• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef __LINUX_SEQLOCK_H
2 #define __LINUX_SEQLOCK_H
3 /*
4  * Reader/writer consistent mechanism without starving writers. This type of
5  * lock for data where the reader wants a consistent set of information
6  * and is willing to retry if the information changes. There are two types
7  * of readers:
8  * 1. Sequence readers which never block a writer but they may have to retry
9  *    if a writer is in progress by detecting change in sequence number.
10  *    Writers do not wait for a sequence reader.
11  * 2. Locking readers which will wait if a writer or another locking reader
12  *    is in progress. A locking reader in progress will also block a writer
13  *    from going forward. Unlike the regular rwlock, the read lock here is
14  *    exclusive so that only one locking reader can get it.
15  *
16  * This is not as cache friendly as brlock. Also, this may not work well
17  * for data that contains pointers, because any writer could
18  * invalidate a pointer that a reader was following.
19  *
20  * Expected non-blocking reader usage:
21  * 	do {
22  *	    seq = read_seqbegin(&foo);
23  * 	...
24  *      } while (read_seqretry(&foo, seq));
25  *
26  *
27  * On non-SMP the spin locks disappear but the writer still needs
28  * to increment the sequence variables because an interrupt routine could
29  * change the state of the data.
30  *
31  * Based on x86_64 vsyscall gettimeofday
32  * by Keith Owens and Andrea Arcangeli
33  */
34 
35 #include <linux/spinlock.h>
36 #include <linux/preempt.h>
37 #include <linux/lockdep.h>
38 #include <asm/processor.h>
39 
40 /*
41  * Version using sequence counter only.
42  * This can be used when code has its own mutex protecting the
43  * updating starting before the write_seqcountbeqin() and ending
44  * after the write_seqcount_end().
45  */
46 typedef struct seqcount {
47 	unsigned sequence;
48 #ifdef CONFIG_DEBUG_LOCK_ALLOC
49 	struct lockdep_map dep_map;
50 #endif
51 } seqcount_t;
52 
__seqcount_init(seqcount_t * s,const char * name,struct lock_class_key * key)53 static inline void __seqcount_init(seqcount_t *s, const char *name,
54 					  struct lock_class_key *key)
55 {
56 	/*
57 	 * Make sure we are not reinitializing a held lock:
58 	 */
59 	lockdep_init_map(&s->dep_map, name, key, 0);
60 	s->sequence = 0;
61 }
62 
63 #ifdef CONFIG_DEBUG_LOCK_ALLOC
64 # define SEQCOUNT_DEP_MAP_INIT(lockname) \
65 		.dep_map = { .name = #lockname } \
66 
67 # define seqcount_init(s)				\
68 	do {						\
69 		static struct lock_class_key __key;	\
70 		__seqcount_init((s), #s, &__key);	\
71 	} while (0)
72 
seqcount_lockdep_reader_access(const seqcount_t * s)73 static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
74 {
75 	seqcount_t *l = (seqcount_t *)s;
76 	unsigned long flags;
77 
78 	local_irq_save(flags);
79 	seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
80 	seqcount_release(&l->dep_map, 1, _RET_IP_);
81 	local_irq_restore(flags);
82 }
83 
84 #else
85 # define SEQCOUNT_DEP_MAP_INIT(lockname)
86 # define seqcount_init(s) __seqcount_init(s, NULL, NULL)
87 # define seqcount_lockdep_reader_access(x)
88 #endif
89 
90 #define SEQCNT_ZERO(lockname) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(lockname)}
91 
92 
93 /**
94  * __read_seqcount_begin - begin a seq-read critical section (without barrier)
95  * @s: pointer to seqcount_t
96  * Returns: count to be passed to read_seqcount_retry
97  *
98  * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
99  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
100  * provided before actually loading any of the variables that are to be
101  * protected in this critical section.
102  *
103  * Use carefully, only in critical code, and comment how the barrier is
104  * provided.
105  */
__read_seqcount_begin(const seqcount_t * s)106 static inline unsigned __read_seqcount_begin(const seqcount_t *s)
107 {
108 	unsigned ret;
109 
110 repeat:
111 	ret = ACCESS_ONCE(s->sequence);
112 	if (unlikely(ret & 1)) {
113 		cpu_relax();
114 		goto repeat;
115 	}
116 	return ret;
117 }
118 
119 /**
120  * raw_read_seqcount - Read the raw seqcount
121  * @s: pointer to seqcount_t
122  * Returns: count to be passed to read_seqcount_retry
123  *
124  * raw_read_seqcount opens a read critical section of the given
125  * seqcount without any lockdep checking and without checking or
126  * masking the LSB. Calling code is responsible for handling that.
127  */
raw_read_seqcount(const seqcount_t * s)128 static inline unsigned raw_read_seqcount(const seqcount_t *s)
129 {
130 	unsigned ret = ACCESS_ONCE(s->sequence);
131 	smp_rmb();
132 	return ret;
133 }
134 
135 /**
136  * raw_read_seqcount_begin - start seq-read critical section w/o lockdep
137  * @s: pointer to seqcount_t
138  * Returns: count to be passed to read_seqcount_retry
139  *
140  * raw_read_seqcount_begin opens a read critical section of the given
141  * seqcount, but without any lockdep checking. Validity of the critical
142  * section is tested by checking read_seqcount_retry function.
143  */
raw_read_seqcount_begin(const seqcount_t * s)144 static inline unsigned raw_read_seqcount_begin(const seqcount_t *s)
145 {
146 	unsigned ret = __read_seqcount_begin(s);
147 	smp_rmb();
148 	return ret;
149 }
150 
151 /**
152  * read_seqcount_begin - begin a seq-read critical section
153  * @s: pointer to seqcount_t
154  * Returns: count to be passed to read_seqcount_retry
155  *
156  * read_seqcount_begin opens a read critical section of the given seqcount.
157  * Validity of the critical section is tested by checking read_seqcount_retry
158  * function.
159  */
read_seqcount_begin(const seqcount_t * s)160 static inline unsigned read_seqcount_begin(const seqcount_t *s)
161 {
162 	seqcount_lockdep_reader_access(s);
163 	return raw_read_seqcount_begin(s);
164 }
165 
166 /**
167  * raw_seqcount_begin - begin a seq-read critical section
168  * @s: pointer to seqcount_t
169  * Returns: count to be passed to read_seqcount_retry
170  *
171  * raw_seqcount_begin opens a read critical section of the given seqcount.
172  * Validity of the critical section is tested by checking read_seqcount_retry
173  * function.
174  *
175  * Unlike read_seqcount_begin(), this function will not wait for the count
176  * to stabilize. If a writer is active when we begin, we will fail the
177  * read_seqcount_retry() instead of stabilizing at the beginning of the
178  * critical section.
179  */
raw_seqcount_begin(const seqcount_t * s)180 static inline unsigned raw_seqcount_begin(const seqcount_t *s)
181 {
182 	unsigned ret = ACCESS_ONCE(s->sequence);
183 	smp_rmb();
184 	return ret & ~1;
185 }
186 
187 /**
188  * __read_seqcount_retry - end a seq-read critical section (without barrier)
189  * @s: pointer to seqcount_t
190  * @start: count, from read_seqcount_begin
191  * Returns: 1 if retry is required, else 0
192  *
193  * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
194  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
195  * provided before actually loading any of the variables that are to be
196  * protected in this critical section.
197  *
198  * Use carefully, only in critical code, and comment how the barrier is
199  * provided.
200  */
__read_seqcount_retry(const seqcount_t * s,unsigned start)201 static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start)
202 {
203 	return unlikely(s->sequence != start);
204 }
205 
206 /**
207  * read_seqcount_retry - end a seq-read critical section
208  * @s: pointer to seqcount_t
209  * @start: count, from read_seqcount_begin
210  * Returns: 1 if retry is required, else 0
211  *
212  * read_seqcount_retry closes a read critical section of the given seqcount.
213  * If the critical section was invalid, it must be ignored (and typically
214  * retried).
215  */
read_seqcount_retry(const seqcount_t * s,unsigned start)216 static inline int read_seqcount_retry(const seqcount_t *s, unsigned start)
217 {
218 	smp_rmb();
219 	return __read_seqcount_retry(s, start);
220 }
221 
222 
223 
raw_write_seqcount_begin(seqcount_t * s)224 static inline void raw_write_seqcount_begin(seqcount_t *s)
225 {
226 	s->sequence++;
227 	smp_wmb();
228 }
229 
raw_write_seqcount_end(seqcount_t * s)230 static inline void raw_write_seqcount_end(seqcount_t *s)
231 {
232 	smp_wmb();
233 	s->sequence++;
234 }
235 
236 /*
237  * raw_write_seqcount_latch - redirect readers to even/odd copy
238  * @s: pointer to seqcount_t
239  */
raw_write_seqcount_latch(seqcount_t * s)240 static inline void raw_write_seqcount_latch(seqcount_t *s)
241 {
242        smp_wmb();      /* prior stores before incrementing "sequence" */
243        s->sequence++;
244        smp_wmb();      /* increment "sequence" before following stores */
245 }
246 
247 /*
248  * Sequence counter only version assumes that callers are using their
249  * own mutexing.
250  */
write_seqcount_begin_nested(seqcount_t * s,int subclass)251 static inline void write_seqcount_begin_nested(seqcount_t *s, int subclass)
252 {
253 	raw_write_seqcount_begin(s);
254 	seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
255 }
256 
write_seqcount_begin(seqcount_t * s)257 static inline void write_seqcount_begin(seqcount_t *s)
258 {
259 	write_seqcount_begin_nested(s, 0);
260 }
261 
write_seqcount_end(seqcount_t * s)262 static inline void write_seqcount_end(seqcount_t *s)
263 {
264 	seqcount_release(&s->dep_map, 1, _RET_IP_);
265 	raw_write_seqcount_end(s);
266 }
267 
268 /**
269  * write_seqcount_barrier - invalidate in-progress read-side seq operations
270  * @s: pointer to seqcount_t
271  *
272  * After write_seqcount_barrier, no read-side seq operations will complete
273  * successfully and see data older than this.
274  */
write_seqcount_barrier(seqcount_t * s)275 static inline void write_seqcount_barrier(seqcount_t *s)
276 {
277 	smp_wmb();
278 	s->sequence+=2;
279 }
280 
281 typedef struct {
282 	struct seqcount seqcount;
283 	spinlock_t lock;
284 } seqlock_t;
285 
286 /*
287  * These macros triggered gcc-3.x compile-time problems.  We think these are
288  * OK now.  Be cautious.
289  */
290 #define __SEQLOCK_UNLOCKED(lockname)			\
291 	{						\
292 		.seqcount = SEQCNT_ZERO(lockname),	\
293 		.lock =	__SPIN_LOCK_UNLOCKED(lockname)	\
294 	}
295 
296 #define seqlock_init(x)					\
297 	do {						\
298 		seqcount_init(&(x)->seqcount);		\
299 		spin_lock_init(&(x)->lock);		\
300 	} while (0)
301 
302 #define DEFINE_SEQLOCK(x) \
303 		seqlock_t x = __SEQLOCK_UNLOCKED(x)
304 
305 /*
306  * Read side functions for starting and finalizing a read side section.
307  */
read_seqbegin(const seqlock_t * sl)308 static inline unsigned read_seqbegin(const seqlock_t *sl)
309 {
310 	return read_seqcount_begin(&sl->seqcount);
311 }
312 
read_seqretry(const seqlock_t * sl,unsigned start)313 static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
314 {
315 	return read_seqcount_retry(&sl->seqcount, start);
316 }
317 
318 /*
319  * Lock out other writers and update the count.
320  * Acts like a normal spin_lock/unlock.
321  * Don't need preempt_disable() because that is in the spin_lock already.
322  */
write_seqlock(seqlock_t * sl)323 static inline void write_seqlock(seqlock_t *sl)
324 {
325 	spin_lock(&sl->lock);
326 	write_seqcount_begin(&sl->seqcount);
327 }
328 
write_sequnlock(seqlock_t * sl)329 static inline void write_sequnlock(seqlock_t *sl)
330 {
331 	write_seqcount_end(&sl->seqcount);
332 	spin_unlock(&sl->lock);
333 }
334 
write_seqlock_bh(seqlock_t * sl)335 static inline void write_seqlock_bh(seqlock_t *sl)
336 {
337 	spin_lock_bh(&sl->lock);
338 	write_seqcount_begin(&sl->seqcount);
339 }
340 
write_sequnlock_bh(seqlock_t * sl)341 static inline void write_sequnlock_bh(seqlock_t *sl)
342 {
343 	write_seqcount_end(&sl->seqcount);
344 	spin_unlock_bh(&sl->lock);
345 }
346 
write_seqlock_irq(seqlock_t * sl)347 static inline void write_seqlock_irq(seqlock_t *sl)
348 {
349 	spin_lock_irq(&sl->lock);
350 	write_seqcount_begin(&sl->seqcount);
351 }
352 
write_sequnlock_irq(seqlock_t * sl)353 static inline void write_sequnlock_irq(seqlock_t *sl)
354 {
355 	write_seqcount_end(&sl->seqcount);
356 	spin_unlock_irq(&sl->lock);
357 }
358 
__write_seqlock_irqsave(seqlock_t * sl)359 static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
360 {
361 	unsigned long flags;
362 
363 	spin_lock_irqsave(&sl->lock, flags);
364 	write_seqcount_begin(&sl->seqcount);
365 	return flags;
366 }
367 
368 #define write_seqlock_irqsave(lock, flags)				\
369 	do { flags = __write_seqlock_irqsave(lock); } while (0)
370 
371 static inline void
write_sequnlock_irqrestore(seqlock_t * sl,unsigned long flags)372 write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
373 {
374 	write_seqcount_end(&sl->seqcount);
375 	spin_unlock_irqrestore(&sl->lock, flags);
376 }
377 
378 /*
379  * A locking reader exclusively locks out other writers and locking readers,
380  * but doesn't update the sequence number. Acts like a normal spin_lock/unlock.
381  * Don't need preempt_disable() because that is in the spin_lock already.
382  */
read_seqlock_excl(seqlock_t * sl)383 static inline void read_seqlock_excl(seqlock_t *sl)
384 {
385 	spin_lock(&sl->lock);
386 }
387 
read_sequnlock_excl(seqlock_t * sl)388 static inline void read_sequnlock_excl(seqlock_t *sl)
389 {
390 	spin_unlock(&sl->lock);
391 }
392 
393 /**
394  * read_seqbegin_or_lock - begin a sequence number check or locking block
395  * @lock: sequence lock
396  * @seq : sequence number to be checked
397  *
398  * First try it once optimistically without taking the lock. If that fails,
399  * take the lock. The sequence number is also used as a marker for deciding
400  * whether to be a reader (even) or writer (odd).
401  * N.B. seq must be initialized to an even number to begin with.
402  */
read_seqbegin_or_lock(seqlock_t * lock,int * seq)403 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
404 {
405 	if (!(*seq & 1))	/* Even */
406 		*seq = read_seqbegin(lock);
407 	else			/* Odd */
408 		read_seqlock_excl(lock);
409 }
410 
need_seqretry(seqlock_t * lock,int seq)411 static inline int need_seqretry(seqlock_t *lock, int seq)
412 {
413 	return !(seq & 1) && read_seqretry(lock, seq);
414 }
415 
done_seqretry(seqlock_t * lock,int seq)416 static inline void done_seqretry(seqlock_t *lock, int seq)
417 {
418 	if (seq & 1)
419 		read_sequnlock_excl(lock);
420 }
421 
read_seqlock_excl_bh(seqlock_t * sl)422 static inline void read_seqlock_excl_bh(seqlock_t *sl)
423 {
424 	spin_lock_bh(&sl->lock);
425 }
426 
read_sequnlock_excl_bh(seqlock_t * sl)427 static inline void read_sequnlock_excl_bh(seqlock_t *sl)
428 {
429 	spin_unlock_bh(&sl->lock);
430 }
431 
read_seqlock_excl_irq(seqlock_t * sl)432 static inline void read_seqlock_excl_irq(seqlock_t *sl)
433 {
434 	spin_lock_irq(&sl->lock);
435 }
436 
read_sequnlock_excl_irq(seqlock_t * sl)437 static inline void read_sequnlock_excl_irq(seqlock_t *sl)
438 {
439 	spin_unlock_irq(&sl->lock);
440 }
441 
__read_seqlock_excl_irqsave(seqlock_t * sl)442 static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
443 {
444 	unsigned long flags;
445 
446 	spin_lock_irqsave(&sl->lock, flags);
447 	return flags;
448 }
449 
450 #define read_seqlock_excl_irqsave(lock, flags)				\
451 	do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
452 
453 static inline void
read_sequnlock_excl_irqrestore(seqlock_t * sl,unsigned long flags)454 read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
455 {
456 	spin_unlock_irqrestore(&sl->lock, flags);
457 }
458 
459 static inline unsigned long
read_seqbegin_or_lock_irqsave(seqlock_t * lock,int * seq)460 read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq)
461 {
462 	unsigned long flags = 0;
463 
464 	if (!(*seq & 1))	/* Even */
465 		*seq = read_seqbegin(lock);
466 	else			/* Odd */
467 		read_seqlock_excl_irqsave(lock, flags);
468 
469 	return flags;
470 }
471 
472 static inline void
done_seqretry_irqrestore(seqlock_t * lock,int seq,unsigned long flags)473 done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags)
474 {
475 	if (seq & 1)
476 		read_sequnlock_excl_irqrestore(lock, flags);
477 }
478 #endif /* __LINUX_SEQLOCK_H */
479