165 .lpfn = 0,
166 .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
167 }, {
168 .fpfn = 0,
169 .lpfn = 0,
170 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
171 }, {
172 .fpfn = 0,
173 .lpfn = 0,
174 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
175 }, {
176 .fpfn = 0,
177 .lpfn = 0,
178 .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
179 }
180 };
181
182 struct ttm_placement vmw_evictable_placement = {
183 .num_placement = 4,
184 .placement = evictable_placement_flags,
185 .num_busy_placement = 1,
186 .busy_placement = &sys_placement_flags
187 };
188
189 struct ttm_placement vmw_srf_placement = {
190 .num_placement = 1,
191 .num_busy_placement = 2,
192 .placement = &gmr_placement_flags,
193 .busy_placement = gmr_vram_placement_flags
194 };
195
196 struct ttm_placement vmw_mob_placement = {
197 .num_placement = 1,
198 .num_busy_placement = 1,
199 .placement = &mob_placement_flags,
200 .busy_placement = &mob_placement_flags
201 };
202
203 struct vmw_ttm_tt {
204 struct ttm_dma_tt dma_ttm;
205 struct vmw_private *dev_priv;
206 int gmr_id;
207 struct vmw_mob *mob;
208 int mem_type;
209 struct sg_table sgt;
210 struct vmw_sg_table vsgt;
211 uint64_t sg_alloc_size;
212 bool mapped;
213 };
214
215 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
216
217 /**
218 * Helper functions to advance a struct vmw_piter iterator.
219 *
220 * @viter: Pointer to the iterator.
221 *
222 * These functions return false if past the end of the list,
223 * true otherwise. Functions are selected depending on the current
224 * DMA mapping mode.
225 */
__vmw_piter_non_sg_next(struct vmw_piter * viter)226 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
227 {
228 return ++(viter->i) < viter->num_pages;
229 }
230
__vmw_piter_sg_next(struct vmw_piter * viter)231 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
232 {
233 return __sg_page_iter_next(&viter->iter);
234 }
235
236
237 /**
238 * Helper functions to return a pointer to the current page.
239 *
240 * @viter: Pointer to the iterator
241 *
242 * These functions return a pointer to the page currently
243 * pointed to by @viter. Functions are selected depending on the
244 * current mapping mode.
245 */
__vmw_piter_non_sg_page(struct vmw_piter * viter)246 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
247 {
248 return viter->pages[viter->i];
249 }
250
__vmw_piter_sg_page(struct vmw_piter * viter)251 static struct page *__vmw_piter_sg_page(struct vmw_piter *viter)
252 {
253 return sg_page_iter_page(&viter->iter);
254 }
255
256
257 /**
258 * Helper functions to return the DMA address of the current page.
259 *
260 * @viter: Pointer to the iterator
261 *
262 * These functions return the DMA address of the page currently
263 * pointed to by @viter. Functions are selected depending on the
264 * current mapping mode.
265 */
__vmw_piter_phys_addr(struct vmw_piter * viter)266 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
267 {
268 return page_to_phys(viter->pages[viter->i]);
269 }
270
__vmw_piter_dma_addr(struct vmw_piter * viter)271 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
272 {
273 return viter->addrs[viter->i];
274 }
275
__vmw_piter_sg_addr(struct vmw_piter * viter)276 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
277 {
278 return sg_page_iter_dma_address(&viter->iter);
279 }
280
281
282 /**
283 * vmw_piter_start - Initialize a struct vmw_piter.
284 *
285 * @viter: Pointer to the iterator to initialize
286 * @vsgt: Pointer to a struct vmw_sg_table to initialize from
287 *
288 * Note that we're following the convention of __sg_page_iter_start, so that
289 * the iterator doesn't point to a valid page after initialization; it has
290 * to be advanced one step first.
291 */
vmw_piter_start(struct vmw_piter * viter,const struct vmw_sg_table * vsgt,unsigned long p_offset)292 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
293 unsigned long p_offset)
294 {
295 viter->i = p_offset - 1;
296 viter->num_pages = vsgt->num_pages;
297 switch (vsgt->mode) {
298 case vmw_dma_phys:
299 viter->next = &__vmw_piter_non_sg_next;
300 viter->dma_address = &__vmw_piter_phys_addr;
301 viter->page = &__vmw_piter_non_sg_page;
302 viter->pages = vsgt->pages;
303 break;
304 case vmw_dma_alloc_coherent:
305 viter->next = &__vmw_piter_non_sg_next;
306 viter->dma_address = &__vmw_piter_dma_addr;
307 viter->page = &__vmw_piter_non_sg_page;
308 viter->addrs = vsgt->addrs;
309 viter->pages = vsgt->pages;
310 break;
311 case vmw_dma_map_populate:
312 case vmw_dma_map_bind:
313 viter->next = &__vmw_piter_sg_next;
314 viter->dma_address = &__vmw_piter_sg_addr;
315 viter->page = &__vmw_piter_sg_page;
316 __sg_page_iter_start(&viter->iter, vsgt->sgt->sgl,
317 vsgt->sgt->orig_nents, p_offset);
318 break;
319 default:
320 BUG();
321 }
322 }
323
324 /**
325 * vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for
326 * TTM pages
327 *
328 * @vmw_tt: Pointer to a struct vmw_ttm_backend
329 *
330 * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
331 */
vmw_ttm_unmap_from_dma(struct vmw_ttm_tt * vmw_tt)332 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
333 {
334 struct device *dev = vmw_tt->dev_priv->dev->dev;
335
336 dma_unmap_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.nents,
337 DMA_BIDIRECTIONAL);
338 vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
339 }
340
341 /**
342 * vmw_ttm_map_for_dma - map TTM pages to get device addresses
343 *
344 * @vmw_tt: Pointer to a struct vmw_ttm_backend
345 *
346 * This function is used to get device addresses from the kernel DMA layer.
347 * However, it's violating the DMA API in that when this operation has been
348 * performed, it's illegal for the CPU to write to the pages without first
349 * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
350 * therefore only legal to call this function if we know that the function
351 * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
352 * a CPU write buffer flush.
353 */
vmw_ttm_map_for_dma(struct vmw_ttm_tt * vmw_tt)354 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
355 {
356 struct device *dev = vmw_tt->dev_priv->dev->dev;
357 int ret;
358
359 ret = dma_map_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.orig_nents,
360 DMA_BIDIRECTIONAL);
361 if (unlikely(ret == 0))
362 return -ENOMEM;
363
364 vmw_tt->sgt.nents = ret;
365
366 return 0;
367 }
368
369 /**
370 * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
371 *
372 * @vmw_tt: Pointer to a struct vmw_ttm_tt
373 *
374 * Select the correct function for and make sure the TTM pages are
375 * visible to the device. Allocate storage for the device mappings.
376 * If a mapping has already been performed, indicated by the storage
377 * pointer being non NULL, the function returns success.
378 */
vmw_ttm_map_dma(struct vmw_ttm_tt * vmw_tt)379 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
380 {
381 struct vmw_private *dev_priv = vmw_tt->dev_priv;
382 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
383 struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
384 struct vmw_piter iter;
385 dma_addr_t old;
386 int ret = 0;
387 static size_t sgl_size;
388 static size_t sgt_size;
389
390 if (vmw_tt->mapped)
391 return 0;
392
393 vsgt->mode = dev_priv->map_mode;
394 vsgt->pages = vmw_tt->dma_ttm.ttm.pages;
395 vsgt->num_pages = vmw_tt->dma_ttm.ttm.num_pages;
396 vsgt->addrs = vmw_tt->dma_ttm.dma_address;
397 vsgt->sgt = &vmw_tt->sgt;
398
399 switch (dev_priv->map_mode) {
400 case vmw_dma_map_bind:
401 case vmw_dma_map_populate:
402 if (unlikely(!sgl_size)) {
403 sgl_size = ttm_round_pot(sizeof(struct scatterlist));
404 sgt_size = ttm_round_pot(sizeof(struct sg_table));
405 }
406 vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
407 ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, false,
408 true);
409 if (unlikely(ret != 0))
410 return ret;
411
412 ret = sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
413 vsgt->num_pages, 0,
414 (unsigned long)
415 vsgt->num_pages << PAGE_SHIFT,
416 GFP_KERNEL);
417 if (unlikely(ret != 0))
418 goto out_sg_alloc_fail;
419
420 if (vsgt->num_pages > vmw_tt->sgt.nents) {
421 uint64_t over_alloc =
422 sgl_size * (vsgt->num_pages -
423 vmw_tt->sgt.nents);
424
425 ttm_mem_global_free(glob, over_alloc);
426 vmw_tt->sg_alloc_size -= over_alloc;
427 }
428
429 ret = vmw_ttm_map_for_dma(vmw_tt);
430 if (unlikely(ret != 0))
431 goto out_map_fail;
432
433 break;
434 default:
435 break;
436 }
437
438 old = ~((dma_addr_t) 0);
439 vmw_tt->vsgt.num_regions = 0;
440 for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
441 dma_addr_t cur = vmw_piter_dma_addr(&iter);
442
443 if (cur != old + PAGE_SIZE)
444 vmw_tt->vsgt.num_regions++;
445 old = cur;
446 }
447
448 vmw_tt->mapped = true;
449 return 0;
450
451 out_map_fail:
452 sg_free_table(vmw_tt->vsgt.sgt);
453 vmw_tt->vsgt.sgt = NULL;
454 out_sg_alloc_fail:
455 ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
456 return ret;
457 }
458
459 /**
460 * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
461 *
462 * @vmw_tt: Pointer to a struct vmw_ttm_tt
463 *
464 * Tear down any previously set up device DMA mappings and free
465 * any storage space allocated for them. If there are no mappings set up,
466 * this function is a NOP.
467 */
vmw_ttm_unmap_dma(struct vmw_ttm_tt * vmw_tt)468 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
469 {
470 struct vmw_private *dev_priv = vmw_tt->dev_priv;
471
472 if (!vmw_tt->vsgt.sgt)
473 return;
474
475 switch (dev_priv->map_mode) {
476 case vmw_dma_map_bind:
477 case vmw_dma_map_populate:
478 vmw_ttm_unmap_from_dma(vmw_tt);
479 sg_free_table(vmw_tt->vsgt.sgt);
480 vmw_tt->vsgt.sgt = NULL;
481 ttm_mem_global_free(vmw_mem_glob(dev_priv),
482 vmw_tt->sg_alloc_size);
483 break;
484 default:
485 break;
486 }
487 vmw_tt->mapped = false;
488 }
489
490
491 /**
492 * vmw_bo_map_dma - Make sure buffer object pages are visible to the device
493 *
494 * @bo: Pointer to a struct ttm_buffer_object
495 *
496 * Wrapper around vmw_ttm_map_dma, that takes a TTM buffer object pointer
497 * instead of a pointer to a struct vmw_ttm_backend as argument.
498 * Note that the buffer object must be either pinned or reserved before
499 * calling this function.
500 */
vmw_bo_map_dma(struct ttm_buffer_object * bo)501 int vmw_bo_map_dma(struct ttm_buffer_object *bo)
502 {
503 struct vmw_ttm_tt *vmw_tt =
504 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
505
506 return vmw_ttm_map_dma(vmw_tt);
507 }
508
509
510 /**
511 * vmw_bo_unmap_dma - Make sure buffer object pages are visible to the device
512 *
513 * @bo: Pointer to a struct ttm_buffer_object
514 *
515 * Wrapper around vmw_ttm_unmap_dma, that takes a TTM buffer object pointer
516 * instead of a pointer to a struct vmw_ttm_backend as argument.
517 */
vmw_bo_unmap_dma(struct ttm_buffer_object * bo)518 void vmw_bo_unmap_dma(struct ttm_buffer_object *bo)
519 {
520 struct vmw_ttm_tt *vmw_tt =
521 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
522
523 vmw_ttm_unmap_dma(vmw_tt);
524 }
525
526
527 /**
528 * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
529 * TTM buffer object
530 *
531 * @bo: Pointer to a struct ttm_buffer_object
532 *
533 * Returns a pointer to a struct vmw_sg_table object. The object should
534 * not be freed after use.
535 * Note that for the device addresses to be valid, the buffer object must
536 * either be reserved or pinned.
537 */
vmw_bo_sg_table(struct ttm_buffer_object * bo)538 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
539 {
540 struct vmw_ttm_tt *vmw_tt =
541 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
542
543 return &vmw_tt->vsgt;
544 }
545
546
vmw_ttm_bind(struct ttm_tt * ttm,struct ttm_mem_reg * bo_mem)547 static int vmw_ttm_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
548 {
549 struct vmw_ttm_tt *vmw_be =
550 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
551 int ret;
552
553 ret = vmw_ttm_map_dma(vmw_be);
554 if (unlikely(ret != 0))
555 return ret;
556
557 vmw_be->gmr_id = bo_mem->start;
558 vmw_be->mem_type = bo_mem->mem_type;
559
560 switch (bo_mem->mem_type) {
561 case VMW_PL_GMR:
562 return vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
563 ttm->num_pages, vmw_be->gmr_id);
564 case VMW_PL_MOB:
565 if (unlikely(vmw_be->mob == NULL)) {
566 vmw_be->mob =
567 vmw_mob_create(ttm->num_pages);
568 if (unlikely(vmw_be->mob == NULL))
569 return -ENOMEM;
570 }
571
572 return vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
573 &vmw_be->vsgt, ttm->num_pages,
574 vmw_be->gmr_id);
575 default:
576 BUG();
577 }
578 return 0;
579 }
580
vmw_ttm_unbind(struct ttm_tt * ttm)581 static int vmw_ttm_unbind(struct ttm_tt *ttm)
582 {
583 struct vmw_ttm_tt *vmw_be =
584 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
585
586 switch (vmw_be->mem_type) {
587 case VMW_PL_GMR:
588 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
589 break;
590 case VMW_PL_MOB:
591 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
592 break;
593 default:
594 BUG();
595 }
596
597 if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
598 vmw_ttm_unmap_dma(vmw_be);
599
600 return 0;
601 }
602
603
vmw_ttm_destroy(struct ttm_tt * ttm)604 static void vmw_ttm_destroy(struct ttm_tt *ttm)
605 {
606 struct vmw_ttm_tt *vmw_be =
607 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
608
609 vmw_ttm_unmap_dma(vmw_be);
610 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
611 ttm_dma_tt_fini(&vmw_be->dma_ttm);
612 else
613 ttm_tt_fini(ttm);
614
615 if (vmw_be->mob)
616 vmw_mob_destroy(vmw_be->mob);
617
618 kfree(vmw_be);
619 }
620
621
vmw_ttm_populate(struct ttm_tt * ttm)622 static int vmw_ttm_populate(struct ttm_tt *ttm)
623 {
624 struct vmw_ttm_tt *vmw_tt =
625 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
626 struct vmw_private *dev_priv = vmw_tt->dev_priv;
627 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
628 int ret;
629
630 if (ttm->state != tt_unpopulated)
631 return 0;
632
633 if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
634 size_t size =
635 ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
636 ret = ttm_mem_global_alloc(glob, size, false, true);
637 if (unlikely(ret != 0))
638 return ret;
639
640 ret = ttm_dma_populate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
641 if (unlikely(ret != 0))
642 ttm_mem_global_free(glob, size);
643 } else
644 ret = ttm_pool_populate(ttm);
645
646 return ret;
647 }
648
vmw_ttm_unpopulate(struct ttm_tt * ttm)649 static void vmw_ttm_unpopulate(struct ttm_tt *ttm)
650 {
651 struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
652 dma_ttm.ttm);
653 struct vmw_private *dev_priv = vmw_tt->dev_priv;
654 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
655
656
657 if (vmw_tt->mob) {
658 vmw_mob_destroy(vmw_tt->mob);
659 vmw_tt->mob = NULL;
660 }
661
662 vmw_ttm_unmap_dma(vmw_tt);
663 if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
664 size_t size =
665 ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
666
667 ttm_dma_unpopulate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
668 ttm_mem_global_free(glob, size);
669 } else
670 ttm_pool_unpopulate(ttm);
671 }
672
673 static struct ttm_backend_func vmw_ttm_func = {
674 .bind = vmw_ttm_bind,
675 .unbind = vmw_ttm_unbind,
676 .destroy = vmw_ttm_destroy,
677 };
678
vmw_ttm_tt_create(struct ttm_bo_device * bdev,unsigned long size,uint32_t page_flags,struct page * dummy_read_page)679 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_bo_device *bdev,
680 unsigned long size, uint32_t page_flags,
681 struct page *dummy_read_page)
682 {
683 struct vmw_ttm_tt *vmw_be;
684 int ret;
685
686 vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
687 if (!vmw_be)
688 return NULL;
689
690 vmw_be->dma_ttm.ttm.func = &vmw_ttm_func;
691 vmw_be->dev_priv = container_of(bdev, struct vmw_private, bdev);
692 vmw_be->mob = NULL;
693
694 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
695 ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bdev, size, page_flags,
696 dummy_read_page);
697 else
698 ret = ttm_tt_init(&vmw_be->dma_ttm.ttm, bdev, size, page_flags,
699 dummy_read_page);
700 if (unlikely(ret != 0))
701 goto out_no_init;
702
703 return &vmw_be->dma_ttm.ttm;
704 out_no_init:
705 kfree(vmw_be);
706 return NULL;
707 }
708
vmw_invalidate_caches(struct ttm_bo_device * bdev,uint32_t flags)709 static int vmw_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
710 {
711 return 0;
712 }
713
vmw_init_mem_type(struct ttm_bo_device * bdev,uint32_t type,struct ttm_mem_type_manager * man)714 static int vmw_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
715 struct ttm_mem_type_manager *man)
716 {
717 switch (type) {
718 case TTM_PL_SYSTEM:
719 /* System memory */
720
721 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
722 man->available_caching = TTM_PL_FLAG_CACHED;
723 man->default_caching = TTM_PL_FLAG_CACHED;
724 break;
725 case TTM_PL_VRAM:
726 /* "On-card" video ram */
727 man->func = &ttm_bo_manager_func;
728 man->gpu_offset = 0;
729 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_MAPPABLE;
730 man->available_caching = TTM_PL_FLAG_CACHED;
731 man->default_caching = TTM_PL_FLAG_CACHED;
732 break;
733 case VMW_PL_GMR:
734 case VMW_PL_MOB:
735 /*
736 * "Guest Memory Regions" is an aperture like feature with
737 * one slot per bo. There is an upper limit of the number of
738 * slots as well as the bo size.
739 */
740 man->func = &vmw_gmrid_manager_func;
741 man->gpu_offset = 0;
742 man->flags = TTM_MEMTYPE_FLAG_CMA | TTM_MEMTYPE_FLAG_MAPPABLE;
743 man->available_caching = TTM_PL_FLAG_CACHED;
744 man->default_caching = TTM_PL_FLAG_CACHED;
745 break;
746 default:
747 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
748 return -EINVAL;
749 }
750 return 0;
751 }
752
vmw_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)753 static void vmw_evict_flags(struct ttm_buffer_object *bo,
754 struct ttm_placement *placement)
755 {
756 *placement = vmw_sys_placement;
757 }
758
vmw_verify_access(struct ttm_buffer_object * bo,struct file * filp)759 static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
760 {
761 struct ttm_object_file *tfile =
762 vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
763
764 return vmw_user_dmabuf_verify_access(bo, tfile);
765 }
766
vmw_ttm_io_mem_reserve(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)767 static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
768 {
769 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
770 struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
771
772 mem->bus.addr = NULL;
773 mem->bus.is_iomem = false;
774 mem->bus.offset = 0;
775 mem->bus.size = mem->num_pages << PAGE_SHIFT;
776 mem->bus.base = 0;
777 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
778 return -EINVAL;
779 switch (mem->mem_type) {
780 case TTM_PL_SYSTEM:
781 case VMW_PL_GMR:
782 case VMW_PL_MOB:
783 return 0;
784 case TTM_PL_VRAM:
785 mem->bus.offset = mem->start << PAGE_SHIFT;
786 mem->bus.base = dev_priv->vram_start;
787 mem->bus.is_iomem = true;
788 break;
789 default:
790 return -EINVAL;
791 }
792 return 0;
793 }
794
vmw_ttm_io_mem_free(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)795 static void vmw_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
796 {
797 }
798
vmw_ttm_fault_reserve_notify(struct ttm_buffer_object * bo)799 static int vmw_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
800 {
801 return 0;
802 }
803
804 /**
805 * vmw_move_notify - TTM move_notify_callback
806 *
807 * @bo: The TTM buffer object about to move.
808 * @mem: The truct ttm_mem_reg indicating to what memory
809 * region the move is taking place.
810 *
811 * Calls move_notify for all subsystems needing it.
812 * (currently only resources).
813 */
vmw_move_notify(struct ttm_buffer_object * bo,struct ttm_mem_reg * mem)814 static void vmw_move_notify(struct ttm_buffer_object *bo,
815 struct ttm_mem_reg *mem)
816 {
817 vmw_resource_move_notify(bo, mem);
818 }
819
820
821 /**
822 * vmw_swap_notify - TTM move_notify_callback
823 *
824 * @bo: The TTM buffer object about to be swapped out.
825 */
vmw_swap_notify(struct ttm_buffer_object * bo)826 static void vmw_swap_notify(struct ttm_buffer_object *bo)
827 {
828 ttm_bo_wait(bo, false, false, false);
829 }
830
831
832 struct ttm_bo_driver vmw_bo_driver = {
833 .ttm_tt_create = &vmw_ttm_tt_create,
834 .ttm_tt_populate = &vmw_ttm_populate,
835 .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
836 .invalidate_caches = vmw_invalidate_caches,
837 .init_mem_type = vmw_init_mem_type,
838 .evict_flags = vmw_evict_flags,
839 .move = NULL,
840 .verify_access = vmw_verify_access,
841 .move_notify = vmw_move_notify,
842 .swap_notify = vmw_swap_notify,
843 .fault_reserve_notify = &vmw_ttm_fault_reserve_notify,
844 .io_mem_reserve = &vmw_ttm_io_mem_reserve,
845 .io_mem_free = &vmw_ttm_io_mem_free,
846 };
847